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The optical response of nonparabolic quantum wells is dominated by a strong peak at the plasmon
frequency. When the electrons reach the anharmonic regions, resonant absorption becomes
inefficient. This limitation is overcome by using a chirped laser pulse in the autoresonant regime. By
direct simulations using the Wigner phase-space approach, the authors prove that, with a sequence
of just a few pulses, electrons can be efficiently detrapped from a nonparabolic well. For an array
of multiple quantum wells, they can create and control an electronic current by suitably applying an
autoresonant laser pulse and a slowly varying dc electric field. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2761246]

Small semiconductor devices, such as quantum dots and
quantum wells, have attracted considerable attention in re-
cent years, particularly for possible applications in the
emerging field of quantum computing.1 For quantum devices
working with many electrons,” it is crucial to understand the
properties of the self-consistent electron dynamics and its
response to external electric fields. Particular attention has
been devoted to intersubband transitions in semiconductor
quantum wells, which take place on the meV energy scale
and involve excitation frequencies of the order of the
teraherz.® Several theoretical and computational studies have
investigated the electron response, mainly using Hartree-
Fock semiconductor Bloch equeuiorls4 or density functional
theory.5 For perfectly parabolic confinement, the electron re-
sponse is dominated by the Kohn mode,*’ consisting of rigid
oscillations of the electron gas at the effective plasmon fre-
quency. For nonparabolic confinement, the Kohn mode still
dominates the initial response. However, when the electrons
reach the anharmonic regions, the resonance condition is lost
and absorption becomes inefficient.

In this letter, we show that this limitation can be over-
come by resorting to autoresonant excitation.>'° Basically,
autoresonant excitation occurs when a classical nonlinear os-
cillator is excited by an oscillating force with slowly varying
frequency: F(t):ecos[wo(t—t0)+%a(l—to)z], where € is the
excitation amplitude and w, the frequency, which matches
the linearized oscillator frequency; « is the rate of variation
of the excitation frequency. For |a|< w(z) and € above a cer-
tain threshold, the instantaneous oscillator frequency be-
comes “locked” to the instantaneous excitation frequency so
that the resonance condition is always satisfied. In that case,
the amplitude of the oscillations grows indefinitely and with-
out saturation, until of course some other effect kicks in. For
the single-particle case the threshold behaves as €~ |af?*.®

In order to study the self-consistent electron dynamics,
we make use of the Wigner representation of quantum me-
chanics. A mixed quantum state is represented by a function
of the phase space variables plus time: f(x,v,t) (we deal
with one-dimensional problems), which evolves according to
the Wigner equation,
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where m. is the effective electron mass and V(x,?) is the total
potential acting on the electrons. The latter is composed of
three terms: (i) the confining potential V (x), (ii) the au-
toresonant oscillating potential V,,,=xF(z), and (iii) the Har-
tree potential Vy(x,f), which obeys Poisson’s equation
=(e?/e) [ fdv, where e is the absolute electron charge
and ¢ is the effective dielectric constant. We consider wide
quantum wells (=100 nm) at moderate electron temperatures
(=2T), for which the exchange and correlation corrections
can be neglected.”’12
The right-hand side of Eq. (1) models disorder or 3pho-
non scattering in the form of a friction-diffusion term,’
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where 1y is the relaxation rate (inverse of the relaxation time
T)), and D, and D, are diffusion coefficients in velocity and
real space, respectively, which are related to the decoherence
time T,. In order for Eq. (1) to preserve the positivity of the
density matrix associated to the Wigner distribution function,
the scattering term must be in Lindblad form."® This is auto-
matically achieved' if the above coefficients respect the in-
equality D,D,= v*h*/4m?.

We focus on confining potentials that can be approxi-
mated by a parabola at the bottom of the well: V,,{(x)
= %wém*x2+- -+, where the frequency w, can be related to a
fictitious homogeneous positive charge of density n, via the
relation w(%:eznol m=€. We then normalize time to wgl, space
to the harmonic oscillator length Ly,=\%/m-w,, velocity to
Vhwy/m=, energy to fiwy, and the electron density to n.

As initial condition, we take a Maxwell-Boltzmann ve-
locity distribution with temperature 7,> 7, and a Gaussian
density profile with peak density n,. This is not an exact
stationary state, but it evolves very little if no perturbation is
applied. (The precise form of the initial state is irrelevant for
our purposes, provided it is localized at the bottom of the
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FIG. 1. Single Gaussian well. Total number of electrons in the well, nor-
malized to its value at r=0, for different values of the filling fraction:
7=0 (solid line), #=0.1 (dotted), 7=0.5 (dashed), and 7=1 (dot dash).
Inset: Time evolution of the dipole for 7=0.5.

well.) We define the filling fraction as n=n,/n,< 1: the limit
case 7=0 corresponds to very dilute densities, for which the
Hartree potential is negligible.

We use typical parameters for semiconductor quantum
wells:® effective electron mass and dielectric constant
m==0.067m, and e=13¢g; volume density
ny=5x%10" cm™, wy=1.35X10 57!, Aw,=8.9 meV, and
Ly,=11.3 nm. For =1, this yields a maximum surface den-
sity for the electrons n,=1.35X 10'"' cm™ and a maximum
Fermi temperature 7,=85.7 K. The electron temperature is
taken to be T,=2%Awy=200 K. The relaxation time is
T,=70 ps, which corresponds to a relaxation rate
v/ wy=0.001. The diffusion coefficient in velocity space is
D,= 'y\s”kBTe/m*.

First, we consider a single quantum well with a Gaussian
potential:  V,(x)=—V, exp(=x>/20?), with Vy=o’m.wj,
o=4L;,=45 nm, and an overall width of the quantum well
of L=24L,,=270 nm. This is in line with recent experi-
ments on wide parabolic quantum wells, which can reach a
width of several hundred nanometers.'

The electron gas is excited with a chirped pulse, with
a=—0.001w%, t0=500w51, and amplitude €=0.2> ¢, in nor-
malized units. The latter corresponds to an electric field of
the order of 0.1 mV/nm, which can be easily achieved ex-
perimentally. Chirped pulses were also suggested to excite
transitions in two-level quantum systemsls—a situation quite
different from the wide quantum wells considered here,
where many levels are present and progressively excited by
means of the autoresonant technique.

Figure 1 shows the dipole of the electron distribution
(average of x) and the total number of electrons in the well
[integral of f(x,v,?) in the phase space] normalized to its
initial value, for different values of the filling fraction 7. The
dipole starts increasing rapidly at 7=f#,, i.e., when the time-
dependent frequency of the laser field crosses the linear reso-
nance wy. At wyt=900, the electrons that have been acceler-
ated by the laser field are finally ejected from the well,
leaving behind a remnant population that is still sitting at the
bottom of the well. The dipole then decreases rapidly and
remains close to zero thereafter. The number of electrons in
the well is reduced by one order of magnitude at the end of
the run. The slight initial decrease observed for large electron
densities (7=1) represents a small evaporation due to Cou-
lomb repulsion.

By applying a sequence of four identical pulses, it is
possible to reduce the number of electrons by almost three
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FIG. 2. Time evolution of the total number of electrons for a series of four
laser pulses; 7=0.5.

orders of magnitude, as shown in Fig. 2. We stress that, for a
nonchirped pulse (a=0) or for a chirped pulse below the
autoresonant threshold (e<<eg,), virtually no electrons leave
the well. In addition, the effect is still observed when the
laser frequency is mismatched with respect to the harmonic
oscillator frequency wg,. Even for a mismatch of £10%, the
same number of electrons are ejected from the well.

As a second application, we consider a periodic array of
quantum wells, with a cosinusoidal confining potential
Veoni=—Vp cos(2mx/N), where \ is the width of each well,
and V0=m*w%)\2/ 2. Such periodic superlattices can be
practically  realized as  multilayer  semiconductor
heterostructures'® and there have been recent attempts at
simulating these structures using Bose-Einstein condensates
trapped in optical lattices.'” Here, we neglect the Hartree
potential and consider noninteracting electrons (this amounts
to assuming 7<<l). We take y=0.002w,, a:—0.00Zwé,
wotn=300, and €=0.27wy/ Ly, Initially, each quantum well is
occupied by a single electron, represented by a minimum
uncertainty packet. We use a periodic computational box
with spatial period equal to 3\.

The idea is to create an electron current by applying a
suitable laser pulse. From the previous study, we have
learned that the electrons can be efficiently extracted from
the well. By applying a small constant (dc) electric field, we
can force the electrons to always leave the well from one
side and thus create an electric current. For this, we use a
small dc field (Ey=0.1%wy/eLy,=0.08 mV/nm) to polarize
the array of quantum wells.'® In Fig. 3, we plot the evolution
of the average velocity of the electron distribution
(vy=[fvdvdx/ [fdvdx.
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FIG. 3. Evolution of the average velocity for an array of quantum wells with
dc bias. Inset: velocity distribution of the electron population at wyr=0, 500,
1000, and 2500. Velocity is measured in units of VAwy/m..
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FIG. 4. Evolution of the average velocity for an array of quantum wells with
dc bias, in the case of two laser pulses. The dashed line represents the
evolution of the dc field, in arbitrary units.

At t=t,, a positive current starts building up and, by the
end of the run, the average velocity reaches a value of
(v)=25 in our normalized units. This value corresponds to
the asymptotic velocity reached by an electron subjected to a
constant electric field E,=0.1 in the presence of a friction
coefficient 2y=0.004, i.e., vymx=FEo/2y=25 (normalized
units). This shows that all electrons have been detrapped
from the potential well and accelerated by the dc field. The
electron velocity distribution (Fig. 3, inset) confirms this
scenario.

In order to make the whole process reversible, one
would need to retrap the electrons inside the potential well.
This can be achieved in the following way (Fig. 4): (i) after
the current has been generated, the oscillating pulse is
switched off suddenly at wy=2000; (ii) at the same time, the
dc electric field E, is switched off adiabatically between
wot=2000 and wyr=4000 (exponential decrease with time
constant T=400w51): during this phase, all electrons are re-
trapped and the current goes back to zero; (iii) at
wot=4000, the dc electric field is switched on again and an-
other autoresonant laser pulse (identical to the first one) is
used to excite the current once again. This procedure can be
repeated several times, so that the electric current can be
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switched on and off, and can even change sign if one
changes the sign of the dc field.

In summary, we presented numerical evidence that the
electron gas in wide nonparabolic quantum wells can be ef-
ficiently excited with an autoresonant laser pulse. Nonlinear
effects were triggered using a relatively weak pulse, even
when the laser frequency is poorly tuned. These techniques
could be used to achieve better control of the electron dy-
namics in quantum solid-state devices.
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