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Bursting events in zonal flow-drift wave turbulence
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The generation of zonal flows and their interplay with drift wave turbulence is studied numerically
using a model based on the Hasegawa—Mima equation, with an electron response depending only
on the fluctuating part of the electrostatic potential. In regimes dominated by the diamagnetic
velocity, large-amplitude nonlinear oscillations are observed in the time history of the zonal flow
and drift wave spectra. Such oscillations have also recently been detected in toroidal gyrokinetic
simulations, and could be important in determining the transport behavior in experimental devices.
© 2003 American Institute of Physic§DOI: 10.1063/1.1581284

I. INTRODUCTION Although more realistic than previous four-wave models, it
is, however, still based on a number of crucial assumptions,
Drift waves(DWs) play an important role in the physics namely(a) it relies on a Vlasov-type equation for the wave
of strongly magnetized plasmas. When unstable, such as #ictions (weak turbulence rather than on a first-principles
the presence of sufficiently steep temperature gradients, théyased turbulence modeb) rapidly varying and short wave-
can give rise to fully developed “drift” turbulence, which is length scales are averaged over in order to obtain a one-
considered a likely candidate to explain the anomalous trangtimensionalradia) equation in wave number space. On the
port rates observed in present tokamaks. It is widely believedther hand, the numerical results of Lén al’ are obtained
that “zonal flows” (ZFs) (i.e., modes that only depend on the from three-dimensional full-torus gyrokinetic simulations.
radial coordinatgare a crucial factor in regulating the non- Given the complexity of large codes, such simulations can
linear evolution of drift-wave instabilities, such as the ion follow the dynamics only over a few oscillation periods and
temperature gradierftTG) instability, and consequently the for a small set of relevant parameters. In addition, the num-
level of turbulent transport. Zonal flows can also have arber of physical effects potentially at play is very large, mak-
impact on radially elongated, poloidally localized structuresing it difficult to sort out which of them is the essential
(“streamers”), which are thought to generate large-scaleingredient. Bursty transport has also been discovered and
events (burstg in tokamak plasmds® thereby leading to studied in fluid models of particular instabilitigsesistive
long-range  correlations and  possibly  nondiffusive ballooning modes and ITG drift wavg%® where it is linked
transport:® to the appearance of radially elongated structures known as
Several theoretical models, based on the Hasegawastreamers.
Mima equatiorf, have been proposed in order to explain the It is useful to attempt to fill the gap between the
emergence of ZFs in tokamak plasnfa&® The simplest predator—prey model and the global gyrokinetic simulations,
model involves the modulational instability of a monochro- using direct drift turbulence simulations based on a simpler
matic drift wave(the pump, generating two sidebands and a and more tractable two-dimensional slab model. The results
ZF that finally saturate by depletion of the pump wav¥  from such simulations can be used to verify and strengthen
However, models involving only a small number of wavesour confidence in the intuitivébut simplified picture of
cannot describe correctly the broad-band turbulence occumalkov,!* and help to isolate the key model ingredients
ring in tokamak experiments and simulations. In particular, avhich are responsible for these effects in the more realistic
distinct feature recently observed in several large-scale nubut complex simulations of Linet al*®
merical simulations is the appearance of “bursts,” i.e., punc-
tuated events during which radial transport is considerabl){I MODEL
enhanced. In ITG turbulence and in resistive ballooning
turbulencé®3it has been observed that such bursts occur at  The model used here is the one adopted by Smolyakov
times of low zonal flow activity, whereas, conversely, highet al.”® to describe the dynamics of drift waves in the poloi-
zonal flow activity corresponds to periods of significantly dal plane. It is essentially a Hasegawa—Min{elM)
lower transport. This mechanism vyields a characteristic osequation® with an adiabatic electron response modified so
cillatory pattern in the DW-ZF dynamics. that the electron density fluctuation is independent of the
In order to explain this complex behavior, Malkov and flux-surface-averaged part of the electrostatic potetfiai.
co-workers* have derived a simplified “predator—prey” sys- the two-dimensional slab geometry used in this papes,
tem that mimics the nonlinear interplay of DWs and ZFs.the poloidal coordinate ang is the radial coordinaténote
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that this convention is not the one commonly used in fusion 0.10
theory). The electrostatic potential can be represented as the 0.00
sum of a flux-surface averaged valui(y,t) (the zonal —0.10f
flows) and a contribution which varies on a flux surface B
$(x,y,t) (the drift wavey, where Py 020
-0.30 ¢
— a —0.40 |
¢(y1t)_ J;) ¢(X!y1t)dx ~0.50 ‘ ‘ . . ‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2

and wherea is the poloidal slab size. ZFs are defined as kp,

modes for whichk,=0, and DWs as modes witk, # O. FIG. 1. Total I tigrowth minus dissipatiorfor the DWs(solid ing
: ; « _ » : . . 1. Total linear ratégro minus dissipatiorfor the s(solid ling)
We use dimensionless large scale” units, by normaliz and the ZFgdashed ling as a function of the radial wave number. The

- o 2
ing space to the box sizg time to 1/(w;py ), and the elec-  parameters are those specified in Sec. 11l A, with, in additiosi=0.05.
tric potential toT./e. We have defineg, =ps/a, where

ps=\Temi/eBis the ion thermal Larmor radius evaluated at

the electron temperature, ang,;=eB/m; is the ion cyclo- (k—kp)2
tron frequency. In these units, the modified Hasegawa—Mima  y(k)= yqexp — — | 2
equation of Ref. 11 can be written as 20

wherey, is the maximum growth rateorresponding té,),
w +{p,W}+ B% =F-D, (1)  ando is the band width. This term mimics an instability such
at IxX as ITG, which normally peaks at wave numbkgp of or-

der unity or lower® For ZFs, the forcing term is set to zero,
as these modes are generally linearly stable. The total linear
rate (growth minus dampingis plotted in Fig. 1 for both ZFs

wherew= qs—a— pi Vfd) is the potential vorticity, and the
Poisson brackef-,-} represents the convection due to the

EXB flow. F andD are the normalized forcing and dissipa- 5n4 pws, for the case studied in Sec. Il A. Note that only a

tion terms that will be described shortly. Boundary condi-go a1 hand of wave numbers are linearly unstable, and that
tions are taken to be periodic in both directions, with spatiak':s are more strongly damped than DWs for all valuek. of
period equal toa (Whi_Ch reprgsen'_[s a macroscopic Iength We also point out that the forcing ratg can always be
scale, such as the minor ”id'us’ in the tokamak configuragiminated by a suitable rescaling transformation. Therefore,
tion). We have also defined=a/L,, whereL, is the char- ;- mqdel contains four independent dimensionless param-
acteristic length scale of the plasma density gradient. eters: the thermal Larmor radiys , the ratioa/L,, (related
The standard HM mod¥l is formally identical to Bq. ;e density gradieptand the normalized viscous coeffi-
(1), but with the potential vorticity field defined ag= ¢ cients w1 /7o, ma/y0. In addition, one must consider the

2 2 . .
—p5 Vi¢. This reflects the fact that, in the standard HM gpan6 of the forcing function, which in E¢®) is parameter-
model, electrons are allowed to thermalaerossmagnetic ;o by a peak wave numbig and a bandwidthr.

surfaces; such unphysical behavior is forbidden in the modi- Finally, we note that instability growth rates are assumed

fied HM model. . ) to be constant in our model, although in principle they are
. In order to achieve steady-state turbulence, forcing andgpgitive to several parameters, such as the local density gra-
dissipation terms should also be implemented. The dissipgjiant | =1 The normalized damping coefficienis, »/ vo
. . _ - n - ’
tion consists of two termsD=D;+D,. The first _affects (which govern the appearance of large oscillationsay
both the DW and the ZF- components of the potential and hag,qefore depend on the instability model, and this fact

— 2 2p 4. i i i K . . .
the form D= u1pL |V, |“Peb: it represents a hyperdiffusion  gp5,1d be borne in mind when interpreting the results pre-
term as frequently adopted in fluid simulations in order t0gotad in the next section.

restrict dissipation to the smallest scales; it reduces to stan-
dard diffusion forp=2. The second term acts only on the
ZFs (Ref. 17 and can be written aB,=— u,p2V? . The
constantsu, , are dimensionless dissipation coefficients. The  Equation(1) is solved numerically using a pseudospec-
D, term ensures that large scale ZFs are ultimately dampedral method® with full dealiasing. The time-stepping is per-
Indeed, in toroidal geometry, ZFs are damped by collisionformed with an explicit leapfrog technique, with a predictor—
less transit time magnetic pumping effetis®In our case, it corrector scheme applied at regular intervédsery ~50
is easy to show, using the above dissipative terms, that théme steps The overall scheme is second order accurate in
total damping rate for the ZF B£ = u,+ u1k?* 2 (plotted  time. In all calculations the grid dimensions in tkeandy
in Fig. 1), which does not vanish ds—0. directions are given bil,=N, =256 (after dealiasing and

We have adopted a forcing term which is isotropic inthe time step typically varies in the range 0.0025—0.01.
wave number space for the DW modes, and has the form OIL
an instability which can be expressed in wave number space’
asF = y(k)w, . The growth ratey(k) depends only on the The parameters of all the runs reported in this paper are
magnitude of the wave number, and is peaked around a givesummarized in Table |. Here we present results obtained for
wave numbekg, the following set of dimensionless parametgrg=0.02, 8

Ill. RESULTS

Effect of poloidal flow damping
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TABLE I. Summary of the parameters used in the runs of Secs. Il A-III C.

A B nc
P 0.02 0.02 0.007

B 1.0 0.-0.3-0.8-2. 0.-1.-5.
p 2 2 4

e 2x10°* 2x10°* 2x10 12
o 0.-0.1-0.25-1. 0.05 0.05
Yo 0.15 0.15 1.25

Py Ko 0.7 0.7 0.7

o 1.0 1.0 1.0

=all,=1, u;=2x10"% p=2, y,=0.15, p, k,=0.7, and
o=1. The ZF damping rate has been varied frap+=0 to
mo>=1.0in order to allow comparison with the results of Ref.

14. Att=0, the electrostatic potential is initialized as a bath
of waves with random phases and very low amplitude. In the

initial stages of the evolution, DW modes with a positive

growth rate start growing exponentially. When the DW spec-
trum has reached a certain amplitude, the ZF modes are ex-
cited and also grow exponentially, with a larger growth rate

with respect to the DW$Fig. 2(@)]. The observed growth
rate for the DWSs isypy=0.065, which corresponds to the
net rate (growth minus dissipationof modes with p, k
=0.7 (see Fig. L For ZFs, we obtain a growth ratg,r
=0.13, which is approximately twice the observed DW

growth rate. In these runs, the faster-than-exponential growth

reported in Ref. 1 was not observed.

We have found that the observed ZF growth rate is in-

sensitive to the value of the ZF damping, [Fig. 2(b)]. The

10”42 | . . .

50 100

time

150 200

FIG. 2. Early time evolution of the ZFsolid line) and DW (dashed ling
spectrum(a) for u,=0, and(b) for u,=0.1, 0.25, and 1.0. The straight
lines correspond to growth rates=0.13 and 0.065.
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FIG. 3. Time evolution of the ZFsolid line) and DW(dashed lingspectra,
for () u,=0.0, (b) ©,=0.10, and(c) u,=0.25. For clarity, the DW spec-
trum in (a) is magnified by a factor 20.

fact that y,r.=27ypw (independent of the ZF dampings
entirely due to the quadratic nature of the nonlinearity. Each
ZF mode evolves under the action of at least one pair of DW
modes, with each coupling forming a triad in wave vector
space and schematically obeying an equation of the ¥ype,

doze

dt

where ¢y (t) =A; ; explypwt) are two DW modesy is a
dissipation rate(related to ouru, coefficien}, andK is a
coupling coefficient. This equation has the general solution:

K ¢d1¢2— ndzr, (3

bar() = 2 et 2yput) e exp— ), (4
=-—"8eX c exp(— nt),
ZF 2vowt 7 Yow 7
wherec is an integration constant. The first term in E4)
grows to dominate the solution, and determines that the ZF
growth rate is twice that of the DWs independentipfen-
tirely consistent with the simulation results.
After saturation of the instability, an oscillating regime
takes placdFig. 3). The evolution of the ZF and DW ampli-

tudes is plotted in Figs.(8)—3(c) for three values of the ZF
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damping ratew,. For u,=0 [Fig. 3@] the DW spectrum
displays a narrow peak followed by a sharp decay; the ZF
spectrum peaks with a time lag with respect to the DW, and
then decays much more slowly. Note that thedféwth rate

is maximum when the DW spectrum peaks, whereas the DW
decay rateis maximum when the ZF spectrum peaks. This
behavior is close to Malkowt al’s type (3) behaviort*
which corresponds to a case of zero ZF damping. In a broad-
band simulation such as ours, some dissipation must neces-
sarily be presentthe total ZF damping rate here BZ"

= u,k?), so that the ZF spectrum still decays, albeit slowly.
In this regime, even though some DW modes are linearly
unstable, they give rise to an extremely low level of steadysi. 4. bw spectrum at two different times corresponding to a peak (
state turbulence, as the latter is completely suppressed by the3g4) and a depression=360) in the DW evolution of Fig. @).

ZFs. This effect is known as the Dimits upshift of the turbu-

0
lence threshola. _ _ In the standard HM model, cross-field electron flows
Increasing the ZF damping rate jo,=0.1 yields the  gising from the adiabatic electron response suppress the
oscillatory behavior shown in Fig(B), again with atime 1ag  growth of ZF modes. Such electron flows are unphysical, and
between the ZF and DW peaks. This behawous similar t©5re not present in the modified HM model. However, if the
the type(2) behavior described by Malkoet al.™™ (quasi-  zr gamping rate is very large, the ZFs should be suppressed
periodic burstingg No S|g.n|f|cant decay of @he oscillations very efficiently even in the modified HM model. In that case,
was observed by extending the run up to times as long as,ye should expect the dynamics to approach that of the stan-
=1000. When the ZF damping is even stronfgp=0.25,  gard HM equation. In order to verify this fact, we have per-
Fig. 3(c)], both the ZF and DW modes saturate at a roughlysormed a simulation withu,=1 and compared it with a
constant level, with small fluctuations. By performing other gtandard HM caséFig. 5). As expected, the level of satura-
simulations, we found that the large amplitude oscillations;jgn of the DW is very similar in the two rur&ig. 5a)], and
are virtually suppressed fr,>0.15. Notice that the switth  mych Jarger than that of the ZF. The evolution of the ZFs is
between the two behaviofwith and without oscillationsis  gpown in Fig. %b) on a logarithmic scale; for the standard

very sudden. . . HM run, the zonal flows also grow exponentially with the
The oscillatory behavior was explained by Malkov

et all*in terms of a “predator—prey” model, where the DWs

l(k)I

0.1 1.0
pk

correspond to the “prey” and the ZFs to the “predator.” In 0.0004 ¢

our system the DWs grow due to the imposed growth rate, : (a)

and when they attain a sufficient amplitude the ZFs also start 0.0003 E
to grow, feeding off the DWs through the nonlinear coupling e

term. Then, when the ZFs reach a sufficiently large ampli- & ¢.0002 F

tude, the DWs start to be diminished by the shearing effect of ¥ §

the poloidal rotation associated with the ZFs. The source of 0.0001 £

ZFs is thus reduced as the DWs diminigle., the predators :

“starve”). When the ZFs reach a sufficiently low amplitude, 0.0000 . l ‘ . . ]
the DWs can pegln to grow again, and so the Whple cycle 0 100 200 300 400 500 600
repeats. This simple model explains th&2 phase shift ob- time

served in the DW and ZF oscillations.

The ZF saturation amplitude can qualitatively be esti-
mated by equating the two terms on the right-hand side
(RHY of Eq. (3),

bze~Kpi1¢o /7. (5

Naturally, this predicts that the ZF saturation amplitude re-
duces with increasing dissipatigalthough their growth rate
stays the sameand this is clearly observed in the long-time

results presented in Fig. 3. 1072 s j .
Figure 4 shows the DW isotropic potential spectrum for 0 50 100 150 200 250 300
the run withu,=0.1 at two different times, corresponding time

respectively to a peak and a depression in the DW evolutiorllIG 5 T \utior(a) of the DWs andb) of the ZFs. The standard HM
. . . . . O. lIme evolutio (o) e S an (0] e S. e standar

of Fig. 3(b). We notice that the spectrum IS_ re!a_tlvely broad, results are presented as dashed lines and the modified HM resultg.with

and rather flat for low wave numbers. A significant number—1 35 solid lines. The straight line if) corresponds to a growth rate

of DW modes are therefore excited. =0.13.
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FIG. 7. Isotropic DW spectrum of the linear diamagnetic téswlid line) and the nonlinear terrtdashed ling for () 8=0.1, (b) 3=0.6, (c) 8=0.8, and
(d) B=2.0.
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same rate 4,=0.13) as for the modified HM equation, 0-0006¢ ' ' '

which is consistent with the previous discussion showing 0.0005 _

: £ (a) ]
that y,e=2vypw independently of all other parameters. On g E
the other hand, the ZF saturation level does depend on the 0.00041 E
constantK [see Eq.(5)], which couples nonlinearly wave =, 2 E

vectorsk; andk, to generate wavevecttig. This coupling = 0'0003?
constant can be written s 0.0002f
2(k?—K2 0.0001 F e
el | e, (6) T
a+pi Kz 0.0000¢ . . 3
[¢] 50 100 150 200
wherea=1 for the standard HM equation ard=0 for the time
modified HM equation. Ap2 k3 is generally small for ZFs,
the coupling constant turns out to be substantially larger for 0.0010T . . . .
the modified HM model, and this is indeed the reason why i
ZFs can reach such a large amplitude in that case. 0.0008 [-
B. Effect of the linear diamagnetic term % 0-0006
In order to assess whether the observed bursts persist in ¢ 0.0004 [
a regime of turbulence dominated by nonlinear effects, we i
have varied the rati@=a/L,,, which determines the relative 0.0002 |
strength of the linear diamagnetic term compared to the non-
linearity. The results foB=0 (flat density profilg, 0.3, 0.8, 0.0000
and 2.0 are presented in Fig. 6. For this set of runs, the ZF 0 56 100 150 200 250
damping has been set to,=0.05, whereas all other param- fime
eters are the same as in Sec. ll(gee also Table | for a 0.0030 F , , , ,
summary of all parameters ) E
It appears that a sma# is very effective in suppressing 0.0025 (C) ]
the large-amplitude oscillations, which are observed only for 0.0020 _ ]
B=0.8 or higher. The period of the oscillations increases « . ]
slightly with 8 [Figs. Gc)—6(d)]. We also notice that the < 0.0015 F
overall level of turbulence increases wigh This is due to 53 ;
the fact that a large diamagnetic term reduces the impact of 0.0010F 1 . -
the nonlinear term by decorrelating the phases of nonlinearly 0.0005E M ! ‘\‘ ,"\\” AN ; R
interacting modes. Therefore, the energy injected by the forc- A N AN v VAt ]
ing term can pile up for a longer time before being trans- 0.0000L. #. .. : : :
ferred to other modes. 0 50 1°°ﬁme 150 200

The isotropic spectra of the linear diamagnetic term and
the nonlinear term of Eq) (i.e., iBky¢, and the Poisson FIG. 8. Time evolution of the ZFsolid line) and DW (dashed lingspectra
bracket, respectivelyare plotted in Fig. 7. For all cases ex- (Sec. lll O, for p, =0.007 and@ B=0, (b) 8=1.0, and(c) B=5.0. For
cept =0.1, the linear term dominates for wave numbers®21: the DW spectrum ific) is magnified by a factor 2.
kp, <1. We can conclude that the large-amplitude oscilla-
tions only appear when the linear term is dominant, althoughorcing wavelength, we use hyperdiffusion wifh=4 and
the actual threshold may not be easy to determine. For iny =2x 10712 Other parameters are given in Table I.
stance, the casg=0.6 still gives rise to no oscillations de- Three runs with different values of the density gradient
spite being predominantly linear. Finally, we also point outg=a/L, were performed. Figure 8 shows that the large-
that ZF production is always intrinsically nonlinear in this amplitude oscillations only appear whes is sufficiently
model, as the only ZF source term arises through nonlineggrge (3=5), i.e., when the linear diamagnetic term is domi-
coupling of DWs, and the linear ZF term involving the dia- nant. The pattern observed in the previous sets of simulations
magnetic frequency is always zero. is thus recovered at lower values of the normalized Larmor

radius.
C. Effect of diamagnetic term at lower p,

Finally, we consider a case where the normalized Larmo}v' CONCLUSION

radius is smallerp, =0.007, while keeping the same forcing We have demonstrated that large oscillations in the ZFs
wave numberp,ko=0.7. The grid size remaindl,=N, can be generated in the simplest nontrivial model of drift

=256, so that the forcing wave number is now closer to thevave turbulence, namely a modified Hasegawa—Mima equa-
maximum wave number alloweg( k.,=0.89). Therefore, tion. These oscillations appear when the linear diamagnetic
in order to limit the dissipation to scales smaller than theterm (proportional to the density gradignlominates over
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