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Abst rac t .  The Crank-Nicolson scheme is widely used to solve numerically the 
diffusion equation, because of its good stability properties. It is, however, ill-behaved 
when large time-steps are used: the short wave-lengths may happen to be less 
damped than the long ones. A detailed analysis of this flaw is performed and an 
Mternative scheme is proposed, which removes this difficulty while preserving all 
other good properties (unconditional stability and second-order accuracy). 

1 I n t r o d u c t i o n  

The diffusion equation plays an important role in many branches of physics, 
in fields as different as fluid and plasma dynamics, thermodynamics and 
neutron transport.  From the point of view of numerical analysis, diffusive 
terms are often necessary when solving partial differential equations in order 
to control the numerical noise at small wave-lengths. Indeed, although a fine 
resolution is needed to reproduce accurately the larger scales, small scales 
do not contain any significant physical information. If, however, such small 
scales are not damped away by some diffusive mechanism, in the long run 
they can corrupt the entire solution, even at long wave-lengths. 

There is a vast literature of numerical methods for the diffusion equa- 
tion, which we make no at tempt  to review even partially here (Marchuk 
1982; Morton and Mayer 1994; Richtmyer and Morton 1967; Press et al. 
1992; Crank 1975; Roache 1972), (Morton and Mayer 1994 provide a list of 
fourteen finite-difference methods). According to the time-stepping technique 
used, these schemes can be either explicit or implicit. Explicit schemes are 
simpler and computationally faster, but often impose a very restrictive upper 
bound on the maximum time-step, beyond which they are unstable. Implicit 
schemes are often unconditionally stable, but require the inversion of a (tridi- 
agonal, in one dimension) matrix, which is more time consuming, although 
not prohibitive. 

The scope of this communication is to point out a weakness of a class of 
widely used implicit, finite-difference techniques, which seems to be gener- 
ally overlooked. A prototype of such techniques is the Crank-Nicolson (CN) 
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scheme (Crank and Nicolson 1947), possibly the most popular of all finite- 
difference schemes for the diffusion equation. The problem with the CN 
scheme is that  it is extremely ill-behaved for large values of the time-step. 
By the expression "ill-behaved" we mean that ,  although the results are of 
course accurate (to second order) for small time-steps, taking large time- 
steps radically changes the nature of the equation we are trying to solve. For 
example, in the limit of very large time-steps, a monochromatic wave is no 
longer damped (as it should be, according to a diffusion process), but  travels 
with constant phase velocity ;~/(2At) (where ~ is the wave-length and At 
the time-step). Another, more serious, shortcoming is that ,  when At exceeds 
a certain value, short wave-lengths can be less strongly damped than some 
long wave-lengths. Bearing in mind that  diffusive terms are devised to get 
rid of the small scale noise, this result can have disastrous consequences. 

After recognizing the source of this incorrect behaviour, we propose a class 
of schemes that  does not suffer from this flaw, being "well-behaved" in the 
limit of large time-steps. These schemes are still second order accurate and 
unconditionally stable, and only involve the inversion of tridiagonal matrices 
(just like the CN scheme), but  require two matrix inversions rather than one. 
Therefore, although they are computationally more expensive than CN by 
a factor of two, they allow the use of an arbitrarily large time-step without 
changing the diffusive nature of the equation. 

From the previous discussion it is apparent that  "good behaviour" is 
a crucial property (albeit loosely defined) for many numerical schemes and 
should be mentioned together with the more familiar notions of accuracy and 
convergence. Accuracy means that  the discrete model closely approximates 
(in a quantitative sense) the original differential equation when the time-step 
and grid size are sufficiently small. Good behaviour means that,  far away from 
this limit, the discrete model still preserves qualitatively the most relevant 
features of the original equation. These notions will become clearer in the 
following sections, where we work a concrete example. 

The remaining material of this paper is organized as follows. In Sect. 2 
we briefly review a few schemes for the diffusion equation, then identify the 
problem with the CN technique and propose an alternative, well-behaved 
scheme. Section 3 presents a more detailed stability analysis of both CN 
and our technique, including a numerical example of how CN fails when our 
scheme succeeds. Finally, in Sect. 4 we draw our conclusions and discuss more 
extensively the concept of good behaviour of a numerical scheme. 

2 Propert ies  of  Some Finite-Difference Schemes  

Our objective is to solve numerically the diffusion equation 
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where [9 = - a  02/Ox 2 is the diffusion operator (a is the diffusion coefficient), 
the discrete approximation of which to second order in the grid size is 

(BF)j  = - a  (Fj-1 - 2 F j  + Fj+I)/ZSx 2 + O(ax3).  (2) 

We use this notation because, with suitable boundary conditions, /) is a 
positive, hermitian operator (i.e. all of its eigenvalues are real and positive), 
which, for all practical purposes can be treated as a real positive number. 
Equation (1) can be solved formally from t,~ = n a t  to tn+l, yielding 

F n+l = e-Z~t[gF ~, (3) 

where F ~ = F(t,d. Most numerical schemes can be formally represented as 
an approximation to some order of the exponential appearing in (3). This 
exponential is the evolution operator for our problem. Thus we have, re- 
spectively for the explicit first-order, implicit first-order and Crank-Nicolson 
schemes: 

e x p ( - A t / ) )  = 1 - At D + O(At 2) (4a) 

exp ( -A t /9 )  = (1 + At D) -1 + O(At 2) (45) 

e x p ( - A t  D) 1 - A t D / 2  
_ + O(At3). (4c) 

1 + a t  i ) / 2  

The explicit scheme (4a) is unstable for a A t / A x  2 > 1/2, whereas the im- 
plicit and the CN schemes (4b-c) are always stable. This can be checked 
by verifying that  the approximate evolution operators have all eigenvalues 
smaller than unity in absolute value (heuristically, this is obvious by treating 
/) as a real positive number). However, the implicit first-order scheme is also 
well-behaved since, for large time-steps, its evolution operator goes to zero 
without changing sign, just like the exact exponential. On the contrary the 
CN evolution operator approaches, for large time-steps, the negative of the 
identity operator, thus giving rise to unphysical oscillations while suppressing 
all damping. For instance a sinusoidal wave would, in this limit, simply change 
sign at each time-step, which is the same as traveling with a phase velocity 
equal to A/(2At). This is the paradox first mentioned in the introduction. 

The CN scheme is often considered as an ideal choice for the diffusion 
equation, since it displays some key good properties: (a) it is second order 
accurate both in space and in time; (b) it is unconditionally stable: and (c) it 
requires the inversion of a tridiagonal matrix, which can be performed exactly 
in O(N) operations, N being the number of grid points (Morton and Mayer 
1994; Crank 1975). However, as we have seen, when the time-step exceeds a 
certain value (which will be specified in the next section), the CN scheme is 
ill-behaved, and gives qualitatively incorrect results. 

The problem discussed above does not seem to be mentioned explicitly in 
the literature. Roache (1972) rather briefly suggests that  "large At will cause 
some Fourier modes to overshoot". He then correctly recognizes that  "the CN 
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second-order method is less accurate than the first-order implicit method for 
large enough At". He wrongly generalizes this fact to suggest that, for large 
time-steps, first-order schemes are more accurate than second-order schemes. 
The results presented in the next paragraph prove that  this is not generally 
true. The authors of Numerical Recipes (Press et al. 1992) also acknowledge 
that  small scale structures are not damped for the CN scheme in the limit of 
large time-steps, but do not give a detailed analysis of why it is so. They also 
incorrectly suggest that  the only possible solution is to turn to a first-order 
implicit method. 

We now show that  it is possible to devise a scheme which, while preserving 
most or all of the CN advantages, is also well-behaved for At -+ ao. The Pad~ 
approximation to the exponential appearing in (3) is 

e x p ( - A t  [9) = (1 + At D + At  2 /)2/2)-1 + O(At3). (5) 

The scheme resulting from this approximation is still second order accurate 
and unconditionally stable and also well-behaved, but, due to the term [92, 
requires the inversion of a non-tridiagonal matrix. This property may not be 
crucial since in more than one dimension the matrix is more complicated even 
for the CN scheme. However, the multi-dimensional diffusion equation can 
always be reduced to a sequence of one-dimensional equations by the time 
splitting technique (Yanenko 1971) and, therefore, tridiagonality can be an 
important issue. 

Let us write the formal solution corresponding to (5) 

MF + 1 = F (6) 

where f / - 1  is given by the right hand-side of (5). One could split the matrix 
/~/ = -~/1 " ~/2, where MI,~ are linear in [9 (and therefore tridiagonal). The 
solution is then obtained in two steps 

M1F* = F ~ (7a) 

_~2F "+1 = F*. (75) 

Unfo r tuna te ly /~ / can  only be factored by introducing complex coefficients 
M = (1 + a+At[9)(1 + a_AtD), with a± = (1 =t= i)/2, which would unduly 
complicate the scheme. We can try a more general approximation of the 
evolution operator: 

1 + aAt  [9 
e x p ( - A t  D) ~_ (1 + ~+At[9)(1 + ~_ Atb)"  (8) 

We call g(z) = (1 + az)/(1 + ~+z)(1 + ~_z) the response/unction. By ex- 
panding both sides of (8) in a Taylor series, we obtain 

1 - z + z 2 / 2 - z 3 / 6  = 
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1 + (a -/3+ - / 3 _ ) z  + [/3~ +/32_ +/3+/3_ - a(3+ +/3-)]z 2 - (9) 

[/33 q_ /33_ j_ /3+/32 j_ /32/3_ _ Ot(/3~_ q- /32_ + /~+/3_)]Z 3 q_ O(Z4), 

where z = AtD.  Matching the coefficients at first and second order we can 
express/3+ as a function of 

1 + (~ + v'c~ 2 - 2c~ - 1 
/3+ = (10) 

2 

The truncation error E (a )  is the modulus of the coefficient of the third order 
term in (9). After some algebra, it can be shown that E(c 0 = c~/2 + 1/6. 

We have thus obtained a family of numerical schemes parameterized by 
the real number a. However, some conditions must be satisfied for the scheme 
resulting from (8) to be meaningful. First of all it must have /3+ _> 0 so 
that  the response function g(z) remains finite. This condition implies a > 
- 1 / 2 .  Note that, for a = - 1 / 2  (yielding/3_ = 0,/3+ = 1/2), we recover the 
Crank-Nicolson scheme. In order to have real coefficients the argument of 
the square root in (10) must be non-negative, which requires a < 1 - v/2 
or a > 1 + v~.  Furthermore, if a > 0, the response function is positive 
and decreases monotonically for positive values of z. The special case c~ = 0 
yields the Padd approximation (5), as can easily be checked. Finally, by taking 
a = - 1 / 3 ,  we obtain E = 0 and the scheme is third order accurate in time. 

According to our definition the numerical scheme is well-behaved if the 
response function g(z) qualitatively preserves some of the relevant proper- 
ties of the exact exponential for all values of z. What  is meant by 'relevant 
properties' depends on the problem under study: in our case it is crucial 
that  g(z) be positive and decreasing for z > 0 since this property guaran- 
tees that smaller wave-lengths be more damped. If, in addition, we want all 
coefficients to be real, we need a > 1 + v~. The minimum truncation error 
compatible with this choice is obtained when taking the equality sign in the 
previous expression. This case will be analyzed in detail in the remainder 
of the article. Other choices are possible, however. For example, if reducing 
the truncation error is important,  the Pad~ approximation (a = 0) is more 
convenient, although complex numbers must be used in that  case. 

With our choice (ct = 1 + x/2) we obtain/3± - /3 = 1 + 1/v/2 and the 
scheme can be written in a two-step form (each involving the inversion of the 
same tridiagonal matrix) 

(1 +/3At[9)F* = (1 + a A t D ) F  n ( 1 1 a )  

(1 + / 3 A t D ) F  '~+1 = F*. (11b) 

This is the scheme that we propose in order to circumvent the bad properties 
of the CN scheme. It is second-order accurate in space and time, uncondi- 
tionally stable and well-behaved for large time-steps. 



87 

3 S t a b i l i t y  A n a l y s i s  a n d  a N u m e r i c a l  E x a m p l e  

The CN scheme can be written explicitly as follows 

__SFn+l s F ~ + l =  s n s 
2 j-1 + (1 + s ) F ?  +'  - 2 J+' -~Fj_I + (1 - s)Fj ~ + ~Fj+I ,  (12) 

where s = a A t / A x  2 . Stability can be checked with the Von Neumann method 
by taking F ;  = F '~ e x p ( i k x j )  = exp( i~j ) , (  = k A x .  Substitution into (12) 
yields 

F '~+* 1 - s(1 - cos~) 
F n - l ~ s ( 1  cos~) = G, (13) 

where G(() is the so-called amplification factor. The scheme is uncondition- 
ally stable because IGI < 1 for every value of s and ~. In the limit ~ << 1 
(which simply means that  we have enough points to describe every wave- 
length) the amplification factor becomes 

a - 1 - s~2/2 (14) 
1 + s (~ /2  

A fundamental property of G to guarantee the good behaviour of the 
numerical scheme is that  its modulus be monotonically decreasing with wave- 
number: this implies that  the damping increases with increasing wave-number. 
However, from the plot of IG(~)I for a given (large) value of s (Fig. 1), we 
see that  this is not true for the CN technique. Indeed, to the right of its zero 

= X f ~ ,  IG(~)I increases with wave-number. Let us study the efficiency of 
the scheme for different values of s. Obviously the well-behaved region is the 
one for which 0 < ( < x/rff/s. If s << 1, then the zero of the function G(() 
will be much larger than unity: the restriction ~ < 1 then means that  we 
are exploiting only a small fraction of this region. When s -~ 1, the scheme 
is well-behaved for all waves satisfying ~ < 1. However, we have not gained 
much with respect to the explicit scheme, the upper bound of which for sta- 
bility is s < 1/2. When s >> 1, V/2-/s << 1 and waves with ~ > V / ~  are still 
sufficiently sampled by the spatial grid, but,  for these waves, the damping 
decreases with wave-number, giving completely incorrect results. We must 
therefore conclude that  the interesting region s > 1 (i.e. A t  > A x 2 / a ) ,  
which, if accessible, would free us from the restriction of explicit schemes, is 
still forbidden for the CN method. 

How serious the above restriction is in practice will of course be deter- 
mined by the physical problem under consideration. When studying two- 
dimensional fluid turbulence, for example, the time-step is generally deter- 
mined by other terms in the equations, typically the convective terms, and 
must obey A t  ~ A x / u ,  where u = O(1) is a typical velocity of the flow. 
On the other hand, since the physical Reynolds number is generally much 
larger than what can be afforded in the computation, the diffusion coefficient 
is chosen mainly for numerical reasons. In order for wave-lengths comparable 



88 

1.0  

0 . 5  

0 . 0  

0 . 0  

. . . . . . . . .  i . . . . . . . . .  

\\ /"" 

, \ ," 

. , . ~ . = . = . =  

0 . 2  0.4  

Fig.  1. Modulus of the amplification factor G(~) as a function of ~ = k A x  for 
the exact solution (solid line), the Crank-Nicolson scheme (dotted line) and our 
proposed scheme (dashed line). The curves are plotted for s = 200. For the CN 
case, the curve has a zero at ~ = (2/s) W2 

to  the  grid size to be damped  quickly, one mus t  have a ~- u A x 2 / a ,  where 
a = O(1) is a macroscopic  length scale. The  stabil i ty parameter  then becomes 
s ~_ A x / a  << 1, which ensures stabil i ty even for explicit schemes. We con- 
clude that ,  in two-dimensional  turbulence,  the use of a more costly implicit 
scheme to  t rea t  the diffusive terms is hardly  justifiable. 

In  o ther  physical si tuations the restr ict ion can be less severe. Let us con- 
sider a purely diffusive process, in which we only want  to  isolate a few dom- 
inant  modes  allowed by the b o u n d a r y  conditions, which are all long wave- 
length modes.  This imposes a less strict  bound  on At.  Suppose tha t  we want  
to t rea t  correct ly all modes in the range k0 < k < kl, where the fundamenta l  
mode  is k0 = 27r/L. The m a x i m u m  mode  present is k . . . .  = 27r/Ax.  It  is 
crucial to  require t ha t  all modes larger than  kl should be more damped  than  
kl itself. The  max imum k tha t  satisfies this condit ion can be found by solving 
the algebraic equat ion IG(~I)[ = [G(~ma~)[, where we recall tha t  ~ = k A x .  
The  result, expressed as an upper  bound  for the t ime-step, is 

2 A x  
a A t  < -- - -  (15) 

kl kmax 7r k 1 

Thus,  for this very par t icular  case, At  scales as Ax  instead of A x  2, as for the 
explicit scheme. However, for large values of  kl,  the above upper  limit can 
still be very str ingent:  in the next  pa r ag raph  it will be shown that ,  with our  
technique,  all restrictions on the t ime-steps are lifted. 

Turning  to  the scheme tha t  we propose (11) we have 
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Fig.  2. Plot of F(x) at different times (a) t = 0, (b) t = 1.68, from a numerical 
solution with the Crank-Nicolson scheme. The long wave-length is more strongly 
damped than the short wave-length 

t = 1 . 6 8  
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Fig.  3. Plot of F(x) at t ---- 1.68, from a numerical solution with our proposed 
scheme. The initial condition is the same as shown in Fig. 2a. Now the short 
wave-length is rapidly damped 
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- / ~ 8 F ; _  1 -4- (1 + 2/3s)F~ - ~ s F ; +  1 = --OlSF?_ 1 -t- (1 + 2 a s ) F ;  - oLsF;+  1 (16a) 

-~8F;+11 -f- (1 -I- 2/~8)F? +1 - ,.'3sF?++11 : / 7 ; .  (16b) 

Using again the Von Neumann method to investigate stability we find that  
the amplification factor is 

G = 1 + 2as(1 - cos~) (17) 
[1 + 2t3s(1 - cos~)] 2" 

It  can easily be verified tha t  [G] < 1 for any value of ~ and s, if a and 3 are 
those of our choice (a = 1 + x/~,/3 = 1 + 1 /v~) :  this is sufficient to ensure 
stability. The plot of [G(~)[, in the case s >> 1, is given in Fig. 1. Note that ,  in 
contrast  to the CN scheme, the amplification factor decreases monotonically 
to zero. It  is obvious that ,  even for very large values of s, the property that  
short wave-lengths be more damped than long ones is preserved for the entire 
spectrum. The scheme is thus, according to our definition, well-behaved. 

We now illustrate the results obtained above with a numerical example. 
We solve the diffusion equation (1), in a periodic domain of extension L = 2~r, 
with diffusion coefficient a = 1. The initial condition is the sum of two waves 
with very different wave-lengths: 

F(x,  t = 0) = A1 sin(klx) + A2 sin(k2x), (18) 

with AI = 1,A2 = 0.5, kl = 1, k~ = 50. For the numerical solution we 
take N = 500, Ax = 0.0126, so that  k A x  < 1 for both  waves. Normally, 
the second wave should decay much faster, leaving only the large scale per- 
turbation.  However, for the CN scheme, if we choose the t ime-step so that  
]G(kl)] = ]G(k2)], then the two waves will decay with the same rate. For 
a still larger t ime-step the first wave will decay faster than the second one, 
yielding completely incorrect results. The upper bound for At - given by (15) 
with kl, k2 replacing kl, k m ~  is in this case Attire = 0.04. 

We present a numerical solution with At  = 0.08, first using the s tandard 
CN scheme. Fig. 2 shows F(x) at two different times: as expected, the large 
scale wave decays faster. Using the scheme of (11), (16) completely eliminates 
the problem, as is apparent  from Fig. 3, and the small wave-length is now 
correctly damped faster. Fig. 4 shows the amplitude of the Fourier coefficient 
of each wave for the two cases. The damping of the first wave ('~1 = -ak2 )  
is reproduced accurately in both  cases, since [71[At << 1. However, the CN 
scheme grossly underest imates the damping rate ~'2 of the second wave, as is 
apparent  from Fig. 2. Moreover, spurious oscillations appear ,  which are due 
to the fact that  G(~) is negative for the value of ~ = k A x  corresponding 
to k2. Our scheme also underestimates ~/2, but automatical ly preserves the 
crucial relation ['Y2[ > [~/1 [' 
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Fig. 4. Time evolution of the Fourier coefficient of both waves for (a) the 
Crank-Nicolson scheme and (b) our alternative scheme. The damping of the small 
wave-number kl is well reproduced in both cases, but the large wave-number k2 is 
poorly treated by the Crank-Nicolson scheme 

4 C o n c l u s i o n  

We have identified a flaw occurring in a class of finite-difference, implicit 
schemes for the diffusion equation, the prototype of which is the Crank- 
Nicolson scheme. Although the CN is stable for arbitrary values of the time- 
step, in practice it gives poor results for At > Ax2/a. In particular, short 
wave-lengths may happen to be less damped than long ones. For problems 
of fluid turbulence, the constraint on the size of the time-step is virtually as 
severe as that of explicit schemes (At < Ax2/a), although, for flows at high 
Reynolds numbers, the convective terms impose a time-step which always 
falls in the stability region. For purely diffusive problems, the constraint is 
somewhat less severe (At scales as Ax, instead of Ax2). The possibility of 
using an even larger time-step is in any case ruled out. 

The technique that  we propose to overcome this restriction is based on 
a Pad@-like approximation of the exact evolution operator for the diffusion 
equation. This allows us to construct a new scheme that preserves all the good 
properties of CN, while avoiding the above shortcoming. For this scheme, 
short wave-lengths are Mways more damped than long ones. The only price 
to pay is that  the computation time per time-step is roughly twice that  of CN, 
but  now a much larger time-step can be used so that  the total  computation 
time will in fact be much shorter. We note that  our choice, expressed by (8), 
is not the only one possible. The denominator on the right hand-side does 
not need to be a perfect square, although this slightly simplifies the resulting 
scheme since the same matr ix  is inverted twice. 
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We have also tried to convey the idea that  convergence and stability are 
often not sufficient for a good numerical scheme. The scheme should also 
preserve qualitatively some key properties of the original equation over all 
the range of the discretization parameters: it should be "well-behaved". For 
the diffusion equation it should ensure that  the damping rate increases with 
wave-number for all values of At. Of course good behaviour strongly depends 
upon the equation to be solved. Take for example the Schr6dinger equation, 
obtained by replacing D with i/~ in (1), where /;/ = -O2/Ox 2 + V(x)  is 
the Hamiltonian. The key property of this equation is that  H is a unitary 
operator,  i.e. the integral of IF(x)[ 2 is conserved in time. It is easy to show 
that  the CN scheme provides the only discrete approximation to H which is 
both unitary and second order accurate. Both schemes (5) and (11) introduce 
some numerical damping that  violates unitarity. The CN scheme is thus well- 
behaved for the SchrSdinger equation, although not for the diffusion equation. 

This work was partially funded by the Commission of the European Com- 
munities under contract ERBCHBICT941009. 
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