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Plan of the lectures 

1. Introductory remarks on metallic nanostructures 

• Relevant quantities and typical physical parameters 

• Applications 

2. Linear electron response: Mie theory and generalizations 

3. Nonlinear response  

• Survey of various models from N-body to macroscopic 

• Mean-field approximation (Hartree and Vlasov equations) 

4. Beyond the mean-field approximation 

• Hartree-Fock equations 

• Time-dependent density functional theory (DFT) and local-density approximation (LDA) 

5. Macroscopic models: quantum hydrodynamics 

 Linear theory and comparison of various models 

6. Spin dynamics: experimental results and recent theoretical advances 

7. Illustration: the nonlinear electron dynamics in thin metal films 

 

 



2 Master Lecture 2                                                                                        G. Manfredi, IPCMS, Strasbourg 

Electron dynamics ― qualitative aspects 

• We have seen that the typical timescale of collective phenomena is  

– 2πωp
–1

 ≈ 1 fs  

• We need short laser pulses to probe this timescale. 

• Pump-probe experiments 
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Linear response: driven-damped harmonic oscillator 

Resonance becomes broader 

with increasing damping 

Steady state solution (t→∞): 

β 

damping Oscillations (plasmon) Forcing (laser) 

= max (xs) 
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1. The response is directly proportional to the excitation  

– For instance, the electron density modulation is proportional to laser field amplitude 

2. When the frequency ω of the excitation is close to the “natural” frequency of 

the system, we have resonance → enhanced absorption 

– For electron gas, natural frequency ~ ωp 

3. In the presence of damping, the resonance becomes « broad » 

Resonant energy = ħω 
Damping rate 

Main purpose of linear theory: determine resonant frequency and damping rate 
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Mie theory ― 1D model 

• Def. of electric dipole 

 

• “Ehrenfest theorem” 

 

 

• Poisson’s equation 

n0(x) 

ni 

• Initial shift of the electron density by a distance d(0): 

 

• Induced change in electric field (from Poisson’s equation) 

 

 

 

 

• We obtain: 

 

0n

δn 

𝑵𝑩:  𝑛0𝐸0𝑑𝑥 = 0 
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• Finally the dipole obeys the harmonic oscillator 

equation: 

 

• If n0 = ni = const  it can be taken out of the integral: 

 

• We obtain oscillations at the plasma frequency. 

 

• This is the fundamental result of the Mie theory 

 

1. No dependence on size, temperature, … 

The metal species (Au, Ag,…) appears only in the plasma 

frequency, through the electron density. 

2. No damping: purely oscillatory mode at a single 

frequency 

3. Derivation in 1D 

4. … and, of course, purely linear response 

ω2 

Limitations  
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Spill-out effect: illustration 

Numerical computation of the ground state at zero temperature 

G. Weick, PhD thesis, IPCMS, Strasbourg (2006) 
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Sodium nanoparticle 

Spill-out 

ni 

Friedel 

oscillations 
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Spill-out effect: qualitative picture 

• The electron density at equilibrium is not equal to 

the ion density 

• The electrons “spill out” of a length δ  

• This leads to a reduction of the oscillation 

frequency 

Red shift 

n0(x) 

ni 
0n

 𝑛0𝑛𝑖𝑑𝑥 = 𝑛 0 𝑁𝑖𝑛 = 𝑛 0 𝑁 − 𝑁𝑜𝑢𝑡  

 𝑛0𝑑𝑥 = 𝑁 
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• The correction to the frequency goes as 1/a 

• This is the first correction we have found to the 

simple plasmon frequency  

• It is true in any number of dimensions 

– It’s just the surface to volume ratio 

• For instance, in 3D: 

N–1/3 

ħ
ω

 (
e
V

) 

Assuming δR does not depend on R 

Lithium clusters 

Data : C. Brechignac et al, PRL 70, 2036 (1993) 

Graph : G. Weick, PhD thesis, IPCMS, Strasbourg (2006) 
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General Mie theory of the surface plasmon (1908) 

• Spherical nanoparticle immersed in external field E0 

• Electrostatic response: free charges tend to shield 

the external field 

– Inside the sphere the electric field is* 

 

 

• We make the following assumptions: 

– No magnetic field effect (E/B ~ c) 

– Electric field wavelength >> R = radius of nanoparticle; 

      OK for visible-light lasers λ ≈ 400-800 nm 

• Thus, we consider only the time variation of the field 

– E = E0 exp(–iωt) 

• The dielectric constant depends on the frequency 

m

m

m EEE 






   if     

2

3
00int

* J. D. Jackson, “Classical Electrodynamics” 
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• The dielectric constant has a real and an imaginary part 

 

 

 

 

• When  ε2 << ε1, the resonance condition is:  ε1 = –2 εm 

• The dielectric constant also determines the photo-absorption cross-section 

 

 

 

• It remains to be determined the frequency dependence of ε1(ω). 

 

)()()( 21  i
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Frequency-dependent dielectric constant 

Equation of motion 

Fourier transform: p → p exp(–iωt) 

microscopic Ohm’s law (I = V/R) 

σ (ω) = conductivity 

Drude theory for time-dependent electric field 

j = electric current density 
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Maxwell’s equations 

Use:  J = σ E 

Bound electrons Free electrons 

i
t






𝜀0𝜇0 =
1

𝑐2
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Mie resonance 

• When  ε2 << ε1, the resonance condition is  ε1 = –2 εm 

• Remember the frequency-dependent dielectric constant 

 

m
m

m EEE 



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
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3
00int

If Γ << ω :  

Mie frequency: 1  if  b
m 

= − 2 εm 

Surface plasmon 
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Mie resonance in 1D, 2D, and 3D 

Dimensionality Geometry Resonant frequency 

1D Thin film 

2D Planar surface  

3D Sphere 

p

2/p

3/p
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Does Mie theory work? 

1. Pure Mie: 

 

2. Spill-out correction 

 

 

 

3. Self-consistent calculation using TDLDA 

(time-dependent local density 

approximation)  

Miep ω3/ωω 

N –1/3 

ω
 /

 ω
M

ie
 

spill-out 

spill-out 

Numerics (TDLDA) 

TDLDA 

 3/1
Mie  1  NK

                  ;    1ωω 3/1

Mie KKNK  

Mie 

Spill-out 

TDLDA 

ħω (eV) 

Na832 

G. Weick, PhD thesis, IPCMS, Strasbourg (2006) 
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C. Yannouleas et al., Phys. Rev. B 47, 9849 (1993) 

Experiment 

Simulation 

Experiment vs. Mie theory and TDLDA simulations 

Recover Mie value 

for large N 
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Linewidth of the Mie resonance ― damping 

 Sources of damping  
 

1. Electron-electron collisions (e-e) 

2. Electron-phonons collisions (e-ph): interactions with lattice 

3. Coupling between collective modes (plasmon) and single-

particle modes: “Landau damping” 

4. Radiation damping 

5. … 

 

 .
1111


 Landauradpheee 
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Linewidth of the Mie resonance ― damping 

• Collision rate in the bulk material:  Γ∞ = VF / L∞ 

– L∞ is the bulk mean free path: L∞(Na) = 34 nm; L∞(Ag) = 52 nm (at T=273K) 

• When L∞ > R (size of the nanoparticle) then one should replace L∞ with R 

– Collisions with the particle’s surfaces 

 

 

• This picture is not quite correct quantum-mechanically 

– The boundaries determine the shape of the wave functions everywhere 

• Kawabata and Kubo (1966) computed the quantum damping rate  

– Still obtain 1/R behavior. 

 

R

V
A F 
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Linewidth ― experimental and numerical results 

~ R 

~
 Γ

–
1

 

R. H. Doremus, J. Chem. Phys. 42, 414 (1965). C. Yannouleas et al., Phys. Rev. B 47, 9849 (1993) 

Numerics 

1/R theory 

Num. Exp. 

Silver 
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Radiation damping 

• An oscillating electric dipole radiates electromagnetic energy 

• This is a source of damping of the electronic energy W: 

 

 

• The total radiated power is (see Jackson, Classical Electrodynamics) 

 

 

 

 

 

 

• This yields  

 

• Proportional to the volume: significant only for large nanoparticles 
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