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Abstract
The relative importance of poloidally extended zonal flows (kθ = 0, kr �= 0)
and radially extended streamers (kθ �= 0, kr = 0) in regulating drift turbulent
energy transport is a central question in tokamak physics. Both forms of
nonlinear structure can be described within the framework of the Hasegawa–
Mima equation, as extended by Smolyakov et al (Smolyakov A I, Diamond P H
and Malkov M 2000 Phys. Rev. Lett. 84 491), although streamers have not
previously been analysed in this context. Here we present results obtained by
comparing analytical weak-turbulence calculations with numerical simulations
using a spectral code. The analytical results are obtained with a four-wave
model, incorporating a drift wave (k2) coupled to both sidebands (k2 ± k1) by
a zonal flow or streamer (k1). Fully nonlinear studies of this four-wave system
have been carried out, and we find that analytical expressions derived from wave
coupling models provide a good guide to the spectral code results. Instability
conditions are found and growth rates computed, showing that zonal flows are
more unstable than streamers, at least at this level of description. Typically, we
find that the streamer growth rate is lower than that of the zonal flow by a factor
of order ρsk1. Insofar as our Hasegawa–Mima model contains many of the core
physics elements of more sophisticated approaches, these results are of wider
importance to the numerical modelling of drift turbulence in tokamaks.

1. Introduction

Drift waves play an important role in the physics of strongly magnetized plasmas. When
unstable, such as in the presence of steep enough temperature gradients, they can give rise
to fully developed ‘drift’ turbulence, which is presumably responsible for the anomalous
transport rates observed in present tokamaks. Various models of increasing complexity and
realism have been proposed in the past decades to study the (possibly turbulent) dynamics
of drift waves, including both gyrokinetic and (gyro)fluid models [1–7], and realistic three-
dimensional simulations in toroidal geometry are now available. These simulations have
shown that ‘zonal flows’ are a crucial factor in regulating the nonlinear evolution of drift-wave
instabilities, such as the ion temperature gradient (ITG) instability, and consequently the level
of turbulent transport. The generally accepted argument is that the radial dependence of the
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zonal flow generates a poloidal E ×B sheared rotation, which depresses anomalous transport
by reducing the radial correlation length.

Zonal flows are defined as modes that only depend on the radial coordinate r , and generally
vary on time scales slower than those corresponding to drift waves. We note that this definition
includes both large-scale flux-surface-averaged flows (satisfying ρskr � 1 with scale length
possibly approaching the machine size, where ρs = √

Temi/eB is the ion thermal Larmor
radius at the electron temperature) and small-scale modes (with scale length comparable to the
ion Larmor radius, ρskr � 1), provided they have no poloidal or toroidal dependence. In the
rest of this paper, the term zonal flow will generally be used to refer to the large scale structures,
although our formalism is equally appropriate for dealing with small-scale structures.

On the other hand, zonal flows have long been observed in numerical simulations of
rotating neutral fluids, and have been invoked to explain the striped appearance of the
atmosphere of the giant planets. Indeed, mathematical models for rotating fluids are very
similar to models developed for the study of drift waves in magnetized plasmas. Perhaps the
simplest such plasma model is the Hasegawa–Mima equation [8], which is almost identical in
structure to the Charney equation [9], describing two-dimensional fluid turbulence in a rotating
frame. It has been shown that the interplay of linear drift-wave propagation with nonlinear
coupling can give rise to strongly anisotropic spectra, dominated by zonal flows [10]. Note,
however, that these zonal flows are small-scale radial modes, and not large-scale structures
such as those considered in the rest of this paper.

Recently, several theoretical models have been proposed in order to explain the
emergence of zonal flows in tokamak plasmas. Smolyakov, Diamond and co-workers have
suggested [11, 12] that zonal flows can be generated spontaneously in the presence of a bath of
small-scale drift waves. They indicated two possible regimes, corresponding to two different
types of instability: (a) when the drift wave spectrum is narrow, the instability is of the
modulational type [12]; (b) when the spectrum is broad and almost continuous, integration
over all wavenumbers can yield a resonant instability [11].

The former case is investigated analytically and numerically in the present paper. It is
first shown (section 3) that the results obtained in [12] can be readily derived using a relatively
simple four-wave model [13, 14], which describes the evolution of the pump drift wave, its
two sidebands, and a large-scale wave (zonal flow). An analogous treatment is then extended
to the case where the large-scale wave is a streamer, which has not been previously analysed.
A streamer is defined here as a radially elongated large-scale mode that does not depend on
the radial coordinate (kr = 0), and is slowly varying in the poloidal direction (ρskθ � 1).
The model exhibits an instability for the streamer or zonal flow, which eventually saturates by
depletion of the pump wave. Numerical simulations of the instability, presented in section 4,
yield a growth rate that is in agreement with the analytical calculations. The relevance of these
results to the physics of tokamak plasmas is discussed in the final section.

2. Model

The model used in this paper is the one adopted by Smolyakov et al [11, 12] to describe the
dynamics of drift waves in the poloidal plane in a sheared magnetic field. It is essentially
a Hasegawa–Mima (HM) equation [8], and is based on the same assumptions of cold ions,
Ti � Te, (Ti(e) being the ion (electron) temperature), with negligible inertia parallel to the
magnetic field. The quasineutrality condition ni = ne is satisfied, where ni(e) is the ion
(electron) density; the electrons are assumed to have an immediate adiabatic response, with
Boltzmann distribution. For global flows, however, the density fluctuation does not depend
on the averaged (on a flux surface) part of the electrostatic potential φ̄. In order to relate the
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density fluctuation to the potential, one should therefore write [4]

ni,e − n0

n0
= e

Te
(φ − φ̄) (1)

where n0(y) is the equilibrium density and φ(x, y, t) the electrostatic potential. The latter can
be represented as the sum of a flux-surface averaged value φ̄ and a contribution φ̃ which varies
on a flux surface. As we use two-dimensional slab geometry, with x the poloidal and y the
radial coordinate (this convention is that used in geophysical fluid dynamics, but not the one
commonly used in fusion theory), one simply has that φ̄ = 1

L

∫ L

0 φ dx (where L is the slab
size in the poloidal direction). Note that equation (1) means that the flux-averaged part of the
electron density does not respond adiabatically. This is because the electrons are thermalized
along the magnetic field lines (and therefore on a flux surface), but not across flux surfaces.

With these assumptions, the relevant model is written as

∂

∂t
(φ̃ − ρ2

s ∇2
⊥φ) + (v0 + ṽE) · ∇(φ̃ − ρ2

s ∇2
⊥φ) + v · ∇φ̃ = 0 (2)

where v0 and ṽE are the electric drift velocities arising from φ̄ and φ̃, respectively

v0 = ẑ × ∇φ̄

B
and ṽE = ẑ × ∇φ̃

B
.

Here v = x̂Te/(eBLn) is the electron diamagnetic drift velocity, and Ln is the characteristic
length scale of the plasma inhomogeneity. Boundary conditions are taken to be periodic in both
directions, with spatial period equal to L (which represents a macroscopic length scale, such
as the minor radius, in tokamak configuration). Notice that the standard Hasegawa–Mima
equation can be recovered by neglecting mean flows, i.e. by letting φ̄ = 0 so that φ → φ̃

everywhere in equation (2).
Equation (2) is the model used throughout this paper for the study of zonal flows and

streamers, and is identical to equation (1) of [11]. We stress that this equation includes
several essential ingredients that appear in more sophisticated models of drift turbulence and
transport. In particular, it has been shown that the prescription of equation (1) is responsible for
the appearance of large-scale average flows in ITG simulations [4]. One should bear in mind,
however, that this is an approximate model, which sheds light on the evolution of zonal flows
and streamers, but necessarily employs some simplified physics. In particular, the model does
not include a temperature gradient, which is the main instability drive in large-scale transport
codes. Moreover, magnetic shear is not included and, due to the periodic boundary conditions,
the modes are not radially bounded.

3. Weak turbulence analysis: the four-wave problem

As we shall be mainly interested in mode couplings, it is useful to expand the total potential φ
in a Fourier series

φ(r, t) =
∑
j

φj (t) exp(ikj · r). (3)

The requirement that φ̄ and φ̃ must be real imposes the following constraints on the complex
Fourier amplitudes:

φ−j = φ∗
j (4)

with k−j = −kj .
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Figure 1. Slab geometry with the flux surfaces parallel to the x-axis, and the magnetic field aligned
in the z direction. The arrows denote the wavevectors for the four wave problems: (a) corresponds
to the generation of zonal flows parallel to flux surfaces, and (b) shows the generation of flows
across flux surfaces in the radial direction (streamers).

With this representation, equation (2) can be written as

∂φj

∂t
+ i�jφj =

∑
m,n

�j
m,nφnφm (5)

where the sum is extended over all wavenumbers such that kj = km + kn. The �
j
m,n are

appropriate nonlinear coupling coefficients, and

�j = v · kj

1 + ρ2
s k

2
j

(6)

are the linear drift frequencies. Notice that for the zonal flow �1 = 0, as the corresponding
wavevector is perpendicular to the flux surface.

Finally, we point out that the generalized HM model admits two quadratic invariants (just
like the original HM equation). These are the energy

E =
∑
j

ρ2
s k

2
j |φ̄j |2 +

∑
j

(1 + ρ2
s k

2
j )|φ̃j |2 (7)

and the generalized enstrophy

Z =
∑
j

ρ4
s k

4
j |φ̄j |2 +

∑
j

(1 + ρ2
s k

2
j )

2|φ̃j |2. (8)

These invariants are of considerable importance in the statistical theory of the HM model,
and will be used later on in order to obtain information about the nonlinear saturation of the
instability.

3.1. Zonal flow generation

A weak turbulence analysis of the generalized HM system can be obtained in the special case
where only four nonlinearly coupled modes are present. We consider the situation where a
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large amplitude pump wave with wavevector k2 is present, with two much smaller sidebands
(k3 and k4) and a small amplitude zonal flow with wavevector k1 perpendicular to the flux
surfaces (i.e. k1x = 0). The wavevectors must be chosen such that the following conditions
are satisfied

k4 + k1 = k2 k3 − k1 = k2.

In addition, the wavenumber of the zonal flow is much smaller than the other three (k1 � k2,3,4).
The wavevectors and geometry of the system are illustrated in figure 1(a). In order to perform
a linear analysis of the four-wave system, we must specify that φ2 � φ4, φ3, φ1, and include
Fourier amplitudes for wavevectors −k1, −k2, −k3 and −k4, noting the constraint from
equation (4).

With this restricted set of Fourier amplitudes, linearizing equation (2) (i.e. assuming
φ2 � φ4, φ3, φ1) gives the following set of four coupled equations for the amplitudes φ1(t),
φ2(t), φ3(t) and φ4(t):

k2
1ρ

2
s φ̇1 = Aρ2

s [φ3φ
∗
2 (k

2
2 − k2

3) + φ2φ
∗
4 (k

2
4 − k2

2)] (9)

(1 + ρ2
s k

2
2)φ̇2 + iv · k2φ2 = 0 (10)

(1 + ρ2
s k

2
3)φ̇3 + iv · k3φ3 = −Aφ1φ2(1 + k2

2ρ
2
s − k2

1ρ
2
s ) (11)

(1 + ρ2
s k

2
4)φ̇4 + iv · k4φ4 = Aφ∗

1φ2(1 + k2
2ρ

2
s − k2

1ρ
2
s ) (12)

where A = ẑ ·k2 ×k1/B = ẑ ·k3 ×k1/B = ẑ ·k4 ×k1/B = ẑ ·k4 ×k2/B = ẑ ·k2 ×k3/B,
and a dot denotes differentiation with respect to time. Simple manipulation of this system of
equations shows that φ1(t) must be a solution of the following third-order differential equation
with respect to t

...

φ1 −i(�23 + �42)φ̈1 −
[
A2|φ2|2 α

k2
1

+ �42�23

]
φ̇1 = 0 (13)

where

α = (1 + k2
2ρ

2
s − k2

1ρ
2
s )

(
k2

4 − k2
2

1 + k2
4ρ

2
s

− k2
2 − k2

3

1 + k2
3ρ

2
s

)
(14)

and

�23 = �2 − �3 and �42 = �4 − �2. (15)

The � are defined in equation (6).
Seeking solutions to equation (13) of the form φ1(t) = φ1eλt gives a quadratic equation

for λ, which has the following solution

λ = i
�23 + �42

2
±

√
A2|φ2|2 α

k2
1

− (�23 − �42)2

4
. (16)

There is instability when λ has a nonzero real part, which occurs if

A2|φ2|2 α

k2
1

>
(�23 − �42)

2

4
. (17)

Otherwise both solutions are oscillatory.
The linear growth rate γZ of the unstable mode is given by the real part of λ:

γZ =
√
A2|φ2|2 α

k2
1

− (�23 − �42)2

4
. (18)
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The weak turbulence dispersion relation and threshold emerging from equation (13) have
the standard form for the modulational instability–compare, for example, equations (2.27)–
(2.29) of [15]. Physically, the nonlinearities of equation (2) manifest themselves in two ways
in the four-wave weak turbulence approximation, as follows. The pump wave creates a
ponderomotive force that can drive the zonal flow; in return, the zonal flow itself perturbs
the dispersive properties of both the pump wave and the sideband waves that couple the pump
to the zonal flow. Therefore, the previous results shed light on the threshold and initial growth
of the resulting instability. To advance further into the nonlinear regime, we require numerical
results from the spectral code presented in section 4.

Smolyakov et al [12] have presented a more elaborate analysis of this weak turbulence
problem, by self-consistently solving the kinetic equation for wave packets and using the
adiabatic action invariant. They have presented results in the limit where k1ρs � 1 and
where terms proportional to (k2

2ρ
2
s )

2 can be neglected. In this limit, the term (�23 − �42)
2 in

equation (18) is much smaller than the other term, and we find that our growth rate reduces to

γZ =
√

2|φ2|k1k2x

B(1 + k2
2ρ

2
s )

1
2

√
1 + ρ2

s (k
2
2 − 4k2

2y). (19)

Using the notation of [12] with k1 → q, k2 → k⊥, x → θ , y → r , and (1+k2
2ρ

2
s )|φ2|/Bρscs →

N
1
2

0 , this becomes

γZ =
√

2N
1
2

0 ρscsqk2θ

(1 + ρ2
s k

2
⊥)

3
2

√
1 + ρ2

s (k
2
⊥ − 4k2

2r ). (20)

where cs = √
Te/mi is the sound speed. Equation (20) appears to differ by a factor of

√
2

from the result in equation (15) of [12], which was obtained using quite different methods.

3.2. Streamers

Here we consider a similar four-wave problem, but with sidebands (φ3,4) to the pump wave (φ2)
excited with a poloidal displacement, giving rise to the growth of a long wavelength streamer
(φ1) as depicted in figure 1(b). The streamer is a mode with zero radial wavenumber (i.e.
k1y = 0), therefore extending over many flux surfaces.

With this restricted set of Fourier amplitudes, linearizing equation (2) (assuming φ2 �
φ4, φ3, φ1) gives the following set of four coupled equations for the amplitudes φ1(t), φ2(t),
φ3(t) and φ4(t):

(1 + k2
1ρ

2
s )φ̇1 + iv · k1φ1 = −A′ρ2

s (φ3φ
∗
2 (k

2
2 − k2

3) + φ2φ
∗
4 (k

2
4 − k2

2)) (21)

(1 + ρ2
s k

2
2)φ̇2 + iv · k2φ2 = 0 (22)

(1 + ρ2
s k

2
3)φ̇3 + iv · k3φ3 = A′φ1φ2(k

2
2ρ

2
s − k2

1ρ
2
s ) (23)

(1 + ρ2
s k

2
4)φ̇4 + iv · k4φ4 = −A′φ∗

1φ2(k
2
2ρ

2
s − k2

1ρ
2
s ) (24)

where A′ = ẑ ·k1 ×k2/B = ẑ ·k1 ×k3/B = ẑ ·k1 ×k4/B = ẑ ·k2 ×k4/B = ẑ ·k3 ×k2/B.
Note that A′ has a different definition to the parameter A defined in section 3.1, so that both
A and A′ are positive numbers. Simple manipulation of this system of equations shows that
φ1(t) must be a solution of the following third-order differential equation with respect to t :
...

φ1 −i (�23 + �42 − �1) φ̈1 +

[
�1 (�42 + �23) − A′2|φ2|2$ρ4

s

1 + k2
1ρ

2
s

− �42�23

]
φ̇1

+i

(
A′2$|φ2|2ρ4

s �42

1 + k2
1ρ

2
s

− A′2�|φ2|2ρ4
s (k

2
2 − k2

4)(k
2
1 − k2

2)

(1 + k2
1ρ

2
s )(1 + k2

4ρ
2
s )

− �42�23�1

)
φ1 = 0

(25)
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where

$ = (k2
2 − k2

1)

(
k2

4 − k2
2

1 + k2
4ρ

2
s

− k2
2 − k2

3

1 + k2
3ρ

2
s

)
�1 = v · k1

1 + k2
1ρ

2
s

� = �42 − �23

and �23 and �42 are as defined in section 3.1.
Seeking solutions to equation (25) of the form φ1(t) = φ1eλt yields a cubic equation,

which can be solved analytically for λ using the standard formula [16]. However, it is more
illuminating to estimate the instability growth rate by using some approximations. It is easy to
see that, for reasonable values of the various parameters (ρsk1 � 1, ρsk2,3,4 � 1, ρs/Ln � 1),
the term in equation (25) proportional to φ1 is comparatively small and can be neglected.
One thus obtains a quadratic equation for λ which, using the ordering given above, yields the
following simplified expression for the streamer growth rate (real part of λ)

γS � A′|φ2|$1/2ρ2
s√

1 + ρ2
s k

2
1

� A′|φ2|$1/2ρ2
s . (26)

With the same approximation, the growth rate for zonal flows can be estimated from
equation (18)

γZ � A|φ2|α
1/2

k1
. (27)

Note that this approximation for γZ is the same as in equation (19), except that here we do
not further approximate the factor α by assuming that terms proportional to (k2

2ρ
2
s )

2 can be
neglected. The ratio of the two approximate expressions for the streamer and zonal flow growth
rates is

γS

γZ
= $1/2ρ2

s k1

α1/2
=

(
k2

2ρ
2
s − k2

1ρ
2
s

1 + k2
2ρ

2
s − k2

1ρ
2
s

)1/2

ρsk1 � 1. (28)

It appears that the growth rate of streamers is considerably smaller than that of zonal flows.
Zonal flows, therefore, tend to grow faster than streamers, within the model framework
considered here. In a situation of fully developed turbulence, where energy is exchanged
nonlinearly among a large number of modes, this may imply that zonal flows play a more
important role than streamers.

Physically, the difference from the case of zonal flows is that, in the streamer scenario of
figure 1(b), all wavevectors including the streamer itself have a finite component (kx) parallel to
the flux surface in the direction of the equilibrium poloidal diamagnetic drift. For such modes,
the electron response is the standard adiabatic one, as in the HM equation, and therefore the
modes are subject to the (stabilizing) effect of the electron pressure. Contrarily, zonal flows,
being constant on a flux surface (kx = 0), are not affected by the electron pressure, and behave
effectively as an incompressible fluid. Their instability drive is therefore stronger.

4. Numerical results

A numerical code that solves the generalized HM equation has been implemented using a
pseudo-spectral method, according to which the potential is expanded in a Fourier series. The
linear part of the equation is then trivial when expressed in Fourier space, while the nonlinear
terms are computed in real space by using a fast Fourier transform (FFT) algorithm. Periodic
boundary conditions are assumed for both directions. The advantages of the pseudo-spectral
technique are that: (a) it allows a direct comparison with the analytical results, which also
rely on Fourier modes; (b) it is particularly efficient for treating turbulent mode coupling in
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a simple geometry. In order to deal with genuine broad-spectrum turbulence, a de-aliasing
technique would need to be implemented in the code. However, this is not necessary for the
four-wave problems studied here, and no de-aliasing has been included at this stage. Finally,
a viscous dissipation term has been added on the right-hand side of equation (2), although this
is not necessary for the four-wave problems considered in this paper.

The time-stepping is performed with a leap-frog technique. This is second-order accurate
and conservative (oscillations are undamped), but tends to decouple even and odd time-steps.
In order to obviate this drawback, a predictor–corrector scheme is used at regular intervals
(say, every 100 time-steps) instead of the leap-frog scheme. The predictor–corrector scheme
is also second-order accurate, and couples subsequent time-steps. Within each scheme, the
linear and nonlinear terms are treated separately by means of a splitting technique. This can
be illustrated on a model equation

∂W

∂t
= −�W − N(W) (29)

where N(W) represents symbolically the nonlinear terms and �W the linear ones, including
viscosity. The leap-frog scheme can thus be represented in three steps (all quantities are
supposed to be known up to step n)

(i) W ∗
n−1 = Wn−1 exp(−��t),

(ii) W ∗
n+1 = W ∗

n−1 − 2�t N(Wn),
(iii) Wn+1 = W ∗

n+1 exp(−��t),

where the asterisks represent intermediate results, and do not denote complex conjugation.
Similarly, the predictor–corrector scheme can be represented in four steps

(i) W ∗
n = Wn exp(−��t/2),

(ii) Wn+1/2 = W ∗
n − �t/2 N(W ∗

n ),
(iii) W ∗

n+1 = W ∗
n − �t N(Wn+1/2),

(iv) Wn+1 = W ∗
n+1 exp(−��t/2).

In order to simulate the fully nonlinear four-wave problem, the code has been run setting all
other modes to zero at every time-step. The code is initialized by setting the pump wave at a
finite amplitude |φ2|, while the sidebands and the zonal flow (or streamer) are seeded with a
small perturbation.

4.1. Zonal flows

The wavenumber of the pump wave is ρsk2 = (0.07, 0.08) and the zonal flow ρsk1 =
(0.0, 0.01). Further, we take L/Ln = 1, where L and Ln are respectively the dimension
of the domain and the scale length of the equilibrium plasma inhomogeneity. These values
completely determine the two triads (figure 1). The criterion derived in the previous section
states that instability occurs when the pump wave amplitude |φ2| is larger than a certain
threshold. Figure 2 shows the evolution of the zonal flow amplitude and a sideband in two
cases where the criterion predicts instability3. An instability is indeed observed, and the
analytical growth rates, represented by a straight line on the figures, are accurately reproduced
in the simulation. We have verified numerically the threshold condition on the amplitude |φ2|,
given in equation (17), which must be satisfied for linear instability.

3 The initial condition in the simulations is a superposition of three normal modes with different real and imaginary
frequencies. All normal modes influence the initial evolution, and linear growth emerges later in the simulations when
the fastest growing mode has become dominant, i.e. for t � 1/γZ. This explains the apparently nonlinear behaviour
observed early in the simulations in figures 2 and 3.
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(a)

(b)

Figure 2. Time evolution of the zonal flow (full curve), pump wave (dotted curve) and sideband
(dashed curve) amplitudes. The full straight line corresponds to the analytical growth rate from
equation (18) (γ � 1.954 for (a), γ � 0.489 for (b)). The initial pump wave amplitude is
|φ2| = 0.2 (a) and |φ2| = 0.05 (b). Time and amplitudes are in units of eBL2/Te and Te
respectively.

The simulations also show that the zonal flow saturates nonlinearly at an amplitude that is
of the same order of magnitude as the initial pump wave amplitude. We stress, however, that
the saturation mechanism observed here arises from a description which is incomplete and to
that extent somewhat unphysical, being due to the nonlinear coupling of only four modes. In
a fully turbulent (broad-band) simulation, nonlinear coupling to other modes would probably
occur before the saturation observed in figures 2 and 3, thus affecting both the level and the
time scale of real saturation. Note that these considerations apply to zonal flows as well as
streamers. Nevertheless, it is interesting to investigate the nonlinear saturation mechanism
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(a)

(b)

Figure 3. Time evolution of the streamer (full curve), pump wave (dotted curve) and sidebands
(dash-dot curve) amplitudes. The full straight line corresponds to the analytical growth rate obtained
from solving equation (25) (γ � 0.0019 for (a), γ � 0.0254 for (b)). The initial pump wave
amplitude is |φ2| = 0.2 (a) and |φ2| = 2 (b). Time and amplitudes are in units of eBL2/Te and Te
respectively.

arising in the present four-wave model, both as a cross-check of the simulation results and a
way to gain insight into the model. In order to do so, it is useful to employ the invariants defined
in equations (7) and (8). We construct the following linear combinations of the invariants E
and Z, for the four-wave problem considered here

I1 = Z − ρ2
s k

2
1E = (1 + ρ2

s k
2
2)(1 + ρ2

s k
2
2 − ρ2

s k
2
1)|φ2|2 + (1 + ρ2

s k
2
3)(1 + ρ2

s k
2
3 − ρ2

s k
2
1)|φ3|2

+(1 + ρ2
s k

2
4)(1 + ρ2

s k
2
4 − ρ2

s k
2
1)|φ4|2 (30)

I2 = Z − (1 + ρ2
s k

2
2)E = −ρ2

s k
2
1(1 + ρ2

s k
2
2 − ρ2

s k
2
1)|φ1|2 + ρ2

s (1 + ρ2
s k

2
3)(k

2
3 − k2

2)|φ3|2
−ρ2

s (1 + ρ2
s k

2
4)(k

2
2 − k2

4)|φ4|2. (31)

Notice that I1 and I2 only depend on three of the four waves involved in the problem. I2 is
independent of the pump wave φ2, and its terms have different signs: therefore, each term can
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grow arbitrarily large, as happens during the linear phase of the instability. The value of I2

is small for the cases we treat and remains constant in time, which has been verified in the
simulations (although numerical errors will be amplified, the range of variation of I2 is still
much smaller than that of each mode).

On the other hand, I1 is positive definite and initially dominated by the pump wave. When
the sidebands φ3 and φ4 have grown sufficiently large, it follows that the pump wave amplitude
must necessarily decrease, in order to ensure the invariance of I1. Saturation therefore occurs
by depletion of the pump wave. Incidentally, this proves that no instability can occur if the
pump wave is the zonal flow φ1 itself: in that case, the three terms of I1 could not all grow
together, otherwise the invariance of I1 would be violated. (The constancy of I1 has been
verified to high accuracy in the simulations).

The above arguments can be used to estimate the saturation level of the instability.
Saturation occurs when the second and third terms of I1 become comparable to the first.
This yields an estimate for the saturation level of the sidebands

|φ3,4|2 � (1 + ρ2
s k

2
2)(1 + ρ2

s k
2
2 − ρ2

s k
2
1)

(1 + ρ2
s k

2
3,4)(1 + ρ2

s k
2
3,4 − ρ2

s k
2
1)

|φ2|2. (32)

Inserting the parameters of the above simulations into this formula, we find that saturation
should occur when |φ3,4| � |φ2|, which is in fairly good agreement with the numerical results
of figure 2. After saturation, the system enters a multiply periodic regime.

4.2. Streamers

For this set of simulations we have ρsk2 = (0.07, 0.08) for the pump wave and ρsk1 =
(0.01, 0.0) for the streamer. Furthermore, we take (L/Ln = 1), as in the zonal flow simulations
of section 4.1. The analytical growth rate must therefore be found by solving the cubic
equation associated to equation (25). Consistently with the estimation found previously (see
equation (28)), the growth rate is extremely low for values of the pump wave amplitude similar
to those used for the zonal flow runs reported above. When the amplitude is |φ2| = 0.2
(figure 3(a)), the growth rate is considerably lower than for zonal flows with the same pump
wave amplitude (figure 2(a)) (note the different scales for the time axis), although the saturation
level is similar. In order to observe significant growth rates, we had to use a much higher
amplitude, such as |φ2| = 2 (figure 3(b)). Again, the saturation level is proportional to the
initial pump wave amplitude.

Invariant quantities, based on the general energy and enstrophy invariants, can be found for
the streamer case too, following the same procedure employed for zonal flows in section 4.1.
Their analysis again indicates that saturation should occur when the sidebands reach a level
comparable to that of the pump wave. As mentioned earlier, however, a proper estimate of
saturation should include nonlinear couplings to all other modes (broad-band turbulence),
which is likely to affect both the saturation level and time scale.

5. Conclusions

We have presented both analytical and numerical calculations of the growth of long wavelength
zonal flows in the generalized HM system recently proposed by Smolyakov et al [11, 12]. We
have performed an analytic calculation of the linear growth rate for a narrow-band four-wave
problem. This is simpler, but also less general, than the treatment outlined in [11, 12], which
was based on a wave kinetic equation. Making the same approximations as were assumed
in [11, 12], we have obtained an analytic linear growth rate that appears to differ by a factor of√

2 from that calculated in [12] using different methods. A spectral code has been developed
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for studying the properties of this model system, and numerical computations for this four-
wave problem show good agreement with our analytic result. In addition, the linear growth
rate for streamer structures has also been calculated for a similar four-wave problem. This
turns out to be much lower than the growth rate for zonal flows, at least in the limit of small
Larmor radii. The analysis of the invariants for the four-wave system reveals that nonlinear
saturation should occur via depletion of the pump wave, as is observed in the simulations.

The present results bear some resemblance to the well known literature on the nonlinear
coupling of three drift waves [17–19]. However, our primary aim was to explore the results
of Smolyakov et al [11, 12] in the weak turbulence limit. For a correct treatment of the weak
turbulence problem, it was necessary to keep both sidebands, and thus utilize a four-wave
model. This is supported by the fact that, if one of the sidebands is not initially excited (but left
free to grow), it will still be driven by the instability. The results presented here thus make a
connection between the WKB-type work of Smolyakov et al [11, 12], and the standard results
on the interaction of three drift waves [17–19], extending them to the case of four waves.

Our spectral code is now well benchmarked against theory for the analytically
tractable case of four-wave interaction. It will be interesting, in the future, to enhance this code
for the study of fully-developed broad-band turbulence. For this purpose, the only missing
computational ingredient is a de-aliasing scheme, which should be implemented in order to
ensure the accuracy of the algorithm. The code will then constitute a reliable tool to simulate
two-dimensional turbulence in some paradigm models of the HM type.

Zonal flow and streamer physics is, at present, a topical area of research (see, for instance,
the recently published references [1, 2, 20]). The problem of zonal flow generation using a
large-scale gyrokinetic code is addressed by [1]. The authors find that zonal flows can be
excited by linear ITG modes by a mechanism similar to the Kelvin–Helmoltz instability, with
rather large growth rates. Their model differs from ours in several important respects including
(a) the ITG mode is linearly unstable, whereas our pump wave is stable; and (b) they consider
small scale zonal flows, for which ρskr � 1. However, when comparable sets of parameters
and regimes are analysed, Rogers et al [1] find a growth rate qualitatively similar to ours.
Finally, they identify the possibility that the zonal flow can itself be damped away by nonlinear
instabilities. This ‘tertiary’ instability requires the presence of a temperature gradient, and is
thus not applicable to our model.

Reference [20] is entirely devoted to a detailed statistical analysis of the generalized HM
equation employed in the present paper. Numerical simulations of such a model have not been
attempted to date, and would provide interesting information on the emergence and dynamics
of global structures (such as zonal flows and streamers) in broad-band plasma turbulence. As
the physical effects incorporated in our model constitute the core of many large-scale codes,
the results could improve our understanding of some fundamental issues of plasma turbulence
in a magnetized environment such as that of tokamaks.

In conclusion, the results presented in this paper provide ab initio information concerning
the excitation and saturation of large-scale flows (both zonal flows and streamers) in magnetized
plasmas. As test-particle transport, both radial [21] and poloidal [22], has been shown to be
sensitive to the nature of the underlying turbulent fields, the effects described above may also
have an impact on the confinement of charged particles in fusion devices.
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