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F-54506 Vandoeuvre-les-Nancy

France

Abstract. Traditional plasma physics has mainly focused on regimes
characterized by high temperatures and low densities, for which quantum-
mechanical effects have virtually no impact. However, recent technolog-
ical advances (particularly on miniaturized semiconductor devices and
nanoscale objects) have made it possible to envisage practical applica-
tions of plasma physics where the quantum nature of the particles plays
a crucial role. Here, I shall review different approaches to the modeling
of quantum effects in electrostatic collisionless plasmas. The full kinetic
model is provided by the Wigner equation, which is the quantum analog
of the Vlasov equation. The Wigner formalism is particularly attractive,
as it recasts quantum mechanics in the familiar classical phase space,
although this comes at the cost of dealing with negative distribution
functions. Equivalently, the Wigner model can be expressed in terms
of N one-particle Schrödinger equations, coupled by Poisson’s equation:
this is the Hartree formalism, which is related to the ‘multi-stream’ ap-
proach of classical plasma physics. In order to reduce the complexity of
the above approaches, it is possible to develop a quantum fluid model by
taking velocity-space moments of the Wigner equation. Finally, certain
regimes at large excitation energies can be described by semiclassical
kinetic models (Vlasov-Poisson), provided that the initial ground-state
equilibrium is treated quantum-mechanically. The above models are
validated and compared both in the linear and nonlinear regimes.

1 Introduction

Plasma physics deals with the N -body dynamics of a system of charged par-
ticles interacting via electromagnetic forces. The study of plasmas arose in the
early twentieth century when scientists got interested in the physics of gas dis-
charges. After World War II, plasmas became the object of intensive experimental
and theoretical research, mainly because of the potential applications of nuclear
fusion, both military (hydrogen bomb) and peaceful (energy production through
controlled thermonuclear fusion). In parallel, plasma physics was also developed
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by astrophysicists and geophysicists, which is not surprising, as it is thought that
about 90% of all matter in the visible universe exists in the form of a plasma. More
precisely, plasmas are observed in the Sun surface, the earth’s magnetosphere, and
the interplanetary and interstellar media.

Both fusion and space plasmas are characterized by regimes of high tempera-
ture and low density, for which quantum effects are totally negligible 1. However,
physical systems where both plasma and quantum effects coexist do occur in nature,
the most obvious example being the electron gas in an ordinary metal. In metals,
valence electrons are not attached to a particular nucleus, but rather behave as free
particles, which is why metals make good electric conductors. Although some level
of understanding of metallic properties is achieved by considering noninteracting
electrons, a more accurate description can be obtained by treating the electron pop-
ulation as a plasma, globally neutralized by the lattice ions. At room temperature
and standard metallic densities, quantum effects can no longer be ignored, so that
the electron gas constitutes a true quantum plasma.

For ordinary metals, however, the properties of the electron population (band
structure, thermodynamic properties) are mainly determined by the presence of a
regular ion lattice, typical plasma effects being only a higher order correction. In
recent years, though, there has been tremendous progress in the manipulation of
metallic nanostructures (metal clusters, nanoparticles, thin metal films) constituted
of a small number of atoms (typically 10− 105) [1, 2, 3, 4, 5]. For such objects, no
underlying ionic lattice exists, so that the dynamics of the electron population is
principally governed by plasma effects, at least for large enough systems. Further,
the development of ultrafast (femtosecond and, more recently, attosecond) laser
sources makes it possible to probe the electron dynamics in metallic nanostructures
on the typical time scale of plasma phenomena, which is indeed of the order of the
femtosecond. Metallic nanostructures thus constitute an ideal arena to study the
dynamical properties of quantum plasmas.

Another possible application of quantum plasmas arises from semiconductor
physics [6, 7, 8, 9, 10]. Even though the electron density in semiconductors is
much lower than in metals, the great degree of miniaturization of today’s electronic
components is such that the de Broglie wavelength of the charge carriers can be
comparable to the spatial variation of the doping profiles. Hence, typical quantum
mechanical effects, such as tunneling, are expected to play a central role in the
behavior of electronic components to be constructed in the next years.

Finally, quantum plasmas also occur in some astrophysical objects under ex-
treme conditions of temperature and density, such as white dwarf stars, where the
density is some ten order of magnitudes larger than that of ordinary solids [11].
Because of such large densities, a white dwarf can be as hot as a fusion plasma (108

K), but still behave quantum-mechanically.
A classical system of charged particles qualifies as a plasma if it is quasineutral

and if collective effects play a significant role in the dynamics [12]. ‘Quasineutral-
ity’ means that charge separation can only exist on a short distance, which, for
classical plasmas, is given by the Debye length. On distances larger than the Debye
length, the plasma is basically neutral, except for small fluctuations. By ‘collective

1Quantum effects do play an important role, for example, in determining the fusion cross
sections. But this is a nuclear physics rather than a plasma physics issue. What we mean is
that the dynamics and thermodynamics of fusion and space plasmas are completely unaffected by
quantum corrections.
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effects’ we mean particle motions that depend not only on local conditions, but
also – indeed principally – on the positions and velocities of all other particles in
the plasma. (In solid state and nuclear physics, collective effects are usually called
‘mean-field’ effects, because they arise from the average field created by all the
particles). Such collective behavior is possible because of the long-range nature
of electromagnetic forces. In contrast, for neutral gases, the dominant interaction
mechanism is provided by short-range molecular forces of the Lennard-Jones type:
individual molecules thus move undisturbed in the gas until they make a collision
with another molecule (which occurs when the interaction potentials overlap). It
should be added that real plasmas are often only partially ionized, so that a frac-
tion of neutral molecules is also present. In order to have true plasma behavior,
we must therefore require that the collision rates of electrons and ions with the
neutral molecules be relatively low compared to typical collective phenomena. In
the present work, we shall avoid this issue altogether by restricting our analysis to
the simpler case of fully ionized gases.

When quantum effects start playing a role, the above picture gets more compli-
cated, as an additional length scale is introduced, namely the de Broglie wavelength
of the charged particles, λB = ~/mv. The de Broglie wavelength roughly repre-
sents the spatial extension of the particle wave function – the larger it is, the more
important quantum effects are. From the definition of λB , it is clear that quan-
tum behavior will be reached much more easily for the electrons than for the ions,
due to the large mass difference. Indeed, in all practical situations, even the most
extreme, the ion dynamics is always classical, and only the electrons need to be
treated quantum-mechanically. In the present paper, we shall always refer implic-
itly to electrons when discussing quantum effects. In addition, only electrostatic
(Coulomb) interactions will be considered. Magnetic fields do introduce novel and
interesting effects, but the fundamental properties of quantum plasmas are already
present in the purely electrostatic scenario.

In the rest of this paper, we shall first obtain a number of qualitative results by
using simple arguments from dimensional analysis. This will be useful to extract
the relevant dimensionless parameters that determine the various physical regimes
(classical/quantum, collisionless/collisional). Subsequently, we shall derive and il-
lustrate several mathematical models that are appropriate to describe the dynamics
of a quantum plasma in the collisionless regime.

2 Physical regimes for classical and quantum plasmas

In this section, we shall derive a number of parameters that represent the typi-
cal length, time, and velocity scales in a classical or quantum plasma. These can be
obtained using elementary considerations based on dimensional analysis. Of course,
more detailed studies would be necessary to understand how such parameters ac-
tually intervene in real physical phenomena (for instance, whether a certain time
scale represents a typical oscillation frequency, or rather a damping rate). Here, we
shall derive the algebraic expression for these quantities and simply state, without
proof, what they represent physically.

In addition, it will also be important to establish certain dimensionless parame-
ters. Dimensionless parameters allow us to discriminate between different physical
regimes, characterized by situations where one effect dominates over another. In
particular, we shall look for parameters that define whether a plasma is classical or
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quantum, and whether it is dominated by individual effects (collisional) or collective
effects (collisionless).

2.1 Classical plasmas. We consider a plasma of number density n, composed
of particles (typically, electrons) with mass m and electric charge e, interacting via
Coulomb forces (hence the electric permittivity ε0). With these four parameters,
we are able to construct a quantity that has the dimensions of an inverse time, i.e.
a frequency:

ωp =
(

e2n

mε0

)1/2

. (2.1)

The latter quantity is known as the plasma frequency and it represents the
typical oscillation frequency for electrons immersed in a neutralizing background
of positive ions, which is supposed to be motionless because of the large ion mass.
The oscillations arise from the fact that, when a portion of the plasma is depleted
of some electrons (thus creating a net positive charge), the resulting Coulomb force
tends to pull back the electrons towards the excess positive charge. Due to their
inertia, the electrons will not simply replenish the positive region, but travel further
away thus re-creating an excess positive charge. In the absence of collisions, this
effect gives rise to undamped electron oscillations at the plasma frequency.

Note that the plasma frequency is independent on the temperature. If we do
introduce a finite temperature T , then we can construct a typical velocity:

vT =
(

kBT

m

)1/2

, (2.2)

where kB is Boltzmann’s constant. This is the thermal velocity, which represents,
just like in ordinary gases, the typical speed due to random thermal motion.

By combining the above two quantities, one can define a typical length scale,
the Debye length:

λD =
vT

ωp
=

(
ε0kBT

ne2

)1/2

. (2.3)

The Debye length describes the important phenomenon of electrostatic screening: if
an excess positive charge is introduced in the plasma, it will be rapidly surrounded
by a cloud of electrons (which are more mobile and thus react quickly). As a result,
the positive charge will be partially screened and will be virtually ‘invisible’ to
other particles situated at a large enough distance. Quantitatively, this amounts to
saying that the electrostatic potential generated by an excess charge does not fall,
like in vacuum, as 1/r, but rather obeys a Yukawa-like potential exp(−r/λD)/r,
which of course decays much more quickly and on a distance of the order of the
Debye length. The Debye screening is at the origin of one of the most crucial of all
plasma properties, namely quasineutrality: charge separation in a plasma can exist
only on scales smaller than λD, but it is screened out at larger sales.

Let us now try to construct a dimensionless parameter using the above quanti-
ties: m, e, ε0, n, and T . It is easily seen that only one such parameter exists, and
it reads as

gC =
e2n1/3

ε0kBT
. (2.4)

This is known as the (classical) graininess parameter or coupling parameter.
It is illuminating to show that gC can be written as the ratio of the interaction
(electric) energy Eint to the average kinetic energy Ekin. Indeed, for particles
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situated at typical interparticle distance d = n−1/3, one has Eint = e2/(ε0d) and
Ekin = kBT , which immediately yields the expression (2.4).

The expression gC = Eint/Ekin allows us to guess the physical relevance of the
coupling parameter. When gC is small, the plasma is dominated by thermal ef-
fects, whereas two-body Coulomb interactions (i.e. binary collisions) remain weak.
In this regime, the main field acting on the charged particles is the nonlocal mean
field, which is responsible for typical collective effects. This is known as the colli-
sionless regime. On the contrary, when gC ' 1 or larger, binary collisions cannot
be neglected and the plasma is said to be collisional or strongly coupled. We also
note that, following (2.4), classical plasmas are collisionless at high temperatures
and low densities.

Alternatively, gC can be written as the inverse of the number of particles con-
tained in a volume of linear dimension λD, raised to a certain power:

gC =
(

1
nλ3

D

)2/3

. (2.5)

This shows that a plasma is collisionless when the Debye screening is effective, i.e.
when a large number of electrons are available in a Debye volume.

2.2 Quantum plasmas. Quantum effects can be measured by the thermal
de Broglie wavelength of the particles composing the plasma

λB =
~

mvT
, (2.6)

which roughly represents the spatial extension of a particle’s wave function due to
quantum uncertainty. For classical regimes, the de Broglie wavelength is so small
that particles can be considered as pointlike (except, as mentioned in the Introduc-
tion, when computing collision cross-sections), therefore there is no overlapping of
the wave functions and no quantum interference. On this basis, it is reasonable to
postulate that quantum effects start playing a significant role when the de Broglie
wavelength is similar to or larger than the average interparticle distance n−1/3, i.e.
when

nλ3
B ≥ 1 . (2.7)

On the other hand, it is well known from the statistical mechanics of ordinary
gases [13] that quantum effects become important when the temperature is lower
than the so-called Fermi temperature TF , defined as

kBTF ≡ EF =
~2

2m
(3π2)2/3 n2/3 , (2.8)

where we have also defined the Fermi energy EF . When T approaches TF , the
relevant statistical distribution changes from Maxwell-Boltzmann to Fermi-Dirac.
Now, it is easy to see that the ratio χ ≡ T/TF is simply related to the dimensionless
parameter nλ3

B discussed above:

χ ≡ TF

T
=

1
2

(3π2)2/3 (nλ3
B)2/3. (2.9)

Thus, quantum effects become important when χ ≥ 1.
We now want to establish the typical space, time, and velocity scales for a

quantum plasma, as well as the relevant dimensionless parameters. First of all,
we stress that simple expressions can be found only in the limiting cases T À TF

(corresponding to the classical case treated previously) and T ¿ TF , which is
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the ‘deeply quantum’ (fully degenerate) regime that we are going to analyze. Of
course, there will be a smooth transition between the two regimes, but this cannot
be treated using straightforward dimensional arguments.

Concerning the typical time scale for collective phenomena, this is still given by
the inverse of the plasma frequency (2.1), even in the quantum regime. However, the
thermal speed becomes meaningless in the very low temperature limit, and should
be replaced by the typical velocity characterizing a Fermi-Dirac distribution. This
is the Fermi velocity:

vF =
(

2EF

m

)1/2

=
~
m

(3π2 n)1/3 . (2.10)

With the plasma frequency and the Fermi velocity, we can define a typical
length scale

λF =
vF

ωp
, (2.11)

which is the quantum analog of the Debye length. Just like the Debye length, λF

describes the scale length of electrostatic screening in a quantum plasma.
The quantum coupling parameter can be defined as the ratio of the interaction

energy Eint to the average kinetic energy Ekin. The interaction energy is the same
as in the classical case, whereas the kinetic energy is now given by the Fermi
energy Ekin = EF . With these assumptions, one can write the quantum coupling
parameter as

gQ ≡ Eint

EF
=

2
(3π2)2/3

e2m

~2ε0 n1/3
∼

(
1

nλ3
F

)2/3

∼
(
~ωp

EF

)2

, (2.12)

where we have left out proportionality constants for sake of clarity. The third
expression of gQ in (2.12) is completely analogous to the classical one when one
substitutes λF → λD. The last expression is more interesting, as it has no classical
counterpart: it describes the coupling parameter as the ratio of the ‘plasmon energy’
~ωp (energy of an elementary excitation associated to an electron plasma wave) to
the Fermi energy 2.

The quantum collisionless regime (where collective, mean-field effects dominate)
is again defined as the regime where the quantum coupling parameter is small. From
(2.12), it appears that a quantum plasma is ‘more collective’ at larger densities, in
contrast to a classical plasma [see (2.4)]. This may seem surprising, but can be
easily understood by invoking Pauli’s exclusion principle, according to which two
fermions cannot occupy the same quantum state. In a fully degenerate fermion gas,
all low-energy states are occupied: if we add one more particle to the gas, it will
necessarily be in a high-energy state. Therefore, by increasing the gas density, we
automatically increase its average kinetic energy, which, in virtue of (2.12), reduces
the value of gQ.

2.3 Plasma regimes. We have so far defined three dimensionless parameters
that determine whether the plasma is classical or quantum, and, in either case,
whether it is collisional or collisionless:

1. χ = TF /T : classical/quantum
2. gC : collisional/collisionless (classical regime)

2gQ is directly proportional to the parameter rs/a0 (where a0 is Bohr’s radius), commonly

used in solid state physics [14].
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Figure 1 Plasma diagram in the log T − log n plane. IONO: ionospheric
plasma; SPACE: interstellar space; CORONA: solar corona; DISCHA: typi-
cal electric discharge; TOK: tokamak experiment (magnetic confinement fu-
sion); ICF: inertial confinement fusion; MET: metals and metal clusters; JUP:
Jupiter’s core; DWARF: white dwarf star.

3. gQ : collisional/collisionless (quantum regime)

These parameters are functions of the temperature and density. In Fig. 1, we
plot on a log T−log n diagram the straight lines corresponding to χ = gC = gQ = 1,
which delimitate the various plasma regimes [15].

The log T − log n plane is divided into four regions, two of which are classical
(above the T = TF line) and two quantum. Each quantum/classical region is
then divided in two collisional/collisionless subregions, identified by the kinetic
equations that are relevant to each regime. As we shall see in the forthcoming
sections, the Vlasov and Wigner equations are the appropriate models respectively
for collisionless classical and collisionless quantum plasmas. ‘Boltzmann’ is used as
a generic term for collisional kinetic equations in the classical regime. Collisional
effects in the quantum regime are much harder to deal with, and no uncontroversial
kinetic model exists in that regime, which is identified by ‘Wigner (+ coll.)’ on the
figure.

We point out that all previous considerations have implicitly assumed thermal
equilibrium. Out-of-equilibrium regimes should be treated much more carefully and
the above results may not be entirely correct. For example, if an electron beam
is injected into a plasma, the beam velocity will have to be taken into account
when determining the de Broglie wavelength, which will therefore be smaller. For
this reason, systems that are far from equilibrium can sometimes be treated with a
semiclassical model, even though the corresponding equilibrium may still be fully
quantum (see Sec. 4.4).

Several points corresponding to natural and laboratory plasmas have also been
plotted in Fig. 1. We note that space and magnetic fusion plasmas fall in the clas-
sical collisionless region, whereas inertial confinement fusion plasmas may display
quantum and/or strong coupling effects. Extremely dense astrophysical objects
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such as white dwarf stars are definitely quantum and collisionless, even though
they are as hot as fusion or solar plasmas.

3 Electrons in metals and metallic nanostructures: Pauli blocking

The typical quantum coupling parameter for ordinary metals is larger than
unity, so that, in principle, electron-electron collisions are as important as collec-
tive effects. If that were really the case, one should abandon collisionless models
altogether and resort to the full N -body problem. This is hardly a feasible task.
Fortunately, however, the effect known as Pauli blocking reduces the collision rate
quite dramatically in most cases of interest. This occurs when the electron distri-
bution is close to the Fermi-Dirac equilibrium at relatively low temperatures. The
fundamental point is that, when all lower levels are occupied, the exclusion principle
forbids a vast number of transitions that would otherwise be possible [14]. In par-
ticular, at strictly zero temperature, all electrons have energies below EF , and no
transition is possible, simply because there are no available states for the electrons
to occupy. At moderate temperatures, only electrons within a shell of thickness
kBT about the Fermi surface (i.e. the region where E = EF ) can undergo collisions
(this shell is delimited by the two vertical lines in Fig. 2). For such electrons, the
e-e collision rate (inverse of the lifetime τee) is proportional to kBT/~ (this is a
form of the uncertainty principle, energy × time = const.). The average collision
rate is obtained by multiplying the previous expression by the fraction of electrons
present in the shell of thickness T about the Fermi surface, which is ∼ T/TF . One
obtains

νee ∼ kBT 2

~ TF
. (3.1)

In normalized units, this expression reads as

νee

ωp
=

EF

~ωp

(
T

TF

)2

=
1

g
1/2
Q

(
T

TF

)2

(3.2)

Thus, νee < ωp in the region where T < TF and gQ > 1, which is the relevant
one for metallic electrons (Fig. 1). Restoring dimensional units, we find that, at
room temperature, τee ' 10−10 s, which is much larger than the typical collisionless
time scale τp = 2πω−1

p ' 10−15 s = 1 fs. In addition, the typical time scale for
electron-lattice collisions τei ' 10−14 s = 10 fs is also larger than τp. Therefore, it
appears that a collisionless regime is indeed relevant on a time scale of the order of
the femtosecond.

A word of caution is in order, however, not to overestimate the effect of
Pauli blocking. The above considerations are valid at thermodynamic equilibrium,
whereas many more transitions are allowed for out-of-equilibrium electrons. There-
fore, for strongly excited systems where many nonequilibrium electrons are present,
the collision frequency may be larger than the simple estimate given in (3.2).

Some typical parameters for metallic electrons (gold) at room temperature are
summarized in Table 1. We note that τp, the typical collisionless time scale, is of the
order of the femtosecond. With the recent development of ultrafast laser sources
with femtosecond period, it is therefore possible to probe the mean-field properties
of metallic nanostructures. For example, the electron dynamics in thin gold films
excited with femtosecond lasers was studied experimentally in several works [2, 3].
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Figure 2 Fermi-Dirac energy distribution for a case with T/TF = 0.1. The
vertical lines define a shell of thickness kBT around the Fermi surface.

We also point out that λF , the typical collisionless length scale, is of the order of
the Ångstrom, which is comparable to the typical atomic size.

Table 1 Typical parameters for electrons in gold at room temperature

n 5.9× 1028 m−3

T 300 K
ωp 1.37× 1016 s−1

τp 0.46 fs
τie 30 fs
TF 6.4× 104 K
EF 5.53 eV
vF 1.4× 106 ms−1

λF 1× 10−10 m
gQ 12.7

rs/a0 3

4 Models

The most fundamental model for the quantum N -body problem is the Schrödin-
ger equation for the N -particle wave function ψ(x1, x2, . . . , xN , t). Obviously, this
is an unrealistic task, both for analytical calculations and numerical simulations.
A drastic, but useful and to some extent plausible, simplification can be achieved
by neglecting two-body (and higher order) correlations. This amounts to assume
that the N -body wave function can be factored into the product of N one-body
functions:

ψ(x1, x2, . . . , xN , t) = ψ1(x1, t) ψ2(x2, t) . . . ψN (xN , t). (4.1)
For fermions, a weak form of the exclusion principle is satisfied if none of the wave
functions on the right-hand side of (4.1) are identical 3.

3A stronger version of the exclusion principle requires that ψ(x1, x2, . . . , xN , t) is antisym-
metric, i.e. that it changes sign when two of its arguments are interchanged. This can be achieved
by taking, instead of the single product of N wave functions as in (4.1), a linear combinations of
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The assumption of weak correlation between the particles is satisfied, as we
have seen, when the quantum coupling parameter gQ is small. The set of N one-
body wave functions is known as a quantum mixture (or quantum mixed state) and
is usually represented by a density matrix

ρ(x, y, t) =
N∑

α=1

pαψα(x, t) ψ∗α(y, t), (4.2)

where, for clarity, we have assumed the same normalization
∫

ψα
2dx = 1 for all

wave functions and then introduced the occupation probabilities pα.
Both the Wigner and Hartree models described below are completely equivalent

to models based on the density matrix formalism (Von Neumann equation).

4.1 Wigner-Poisson. The Wigner representation [16] is a useful tool to ex-
press quantum mechanics in a phase space formalism (for reviews see [17, 18, 19]).
As detailed above, a generic quantum mixed state can be described by N single-
particle wave functions ψα(x, t) each characterized by a probability pα satisfying∑N

α=1 pα = 1. The Wigner function is a function of the phase space variables (x, v)
and time, which, in terms of the single-particle wave functions, reads as

f(x, v, t) =
N∑

α=1

m

2π~
pα

∫ +∞

−∞
ψ∗α

(
x +

λ

2
, t

)
ψα

(
x− λ

2
, t

)
eimvλ/~ dλ (4.3)

(we restrict our discussion to one-dimensional cases, but all results can easily be
generalized to three dimensions). It must be stressed that the Wigner function,
although it possesses many useful properties, is not a true probability density, as
it can take negative values. However, it can be used to compute averages just like
in classical statistical mechanics. For example, the expectation value of a generic
quantity A(x, v) is defined as:

〈A〉 =
∫ ∫

f(x, v)A(x, v)dxdv∫ ∫
f(x, v)dxdv

, (4.4)

and yields the correct quantum-mechanical value 4. In addition, the Wigner func-
tion reproduces the correct quantum-mechanical marginal distributions, such as the
spatial density:

n(x, t) =
∫ +∞

−∞
f(x, v, t) dv =

N∑
α=1

pα | ψα |2 . (4.5)

We also point out that, of course, not all functions of the phase space variables
are genuine Wigner functions, as they cannot necessarily be written in the form
(4.3). In general, although it is trivial to find the Wigner function given the N wave
functions that define the quantum mixture, the inverse operation is not generally
feasible. Indeed, there are no simple rules to establish whether a given function of
x and v is a genuine Wigner function. For a more detailed discussion on this issue,
and some practical recipes to construct genuine Wigner functions, see [20].

all products obtained by permutations of the arguments, with weights ±1 (Slater determinant)
[14]. This is at the basis of Fock’s generalization of the Hartree model, as pointed out in Sec. 4.2.

4For variables whose corresponding quantum operators do not commute (such as x̂v̂), (4.4)
must be supplemented by an ordering rule, known as Weyl’s rule [19].
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The Wigner function obeys the following evolution equation:

∂f

∂t
+ v

∂f

∂x
+

em

2iπ~2

∫ ∫
dλ dv′eim(v−v′)λ/~

[
φ

(
x +

λ

2

)
− φ

(
x− λ

2

)]
f(x, v′, t) = 0 , (4.6)

where φ(x, t) is the self-consistent electrostatic potential. Developing the integral
term in (4.6) up to order O(~2) we obtain

∂f

∂t
+ v

∂f

∂x
− e

m

∂φ

∂x

∂f

∂v
=

e~2

24m3

∂3φ

∂x3

∂3f

∂v3
+ O(~4) (4.7)

The Vlasov equation is thus recovered in the formal semiclassical limit ~→ 0. We
stress, however, that rigorous asymptotic results are much harder to obtain and
generally involve weak convergence.

The Wigner equation must be coupled to the Poisson’s equation for the electric
potential

∂2φ

∂x2
=

e

ε0

(∫
fdv − n0

)
, (4.8)

where we have assumed that the ions form a motionless neutralizing background
with uniform density n0 (this is known as the ‘jellium’ model in solid state physics).

The resulting Wigner-Poisson (WP) system has been extensively used in the
study of quantum transport [6, 7, 21]. Exact analytical results can be obtained
by linearizing (4.6) and (4.8) around a spatially homogeneous equilibrium given by
f0(v). By expressing the fluctuating quantities as a sum of plane waves exp(ikx−
iωt) with frequency ω and wave number k, the dispersion relation can be written
in the form ε(k, ω) = 0, where the dielectric constant ε reads, for the WP system,

εWP(ω, k) = 1 +
mω2

p

n0k

∫
f0(v + ~k/2m)− f0(v − ~k/2m)

~k(ω − kv)
dv . (4.9)

With an appropriate change of integration variable, (4.9) can be written as

εWP(ω, k) = 1− ω2
p

n0

∫
f0(v)

(ω − kv)2 − ~2k4/4m2
dv . (4.10)

From (4.9), one can recover the Vlasov-Poisson (VP) dispersion relation by taking
the semiclassical limit ~→ 0

εVP(ω, k) = 1 +
ω2

p

n0k

∫
∂f0/∂v

ω − kv
dv . (4.11)

The integration in (4.9) and (4.11) should be performed along the Landau
contour in the complex (Re v, Im v) plane, so that the singularity at v = ω/k
is always left above the contour [12]. This prescription allows one to obtain the
correct imaginary part of ε(k, ω), which is at the basis of the phenomenon of Landau
damping.

Just like in the classical case (Vlasov-Poisson), the dispersion relation (4.9) can
also support unstable solutions, i.e. solutions with a positive imaginary part of the
frequency. These solutions grow exponentially until some nonlinear effect kicks in
and leads to saturation of the instability. The stability property of the dispersion
relation of the Wigner-Poisson system have been extensively studied in [22, 23].
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4.2 Hartree. A completely equivalent approach to the WP system is obtained
by making direct use of the N wave functions ψα(x, t). These obey N independent
Schrödinger equations, coupled through Poisson’s equation

i~
∂ψα

∂ t
= − ~

2

2m

∂2ψα

∂x2
− eφψα , α = 1 . . . N (4.12)

∂2φ

∂x2
=

e

ε0

(
N∑

α=1

pα|ψα|2 − n0

)
. (4.13)

This type of model was originally derived by Hartree in the context of atomic
physics, with the aim of studying the self-consistent effect of atomic electrons on
the Coulomb potential of the nucleus. Subsequently, Fock introduced a correction
that accounts for the parity of the N -particle wave function for an ensemble of
fermions (Hartree-Fock model), but this development will not be considered in this
paper 5.

Instead, it is useful to think of the above Schrödinger-Poisson equations (4.12)–
(4.13) as the quantum-mechanical analog of Dawson’s multistream model [26]. Daw-
son supposed that the classical distribution function can be represented as a sum
of N ‘streams’, each characterized by a probability pα, a density nα, and a velocity
uα:

f(x, v, t) =
N∑

α=1

pα nα(x, t) δ(v − uα(x, t)) , (4.14)

where δ stands for the Dirac delta. The streams represent infinitely thin filaments
in phase space. If f obeys the Vlasov equation, then the functions nα and uα each
satisfy the following continuity and momentum conservation equations:

∂ nα

∂ t
+

∂

∂ x
(nαuα) = 0 , (4.15)

∂ uα

∂ t
+ uα

∂ uα

∂x
=

e

m

∂φ

∂ x
, (4.16)

coupled of course to Poisson’s equation with the electron density given by n(x, t) =∑
α pαnα(x, t). Note that the representation (4.14) presents some drawbacks, as the

functions uα(x, t) can become multivalued during the time evolution. This means
that the system (4.15)–(4.16) will develop singularities, such as an infinite density
at certain positions. When this happens, the fluid description (4.15)–(4.16) ceases
to be valid, although the phase space picture of the streams is still correct.

This line of reasoning can be extended to the quantum case [27, 28] by applying
the Madelung representation of the wave function to the system (4.12)–(4.13). Let
us introduce the real amplitude Aα(x, t) and the real phase Sα(x, t) associated to
the pure state ψα according to

ψα = Aα exp(i Sα/~) . (4.17)

The density nα and the velocity uα of each stream are given by

nα = |ψα|2 = A2
α , uα =

1
m

∂ Sα

∂ x
. (4.18)

5A very similar model to the Hartree equations (4.12)–(4.13) is known as TDDFT (time-
dependent density functional theory) [24]. Its linearized version goes under the name of RPA
(random-phase approximation) [25].
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Introducing Eqs. (4.17)–(4.18) into Eqs. (4.12)–(4.13) and separating the real and
imaginary parts of the equations, we find

∂ nα

∂ t
+

∂

∂ x
(nαuα) = 0 , (4.19)

∂ uα

∂ t
+ uα

∂ uα

∂x
=

e

m

∂φ

∂ x
+
~2

2m2

∂

∂ x

(
∂2(

√
nα)/∂ x2

√
nα

)
. (4.20)

Quantum effects are contained in the ~-dependent term in (4.20) (sometimes called
the Bohm potential). If we set ~ = 0, we obviously obtain the classical multistream
model (4.15)–(4.16). An attractive feature of the quantum multistream model is
that, contrarily to its classical counterpart, it does not generally develop singulari-
ties. This is thanks to the Bohm potential, which, by introducing a certain amount
of wave dispersion, prevents the density to build up indefinitely.

Linearizing equations (4.19)–(4.20) (supplemented by Poisson’s equation) around
the spatially homogeneous equilibrium: nα = n0, uα = u0α and φ = 0, one obtains
the following dielectric constant

εH(ω, k) = 1−
N∑

α=1

pα

ω2
p

(ω − ku0α)2 − ~2k4/4m2
. (4.21)

The classical multistream relation is obtained simply by setting ~ = 0 in (4.21).
The equivalence of the Wigner-Poisson and Hartree models can be readily

proven on the linear dispersion relation. The homogeneous equilibrium described
above corresponds to wave functions

ψα =
√

n0 exp
(
i
mu0α

~
x
)

. (4.22)

The Wigner transform (4.3) of the above wave functions (4.22) is given by the
following expression

f0(v) =
N∑

α=1

pαn0δ(v − u0α), (4.23)

where δ stands for the Dirac delta. By inserting (4.23) into the WP dispersion
relation (4.9), one recovers precisely the multistream dispersion relation (4.21).

4.3 Fluid model. In classical plasma physics, fluid (or hydrodynamic) mod-
els are often derived by taking moments of the appropriate kinetic equation (e.g.
Vlasov’s equation) in velocity space. The moment of order s is defined as:

Ms(x, t) =
∫ +∞

−∞
f(x, v, t)vsdv. (4.24)

Then, the zeroth order moment is the spatial density and obeys the continuity
equation; the first order moment is the average velocity and obeys a momentum
conservation equation; the second order moment is related to the pressure, and so
on. This procedure generates an infinite number of fluid equations, which is usually
truncated at a relatively low order by assuming an appropriate closure equation.
The closure often takes the form of a thermodynamic equation of state, relating the
pressure to the density, e.g. the polytropic relation P ∝ nγ . The same procedure
can be applied to the Wigner equation, although some steps in the derivation are
somewhat subtler than in the classical case. With this technique, quantum fluid
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equations were derived in [29]. Here, we shall present a succinct derivation of the
same fluid model using a different approach based on the Hartree equations [30, 31].

The starting point is the system of 2N equations (4.19)–(4.20), which is com-
pletely equivalent to Hartree’s model (4.12)–(4.13). Let us define the global density
n(x, t)

n(x, t) =
N∑

α=1

pαnα (4.25)

and the global average velocity u(x, t)

u(x, t) ≡ 〈uα〉 =
N∑

α=1

pα
nα

n
uα (4.26)

By multiplying the continuity equation (4.19) by pα and summing over α = 1 . . . N ,
we obtain

∂ n

∂ t
+

∂(nu)
∂x

= 0 (4.27)

Similarly, for the equation of momentum conservation (4.20), one obtains

∂ u

∂ t
+ u

∂u

∂x
=

e

m

∂φ

∂x
+
~2

2m2

∂

∂x

N∑
α=1

pα

(
∂2

x

√
nα√

nα

)
− 1

mn

∂P

∂x
(4.28)

where the pressure P (x, t) is defined as

P = mn

[∑
α pαnαu2

α

n
−

(∑
α pαnαuα

n

)2
]
≡ mn(〈u2

α〉 − 〈uα〉2) (4.29)

So far the derivation is exact, but (4.28) still involves a sum over the N states,
so no simplification was achieved. Our purpose is to obtain a closed system of two
equations for the global averaged quantities n and u. In order to close the system,
two approximations are needed:

1. We postulate a classical equation of state, relating the pressure to the den-
sity: P = P (n).

2. We assume that the following substitution is allowed:
N∑

α=1

pα

(
∂2

x

√
nα√

nα

)
=⇒ ∂2

x

√
n√

n
(4.30)

It can be shown that the second hypothesis is satisfied for length scales larger than
λF . This will be apparent from the linear theory detailed in Sec. 5.

With these assumptions, we obtain the following reduced system of fluid equa-
tions for the global quantities n and u

∂ n

∂ t
+

∂(nu)
∂x

= 0 (4.31)

∂ u

∂ t
+ u

∂u

∂x
=

e

m

∂φ

∂x
+
~2

2m2

∂

∂x

(
∂2

x

√
n√

n

)
− 1

mn

∂P

∂x
(4.32)

where φ is given by Poisson’s equation. We stress that we have transformed a
system of 2N equations (4.19)–(4.20) into a system of just two equations.

An interesting form of the system (4.31)–(4.32) can be obtained by introducing
the following ‘effective’ wave function

Ψ(x, t) =
√

n(x, t) exp (iS(x, t)/~), (4.33)
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where S(x, t) is defined according to the relation mu = ∂xS, and n = |Ψ|2. It is
easy to show that (4.31)–(4.32) is equivalent to the following nonlinear Schrödinger
equation

i~
∂Ψ
∂ t

= − ~2

2m

∂2Ψ
∂x2

− eφΨ + Weff(|Ψ|2) Ψ. (4.34)

Weff(n) is an effective potential related to the pressure P (n)

Weff(n) =
∫ n dn′

n′
dP (n′)

dn′
. (4.35)

As an example, let us consider a one-dimensional (1D) zero-temperature fermion
gas, whose equation of state is a polytropic with exponent γ = 3

P =
mv2

F

3n2
0

n3, (4.36)

where vF is the Fermi velocity computed with the equilibrium density n0. Using
(4.36), the effective potential becomes

Weff =
mv2

F

2n2
0

|Ψ|4 . (4.37)

This fluid model is a useful approximation, as it reduces dramatically the com-
plexity of the Hartree system (2N equations) or the Wigner equation (phase space
dynamics). Its validity is limited to systems that are large compared to λF . Like
all fluid approximations, it neglects typical kinetic phenomena originating from the
details of the phase space distribution function. In particular, it cannot reproduce
Landau’s collisionless damping.

4.4 Vlasov-Poisson. The Wigner and Hartree approaches are both kinetic
and quantum. The above fluid model was derived by dropping kinetic effects,
while preserving quantum effects through the Bohm potential. Another possible
approximation could consist in neglecting quantum effects while keeping kinetic
ones. The resulting semiclassical limit is, of course, given by the Vlasov equation

∂f

∂t
+ v

∂f

∂x
− e

m

∂φ

∂x

∂f

∂v
= 0, (4.38)

coupled, as usual, to Poisson’s equation.
The Vlasov-Poisson (VP) system has been used to study the dynamics of elec-

trons in metal clusters and thin metal films [1, 32]. It is appropriate for large ex-
citation energies, for which the electrons’ de Broglie wavelength is relatively small,
thus reducing the importance of quantum effects in the electron dynamics. How-
ever, as we have seen in Sec. 2.2, the equilibrium distribution for electrons in metals
lies deeply in the quantum region (gQ & 1), so that the initial condition must be
given by a quantum Fermi-Dirac distribution. In this sense, the VP system is
semiclassical.

4.5 Initial and boundary conditions. In order to perform numerical sim-
ulations, boundary and initial conditions must be specified. Physically, the ini-
tial condition should represent a situation of thermodynamics equilibrium (ground
state). For electrons in metals, most analytical results are obtained in the case
of an infinite system (often referred to as the ‘bulk’ in solid state physics), which
can be realized in practice by taking periodic boundary conditions with spatial
period L (this, of course, introduces a lower bound for the wave numbers, namely
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k0 = 2π/L). For such an infinite system, the ground state can be easily specified.
For the WP and VP models, any function of the velocity only f0(v) constitutes a
stationary state. In particular, for fermions we take the Fermi-Dirac distribution
(see, however, Sec. 5.2 for a discussion on the appropriate Fermi-Dirac distribution
for 1D problems):

f0(v) = const.× 1
1 + eβe(ε−µ)

, (4.39)

where βe = 1/kBTe and ε = mv2/2 is the single-particle energy (here, v is the
modulus of the 3D velocity vector). The chemical potential µ(T ) is determined
so that

∫
f0dv = n0, where n0 is the equilibrium density; µ becomes equal to the

Fermi energy EF in the limit T → 0. The same ground state can be defined for the
Hartree model by choosing the initial wave functions in the form (4.22). The Fermi-
Dirac distribution is then specified by the probabilities pα = [1+eβe(εα−µ)]−1, with
εα = mu2

0α/2.
The bulk approximation is not relevant for metal clusters and other metallic

nanostructures, which are small isolated objects that exist either in vacuum or em-
bedded in a background non-metallic matrix. For open quantum systems (Wigner
or Hartree), the choice of appropriate boundary conditions is a subtle issue, which
will not be addressed here [33]. For the semiclassical VP system, one can, for
instance, use open boundaries for the Vlasov equation (zero incoming flux) and
Dirichlet conditions for the Poisson equation.

As to the initial condition, the ground state is easily determined for the VP
system with open boundaries. The main difference from the bulk equilibrium is
that, for an open system, the electrostatic energy does not vanish and the equilib-
rium density n0(x) is position dependent. As any function of the total energy is a
stationary solution of the Vlasov equation, we define the initial state as a Fermi-
Dirac distribution (4.39) with ε(x, v) = mv2/2 − eφ(x), where the potential φ is
not yet known. By plugging this Fermi-Dirac distribution into Poisson’s equation,
one obtains a nonlinear equation that can be solved iteratively to obtain φ, which
in turns yields the ground state distribution.

In contrast, stationary solutions of the Wigner equations are not simply given
by functions of the energy, so that the above procedure cannot be applied. It is
easier to compute the ground state in terms of the Hartree wave functions ψα, and
then compute the corresponding Winger function with (4.3). Several methods to
compute the ground state wave functions in the Hartree formalism are available in
the literature [34, 35, 36] and will not be discussed here.

5 Linear theory

In order to compare the various models described in Sec. 4, we shall go into
some details of the linear theory for a zero-temperature homogeneous equilibrium
with periodic boundaries, both in 1D and in 3D. More detailed calculations on the
linear theory of quantum plasmas can be found in [25, 37, 38].

5.1 Zero-temperature 1D Fermi-Dirac equilibrium. In one spatial di-
mension, the Fermi-Dirac distribution at T = 0 is given by f0(v) = n0/2vF if
|v| ≤ vF and f0(v) = 0 if |v| > vF . The Fermi velocity in 1D is

vF =
π

2
~n0

m
. (5.1)
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This distribution is identical to the so-called ‘water-bag’ distribution, which has
been extensively used in classical plasma physics [39]. Using the Wigner linear
dielectric constant (4.10) and developing the results in powers of k and ~, one
obtains the following dispersion relation (details are given in [29])

ω2 = ω2
p + k2v2

F +
~2k4

4m2
+
~2k6λ2

F

3m2
+ O(~4, k12) . (5.2)

With the Vlasov dielectric constant, the dispersion relation for the same equilibrium
reads as

ω2 = ω2
p + k2v2

F . (5.3)

Note that the above Vlasov dispersion relation is exact: no terms of order k4 or
higher exist. We also point out that, for this 1D equilibrium, the imaginary part
of the dielectric constant vanishes identically and therefore there is no Landau
damping.

We now want to compare the above result (5.2), obtained with the ‘exact’
Wigner-Poisson model, with the equivalent result obtained with the fluid model
developed in Sec. 4.3. Let us consider the fluid equations (4.31)-(4.32) in the case
of a zero-temperature 1D fermion gas, for which the pressure is given by (4.36).
Linearizing around the homogeneous equilibrium n = n0, u = φ = 0, one obtains
the following dispersion relation (no further approximation has been used)

ω2 = ω2
p + k2v2

F +
~2k4

4m2
. (5.4)

We see that the fluid (5.4) and the Wigner (5.2) dispersion relations coincide up
to terms of order k4. This confirms our conjecture that the fluid model is a good
approximation of the WP (or Hartree) model in the limit of long wavelengths.

5.2 Zero-temperature 3D Fermi-Dirac equilibrium. From a physical
point of view, it is possible to imagine a real physical system that displays 1D
behavior. This can be realized, for instance, in a thin metal film where the dimen-
sions parallel to the surfaces are much larger than the thickness of the film. The
electron dynamics can then be described by a 1D infinite slab model depending only
on the co-ordinate x normal to the film surfaces. Even in such a situation, however,
the 1D Fermi-Dirac distribution discussed in Sec. 5.1 is not realistic. Indeed, in the
ground state at zero temperature, the electrons occupy all the available quantum
states up to the Fermi surface, defined by v ≤ vF . There is no reason why states
with vy 6= 0 and vz 6= 0 should not be available, and indeed they are occupied.
Therefore, the equilibrium distribution is always three-dimensional, even in a 1D
infinite slab geometry:

f3D
0 (v) =

n0
4
3πv3

F

for |v| ≤ vF , and f3D
0 (v) = 0 for |v| > vF . (5.5)

However, it is still possible to keep the 1D geometry for the Vlasov and Poisson’s
equations, provided that one uses, as initial condition, the 3D Fermi-Dirac distri-
bution (5.5) projected on the vx axis: f1D

0 (vx) =
∫ ∫

f3D
0 dvydvz. This yields (we

now write v for vx)

f1D
0 (v) =

3
4

n0

vF

(
1− v2

v2
F

)
for |v| ≤ vF , and f1D

0 (v) = 0 for |v| > vF . (5.6)

This approach is not as contrived as it might appear at first sight. Indeed,
linear wave propagation in a collisionless plasma is intrinsically a 1D phenomenon,



18 Giovanni Manfredi

which involves plane waves traveling in a well-defined direction. In computing the
dispersion relation from the 3D equivalent of (4.10) or (4.11), we would first inte-
grate over the two velocity dimensions normal to the direction of wave propagation
(which can, arbitrarily and without loss of generality, be chosen to be the vx direc-
tion). Therefore, we would be left with a reduced distribution such as (5.6) that
intervenes in a 1D dispersion relation such as (4.10) or (4.11). This line of reason-
ing is no more valid when nonlinear effects become important, as these may trigger
truly 3D phenomena. Collisions also constitute an intrinsically 3D effect.

We now insert (5.6) into (4.10) or (4.11) and compute the dispersion relations
for the WP and VP systems, developed in powers of k. For the equilibrium (5.6),
the dielectric constant does display an imaginary part, and therefore there is, in
principle, some collisionless damping associated with this equilibrium; however, we
shall neglect it for the moment and concentrate on the real part of ε(k, ω). We also
assume the following ordering

~k
m
¿ vF ¿ ω

k
, (5.7)

which is valid for long wavelengths. Note that the second inequality in (5.7) means
that the phase velocity of the wave must be greater than the Fermi velocity. With
this assumption, the dispersion relation up to fourth order in k reads as

ω2 = ω2
p +

3
5

k2v2
F +

~2k4

4m2
+ . . . . (5.8)

Let us now derive the dispersion relation for the quantum fluid model (4.31)-
(4.32), by assuming an equation of state of the form:

P

P0
=

(
n

n0

)γ

, (5.9)

where P0 and n0 are the equilibrium pressure and density, respectively. We obtain:

ω2 = ω2
p + γk2v2

0 +
~2k4

4m2
, (5.10)

where v2
0 = P0/(mn0). We note that the 1D fluid dispersion relation (5.4) is

recovered correctly when γ = 3 and P0 = n0 mv2
F /3 as can be deduced from (4.36).

Now, in 3D, the pressure of a quantum electron gas at thermal equilibrium and
zero temperature can be written as [13]

P0 =
2
5
n0EF (5.11)

(where EF is computed at equilibrium), so that v2
0 = v2

F /5 and (5.10) becomes

ω2 = ω2
p +

γ

5
k2v2

0 +
~2k4

4m2
. (5.12)

One may think that the correct exponent to use in the equation of state (5.9) is
γ = (D + 2)/D, yielding 5/3 in three dimensions. However, with this choice, the
fluid dispersion relation (5.12) would differ from the WP result (5.8). The correct
result is obtained by taking γ = 3, just like in the 1D case. Why is it so? The reason,
as was already mentioned earlier, is that linear wave propagation is essentially a 1D
phenomenon, because it involves propagation along a single direction, without any
energy exchanges in the other two directions. The details of the linear dynamics are
essentially determined by the equation of state, which must therefore feature the
1D exponent. In contrast, the equilibrium is truly 3D (because we have projected
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Figure 3 Fermi-Dirac velocity distribution projected on a single velocity di-
rection, with T/TF = 0.05.

the 3D Fermi-Dirac distribution over the x direction): therefore, the equilibrium
pressure must indeed be given by its 3D expression (5.11).

5.3 Finite temperature solutions: Landau damping. So far, we have
completely neglected the fact, discovered by Landau in 1940 [40], that electrostatic
waves can be exponentially damped even in the absence of any collisions. The rig-
orous theory of Landau damping can be found in most plasma physics textbooks.
Here, we shall only remind the reader that the damping originates from the singu-
larity appearing in the dispersion relations (4.9) and (4.11) at the point v = ω/k in
velocity space. This corresponds to particles whose velocity is equal to the phase
velocity of the wave ω/k (resonant particles). Landau showed that the correct way
to perform the integral in the dispersion relation is not simply to take the prin-
cipal value (which only yields the real part of the frequency), but to integrate in
the complex v plane, following a contour that leaves the singularity always on the
same side. With this prescription, the dielectric function is found to possess an
imaginary part, which in turn gives rise to a damping rate γL for the wave. This
argument, originally developed for the VP system, still holds for the quantum WP
case, although of course the numerical value of the damping rate will depend on ~.

At zero temperature, no particles exist with velocity v > vF . Therefore, waves
with phase velocity larger than vF are not damped at all. For these waves, we have
k < ω/vF ; as the real part of the frequency is approximately equal to the plasma
frequency, this means that waves for which kλF < 1 are not damped. These are
waves with a wavelength smaller than λF ≡ vF /ωpe, which is of the order of the
Ångstrom for metallic electrons (see table 1). At finite temperature, the projected
Fermi-Dirac distribution (5.6) (see Fig. 3) extends to all velocities (although it
decays quickly), so that some amount of damping exists for all wave numbers.

The linear damping rate can be computed from the dispersion relation, see for
instance [41], and we shall not deal with this issue any further. It is more interesting
to look for some qualitative guess about the nonlinear phase that follows the initial
Landau damping [42]. Classically, Landau damping lasts up to times of the order of
the so-called bounce time τb, after which the evolution is inherently nonlinear. The
bounce time is related to the amplitude of the initial perturbation of the equilibrium
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Figure 4 Classical phase space portrait of the electron distribution function
in the region around the phase velocity of the wave. Position is normalized to
λF and velocity to vF . The simulation parameters are: T = 0.01TF , α = 0.1,
and kλF = 1.

distribution
f(x, v, t = 0+) = f0(v) (1 + α cos kx), (5.13)

where α = ñ/n0 is the normalized density perturbation and k is the wave number
of the perturbation. The bounce time can then be written as: ωpτb = α−1/2.
When the perturbation amplitude is not too small, one generally observes that
Landau damping stops after a time of the order τb. This happens because resonant
particles (whose velocity is close to the phase velocity of the wave) get trapped
inside the travelling wave, thus creating self-sustaining vortices in the phase space.
The presence of such vortices maintains the electric field to a finite (albeit generally
small) level.

We have performed numerical simulations of the VP system using a Vlasov
Eulerian code [43, 44]. The initial equilibrium is given by the projected Fermi-
Dirac distribution at finite temperature

fe0(x, vx) =
3
4

n0

vF

T

TF
ln

[
1 + exp

(
−

1
2mv2 − µ

kBT

)]
, (5.14)

which generalizes the zero-temperature result (5.6). We took an equilibrium tem-
perature T = 0.01 TF , whereas the perturbation (5.13) is characterized by an
amplitude α = 0.1 and a wave number kλF = 1. The phase-space portraits of the
electron distribution (Fig. 4) show, as expected, the formation of a vortex traveling
with a velocity close to ω/k. Further, it can be easily proven that the extension of
the vortex in velocity space δv is related to the perturbation’s amplitude and wave
number in the following way

δv =
ωp

k
α1/2. (5.15)

We now turn to the fully quantum case, described by the Wigner-Poisson sys-
tem with the same initial condition (5.13). The simulations have been performed
with the code described in Ref. [41]. As the wavelength of the perturbation is
2π/k, the classical phase-space vortex defines a phase space area of order δv/k. If
this area is smaller than ~/m, then quantum mechanics forbids the creation and
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Figure 5 Quantum phase space portrait of the electron Wigner function in
the region around the phase velocity of the wave. Position is normalized to
λF and velocity to vF . Same parameters as in Fig. 4, with in addition H = 1.
Left frame: positive part of f(x, v); right frame: negative part of f .

persistence of such a structure [41]. Using the relation (5.15), we find therefore that
the phase-space vortex should be suppressed by quantum effects when

~k
m

& ωp

k
α1/2. (5.16)

Using normalized units, the above relation becomes

H k2λ2
F &

√
α, (5.17)

where H = ~ωp/EF is a measure of the magnitude of quantum effects. As quantum
effects prevent particles from being trapped inside the wave, we expect Landau
damping to continue even for times larger than the bounce time.

Physically, the above effect is related to quantum tunnelling: particles trapped
in the wave have a certain probability to be de-trapped, even if their energy is less
than that of the potential well of the wave. Yet another way to picture this effect is
to consider that, if the potential well is too shallow (i.e. for small α), no quantum
bound states can exist inside it.

We have tested the above order-of-magnitude arguments by running the same
simulation as that of Fig. 4, but using the Wigner, instead of Vlasov, equation.
We take H = 1, so that the inequality (5.17) is satisfied. The phase space portraits
(Fig. 5) indeed confirm that no vortex structures appear. Note also the appearance
of large areas of phase space where the Wigner distribution function is negative.
Comparing the classical and quantum evolution of the potential energy (Fig. 6),
we observe that, for long times, the electric field is significantly smaller in the
quantum evolution. These results suggest that semiclassical models of the dynamics
of metallic electrons may underestimate the importance of Landau damping.

6 Conclusions and future developments

In this paper, we have reviewed a number of kinetic and fluid models that are
appropriate to study the behavior of collisionless plasmas when quantum effects
are not negligible. The main application of these models concerns the dynamics of
electrons in ordinary metals as well as metallic nanostructures (clusters, nanopar-
ticles, thin films). In particular, it is now possible to study experimentally the
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Figure 6 Time evolution of the potential energy, normalized to the Fermi
energy, for the classical case (left frame) and the quantum case with H = 1
(right frame).

electron dynamics on ultrafast (femtosecond) time scales that correspond to the
typical collective plasma effects in the electron gas. The properties of a quantum
electron plasma (neutralized by the background ions) can thus be measured with
good accuracy and compared to the theoretical predictions.

The main drawback of the models described in this paper is that they all ne-
glect electron-electron collisions. Strictly speaking, the collisionless approximation
should be valid only when gQ ¿ 1, which is not true for electrons in metals (see
Table 1). As we discussed in Sec. 3, Pauli blocking does reduce the effect of col-
lisions for distributions near equilibrium, but many interesting phenomena involve
nonequilibrium electrons, so that the validity of the collisionless approximation is
not completely clear. It is possible, in principle, to include collisional effects in
semiclassical models such as the Vlasov-Poisson system, by simply adding a col-
lision operator on the right-hand side of the Vlasov equation [5]. The collision
operator relevant for a degenerate fermion gas is known as the Ühling-Uhlenbeck
collision term and is basically a Boltzmann collision operator that takes into ac-
count the exclusion principle. Even in the semiclassical case, however, the validity
of the Ühling-Uhlenbeck approach may be questioned for strongly coupled plasmas
(gQ & 1), for which it is conceptually difficult to separate the mean-field from the
collisional effects.

It is much harder to include a simple collisional term in truly quantum models,
such as the Wigner or Hartree equations [45]. There is a vast literature on dissi-
pative quantum mechanics, but this is concerned with the interaction of a single
quantum particle with an external environment [46, 47, 48]. In addition, the cou-
pling to the environment is generally assumed to be weak, which is not the case for
metallic electrons. Recent approaches to the dynamics of strongly coupled quantum
plasmas range from quantum Monte Carlo methods (for the equilibrium) to quan-
tum molecular dynamics simulations (for the nonequilibrium dynamics) [15, 49].

We shall mention another two possible extensions of the models presented in
this paper, but these are more technical points, rather than conceptual issues such as
the above-mentioned inclusion of electron-electron collisions in the strongly coupled
regime.
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The first issue concerns the coupling to the ion lattice. So far, we have as-
sumed that the ions form a motionless positively-charged background described by
the equilibrium density n0(x), which may be position-dependent for open systems
such as clusters. This is appropriate for times shorter than the typical ion-electron
collision time (see Table 1), but for longer times the ion dynamics must be taken into
account. The ion dynamics, just like the electrons’, may be split into a mean-field
part and a collisional part. If we want to include only the mean-field component
(and neglect ion-electron collisions), then all we need to do is add a Vlasov equation
for the ionic species, supplemented by a Maxwell-Boltzmann initial condition (as
the ions are always classical) – see, for instance, [32]. This is conceptually simple,
though it may require rather long simulation times, because the typical ionic time
scale (proportional to ωpi) is much longer than the electrons’. As a first approxi-
mation, electron-ion collisions may be modelled by a simple relaxation term of the
Bathnagar-Gross-Krook type [50], which is the kinetic analog of the Drude relax-
ation model of solid state physics [14]. For a more accurate approach that includes
the full ion dynamics (mean-field and collisional), it will be necessary to treat the
ions with molecular dynamics simulations.

Finally, one should consider the effect of magnetic fields (both external and
self-consistent) on the plasma dynamics. Magnetic fields should not alter the main
conclusions drawn in the present work and are easily included in all the equations
presented here. For very strong fields, fusion and space plasma physicists have
developed a battery of approximations (guiding-center, gyrokinetic, . . . ) that allow
one to reduce the complexity of the relevant models. It is a challenging task to
transpose these methods to the physics of quantum plasmas [51, 52]. Magnetic
fields should also trigger spin effects, which are uniquely quantum-mechanical. The
interaction of spin and Coulomb effects, still a largely unexplored field, is thus likely
to become an active area of future research.
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