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Stability of Bernstein–Greene–Kruskal modes
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~Received 1 February 2000; accepted 10 March 2000!

The stability of Bernstein–Greene–Kruskal~BGK! modes is investigated in the limit of small
electric potential~weak inhomogeneity!. It is proven that one-hole BGK modes can be unstable,
contrarily to what was observed in previous numerical simulations. A simple stability criterion is
derived. In particular, it is proven that the velocity distribution must have at least three maxima for
instability to occur. Numerical simulations confirm the analytical results, and extend them to the
nonlinear and strongly inhomogeneous regimes. In particular, it is shown that a strong
inhomogeneity has a stabilizing effect. ©2000 American Institute of Physics.
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I. INTRODUCTION

In a seminal paper published in 1957, Bernstein, Gre
and Kruskal1 showed the existence of an infinite family o
exact stationary solutions for electrostatic, collisionless p
mas described by the Vlasov–Poisson model. Such solut
~now called BGK modes! are spatially inhomogeneous, an
therefore exhibit a finite self-consistent electric potent
They have continued to attract interest,2 since they may rep-
resent the final saturated state of instabilities which are
bilized by particle trapping in the potential well formed b
the growing wave.3 Numerical results also suggest that tra
eling BGK waves may arise as the result of nonlinear Lan
damping, a subject which is presently at the center o
stimulating debate.4–7 Traveling BGK waves have been in
vestigated theoretically in a series of papers,8 particularly in
the small amplitude limit. Other recent works include exte
sions to the two-dimensional9 and the magnetized cases,10 as
well as applications to geophysical plasmas.11

In order to establish whether BGK modes can exist in
actual plasma, it is crucial to understand the stability prop
ties of such solutions against various kinds of perturbatio
Several methods have been used in the past, ranging
mode coupling analysis to thermodynamical arguments,12 ei-
genvalue methods,13 or by direct computation of the growt
rates.14 All the above techniques predict that BGK structur
formed by at least two phase space vortices~‘‘holes’’ ! are
unstable, while no rigorous result exists on the stability
one-hole structures. Numerical experiments confirm t
multiple-hole BGK modes are indeed unstable, and stron
suggest that one-hole structures are stable.15,16

It is the scope of this paper to prove that some one-h
BGK modes can actually be unstable. In particular, it will
shown that unstable modes exist when the underlying ve
ity distribution has at least three maxima. Indeed, previ
simulations had all considered two-stream velocity distrib
tions, which turn out to be stable for one-hole structures15

The basic idea put forward in this article is that, f

a!Electronic mail: Giovanni.Manfredi@lpmi.uhp-nancy.fr
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weakly inhomogeneous BGK modes, the stability propert
are given by the corresponding homogeneous solution,
tained by letting the electrostatic potential go to zero. T
means that the growth rate varies continuously~in some
sense! with the amplitude of the potential. This assumptio
which is physically rather plausible, has been proven rig
ously in a recent mathematical paper.17 We will therefore
investigate the stability properties of homogeneous distri
tion functions which are the limit of BGK modes for sma
electric fields, particularly in the more controversial case
one-hole structures. The conclusion is that both stable
unstable one-hole BGK modes can exist, depending on
shape of the velocity distribution.

The main result on the stability of weakly inhomog
neous BGK modes is presented in the next Section. In S
III, an analytical example is worked out in detail. This mak
use of a special type of distribution function, composed
two cold beams and a ‘‘water-bag’’ distribution. In this cas
the dispersion relation becomes an algebraic~as opposed to
integral! equation, and rigorous results can be easily o
tained. Section IV contains several results from numeri
simulations that confirm the~linear! analytical calculations.
The simulations also enable us to investigate the nonlin
saturation of unstable equilibria, as well as the case
strongly inhomogeneous BGK modes. Conclusions are p
sented in Sec. V.

II. GENERAL STABILITY PROPERTIES

The model considered in this paper is the on
dimensional Vlasov–Poisson system

] f

]t
1v

] f

]x
1E

] f

]v
50,

~1!
]E

]x
5E

2`

`

f dv21,

where f (x,v,t) is the electron distribution function an
E(x,t) the electric field. In Eq.~1!, and in the rest of the
5 © 2000 American Institute of Physics
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article, time is normalized to the inverse electron plas
frequencyvpe

21 , space is normalized to the Debye leng
lD , and velocity is normalized to the electron thermal spe
VTe5lDvpe . Ions are taken to be motionless, and their o
role is to provide a uniform, neutralizing background. Pe
odic boundary conditions are assumed inx.

It is easy to show that any functionF(H) of the energy
H5v2/21f0(x) ~wheref0 is the equilibrium electrostatic
potential! is an exact stationary solution of Eq.~1!. By plug-
ging F(H) into Poisson’s equation, one obtains a nonline
differential equation for the potential, which, under som
condition, can have spatially periodic solutions. Such a c
dition can be derived easily in the weakly inhomogneo
case. By taking] f /]t50 in Vlasov’s equation, then dividing
by v, integrating over velocity space, and finally making u
of Poisson’s equation, one arrives at the following equat
for the equilibrium electric fieldE052]f0 /]x

d2E0

dx2 1k2~x!E0~x!50, ~2!

In the limit of small potentials,k2(x) becomes independen
on the spatial variable and equal to

k0
25E

2`

` 1

v
dF

dv
dv5E

2`

` dF

dH
dv. ~3!

Therefore, for periodic BGK modes to exist, one needsk0
2

.0.15 Notice that this condition rules out distribution fun
tions that are monotonically decreasing with the energyH
5v2/2, such as the Maxwellian distribution. A velocity di
tribution with at least two maxima~two-stream distribution!
is thus required for the existence of periodic BGK mod
The wavelength 2p/k0 represents the typical spatial perio
of a one-hole BGK mode.

In order to study the stability properties, one perform
the usual expansion around the inhomogeneous equilibr

f ~x,v,t !5F~H !1 f 1~x,v,t !, f~x,t !5f0~x!1f1~x,t !. ~4!

Inserting this expansion into Eq.~1!, the linearized Vlasov
equation becomes

] f 1

]t
1v

] f 1

]x
1E1

]F~H !

]v
1E0

] f 1

]v
50. ~5!

Now, if the equilibrium electric fieldE0 is small ~weakly
inhomogeneous BGK!, then the last term on the left-han
side of Eq.~5! is of higher order and can be neglected. Mo
over, in the third term, one can make the approximat
F(H5v2/21f0).F(v2/2) ~and thus neglect the inhomoge
neity!, since inhomogeneous corrections are of higher or
The important result is that we are left with the usual line
ized Vlasov equation, in which the inhomogeneous equi
rium has disappeared. This shows that the stability prope
of a weakly inhomogeneous BGK mode are entirely de
mined by its homogeneous limit. A mathematically rigoro
proof of this theorem has been recently obtained by Guo
Strauss.17

By virtue of the previous result, the stability properti
are therefore governed by Landau’s dispersion relation
a
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k25E
2`

` dF/dv
v2z

dv[G~z!, ~6!

wherez5v/k, and G(z) is defined by the last equality in
Eq. ~6!. For z50, we obtaink0

2, the wave number of weakly
inhomogeneous BGK modes, given by Eq.~3!. Indeed, it is
not surprising that, in the limit of zero field, BGK mode
tend to a homogeneous state for which the dispersion rela
has at least the solutionv50, i.e., a marginally stable solu
tion. However, other solutions with Imv.0 might exist,
corresponding to an instability.

We first notice that BGK modes, being steady-state
lutions, must tend to linear waves with Rev50. Therefore,
in order to investigate stability, we shall consider the bran
of the dispersion relation, Eq.~6!, corresponding to Rez
50, and writez5 ij, with j real. One obtains

G~j!5E
2`

` v
v21j2

dF

dv
dv, ~7!

where we have used the fact thatF(v) is an even function.
The origin j50 is a solution of the dispersion relationk2

5G(j) corresponding tok0 . The main point is that, ifG(j)
increases for small positive values ofj, then another solution
with j.0 will necessarily exist for the same wave numb
k0 ~Figs. 1 and 2!. This is true only ifG(j) goes to zero for

FIG. 1. Plot of the dispersion functionG(j) for an unstable three-stream
plasma~solid line!, and a stable two-stream plasma~dashed line!, in a case
for which G8(0)Þ0. Only the positivej axis is shown. The plots corre
spond to the velocity distribution of Eq.~24! with b50.045,T50.05 for the
unstable case~solid line!, and b50.0,T50.05 for the stable one~dashed
line!.

FIG. 2. Plot of the dispersion functionG(j) for a ‘‘beam-water-bag’’ dis-
tribution, as given by Eq.~19!. In this case,G8(0)50. The parameters use
are u51, a50.25, b50.05 ~solid line, unstable!, and u51, a50.25, b
50 ~dashed line, stable!.
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some larger value ofj, which will also be proven in the
following.

Since we are interested in the behavior nearj50, we
expandG(j) in a power series

G~j!5G~0!1jG8~0!1
j2

2
G9~0!1•••, ~8!

where the apex stands for derivative with respect toj. Ob-
viously G(0)5k0

2. Let us evaluate the first derivative o
G(j)

G8~j!52jE
2`

` 1

v21j2

d2F

dv2 dv, ~9!

where we have integrated by parts. In order to evalu
G8(j50), we add and subtract to the right-hand side of E
~9! terms proportional to

E
2`

` dv
v21j2 5

p

uju
. ~10!

One obtains

G8~0!5 lim
j→0

2jS E
2`

` F9~v !2F9~0!

v21j2 dv

1F9~0!E
2`

` dv
v21j2D

52F9~0!p sgn~j!. ~11!

The symbol sgn(j) on the right hand-side of Eq.~11! means
that G8(0) has a different sign depending on whether
limit j→0 is approached for positive or negative values
j. Note that we have writtenF9(v) for d2F/dv2. If G8(0)
Þ0 the expansion needs not be carried out at higher ord
and the dispersion relation becomes

k25G~j!5k0
22ujupF9~0!1••• . ~12!

Therefore, whenF9(0),0, G(j) is an increasing function o
its argument for small positive values ofj. Furthermore, we
shall prove later on that there exists a valuej* .0, for which
G(j* )50. We can conclude that a growing solutionj
.0) must necessarily exist for the wave numberk0 ~Fig. 1!.
It was established earlier@Eq. ~3!# that, for periodic BGK
modes to exist, the velocity distribution must possess at l
two maxima. Now, the instability condition requires that
further maximum be present atv50 @because, sinceF(v) is
an even function,F8(0)50]. Therefore, a three-stream di
tribution is needed to guarantee the existence and instab
of a one-hole BGK mode.

In the opposite case (F9(0).0), nothing definite can be
said for the wave numberk0 . However, it is obvious that a
growing solution always exists fork5k0 /N, with N>2
~Fig. 1!. This is the standard result that multiple-hole BG
modes are unstable. Two-stream distribution functions, u
ally considered in the past, belong to this class.

Finally, when the distribution function is flat atv50
(F9(0)50), the expansion must be carried out to seco
order. The second derivative ofG(j) at j50 is
te
.
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G9~0!5 lim
j→0

G8~j!2G8~0!

j
5E

2`

` F9~0!2F9~v !

v2 dv, ~13!

where we have used Eqs.~9!–~11!. The dispersion relation
becomes in this case

k25G~j!5k0
21 1

2j
2G9~0!1••• . ~14!

In order for G(j) to be an increasing function for sma
positive j, one must haveG9(0).0. This is our second
result on the instability of one-hole BGK modes. The qua
tative behavior ofG(j) is shown on Figs. 1 and 2, both for
stable two-stream and an unstable three-stream velocity
tribution. Fig. 1 refers to a case for whichG8(0)Þ0,
whereas Fig. 2 to a case for whichG8(0)50. An example of
an unstable distribution is shown on Fig. 3.

The criteria derived in the previous paragraphs aresuffi-
cient conditions for the instability of one-hole BGK mode
Notice that they cover all possibilities, sinceG9(0) is never
zero whenF9(0)50. Therefore, the first two terms of th
expansion given by Eq.~8! completely determine the rel
evant stability properties.

To complete the proof, we need to show that there ex
a valuej* .0, for whichG(j* )50. We do this by proving
that, for large enough values ofj, G(j) becomes negative
Let us change variable tou51/j in Eq. ~7!, and define
G(u)5G(1/j). One obtains

G~u!5u2E
2`

` v
u2v211

dF

dv
dv. ~15!

We want to expandG(u) nearu50. One obtains immedi-
ately thatG(0)50. Evaluating the derivatives ofG(u), it is
found thatdG/duuu5050,d2G/du2uu50522. Therefore, the
expansion aroundu50 is G(u)52u21O(u4). Going back
to the functionG(j), one finally obtains the following ex-
pansion, valid forj@1

G~j!52j221O~j24!. ~16!

Since G(0).0, G(j) must change sign at some finitej*
.0. This completes the instability proof. Notice that the la
result simply means that, for small wave numbers,
growth rateg5Im v is proportional to the wave numbe

FIG. 3. Velocity distribution for an unstable three-stream plasma, as g
by Eq. ~24! with b50.045,T50.05.
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i.e.,g.j* k. This is the expected result for fluid models, a
it is well-known that the limitk!1 corresponds to the fluid
limit.

So far, we have proven that the homogeneous limit o
one-hole BGK mode can be unstable if some criteria
satisfied. In virtue of the previous discussion@Eq. ~5!#, these
stability properties can be extended to weakly inhomo
neous BGK modes, a result that has been proven rigoro
by Guo and Strauss,17 both for linear and nonlinear instabi
ity. This completes the proof that some one-hole BG
modes~namely those with a three-stream velocity distrib
tion! are indeed unstable.

III. AN ANALYTICAL EXAMPLE

In order to illustrate the previous results, it is useful
consider a special equilibrium velocity distribution, fo
which most calculations can be performed analytically. L
us take

F~v !5
12b

2
@d~v2u!1d~v1u!#1bWa~v !, ~17!

whered(v) is the Dirac delta, andWa(v) is the so-called
‘‘water-bag’’ function, which is constant and equal
(2a)21 for v,uau and zero elsewhere. The distribution
Eq. ~17! is made of two cold streams at velocities6u, plus
a third ‘‘warm’’ stream centered atv50, which is modeled
by the water-bag function. The two-stream case is recove
for b50.

The dispersion relation is obtained by inserting Eq.~17!
into Eq. ~6!. One finds

k25G~z!5
12b

2 F 1

~z2u!2
1

1

~z1u!2G1
b

z22a2
, ~18!

where z5v/k. If we now consider the case of a pure
imaginaryz, and definej5Imz5g/k, we obtain

k25G~j!5
12b

2

u22j2

~j21u2!2
2

b

j21a2
. ~19!

The plot ofG(j) is shown on Fig. 2 for two sets of values o
the parametersa, u, and b. These correspond to either
stable or an unstable plasma.

The characteristic wave number of a one-hole BG
mode is~in the homogeneous limit!

k0
25G~0!5

12b

u2
2

b

a2
, ~20!

and one must havek0
2.0. The stability properties are dete

mined by the behavior of the dispersion relation, Eq.~19!,
for small values ofj. ExpandingG(j) for j!a,u, one
obtains

G~j!.G~0!1G9~0!
j2

2
5k0

21S 2b

a4
26

12b

u4 D j2

2
. ~21!

It is easy to verify that the expressions forG(0) andG9(0)
could have been obtained by inserting the velocity distri
tion of Eq.~17! respectively into Eqs.~3! and~13!, in agree-
a
e

-
ly

-

t

ed

-

ment with the general theory presented in Sec. II. Note th
since the velocity distribution is flat atv50, the first order
term is absent in the expansion forG(j). Combining the
condition for existence of periodic BGK modes (k0

2.0) and
the condition for instability@G9(0).0#, one obtains the
system

12b

u2
2

b

a2
.0,

~22!
b

a4
23

12b

u4
.0.

Therefore,b must satisfy the following inequalities

3a4

u413a4
,b,

a2

u21a2
, ~23!

which imply a,A3u andb,0.25. This means that, in orde
to have instability, the ‘‘temperature’’ of the central wate

FIG. 4. Time evolution of the fundamental mode of the electric field
b50.045,T50.05. The inhomogeneity parameter ism51 ~a! ~homoge-
neous case!; m50.998~b!; m50.99~c!; m50.98~d!. The straight line in~a!
corresponds to the exact linear result for the homogeneous casg
50.169.
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bag ~which is proportional toa2) must not exceed a certai
value; at the same time, the fractionb of particles in the
water-bag distribution must be relatively small. Figure
shows the functionG(j) for u51 anda50.25. From Eq.
~23!, instability occurs when 0.0116,b,0.0588. The
curves plotted on Fig. 2 correspond tob50.05 ~unstable!
andb50 ~stable!.

IV. A NUMERICAL EXAMPLE

As a further example of a distribution function satisfyin
the criteria for instability, let us take the three-stream dis
bution

F~H !5
1

A2p
S 2~12b!H exp~2H !1

b

AT
exp~2H/T!D ,

~24!

whereH5v2/21f0(x), and 0<b<1. The two-stream dis-
tribution is recovered forb50. From Eq.~3!, one obtains the
wave number of one-hole structures in the zero field lim
k0

25(12b)2b/T. The condition for the existence of per
odic BGK modes isk0

2.0. This becomes, for the above di
tribution, b,T/(11T). The relevant criterion for instability
is d2F/dv2uv50,0. This requires that b.2T3/2/(1
12T3/2). Finally, we have unstable solutions ifb and T
satisfy the following condition
-

,

2T3/2

112T3/2,b,
T

11T
. ~25!

It is easy to prove that the above inequalities implyT
,0.25, andb,0.2. The parameterb represents the fractio
of particles situated in the central stream~around v50).
Therefore, an unstable distribution appears to possess
dominant streams at finite opposite velocities, plus a sm
central ‘‘bump’’ situated in the hole in between the tw
streams~Fig. 3!.

Using Eq. ~24!, Poisson’s equation for the equilibriu
electrostatic potentialf0 becomes

d2f0

dx2
512m@~12b!~112f0!exp~2f0!

1b exp~2f0 /T!#, ~26!

wherem is a parameter quantifying the deviation from t
homogeneous equilibrium:m51 for the homogeneous lim
of a BGK mode, and 0,m,1 for a truly inhomogeneou
BGK equilibrium.

Several numerical simulations have been performed w
a Vlasov Eulerian code based on a flux balance techniqu18

Here we present the results from a set of simulations u
the distribution function of Eq.~24!, with T50.05 andb
50.045. According to the theory presented in the previ
Sections, weakly inhomogeneous one-hole BGK modes
FIG. 5. Phase space portrait of the distribution function at various times betweent545 andt560, for the caseb50.045,T50.05, andm50.99 @Eq. ~24!#.
Regions for whichf ,0.062 are white, whereas regions for whichf .0.080 are black.
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responding to such parameters should be unstable@see Eq.
~25!#. The simulations were performed on a phase space
NX3NV530031000, and time stepDt50.1. The equilib-
rium distribution was perturbed on the fundamental wa
number, with a small amplitudee.1025. Note that the fun-
damental wave numberkF of a one-hole BGK mode varie
with the inhomogeneity, and is therefore, a function of t
parameterm. For the homogeneous case (m51), this can be
computed analytically from Eq.~3!, and yieldskF5k05(1
2b2b/T)1/2.0.2345. For the inhomogeneous case,kF

must be computed numerically. One obtains, for instan
kF.0.4558 form50.998, andkF.0.6101 form50.990.

In Fig. 4, we present the time evolution of the fundame
tal mode of the electric field, for various values of the inh
mogeneity parameter. In the homogeneous case (m51) the
growth rateg can be computed analytically from the dispe
sion relation, Eq.~7!. One obtainsg.0.169, a value tha
closely matches the result of the simulation@Fig. 4~a!#. For
truly inhomogeneous BGK modes (m,1), it is not possible
to compute the growth rate analytically. However, it is cle
that the instability persists form50.998 and 0.99@Figs. 4~b!
and 4~c!#. More surprisingly, we have found that, whenm
50.98 or smaller, the system becomes stable@Fig. 4~d!#. In
other words, a one-hole BGK mode which is unstable fo
weak inhomogeneity, becomes stable when the inhomog
ity is strong enough. Note that this result cannot be dedu
from the theory presented in Sec. II, which is only valid f
quasi-homogeneous equilibria.

Figure 5 shows the phase space portrait of the distr
tion function for the casem50.99. Betweent50 and t
545 there is little visible evolution. Subsequently, the tw
halves composing the single hole of this BGK mode s
attracting each other and merge. Over longer timest
5120, Fig. 6!, a new equilibrium appears, which is still a
~approximate! one-hole BGK mode. Note, however, that th
‘‘center-of-mass’’ of the distribution function has undergo
a shift of half the fundamental wavelength 2p/kF . This is
also visible in the plot of the electric field~Fig. 7!: At t
.55 the electric field goes to zero, and then grows again,
with a different sign, corresponding to a phase shift of 1
degrees. For longer times, the electric field is actually lar
than for the initial equilibrium. This phase shift correspon
to the sudden drop of the amplitude of the first mode of
electric field, visible in Fig. 4~c!.

The ~spatially averaged! velocity distribution is shown
on Fig. 8 for the casem50.998. We show this case becaus
for smaller values ofm, the central bump in the velocity

FIG. 6. Same as Fig. 5, at the end of the simulation (t5120).
id

e
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distribution is very small and hardly visible. Indeed, as w
proven earlier on, the relative weight of the central strea
compared to the two streams at nonzero velocity, is prop
tional to the parameterb, and b,0.2. Furthermore, the
small central bump tends to be smoothed out by the den
modulation~inhomogeneity!.

FIG. 7. Plot of the electric field at different times, for the caseb
50.045,T50.05 andm50.99. Same run as Fig. 5.
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We observe from Fig. 8 that the final equilibriumt
580) presents no bump in the central part of the veloc
distribution. From this and previous results, we can concl
that the system evolves from an unstable one-hole equ
rium towards another one-hole equilibrium, which appear
be stable.

V. CONCLUSION

In this paper, we have shown that some one-hole B
modes can be unstable under certain conditions. A rigor
~linear! theory has been developed, which is valid for wea
inhomogeneous BGK modes.

On the basis of previous numerical simulations, one-h
BGK modes were generally thought to be stable. The rea
for this misconception is that only velocity distribution
composed of two streams were considered. For these
have proven that the corresponding one-hole BGK mod
always marginally stable, i.e., it is a mode with vanishi
growth rate. However, for velocity distributions composed
at leastthreestreams, instability can occur when some co
ditions are satisfied. These conditions were derived explic
for a generic velocity distribution.

As an analytical example to illustrate this result, we ha
used a velocity distribution made of two cold counterstrea
ing beams, plus a water-bag distribution centered at z
velocity. This is supposed to mimic, in a simplified way,
general three-stream distribution. The advantage of suc
beam-water-bag distribution is that it enables one to comp
explicitly the dispersion relation, which becomes an alg
braic, rather than integro-differential, expression. The sub
quent stability analysis is in agreement with the gene
theory presented in Sec. II.

The question of the stability of strongly inhomogeneo
modes cannot be investigated analytically, since the a
ments employed here are not valid far from the homo

FIG. 8. Plot of the spatially averaged velocity distribution for the caseb
50.045,T50.05, andm50.998, at timest50 ~solid line! and t580
~dashed line!.
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neous limit. In order to address this point, we have p
formed several numerical simulations with a Vlasov cod
The main result is rather surprising: One-hole modes that
unstable in the homogeneous limit, become stable when
inhomogeneity is stronger than a certain threshold. Anot
question that we were able to address via computer exp
ments is the nonlinear saturation of unstable BGK modes
was shown that an unstable one-hole BGK structure evo
towards another~stable! one-hole structure by modifying th
shape of the velocity distribution.

In conclusion, we have presented detailed analytical
numerical results proving that some one-hole BGK mod
which were previously thought to be stable, can actually
unstable. A consequence of this result is that it restricts
class of BGK modes which may represent the final satura
state of linear instabilities. Furthermore, given the ma
ematical analogy between the one-dimensional Vlaso
Poisson system and the two-dimensional Euler equati4

these results may also be relevant to fluid problems, suc
the Kelvin–Helmoltz instability.
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