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Plan of the lectures 

1. Introductory remarks on metallic nanostructures 

• Relevant quantities and typical physical parameters 

• Applications 

2. Linear electron response: Mie theory and generalizations 

3. Nonlinear response (mean field) 

• Survey of various models from N-body to macroscopic 

• Mean-field approximation (Hartree and Vlasov equations) 

4. Beyond the mean-field approximation 

• Hartree-Fock equations 

• Time-dependent density functional theory (DFT) and local-density approximation (LDA) 

5. Macroscopic models: quantum hydrodynamics 

 Linear theory and comparison of various models 

6. Spin dynamics: experimental results and recent theoretical advances 

7. Illustration: the nonlinear electron dynamics in thin metal films 
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Mie theory of the surface plasmon – overview 

Hypotheses 

 

• Linear response  

• Classical 

 

 

Results 

 

• Frequency: 

 

• Linewidth: 
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Beyond Mie Theory 

• Quantum effects (λB ~ R) 

– Discrete energy levels 

• Nonlinear effects 

– Large excitations 
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Quantum effects – examples 

• Discrete energy levels 

• Ground state spatial oscillations 

• Quantum effects are more prominent for small nanoparticles 

Na8 

Na20 

Na138 

U. Kreibig and M. Vollmer, Optical properties of metal clusters, 

(Springer 1995). 

Quantum effects 

3/1N

3/1N

F. Calvayrac et al., Phys. Rep. 337, 493-578 (2000). 

N=1000 
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Quantum effects – examples 

Quantum oscillations in the damping rate 

R/a0 


1/R theory 

G. Weick, PhD thesis, IPCMS, Strasbourg (2006) 
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Nonlinear effects – the forced nonlinear oscillator 
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Nonlinear effects – the forced nonlinear oscillator 

)cos(0
32

02

2

tFKx
dt

dx
x

dt

xd
 

Linear force Friction Nonlinearity  

Forcing  

F0 = 0.1 F0 = 0.2 

Noninear regime: response NOT proportional to excitation 
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Nonlinear effects in an electron gas 

• The particle motion modifies the internal electric fields… 

• … which, in turn, affects the electron dynamics … 

• … and so on …  

Compute charge distribution  

Compute electric potential 

Compute force acting on particles 

Update particles positions 

“Self-consistency” 
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Quantum many-body dynamics 

• The most general quantum-mechanical model relies on the N-body wave 

function:   ψ(r1, r2, … rN, t) 

• N-body Hamiltonian 

 

 

 

• This is VERY hard to solve.  

• Example: 3 particles 

– Configuration space (r1, r2, r3) is 9-dimensional  

– Mesh with 100 points per axis → 1018 points!  

• We look for a one-body formulation of the many-body problem 

– Considerable simplification for numerical solution 

• As a first approximation, we can write: ψ = ψ1(r1) × ψ2(r2) × … × ψN(rN) 

e-e interactions 
Vext = Vion(r)+ Vlaser(r,t)  
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Derivation of the stationary Hartree equations (1927) 

k=1…N 

• A solution of the Schrödinger eq. is given by a state that minimizes:  

• Assume wave function can be factored into the product of N one-body wave 

functions 

 

• Compute expectation value of the energy: 

 

 

• Minimize keeping total number of particles fixed 

 

 

• Obtain Hartree equations 

“Hartree potential” 

-eVH 
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“Hartree potential” 

Poisson’s equation 

k=1…N 

Stationary Hartree equations 

Occupation numbers: pj  

Allow to define Fermi-Dirac 

distribution at finite temperature: 

Electronic density 



11 Master Lecture 3                                                                                        G. Manfredi, IPCMS, Strasbourg 

Time-dependent Hartree equations 

• Formally replace                          with 

 

• Obtain time-dependent Hartree equations  

 

 

 

 

 

 

• They are the cornerstone of quantum mean-field dynamical 

theory for Coulomb-interacting particles 
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Hartree’s original paper 
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Synopsis of classical and quantum models 

N-body Schrödinger N-body Liouville 

TD Hartree  

Wigner 
Vlasov 

Quantum  

hydrodynamics 

Classical 

hydrodynamics 

BBGKY (gC<<1) 

ħ → 0 

ħ → 0 

kλD << 1 

N-body 

Mean 

field 

 
Macro- 
scopic 

DFT 

xc 

Hartree-Fock 

x 

kλTF << 1 

gQ << 1 
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Classical mean-field models – the Vlasov equation 

• Start from the Liouville equation for the 6N-dimensional distribution function 

 f (N)( x1, v1… xN, vN, t):    

 

 

 

   

 

• Integrates over variables x2, v2… xN, vN  to obtain a one-body distribution 

 

 

 

• But the evolution equation for f (1) will depend on f (2), which in turns depends on  

 f (3), and so on → “closure problem” 

• BBGKY hierarchy: Born-Bogoliubov-Green-Kirkwood-Yvon  
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(  ) 

Acceleration of particle #1 caused by all 

other particles (j = 2,…,N)  

dx2dv2…  
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In summary, the Liouville equation is transformed into the following 

Fundamental hypothesis: we assume that f (2) can be factored → two-
body correlations are neglected 

N 
= N 

N ≈N −1 
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“Vlasov equation” 

Vlasov-Poisson 
system 

It is the classical analog of the Hartree equations 
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Synopsis of classical and quantum models 

N-body Schrödinger N-body Liouville 

TD Hartree  

Wigner 
Vlasov 

Quantum  

hydrodynamics 

Classical 

hydrodynamics 

BBGKY (gC<<1) 

ħ → 0 

ħ → 0 

kλD << 1 

N-body 

Mean 

field 

 
Macro- 
scopic 

DFT 

xc 

Hartree-Fock 

x 

kλTF << 1 

gQ << 1 
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From Hartree to Vlasov: Wigner functions 

• Representation of quantum mechanics in the phase space 

• Equivalent to more “traditional” representations: Schrödinger, Heisenberg,… 

• Can deal with both pure and mixed quantum states 

– Pure state: one single wave function 

– Mixed state: N wave functions, each with occupation pα 

 

 

 

 

 

 

• Contains same information as the density matrix: 
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Properties of Wigner functions 

• Wigner function is real 

• It can be normalized : 

 

• By integrating over velocity, one correctly finds the spatial density:  

 

 

• Can be used to compute the expectation value of any variable A(x,v): 

 

 

• BUT: Wigner function can be negative! 

– It cannot be interpreted as a true probability distribution in the phase space 
 

• Wigner function must satisfy the inequality: 

– (Hint: use Cauchy-Schwarz inequality in the definition of the Wigner function) 

– A manifestation of Heisenberg’s uncertainty principle 

1
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Example: Gaussian wavefunction 

• Pure state (minimum uncertainty packet) 

 

 

• The corresponding Wigner function is also a Gaussian in phase space 

[centered at (x0 , p0)]: 

 

 

• This is the only pure-state that yields a positive Wigner function 

• For mixed states 

 

 

• The condition                 implies   


1
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Double Gaussian – entanglement 

• Double Gaussian centered at               : 

 

 

• The Wigner function displays an interference pattern around x = 0 

x
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Wigner evolution equation 

• By using the time-dependent Schrödinger equation, one can show that the 

Wigner function must obey the following evolution equation 

 

 

 

 

• Notice the nonlocal character of the interaction term 

• Equivalent to the set of N time-dependent Hartree equations 

Veff = −eVH + Vext  

(k=1…N) 
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Classical limit: Wigner → Vlasov 

• Expand the integral in Wigner equation in powers of ħ  

 

– Hint: use  

 

 

 

 

• For ħ→ 0 one recovers the classical Vlasov equation. 

• NB: this is a mathematically “tricky” limit. As ħ→ 0 the Wigner function becomes 

more and more oscillating.  

– Example: double Gaussian 
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Synopsis of classical and quantum models 

N-body Schrödinger N-body Liouville 

TD Hartree  

Wigner 
Vlasov 

Quantum  

hydrodynamics 
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