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Long-Time Behavior of Nonlinear Landau Damping
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The evolution of an initial perturbation in a collisionless, Maxwellian plasma is studied numerical
Accurate long-time simulations (up to 1600 inverse electron plasma frequencies) show that
electric field does not decay to zero, in disagreement with recent analytical results [M. B. Isichen
Phys. Rev. Lett.78, 2369 (1997)]. Instead, after some initial damping, the field amplitude starts
oscillate around an approximately constant value, and the phase-space distribution develops a v
structure which survives throughout the simulation. [S0031-9007(97)04171-9]

PACS numbers: 52.35.Mw, 52.35.Sb, 52.65.–y
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In 1946, Landau discovered that small perturbations
a uniform, Maxwellian, electrostatic plasma are expon
tially damped, even when no dissipative terms are pre
[1]. Since then, linear Landau damping has been ex
sively confirmed in both experiments [2] and compu
simulations [3], and has become a standard topic in m
plasma physics textbooks (e.g., [4,5]). Besides, it
been shown to play an important role in many applic
tions, such as plasma heating in fusion devices [5]
laser-plasma interactions [6].

Landau’s treatment of the problem is rigorous, b
strictly linear, meaning that the initial perturbation is su
posed to be infinitesimally small. For a finite perturb
tion, only approximate analytical solutions are availab
[7]. O’Neil’s theory, for example, predicts amplitude o
cillations for the electric field, which have indeed be
observed in experiments [8] and simulations, includi
those presented in our paper. However, O’Neil’s tre
ment ceases to be valid for large times. Early numer
results [9], on the other hand, are not accurate enoug
allow us to draw conclusions on the long-time limit.

Until recently, it was generally believed [4] that non
linear plasma waves undergo a few amplitude osci
tions and eventually approach a Bernstein-Greene-Kru
(BGK) steady state [10]. More recent simulation resu
[11] seem to support this conjecture, although the e
dence is not conclusive. Two papers have recently c
lenged this belief, claiming that the wave amplitude w
eventually decay to zero. Brodin [12], starting from t
Vlasov-Poisson system, develops a reduced model, w
is then solved numerically. Although some overall dec
is indeed shown for about two trapping oscillations, the
results are still inconclusive as far as the long-time lim
is concerned.

In another paper, Isichenko [13] presents a gen
theory predicting that Landau damping will continu
indefinitely, although for large times the electric fie
decay is algebraicsE ~ t21d rather than exponential
Isichenko’s algebraic decay is presented as an e
asymptotic result, valid for general initial perturbation
The purpose of our paper is to provide numerical evide
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to verify the validity of this result. We present the results
of some accurate numerical computations for very lon
times, up to 1600 inverse electron plasma frequencie
Our conclusion is that Isichenko’s result is not genera
There exist initial conditions for which the electric field
does not decay to zero (algebraically or otherwise), b
rather settles to a finite value.

Our mathematical model is the one-dimensiona
Vlasov-Poisson system,

≠f
≠t

1 y
≠f
≠x

1 Esx, td
≠f
≠y

­ 0 ,

≠E
≠x

­
Z `

2`
f dy 2 1 ,

(1)

wherefsx, y, td is the electron distribution function and
Esx, td the electric field. In Eq. (1), and in the rest of the
article, time is normalized to the inverse electron plasm
frequencyv21

pe , space is normalized to the Debye length
lD, and velocity is normalized to the electron therma
speedVTe ­ lDvpe. Ions are taken to be motionless,
and their only role is to provide a uniform, neutralizing
background. Furthermore, periodic boundary condition
are assumed inx, L being the box length. Oscillations are
excited by initializing a single Fourier mode, namely, the
fundamental modek ­ 2pyL: fsx, y, 0d ­ f0syd s1 1

a coskxd, where f0syd ­ s2pd21y2 exps2y2y2d is the
equilibrium Maxwellian. This problem has only two
dimensionless parameters, namely, the strength of t
nonlinearity a and the perturbation wave numberklD .
These can be more usefully expressed as two time scal
the Landau damping rateg (which depends on the wave
number) and the bounce timet ­ a21y2. Linear Landau
damping is valid as long ast , t; for longer times the
problem is inherently nonlinear, irrespective of the initia
perturbation amplitude and wave number. However, th
actual long-time asymptotics need not be the same f
different values of the two dimensionless parameters.
is Isichenko’s conjecture that the asymptotic behavio
E ~ t21 is universal for all values ofa andklD.

We now turn to the numerical study of the Vlasov-
Poisson system. The simulation of nonlinear Landa
© 1997 The American Physical Society 2815
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damping is a difficult numerical problem since differen
time scales are present, and the physical effect is sm
and must be separated from numerical noise. It
therefore important to perform a series of checks to ru
out spurious numerical artifacts. The code used for o
simulation is an Eulerian code [14], which solves th
Vlasov equation on a uniform mesh in phase space. It
second order accurate in space, velocity, and time. T
code has been used extensively over the past two deca
[3,6,11,15], and has been found to be very accurate
describing coherent phase-space structures.

We report results for a moderately nonlinear proble
with parametersa ­ 0.05 and k ­ 0.4, corresponding
to g ­ 0.0661 and t ­ 4.47. The real part of the
frequency, from Landau’s theory, isv ­ 1.285. The
relevant numerical parameters are the time stepDt, the
number of points inx andy (respectively,N andM), and
the cutoff velocityymax (i.e., the distribution function is
set to zero fory . jymaxj). The time step must be small
enough to describe the largest frequency in the proble
which is the Landau frequency given above, therefo
we takeDt ­ 0.1. This is a rather conservative choice
Values as high as 0.25 were used in the literature [15], s
retaining good accuracy. The cutoff velocity isymax ­ 6:
This is considerably larger than the phase velocity of th
wave yphase ­ vyk ­ 3.21. The choice of the number
of points is more subtle. Since the electric field remain
small, the particle motion is close to free streaming
thus developing a fine structure in velocity space. F
truly free streaming particlessE ­ 0d the exact solution
of the Vlasov equation isfksy, td ­ f0syd expsikytd.
If the mesh spacing in velocity space isDy, there
is a recurrence occurring atTR ­ 2pyskDyd. This
recurrence effect can be easily detected when simulat
linear Landau damping, as it appears as a sharp spike
the electric field atTR. Unfortunately, when nonlinearities
are important, the recurrence cannot be recognized
easily, and one should only rely on the numerical resu
obtained up to a time much smaller thanTR. In the
computations presented here, we useM ­ 4000 andM ­
8000, yielding TR ­ 5230 in the less favorable case,
which is much larger than the total time of the run
st ­ 1600d. The number of spatial pointsN is more
difficult to estimate. Since resonant particles oscillate
the potential well, the microstructure in velocity spac
will generate a microstructure inx, requiring a high
resolution. This is also suggested by the semianalytic
results of Brodin [12]. In our simulations, we takeN ­
512 andN ­ 1024, which appears to be accurate enoug
for this case.

Three simulations were run with the same time ste
Dt ­ 0.1, but different meshes. Run I:N ­ 512, M ­
4000; run II: N ­ 512, M ­ 8000; run III: N ­ 1024,
M ­ 4000. Figure 1 shows the evolution of the funda
mental mode of the electric fieldjEkstdj for the three
runs. Linear Landau damping is recovered accurate
2816
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FIG. 1. Evolution of the amplitude of the electric
field for the fundamental modek ­ 2pyL. (a) Run I:
N ­ 512, M ­ 4000; (b) run II: N ­ 512, M ­ 8000;
(c) run III: N ­ 1024, M ­ 4000.

until t . 25. The measured real part of the frequency
averaging betweent ­ 0 and t ­ 200, is v . 1.263,
slightly smaller than the Landau frequency. After the
linear stage, trapping oscillations are observed, while th
maximum amplitude decreases at each oscillation. How
ever, aftert . 900, no further decrease is observed, an
the electric field goes on oscillating around an approx
mately constant value. The trapping oscillations are in
deed predicted by O’Neil’s theory [7], which applies when
gt ø 1. In our case, the initial value of the latter pa-
rameter isgt ­ 0.296; at saturationst . 900d, the elec-
tric field is roughlyE . 0.007, which givest ­ 11.9 and
gt ­ 0.79.

The main result of Fig. 1 is that the field does no
decrease indefinitely, but finally settles to a constan
value. Comparing the results obtained with differen
meshes shows that no qualitative difference is observ
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FIG. 2. Relative numerical entropySrelstd for run I (dotted
line); run II (solid line); run III (dashed line).

by increasing the resolution. Quantitatively, there a
indeed small differences between the three runs, whi
is inevitable since smaller and smaller scale structur
are created by the essentially free-streaming nature
the dynamics. However, there is no indication tha
by increasing the resolution, a further decay wou
be observed. Besides, other numerical tests have b
performed at even lower resolution, again showing th
same qualitative behavior, provided the resolution
not too low. Reducing the time step does not chan
the picture either. This is in agreement with all th
previous experience with the Eulerian Vlasov code us
for our study [11]: Once the microstructure reaches th
mesh size, it is smoothed away by numerical diffusio
(essentially due to the interpolation technique used
the code), and is therefore lost. However, larger sca
appear to be virtually unaffected by the small sca
diffusivity. This effect can be quantified by mean
of a numerical “entropy,” defined in the usual way
Sstd ­ 2

R
f ln f dx dy. Obviously, Sstd is a constant

for the exact Vlasov-Poisson system, Eqs. (1). Howeve
it increases monotonically for the discrete numeric
model (this is a property of the scheme, and can
proven rigorously). The evolution of the entropy is show
in Fig. 2 for the three runshwhat is actually plotted
is the relative entropySrel ­ fSstd 2 Ss0dgySs0dj. As
expected, the growth is slower for the higher resolutio
case, although eventually the three runs saturate at
same level. This is an indication that, although th
microstructure is lost more quickly for a coarser mes
larger scales are treated with good accuracy in all thr
runs. Moreover, the total increase in entropy is extreme
small, less than 1%. Other entropylike functionals ca
be used, such asS2std ­ 2

R
f2 dx dy, which give

essentially the same result.
In phase space, the distribution function develops

vortex structure roughly at the phase velocity of th
waveyphase ­ vyk ­ 3.21, which was already observed
in previous simulations [11,15]. Such vortex structure
have also been shown to arise spontaneously from
perturbed, unstable equilibrium (“bump-on-tail”) [16].
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FIG. 3. Phase-space shaded plot of the distribution functio
in the resonant regionsyphase . 3.21d (run I). Darker regions
correspond to regions of higher density. Regions wheref .
0.008 are black.

The phase portrait is shown in Fig. 3—note that a simila
structure can be found at the corresponding negativ
velocity. These structures are present up to the end
our simulation, and there is no indication that they shoul
be eventually damped away. It appears therefore that
finite number of particles can be trapped for arbitrarily
long times. The average velocity distribution strongly
deviates from the initial Maxwellian in the region around
yphase (Fig. 4). However, it never settles to a plateau—
rather, its slope changes periodically. This effect resul
in the low frequency amplitude oscillations observed in
the electric field (Fig. 1) even after saturationst . 900d.

Before comparing our simulation results with
Isichenko’s theory [13], it must be noted that Isichenko’s
proof requires the presence of at least two waves
the perturbation, while in our case only one mode wa
initially excited. However, since the problem is fully
nonlinear, higher order modes are quickly generate
by wave coupling. In the case considered above, fo

FIG. 4. Logarithmic plot of the velocity distribution averaged
over x at the end of the simulation (run I).
2817
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example, the second harmonic of the electric field rapid
reaches a value of about4 3 1024, i.e., roughly 20 times
smaller than the fundamental mode. For an even clo
comparison, we have run another case in whichtwo
modes are initially excited, with wave numbersk ­ 0.2
and k ­ 0.4, and the same amplitudea ­ 0.05. The
amplitude of thek ­ 0.4 mode (Fig. 5) behaves in a
way similar to the previous case, and finally settles
a slightly smaller value with no further decay. Th
k ­ 0.2 mode (not shown here) is almost unaffected b
linear Landau damping, and remains at an approximat
constant amplitude throughout the entire run. We a
therefore confident that our main result is not affected
the presence of a second wave.

The results that we have reported are partially cons
tent with those obtained by Brodin [12]. However, Brodi
follows the evolution for only about two trapping oscilla
tions, during which the peak of the oscillating amplitud
decreases by a factor of 2. This is much too short a tim
to draw conclusions about the asymptotic behavior. In o
simulations, the electric field decays for about five trappin
oscillations, before settling to a constant amplitude.

Our results also do not contradict the stability analys
of BGK solutions performed with a similar Eulerian cod
[15]. In that paper, it is shown that BGK states wit
more than one vortex (“hole”) are unstable, and evol
towards a one-vortex structure. However, BGK solution
with only one hole appear to be stable. The structure th
we obtain at the end of our simulation can be viewed as
traveling BGK wave, and is equally stable.

The theoretical result of Isichenko [13], which predict
an algebraic decay for the electric field in the long-tim
limit sE ~ t21d, is obviously in disagreement with our
computations. In fact, Isichenkoassumesthat the electric
field decays to zero, and then goes on proving that the lo
time damping rate is algebraic, rather than exponent
as in the linear case. An inspection of the details
the proof, however, shows that this initial assumption
crucial to the demonstration. In other words, Isichenko
proof does not exclude solutions for which the electr
field remains asymptotically finite, but only proves tha
if the decay continues indefinitely, it must be algebrai
Our computations show that solutions for which the fie
remains finite are not only possible in principle, but ca
actually be approached from an initial state.

It remains an open question whether the algebra
decay is ever observed as an asymptotic solution
the initial value problem. We have performed a fe
other simulations with wave numberk ­ 0.4 0.5 and
initial perturbationa ­ 0.1 0.25, and we always observe
a finite number of trapped particles for large time
However, all these computations are in the smallgt

regime. Early numerical results [9] suggested that the
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FIG. 5. Evolution of the amplitude of the electric field for the
second harmonick ­ 4pyL ­ 0.4

exists a criticalsgtdcr . 0.5, such that for values larger
than the critical one, the electric field amplitude is
damped monotonically. These results were obtained
low resolution, and for very short times (less tha
100 v21

pe ), so that no conclusion about the long-time
limit can be drawn. Simulations in this regime are als
particularly delicate, since the field rapidly becomes ver
small. Further studies using our numerical code may he
to clarify this important point.
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