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Plan of the lectures 

1. Introductory remarks on metallic nanostructures 

• Relevant quantities and typical physical parameters 

• Applications 

2. Linear electron response: Mie theory and generalizations 

3. Nonlinear response  

• Survey of various models from N-body to macroscopic 

• Mean-field approximation (Hartree and Vlasov equations) 

4. Beyond the mean-field approximation 

• Hartree-Fock equations 

• Time-dependent density functional theory (DFT) and local-density approximation (LDA) 

5. Macroscopic models: quantum hydrodynamics 

6. Linear theory and comparison of various models 

7. Illustration: the nonlinear electron dynamics in thin metal films 
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Synopsis of classical and quantum models 
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Why do we need macroscopic models? 

• Even mean-field model are sometimes too complex 

 

– Classical: 6D Vlasov equation in phase space 

 

– Quantum: Hartree or DFT equations: N three-dimensional 

Schrödinger-like equations (N >> 1) 
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Classical fluid (hydrodynamic) models – I.  

Vlasov 
eq. 
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Classical fluid models II.  
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Classical fluid models III.  
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Classical fluid models IV.  
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Classical fluid models V.  

• We have obtained a set of just 2 evolution equations in real space (3D) 

– Electric field comes from Poisson’s equation + external fields 

• They replace the more complex Vlasov equation in phase space (6D) 
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Quantum hydrodynamics I. 

• Hydrodynamic (“fluid”) equations are obtained by taking moments of the relevant 

kinetic equation (Vlasov or Wigner): 

 

 

 

• Starting with either the Vlasov or Wigner equations, we obtain the same fluid 

equations: 

 

 

 

 

• What happened to quantum effects? They’re hidden in the pressure term… 

density (0) average velocity (1) pressure (2) 

Continuity equation 

Euler equation 
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Quantum hydrodynamics II. 

 

• We rewrite the pressure                                                  using the expression 

of the Wigner function in terms of N wave functions ψα  : 

 

 

 

• We obtain: 

 

 

 

 

• We express the wave functions in terms of their amplitude A and phase S 

 

 

• We can split the pressure into a “classical” and a “quantum” part: 

 P = PC + PQ  

Mean velocity for each  ψα 
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Quantum hydrodynamics III. 

• In order to close the system, we need a relation between the pressure and the density: 

–  PC = PC(n) : classical equation of state 

 

–                                                                                                     valid for λ >> λTF  (long wavelengths) 

 

• We finally obtain the conservation equation for u 

 

 

 coupled to the continuity and Poisson’s equations 

Uncertainty due to standard 

velocity dispersion 

Uncertainty due to quantum 

effects 
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Quantum hydrodynamics: summary 
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QHD: steady state solutions 
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𝐸𝐹 = const ⨯ 𝑛2/3 
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Thomas-Fermi equation 

• For a perfect Fermi gas at T=0 

 

 

 

 

• Then it follows: 

 

 

• Also assume: 

 

• Then: 

 

 

• Finally: 

 

• QHD can be viewed as a time-dependent generalization of 

Thomas-Fermi theory 
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Equations of state 

• Zero-temperature 3D electron gas. “Classical” pressure at equilibrium, 

computed from the Fermi-Dirac distribution 

 

 

• What happens in a dynamical situation? 

 The density n(x,t) will differ from the equilibrium value n0(x). 

 We write for the pressure 

 

 

• Adiabatic closure: 

• Not appropriate for wave propagation, which is essentially a 1D phenomenon 

• In that case, one has to take the 1D value (γ = 3) even for a 3D situation. 
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Schrödinger equation in hydrodynamic form − I. 

• What is the origin of PQ ? 

• Schrödinger equation: 

 

• Separate amplitude and phase of the wave function (“Madelung transformation”) 

 

• By using: 

 

 

 

• The equations for the imaginary part yields the continuity equation:  
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Schrödinger equation in hydrodynamic form − II. 

• The real part of the Schrödinger equation yields: 

 

 

 

 

• It can be written as an Euler hydrodynamic equation 

 

 

 

• The Bohm potential is related to the “quantum pressure” 

 

 

• Remember also:  
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Synopsis of classical and quantum models 

N-body Schrödinger N-body Liouville 
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