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Abstract

A numerical simulation is performed to study the effect of a viscous dissi-
pation term on the generation of shear flow at a plasma edge in the guiding
center approximation. The guiding center model includes the effects of
finite Larmor radius corrections and polarization drift. The numerical code
applies the method of fractional steps to the fluid guiding center equations.
We attempt to discriminate between the smoothing of the microstructure
by a small viscous dissipation term to control numerical instabilities, and
the modification of the macroscopic physical results introduced by this
small viscous dissipation term. The finite Larmor radius effect allows for a
charge separation to exist, which can be further accentuated by the polar-
ization drift. A difference in the viscous term between electrons and ions
can add to the charge separation effect at the plasma edge, which can
modify the physical results. The numerical calculation is effected using a
slab model, periodic in one direction and finite in the other direction, with
an inhomogeneous density of guiding centers to simulate a plasma edge.
The evolution of the system shows the potential evolving to a shape char-
acterized by the longest wavelength associated with the transverse dimen-
sion of the system, an evolution characteristic of an inverse cascade. We
present an analysis of the effect of different values of the viscous term on
the time evolution of this guiding center system, and on the formation and
existence of a charge separation and an electric field at the edge of a plasma
and the associated shear in the E x B flow.

1. Introduction

An important set of equations relevant to the plasma edge
physics in a tokamak are the two-dimensional finite Larmor
radius guiding center equations [1]. The effect of the finite
Larmor radius is to allow for a charge separation between
electrons and ions to exist in the E x B flow. A theoretical
study of the asymptotic state of the finite Larmor radius
system of guiding-center equations has been presented in
Ref. [1]. It has three “rugged” invariants and it was shown
that the canonical ensemble probability distribution for this
system can have negative temperature states, characterized
by an inverse energy cascade with energy accumulating in
the low k modes (the longest structures allowed consistent
with the boundary conditions) in the asymptotic equi-
librium. Once this stage has been reached, the energy
remains in the lowest k modes, and high k modes fluctua-
tions are negligible.

The two-dimensional finite Larmor radius guiding center
model was extended in Ref. [2] by including the polariza-
tion drift, and a numerical code was developed to study the
pertinent equations for the case of a plasma slab with an
inhomogeneous density of guiding centers, to simulate a
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plasma edge. The polarization drift has a different sign for
ions and electrons (but is smaller for electrons), and thus has
a tendency to produce and accentuate a charge separation
in a time varying electric field. The remarkable result of Ref.
[2] was that the inverse cascade still exists in this model,
with energy evolving to large structures which scale with the
size of the system, while the system is evolving from an
initial unstable flow with shear to a final more stable shear
dominated flow. These longest wavelength transition results
were studied in the presence of a self-consistent electric field
and charge separation for a plasma edge. It was shown in
Ref. [2] that during this evolution, fine structures develop in
the density which causes the simulation to be unstable when
these structures become of the order of the grid size. This
problem was controlled by adding a viscosity term v, .V?n, .
to the ions and electrons density equations, with v; . small
enough to provide the necessary dissipation for the short
wavelengths developing in the system, without affecting the
long wavelength modes of the large scales responsible for
the macroscopic behavior of the system. The exact form of
the dissipation may be unimportant, provided it prevents
the unnatural reflection of fluctuations from the cutoff wave-
number, when the fluctuation wavelength becomes of the
order of the grid size. This problem was discussed in Ref.
[3] in connection with the solution of the 2-D guiding
center equations, and in Refs. [4, 5] in connection with the
problem of 2-D drift wave turbulence. More recently, results
where presented in Ref. [6] with a hyper-viscosity term used
in the simulation. However, the question arises whether in
some cases the dissipation term can have some effect on the
solution, or can significantly affect the solution. Some recent
results presented in Ref. [7] show that even though the
effect of a small viscous term have little effect on the asymp-
totic level of the dominant Fourier mode in the periodic
direction, it does affect the transverse profile of the charge
separation and associated potential at the plasma edge.
Such effects have also been studied in 2-D resistive magne-
tohydrodynamic instabilities (see, for instance, Refs. [8, 9,
10]). It was stressed in Refs. [9 and 10] that any kind of
smoothing may affect the resistive instabilities, and in Refs.
[8 and 9] results for the evolution of the stream function
were shown where the dynamics were described as an
impulsive bursty reconnection. We note also the recent
works in Ref. [11], where attention was focused on the role
of viscosity in determining the existence and nonlinear evol-
ution of instabilities.

We study in this work the effect of a viscosity term of the
form v; V?n, . added to the guiding center equations of the
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electrons and the ions respectively, as reported in Ref. [2].
In section 2, we present these equations. In section 3, we
present the numerical code which consists in applying a
method of fractional steps to the fluid guiding center equa-
tions. We run the code for sufficiently long time and study
the effect of the viscous coefficient v_ ; on the solution. These
results are presented in section 4. Finally section 5 presents
our conclusions.

2. The pertinent equations

The guiding center model with zero Larmor radius is given
by [3, 12]:

gg
ot

Here p is the charge density, ¥}, is the drift velocity and ¢
the electrostatic potential.

If we enforce periodic boundaries or enclose the plasma
with metal walls of infinite conductivity, the energy theorem
may be written as

+V:(bp)=0, Vo=-Voxe/B, Ap=—p/eg. (1)

W = 3B%, J V3 dr = 3¢, JEZ dr. @

The integral is the energy in the electrostatic field and the
particle motion itself does not contribute to the energy. This
is borne out by the fact that W in eq. (2} is not proportional
to the particle mass.

The finite Larmor radius model has been investigated in
Ref. [1] and is given by

on, _ on, oo
E‘*V (pn) =0, o + V- (pn)=0,
Agp = —q(n; — n.)/e,; 3)

where 1, = —V¢ x ¢,/B.
The bar over V;, and n; . is an abbreviation for an integral
operation defined by

ary=g®afr)= JG(r — ra(r') dr', )

which takes into account that the guiding centers and
particle locations are not the same. G(r) is a symmetric
kernel and a(r) is an arbitrary function of r. The operator
g ® commutes with differential operators. In Fourier space
the integral operator g ® becomes a filtering operation,
which is numerically easy to perform on the different
Fourier modes [1, 13, 14]. Each coefficient a, of the mode
e is multiplied by a factor g, = exp (—3k*r? ), where k is
the total wave vector and r; . the Larmor radius (for ions or
electrons respectively). This model can now represent
guiding center density gradients, which was not possible in
the zero Larmor radius model. The energy conservation
becomes

W = 1B, 'f V3 dr, (5)

which is identical to the zero Larmor radius model. Again
the motion of the particles does not contribute to the
energy. It is therefore not surprising that the finite Larmor
radius and the zero Larmor radius models are quite similar
to each other. In particular, both have the possibility that,
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given certain initial conditions, energy can cascade to lower
wave numbers, where it manifests itself macroscopically by
the appearance of large scale structures. This effect is known
as an inverse cascade.

The guiding center models with zero and finite Larmor
radius possess two or more quadratic invariants which
remain conserved if the system is truncated in Fourier space.
In addition to energy, it is easy to show that the enstrophy
E,

E= f(v x V) dt 6)

is an invariant for the zero Larmor radius model. For the
finite Larmor radius case, we have the invariants:

N, = f n?dr and Ne=Jnf dr. (7)

A study of the asymptotic states of the finite Larmor radius
system of equations has been presented in Ref. [1]. A canon-
ical ensemble probability distribution characterized by the
three invariants was derived, and it was shown that this
system can have possible negative temperature states
leading the energy to condense in the low k modes.

Adding, as a final step, the polarization drift, we arrive at
the model.

0 _
TV (Bt Fan] =0,
on, o
4V (T + Fyin) = 0; ®)
Ap = — L (7~ #)
€0
with d(r) = g ® a(r), as defined in eq. (4) and
Vo= —Vo x ¢,/B, 9)
1 ¢, d
o= mal™ 0{0.E + (Vp, + V,,) * VE}. (10)
where v = i,eandav=-{—2€i—:,qi=qandqe= —q.

Usually the polarization drift of the electrons is negligible
because it is smaller by a factor of (m,/m,) than the polariza-
tion drift of the ions. Note that the polarization drift in Eq.
(10) is implicitly defined. We will discuss this point later.

The derivation of the energy theorem for this set of equa-
tions is found in Appendix I. The result is

1 02\ n -,
= = E2 by 1 E¢ 2
e () e

2

+ <%’—°) s (E‘)z} dt = const.

2
Q2 ) ng

E3Y)
which can be written as

W=%ﬁ%ﬁ+mm%y+mmqu&=ww-ﬂﬁ
The first term is again the electrostatic field energy and the
second and third terms are the particle energies of the ions

and electrons, drifting with their respective drift velocities.
The upper index indicates whether the averaging takes place
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over an ion (i) or an electron () gyro-radius. Remarkably,
the polarization drift does not appear in the energy
theorem. All three models share the feature that the dipole
moments formed by the rotating particles remain constant
and therefore do not enter the energy equation.

It has been mentioned that eq. (10) defines V,, implicitly.
The question arises whether this definition always has a
unique solution for V.

We rewrite eq. (10) for the ions as

0E

Voe(I —o,VE)=of —

P ( i ) 1< 5t

Due to the electrostatic nature of E the tensor VE is sym-

metric and can be transformed to principal axes, in which

system the equation can immediatly be solved for V,. We
realize that our approximation is only meaningful if:

[aVE | < 1.

+ 75 VE).

(13)

Only if the polarization drift is implicitly defined as in eq.
(10) we get exact energy conservation. But then eq. (13)
follows as a restriction of the model. In the present numeri-
cal simulations, the ¥, - VE implicit term in eq. (10) has
been omitted all together so that the question of a unique
polarization drift and the validity of the model never arises.
The energy conservation is then no longer an exact invari-
ant of the system.

No additional quadratic invariants except the energy
have been found for the model with polarization drift.
However, it is perhaps the most significant result of the
present work that, nevertheless, the numerical simulation
shows the presence of an inverse cascade. It is to be noted
that the polarization drift is generally small, and that the
variation of the quantities in eq. (7) was slow during the
simulation, and especially towards the end of the simulation.
(Note that in the absence of polarization drift, the quantities
in eq. (7) are exact invariants which are exactly conserved by
the numerical code). The numerical results are discussed in
details in the following section.

The model we study numerically in the present work is
the same as the one presented in egs. (8-10), with the addi-
tion of a viscosity term v, ; V?n ; to the electrons and ions
density equation respectively. Results presenting the effect of
v, ; on the asymptotic solution are presented in Section 4.
With v, = v, =7 x 1075, an initially neutral equilibrium is
conserved, V,, =0 and the invariants in eq. (7) are exactly
converved. The system remains in equilibrium. A small
variation of v, with respect to v; can have important effects
on charge neutrality at the edge and on the asymptotic elec-
tric field and asymptotic shear associated with the system. A
small variation between v, and v; does more than simply
smoothing the fine structure which develops during the time
evolution of the system: it creates a charge separation at the
plasma edge.

3. The Numerical Code

In the set of egs (6)—(8), we use the following normalization:
— velocities are normalized to the ion thermal velocity vy,

. . . . Vihi
— space is normalized to the ions gyro-radius r; = !'2—‘“,

i

— time is normalized to Q" !,

619

— potential is normalized to T/e, where T is the tem-
perature (we assume electrons and ions have the same
temperature).

With this normalization, and with

E=~V¢ (14)

we have the following set of equations for the electrons
(electrons gyro-radius correction is neglected):

on, 5E 6E 0E.\ on,
- + (Ey - ﬁe ﬁe x >

ot 0y

OE, OE, OE,\ n,
—E,—B.—2—B.E, =2
+ < Ex ﬂe at ﬁe y ax + ﬁe X 6y)

dy
E, E,
—+n;8,y,,<a 0 >-+-vV2

Ox dy
0°E,
+ ncﬂe<Ey axz

0*E 0*E 0’E
—E, 22 4E"=_E "2
* oy? +Ey oy* x 6x2>

(15)

(16)

The ion equation is similar, and is derived from eq. (15) by
substituting f, by (—1) and all the E field components by
the corresponding filtered values E - v, is substituted by v;.
The numerical scheme uses a method of fractional steps
and advances the equation as follows:
(1) Solve for At/2:

on, 0E, J0E_\ on,
—a‘? < /ge 6t .Be y a +ﬁe x 5 ) Ox =0 (17)
(with a similar equation for the ions).
The solution of eq. (17) is calculated by the shift
n::n+(1/2)
CE% . OE, OE"\ At
= ,x — | Ej— — = Eln—=]—1
n<yx < ﬁe 6t ﬂe ax+ﬂe x ay)z)
(18)

(The shift in eq. (18) is effected using a cubinc spline inter-
polatin [157).

Then solve for At/2
on¥ O0E JE, OE,\ ong
e _E 8 = _ e _
at + < X ﬁe 6t ﬁe y a + ﬂe x ) ay 0
(19)

(with a similar equation for the ions).
The solution of eq. (19) is calculated by the shift

+(1/2) — %knt(1/2
n: /)——"e" (1/2)

OE} OE} OEY\ At
TANRE L

(20)

(2) Solve Poisson equation to update the electric field.
(This equation is solved using the method presented in Ref.
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[16] with zero boundary conditions for ¢). In our dimen-
sionless units, this equation is written:
A¢ = —awlfi, —n,) (21)

where w,; is normalized to ;. Note how sensitive is the
charge in eq. (21) to the parameter w};.
Solve for At the equation:

Lon_, 0 (6E, OE,
n, 0t '°“o0t\dx  dy

0°E, JE,

+ﬂ°<E” ox? ~ & oy?

+ v, V2n./n,

0°E 0’E
E * _E,—
+ y ayz x ax2>

(22)
(with a similar equation for the ions).

The solution of eq. (22) is given by:

0E; OE, ©OE OE;

+ - x X y _ ¥y
ne =n; exp {+B,[ P T 3y 5y:|
2
E
y + E a X

+ v AtV?n. Ing + B, At
0E,
x ayz y ayz —E, Ax2 )} (23)

<E 6°E, E
“\ Mo T

The subscripts + and — denote the values at the present
and previous time steps respectively.

(3) Repeat Step 1.

The calculation of the spatial derivatives of the electric
field is effected using cubic spline relations for the deriv-
atives as explained in Ref. [17]. :

4. Results

Equations (8)—(10) have been solved numerically (by neglect-
ing the implicit term ¥}, * VE in eq. (10) and neglecting the
electron gyro-radius correction) for an initial equilibrium
profile representing a plasma edge (see Fig. 1).

n; = (1 + tanh (0.8y)). (24)

The length of the slab is L, = 20 in the periodic direction
and extends from y = —8 to y = 8 in the transverse direc-

DENSITY AT t=0

1.0

05

-8 0 y 8

Fig. 1. Gyro-averaged ion density profile 7, calculated from eqs (4) and
(24), as function of the transverse dimension y (dotted curve), together with
the profile in eq. (24) (full curve).
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tion. A grid of 128 points in y and 128 points in x is used.
Normalization is such that velocities are normalized to the
ion thermal velocity v,,;, length is normalized to the gyro-
radius 7; = v,,/Q,, and time is normalized to €, !. The
potential is normalized to T/e, where T is the temperature
(we assume electrons and ions to have the same constant
temperature). We use a time-step At = 0.05.

The initial ion density 7;, which includes the finite gyro-
radius correction as defined in eq. (4), is calculated from eq.
(24) for the ions and is shown in Fig. 1 in dotted lines. Since
the system is periodic in the x direction and finite in the y
direction, we convolute the function in eq. (4) by first mir-
roring the function at the right boundary and thus doubling
the interval. We then take the Fourier transform and multi-
ply the coefficients by exp(—k?r#/2), and then the function is
Fourier transformed back. (Finite gyro-radius effects of the
electrons are neglected). We take initially the electron
density n, = n; at the plasma edge, so that the plasma is
initially neutral. We run the code with v, = v; =7 x 1075,
The time evolution of the system is conserving its initial
neutrality, and the initial equilibrium is conserved. No
charge separation is created at the plasma edge. (The invari-
ant in eq. (7) is conserved). However, as soon as v, is set
different from v;, a charge separation is created at the edge
of the plasma. We show in Figs (2}-(4) at different time the
charge, the velocity V,(y) ~ E, and the potential spatially
averaged over the periodic direction x, for v, =1 x 1074
and v; =7 x 107° (full curves) and v,=7 x 1075, v, =1
x 107* (dotted curved). The charge spatially averaged over
the periodic direction x, is constantly increasing (Fig. 2),
together with the associated potential (Fig. 4) and the
associated electric field E, (Fig. 3, V,(y) ~ E,(y)). However
the time evolution of the Fourier modes in Fig. 5 remaining
at the level of round-off errors shows a stable evolution in
time. It is interesting to note the accuracy and stability of
the numerical results. The case with v, =2 x 10™* and v, =
7 x 1073 shows another evolution. Figs (6)-(8) gives the
profiles, spatially averaged over the periodic direction x, of
the charge, velocity V,(y) ~ E, and the potential, and Fig. 9
gives the time evolution of the first three Fourier modes.
The fundamental mode in Fig. 9 shows a rapidly growing
instability at ¢ ~ 1000, while the mode k = 2k, show an
instability growing rapidly at t~ 4000, (Fig. 9) and the

Charge

0.010 . ‘ — —— : —

r i
0.005 — q

0- ]

[ ]

L

i _
-0.005 - .
-0.010 L . - —

-10 -3 0 5 10

Fig. 2. Profile of the charge, spatially averaged over the periodic direction
x, at (a) t = 1000; (b) ¢t = 2000; (c) ¢t = 3000; for the case v, =1 x 1074,
vy =7 x 107 (full curve) and v, = 7 x 105, v, = 1 x 107* (dotted curve).
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Velocity
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0.005 :

daadaaaa i b e e e

=)
i
=
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Fig. 3. Profile of the velocity Vi(y) ~ E(y), spatially averaged over the
periodic direction x, at (a) ¢t = 1000; (b) ¢ = 2000; (c) ¢ = 3000; for the case,
v,=1x10"% v, =7 x 1075 (full curve) and v,=7 x 10”° and v, =1
x 10~* (dotted curve).

mode k = 3k, follows at t ~ 4300. (Fig. 9). Although in
this case v, has increased by a factor of 2 with respect to the
previous case, the charge separation at ¢ = 1000, 2000 and
3000 in Fig, 6 are much higher than a simple factor of 2

Potential

0.040 T T T

0.030

0.020

0.010

[}

5TF!‘I]’f1‘I‘ITI‘|‘|‘!‘rrFI‘I‘]TIH]I1‘I‘r‘|‘!ﬁTT]|FIT

-0.010

-0.020

-0.030;

e o b v e e by e o e |

-0.040 : : [ o

w
<
U —
=

Fig. 4. Profile of the potential, spatially averaged over the periodic direc-
tion x, at (a) t = 1000; (b) t =2000; (c) ¢ = 3000; for the case v, =1
x 1074, v, =7 x 1075 (full curved) and v,=7 x 1075, »;=1x 107*
(dotted curve).

Potential Mode

BV e e e e T LI B R R A A B B

TR SR SOV HNVON TR R TN RS SOV AU T S S N S S S

2000

.42EH
0

1000 3000

t

Fig. 5. Time evolution of the first three Fourier modes: (a) k = k,; (b) k =
2kg; (c) k = 3k, for the case v, = 1 x 1074, v, =7 x 1075,
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Charge
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T=5850 —
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g T = 5600
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o

S 0 5

Fig. 6. Profile of the charge spatially averaged over the periodic direction
x, at (a) t0 = 1000; (b) t = 2000; (c) t = 3000; (d) t = 4000; (e) t = 5600;(f)
t = 5850 for the case v, = 2 x 1074,

with respect to the corresponding ones in Fig, 3. When the
instability is reaching a level where it is affecting the equi-
librium, the charge is redistributing itself in Fig. 6 in such a
way that the potential in Fig. § is distorting itself from a

Velocity

o
[
S

T T T T l—

< @ @
=) —_ _
vy =) w

<

OO T L T UTT TR T T

-0.05

<
—
[S)

- T = 3000
_O.ZOE L

-10 -5 0 5

TN NN FENTE NN ET S RV NS ST TN SR N

=)

Fig. 7. Profile of the velocity V,(y) ~ E(y), spatially averaged over the
periodic direction x, (a) ¢ = 1000; (b) ¢ = 2000; (c) t = 3000; (d) ¢ = 4000;
(e) t = 5600; (f) t = 5850 for the case v, = 2 x 1074,

Potential
0.50 — ‘
;;_ 4
0.25— -
(U =
025 — -
1 ‘ -
-0.50 | : L . Ly
-10 -5 0 5 10

Fig. 8. Profile of the velocity V(y) ~ E,(y), spatially averaged over the
periodic direction x, (a) ¢t = 1000; (b) ¢t = 2000; (c) ¢t = 3000; (d) t = 4000;
(e) t = 5600; (f) t = 5850 for the case.
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Potential Mode

OIT‘FI'
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4000 6000
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0 2000
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Fig. 9. Time evolution of the first three Fourier modes: (a) k = kq; (b) k =
2ky; (¢) k = 3k, for the case v, = 2 x 1074,

sine like shape to the longest wavelentgh available in the
system (a half-sine like structure), satisfying the boundary
conditions, an evolution caracteristic of an inverse cascade
(see the potential in Fig. 8 at t = 5600 and ¢t = 5850).

Another set of runs was effected in which the potential
had initially a sine-like shape similar to what we have seen
in the previous set of parameters. This is constructed as
follows. The initial ion density#;, which includes the finite
gyro-radius correction as defined in eq. (4), is calculated
from eq. (24) for the ions and is shown in Fig. 1 in dotted
lines, and the initial electron density is taken to be n; as in
eq. (14) (full curve in Fig,. 1), instead of #,; as in the previous
cases. The plasma is then initialy non-neutral. Due to this
finite gyro-radius correction, there is an initial charge
separation due to the difference (3, — n,) at the plasma edge,
and the potential is calculated from Poisson equation eq.
(21). Note that this charge separation (due only to the finite
gyro-radius effect of the ions), is more important in the
region where the guiding-center density gradient is impor-
tant (the edge of a plasma for instance) rather than the
region where the density is flat. This can be verified from eq.
(4): a flat density profile does not lead to charge separation
due to the finite Larmor radius effect. The initial velocity
profile for the initial equilibrium profiles shown in Fig. 1,
written in our normalized units as:

Viy) = E\(y)/ oy, (25)

where E, is the y component of the electric field, has a bell-
shaped gaussian, The initial shear is uniform in the x direc-
tion. (Note that @, is normalized to €;; in the present
calculation we take w, =1). For this initial equilibrium,
V, ~ dE/dt = 0. We ran the code for this initial equilibrium
(without any initial perturbation) for several thousands
time-steps, (with At = 0.05). The equilibrium was exactly
conserved, together with the invariants given in eq. (7) and
the energy. The finite gyro-radius effect alone is providing
the necessary charge separation at the plasma edge, and the
self-consistent electric field provides the shear in the velocity
at the plasma edge, through eq. (25). We can easily verify
that any charge separation which is function of one space
variable () is an equilibrium solution to the set of egs. (8)
if v,=v,=0. Figure 10 shows the initial potential
(averaged over the periodic dimension x), as a function of
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Potential

-0.075
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Fig. 10. Profile of the potential, spatially averaged over the periodic direc-
tion x, at (a) t = 0; (b) t = 500; (c) t = 1000; (d) t = 1500; (¢) ¢t = 2000; (f)
t = 2750 (v, = 2 x 10 and initially n, = n,).

the transverse dimension y. This potential has, at t =0 a
sine-like shape, close to the shapes created in the previous
set of runs. In the present simulation we impose a boundary
value of zero on the potential at y = —8 and y = +8, in the
solution of Poisson’s equation (eq. {21)).

Adding an initial small perturbation ~(1 + ¢ cos kg x) to
the electron density changes this picture. We take ¢ = 0.0025
and k, = 2n/L,. Figure 10 shows the shape of the spatially
averaged potential evolving in such a way that the profile is
taking a shape which-has only a single maximum in the
center, and satisfy the boundary conditions. This transition
is well underway at t = 1000, and is completed at t = 2000
(Fig. 4). The evolution is in such a way that the Fourier
modes spectrum of the potential is dominated by the funda-
mental mode (even when higher harmonics are excited in
the initial perturbation), corresponding to the longest wave-
length allowed in the transverse y direction and by the
periodic boundary condition in the x direction. Figure 11
shows the time evolution, on a logarithmic scale, of the fun-
damental Fourier mode of the potential, showing growth
followed by saturation (higher order harmonics remained
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Fig. 11. Time evolution of the fundamental Fourier mode of the potential
for v, =2 x 107%, v, = 7 x 10~ 3, for the case with an initial charge separa-
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two order of magnitudes lower). This calculation is effected
forv,=2 x 10"* and v; = 7 x 10~ %, Note from Fig. 10 the
peak of the potential varies very little from t = 1000 to
t = 2750. From the results in Fig. 9, we can assert that the
charge separation accentuated due to the difference between
v.=2x 10"% and v; = 7 x 1073 as previously discussed, is
still small at ¢ = 3000, and the evolution shown in Fig. 11
reflects essentially the physics of an inverse cascade associ-
ated with the system, with the viscosity term smoothing the
microstructures to avoid numerical instability.

We further increase the value of v, to 3 x 10™*, all other
parameters remaining constant. Figure 12 gives the time
evolution on a logarithmic scale of the fundamental Fourier
mode. After t = 2000, there is a rapid burst in the growth of
the fundamental Fourier mode. The charge separation
created by the difference in the electron and ion viscosities is
unstable, and this instability is reaching a level where it is
completly modifying the evolution of the system. The evolu-
tion of the potential profile, spatially averaged over the
periodic distance x, is shown in Fig, 13, Up to t = 2000, the
results are close to those previously reported Fig. 10: the
potential is inverting itself to a half-sine like profile. The
peak in Fig, 13 is close to the corresponding peak in Fig. 10,
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Fig. 12. Time evolution of the fundamental Fourier mode of the potential
forv, =3 x 1074, v, = 7 x 1075, for the case with an initial charge separa-
tionatt =0.(n, = n)

Potential

Fig. 13. Profile of the potential, spatially averaged over the periodic direc-
tion x, at (a) t = 1500; (b) t = 2000; (c) t = 2500; (d) ¢ = 2750; (e) t = 2950.
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in agreement with the fact that, v, has been slightly
increased. This phase however, is followed by a rapid
growth of the potential (see the peak at t= 2000, and
t = 2750 in Fig. 13). Then the peak seems to saturate (see
Fig. 12 and Fig. 13). Figures 14 show the contour plots for
the potential. After t = 1500, the shear which appears in the
velocity profile (tangent to the potential or stream function
contours) is more apparent, and dominates at the top and
the bottom of the figure (which corresponds to the bottom
and top of the density profile), as we can see from Fig. 14(b)
at t = 2950. We show the contour plot for the electron

Potential at T = 750
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Fig. 14. Contour plots of the potential at (a) ¢ = 750; (b) t = 2950. The
potential is zero at y = 8 and the streamlines are essentially tangent to the
line y = 8 with the exception of singular lines in Fig. (a) between two vor-
tices, which are zero potential lines (hence connecting to the zero line at
y = 8), in a transition between negative and positive potential contours.
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Electron Density at T = 1750
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Fig. 15. Contour plots at t = 1750 for the case with v, = 3 x 10%, for (a) electron density n,; (b) ion density »;; (c) gyro-averaged ion density #; (d) charge

p = ii; — n,. (The periodic direction x is along the horizontal axis).

density n,, the ion density n., the gyro-averaged ion density
n;, and the charge p = i, — n, in Fig. 15 (at ¢t = 1750, just
before the rapid growth). In Fig. 16 (at t = 2500, during the
rapid growth) we show the contour plot of the electron
density and ion density. The smooth contours in the lower
half of the density plots in Figs 15(a, b), are strongly twisted
in Figs 16(a, b). We present the profiles at ¢t = 2950, spatially
averaged over the periodic direction x, of the electron
density, the ion density, the gyro-averaged ion density in
Fig. 17, and the velocity of the flow V,(y) in Fig. 18.

Two distinct phases of the evolution of the system
appears in the cases we studied with an initial charge
separation in the system:
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(1) The first phase is the one where the initial profile
unstable to an initial perturbation, is inverted or modified
from a sine shape to a half-sine like shape and shear appears
in the V, velocity profile.

(2) The second phase is the phase showing the rapid
growth of the potential (and accordingly the E x B velocity,
essentially tangent to the potential contours), with shear
present in the velocity profile.

The shear in the flow is apparent from the contour plots
of the potential (stream function). The velocity is tangent to
the stream lines. The upper vortex structure in Fig 14(a) dis-
sappears and is replaced by a sheared flow in Fig. 14(b). The
middle structure in Fig. 14(b) is the region where the direc-
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Fig. 16. Contour plots at ¢ = 2500 for the case with v, = 3 x 1074, for (a)
electron density n,; (b) ion density n,. (The periodic direction x is along the
horizontal axis).

tion of the flow (and the electric field since V,(y) ~ E () is
changing sign.

5. Conclusions

A numerical code has been developed to study the gener-
ation of sheared flow at a plasma edge in the finite gyro-
radius guiding center approximation, which also included
the polarization drift. The code apply a method of fractional
steps, presented in Section 3, which has been previously
applied with success to the Eulerian Vlasov codes. We have
presented results which illustrates the accurate performance

Fig. 17. Profiles, spatially averaged over the periodic direction x, for the
case v, =3 x 10* at t = 2950 for (a) electron density; (b) ion density; )c)
gyro-averaged ion density.

of the code. In the physical model we are studying, the finite
Larmor radius corrections allow for a charge separation to
exist, and the polarization drift, which has different signs for
ions and electrons, has tendency to accentuate a charge
separation in a time varying electric field. We have included
a viscosity term to study the effect of a small dissipation
term on the solution and show how a difference in the
viscous diffusion term, even small, can create a charge
separation at the plasma edge of an initially neutral plasma.
This charge separation can be unstable, and the instability
saturates with energy evolving to the longest wavelength
associated with the system, an evolution characteristic of an
inverse cascade. The initial evolution of the system is essen-
tially inviscid. We have also presented results for the case
where the plasma is initially non-neutral. For this case, the
evolution of the system shows, in the first phase, a behavior
in accordance with some basic physics associated with the
set of equations describing the behavior of guiding center
plasma in a strong magnetic field [presented in eq. (8-10)],
namely the inverse cascade with energy condensing in the
lowest modes, while the system is evolving from an initial
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Fig. 18. Profile, spatially averaged over the periodic direction x, (for the
case v, = 3 x 10™%) for the velocity V,(y) ~ E,(y), at t = 2950.
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unstable flow with shear, through a stage showing complex
structures with vortices, to a more stable shear dominated
flow. The polarisation drift ~dE/dt, plays an important role
in this process, and also in triggering this instability. That
the charge separation and the flow rearrange themselves via
inverse cascades to adjust to a preferred state, as determined
by boundary conditions and by the conservation properties
associated with the model equations is one of the main
points of the present results, and is based on a powerful
statistical analysis of the model equations presented in Ref.
[1]. In addition to these longest wavelength transition
results, the sheared flow we are studying is generated at a
plasma edge, and the formation and existence of a charge
separation and an electric field at the plasma edge is studied
self-consistently with the shear. (Two recent publications,
Refs. [18-19], have attempted a theoretical study of the ions
finite Larmor radius in this problem). The self-consistent
results we are presenting are new, and certainly of relevance
to edge plasma physics. Furthermore, it is generally admit-
ted that velocity shear effects play an important role in sup-
pressing turbulence. The present numerical results
(supported by a strong theoretical analysis in Ref. [1])
suggest that inverse cascades (with energy condensing in the
low k modes) is a physical mechanism which can also play
an important role in suppressing turbulence.

We have attempted to discriminate between the smooth-
ing of the microstructure by a small viscous diffusion term
to control numerical instabilities, and the modification of
the macroscopic physical results introduced by this small
viscous dissipation term. That the presence of a dissipation
term is important to eliminate the small scale structure
without affecting the large scales evolution of the system has
been mentioned in several publications in connection with
2-D drift wave turbulence (Refs. [4-6]). However, it was
pointed in connection with the 2-D guiding center equations
in eq. (1) (see Ref. [3]), and in connection with 2-D magne-
tohydrodynamics (see Refs. [8-11]), that this viscosity term
can play an important role in the evolution of the solution.
(See also the comments in Ref. [20] on the results presented
in Refs. [21-227]). We have presented results for a constant
value of v, =7 x 107° showing how, when v, exceeds
2 x 107# (for the set of parameters we have), the initial
inviscid time evolution is followed by a stage in which the
inverse cascade is accelerated, and then a very rapid growth
of the potential and the associated velocity shear. The vis-
cosity terms seem to play an important role in determining
the asymptotic value of the electric field and the sheared
velocity flow associated with the system. It is therefore our
conclusions that very special attention has to be paid when
a small viscous dissipation term is added with the objective
of smoothing the microstructure and controling numerical
instabilities.

The transition from a sheared flow to another shear
dominated flow may be of importance to the problem of low
to high or L-H transition and suppression of turbulence in
the plasma edge in tokamaks. Steep density profiles in the
vicinity of a separatrix accompanied by a strong radial elec-
tric field and poloidal rotation have been observed, with
velocity profiles having large shear. Such a transition has
also been observed in a Q-machine [23], indicating that
L-H transitions (as essentially characterized by a higher
velocity sheared flow and low turbulence) are not confined
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to toroidal plasmas. We make no claim in the present work
to a study of the L-H transition with all its complexity.
Although our computation is inspired by this experimental
phenomenon, we believe that the results we are presenting
for the existence of a charge separation and an electric field
at a plasma edge due to the finite ions Larmor radius effect
and viscous effects, with the charge adjusting in such a way
that the largest available scales dominate, are pertinent and
can stand on their own. Extending these results to models
and parameters relevant to tokamak edge physics is under-
way.
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Appendix I
The Energy Theorem

We assume the plasma is governed by the eqgs (6), (7) and (8).
Even though the finite Larmor radius for electrons is
usually neglected, we show that the time derivative of 3 |
V% dt for finite ion and electron Larmor radii can be rep-
resented as time derivatives and divergence terms, the latter
vanishing if appropriate boundary conditions are chosen.

—ilfVﬁdt=glJV¢°V¢dr

o2 0t 2
1 1 ;
=3 |V @V dr— J $V>¢ dr. (A1)

(the dot denotes time derivative).
The time derivative of the Poisson equation and the con-
tinuity equations give

g

I=
£ B?

2 f¢(ﬁ§—ﬁz>dr=—
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X J‘¢V g @[V + Viai)”i] dr

o f ¢ * 9. ® [(Vhe + Vpon.] dr. (a2
Note that the convolution process indicated by the tilde or
the operator g® takes place twice, due to the modified
velocities and densities. Convolution and differential oper-
ators commute and the second convolution can be shifted to
the other member of the product.

Consider the first integral on the right hand side

f 00: @YV - (7o, + Piyn, dr = f V- (P, + Pign, do
= J‘V . ((f;lVi),nl) dT -_ J‘Vd;l . Vi)ini dT
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The first and second integrals vanish and the third becomes
- J V- (@' Vin) dr + quSi - Viin, dr. (A.4)
Using the definition of the polarization drift, we obtain
a, fw? : [% B+ (Vh + 71 - Ei]ni dr
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With the surface terms vanishing again, this becomes
2 agn BV EF (6
“i“a:("i sE'%) > 6tni+ > \z ™ dz
a 1 2
=45 (zn(ED?) dz. (A.6)

The electron integral is of the same structure so that we
obtain

S (Hva s —2 oy 4 —% @ [ar =0
)20 P emB2Q? o m, B2Q? e e
' (A7)

Multiplying by &, B> and integrating in time, we obtain the
energy theorem in the form

1 w, \2 n o, \*>n, -
bl E2 pi i E12 pe < €y2
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= const. (A.8)
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