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Plan of the lectures 

1. Introductory remarks on metallic nanostructures 

• Relevant quantities and typical physical parameters 

• Applications 

2. Linear electron response: Mie theory and generalizations 

3. Nonlinear response  

• Survey of various models from N-body to macroscopic 

• Mean-field approximation (Hartree and Vlasov equations) 

4. Beyond the mean-field approximation 

• Hartree-Fock equations 

• Time-dependent density functional theory (DFT) and local-density approximation 

(LDA) 

5. Macroscopic models: quantum hydrodynamics 

 Linear theory and comparison of various models 

6. Spin dynamics: experimental results and recent theoretical advances 

7. Illustration: the nonlinear electron dynamics in thin metal films 
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Synopsis of classical and quantum models 
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Beyond mean-field theory: Hartree-Fock equations 

• In deriving the Hartree equations, we assumed that 

 

• This does not satisfy the antisymmetric property of fermions (Pauli exclusion 

principle): 

 

 

• Antisymmetry can be reinstated as follows (ex. for 2 particles): 

 

 

 

• The procedure is easily generalized to N particles 
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Hartree-Fock equations 

• Using the same variational procedure as done for the Hartree equations 

 

 

 

 

 

 

• NB: The exchange term is NOT in the form V(r)ψk(r) 

– Much harder to solve numerically. 

• Time-dependent Hartree-Fock equations. Substitute: 

 

Hartree (“direct”) term Fock (“exchange”) term 
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Solution of stationary HF equations 

• Only possible in special cases: 

– Uniform ionic density (ni = ne = const.) 

– Hartree potential exactly cancels ionic (“external”) potential 

 

 

– Only exchange and kinetic energy terms survive 

 

• Choose wave functions as plane waves: 
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Hartree-Fock 

In this cas, the Hartree-Fock equations can be written as (see Ashcroft and Mermin): 

CextHXkin EEEEEE 
EC = “correlation energy” 

It contains all other terms beyond 

Hartree-Fock 

EKin 

The total energy E is: 
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Hartree-Fock: summary 

• Hartree equations imply factoring the N-body wave function (mean field theory) 

– Neglect two-body correlations 

– Does not satisfy Pauli exclusion principle 

• Hartree-Fock (HF) equations satisfies Pauli’s exclusion principle 

• HF contains an additional “exchange” term 

– Difficult to compute in practice (e.g., numerically) 

• HF can be solved exactly in a homogeneous system 

– Use plane waves as basis 

• Obtain additional exchange energy: 

– Valid only for n = const. (homogeneous density) 

– Question: possible to generalize to inhomogeneous density? 

• Other terms beyond EX are called “correlation energy” (not included in HF) 

– NB: strictly speaking, the exchange energy is also a correlation energy 

3/1~~ nkE FX
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Synopsis of classical and quantum models 
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Beyond the mean field − Density functional theory (DFT) 

• In Hartree-Fock theory, in the homogeneous-density case, the exchange 

energy is a function of the particle density: 

• (NB: the Hartree energy is also a function of the density) 

• This is an exact result for the homogeneous case. 

 

 Two questions: 

1. Is it possible to generalize the expression for  EX(n)  to inhomogeneous 

densities n(r)? 

2. Can one also express the correlation energy as a functional of the density? 

  

 

 The answer is YES, and the theory behind it is called “density-

functional theory”, or DFT. 
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Basics of DFT ― Hohenberg-Kohn theorem 

“The ground state density n(r) of a bound 

system of interacting electrons in some 

external potential v(r) determines this 

potential uniquely.” 

Walter Kohn 

Nobel Prize for Chemistry, 1998 

v(r)  ⇒  n(r) :  trivial 

 

n(r)  ⇒  v(r) :  ??? 
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First Hohenberg-Kohn theorem (1964) 

n(r) = ground-state density  ;  v1,2(r) = external potentials 

T = kinetic energy  :  U = e-e interaction energy 

Let n(r) be the non-degenerate ground-state density of N 

electrons in the potential v1, corresponding  to the 

wavefunction Ψ1 and the energy E1. Then: 

Now suppose that there exists a second potential v2 ≠v1 

with ground state Ψ2 ≠Ψ1 giving rise to the same density 

n(r). Then: 

In virtue of the variational principle, one has: 

By exchanging the roles of 1 and 2, we obtain: 

contradiction! 

2 

𝐻1 = v1 + 𝑇 + 𝑈 
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First Hohenberg-Kohn theorem 

• Thus the hypothesis of the existence of a second potential v2 ≠v1 is wrong. 

• Hence the theorem: “The ground-state density n(r) of a bound system of 

interacting electrons in some external potential v(r) determines this 

potential uniquely.” 

• Hence, n(r) determines all the properties of the system. 

• This is a big step, because the wave function Ψ(r1 , r2 …, rN) “lives” in a 3N-

dimensional space, whereas the density n(r) lives in a 3D space. 

• Try to mesh a 3N-dimensional space with 10 points per direction: 103N points 

• For a 3D space: 103 points = 8 kB 

N=3   8 GB 

N=4   8000 GB 

N=5   8 million  Gb 

Each point = 8 bytes (Fortran 

double-precision real numbers) 
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Second HK theorem  

• The ground-state energy can be obtained variationally: the density that 

minimizes the total energy is the exact ground-state density.   

 

 

 

• The e-e interaction energy is then separated into a Hartree (mean field) contribution 

and an exchange-correlation contribution: 
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Example: Thomas-Fermi theory 

Thomas-Fermi eqs. 



15 

Thomas-Fermi theory: calculation of the kinetic energy 
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T = kinetic energy 

t = kinetic energy density 

ρ = density 

𝑁 =
Phase−space volume

ℎ3
× 2 

p 
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Kohn-Sham theory I. 
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Kohn-Sham theory II. 
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Kohn-Sham equations 

• But this is the same variational principle for a single-particle Schrödinger 

equation evolving in the potential Veff 

• The minimum is attained for wave-functiosn that obeys the equations  

 

 

 

 

 

 

 

• NB: if we set VXC = 0, we recover the Hartree equations. 

– The KS equations are a formal “exactification” of the Hartree theory. 

Kohn-Sham equations 
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The local-density approximation (LDA) 

• Approximate the exchange and correlation with a local functional 

• The local-density approximation is exact for the exchange energy of a 

uniform electronic system 

– Plane-wave wavefunctions for the electrons 

– Uniform positive charge distribution for the ions 

• For a non-uniform system, we can conjecture: 

 

 

 

• For the correlation energy the exact expression is not known 

• But the Hohenberg-Kohn theorem tells us that such a functional exists 

– Various approximations have been proposed 

• All in all, it works quite well, despite its simplicity 
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Time-dependent density functional theory (TDDFT) 

• Runge and Gross, 1984: 

 “The densities n(r, t) and n′(r, t) evolving from a common initial state Ψ(t=0), 

under the influence of two external potentials Vext(r, t) and V'ext(r, t) will 

eventually differ only if the potentials differ by more than a purely time-

dependent functions, i.e., Vext(r, t) − V′ext(r, t) ≠ c(t).” 

• One-to-one mapping between densities and potentials 

– The potential is a functional of the density 

• Time-dependent Kohn-Sham equations: 

)],([)],([),()],([ trnVtrnVtrVtrnV XCHeff 
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