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Abstract

In 1973, Le Bellac and Lévy-Leblond (Nuovo Cimento B 14 217-234)
discovered that Maxwell’s equations possess two non-relativistic Galilei-
covariant limits, corresponding to |E| > ¢|B| (electric limit) or |[E| < c|B|
(magnetic limit). Here, we provide a systematic, yet simple, derivation of
these two limits based on a dimensionless form of Maxwell’s equations and
an expansion of the electric and magnetic fields in a power series of some
small parameters. Using this procedure, all previously known results are
recovered in a natural and unambiguous way. Some further extensions are also
proposed.

1. Introduction

Maxwell’s equations were the first physical theory to be put forward that is fully Lorentz
covariant, well before the special theory of relativity was developed and understood.
Indeed, it was the clash between the Lorentz covariance of Maxwell’s equations and
the Galilei covariance of Newtonian mechanics that stimulated the discovery of special
relativity and revealed that Lorentz covariance is the most fundamental symmetry of the
two.

Nevertheless, it should be stressed that electricity and magnetism were developed
historically as independent phenomena and only later were realized to be different expressions
of a single underlying theory. Already in the 18th century, physicists like Charles-Augustin
Coulomb (1736-1806) manipulated electric charges and measured how they attract or repel
each other through electric fields—in modern language, they worked out applications of
Gauss’s law: V - E = p/gg. This is the field of electrostatics.

One century later, physicists working on magnetism manipulated currents and measured
how they interact with each other through magnetic fields. Around 1820, Oersted observed
that wires carrying electric currents deflected a compass needle placed in their vicinity. Biot
and Savart, and later Ampere, established rigorous laws that related the strength and direction
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of a magnetic field to the currents that produce it. In modern language, they worked out
applications of Ampere’s law: V x B = pJ. This is the field of magnetostatics.

But none of these phenomena involve anything that is ‘relativistic’. This is obvious for
electrostatics, as only electric charges and fields are involved; but it is true for magnetostatics
too, because the current in Ampere’s law does not need to be relativistic in order to generate
a finite magnetic field.

Thus, we are faced with two perfectly valid theories that appear to be both non-
relativistic and derived from the complete theory of electromagnetism, i.e. Maxwell’s
equations. But surely any relativistic theory should have a unique non-relativistic limit—or
should it?

Le Bellac and Lévy-Leblond (hereafter, LBLL) published a paper in 1973 where it was
demonstrated that Maxwell’s equations possess fwo distinct, yet perfectly consistent, non-
relativistic limits [1]. The two limits correspond to situations where either |E| > ¢|B| (electric
limit) or |E| <« ¢|B| (magnetic limit). Each of the two limits is Galilei covariant, although
the transformations of the fields and of the density and current are not the same in the two
cases. In practice, the electric limit amounts to neglecting the time derivative of the magnetic
field in Faraday’s law of induction, whereas the magnetic limit is obtained by dropping the
displacement current in Ampere’s equation.

LBLL’s paper basically contains all that one needs to know on this topic, but also has
several drawbacks. First, the results were presented without a systematic derivation; only
a posteriori was it checked that both limits are indeed Galilei covariant. Second, the authors
obtained their result by employing SI units, which was something of a novelty at their time of
writing, CGS Gaussian units then being the preferred choice. But any physically meaningful
result should not depend on the units in which the equations are written, and a proper limit
should be obtained by making use of dimensionless quantities.

More recently, several papers revisited the work of LBLL from different angles,
elucidating some issues such as gauge invariance [2] and the correct Galilean limit of the
relativistic 4-current [3], discussing applications [4] or else extending the analysis to the
coupled Dirac-Maxwell equations [5]. Some papers use more abstract methods that rely on
a five-dimensional Minkowski manifold [6, 7]. A recent work by Degond et al was devoted
to the analysis of a numerical scheme for the Euler-Maxwell equations in the magnetic
limit [8].

In none of these recent works are the electric and magnetic limits derived systematically
from the full Maxwell equations. In general, the relation |E| > ¢|B| or |E| « ¢|B| (and
the analogue expressions for the sources) are assumed ex nihilo and are used to derive the
low-velocity transformations of the fields and sources. It is then proven that some forms of
‘reduced’ Maxwell equations are Galilei invariant under those transformations [S]. Only in
one case this analysis is carried out using dimensionless variables [9] (see also [8] and [10]).
Sometimes, non-systematic ‘order of magnitude’ arguments are used heuristically to justify
the limits [11].

The purpose of this paper is to introduce a simple, yet systematic, procedure to recover the
non-relativistic limits of Maxwell’s equation. This procedure is based on Maxwell’s equations
written in a non-dimensional form. It is shown that two independent dimensionless parameters
naturally appear in the equations. The electric and magnetic limits are then derived by letting
either or both of these parameters go to zero. Using the same procedure, all known properties
(gauge relations, Lorentz transformations, the Lorentz force) of the non-relativistic limits can
be deduced systematically. This procedure is also better adapted to the possible extensions of
this work, such as the coupling of the Maxwell and Dirac equations in relativistic mean field
theories [12, 13].
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2. General procedure

We start from Maxwell’s equations in SI units:

v.E="2, (1)
€0
V-B=0, )
B
VxE=——, 3
" ot 1 0E ~
VxB= -, 4
x M0J+c23t “4)

where ¢y and p are respectively the electric permittivity and the magnetic permeability in
vacuum, and gy = ¢ 2.
We normalize space to a reference length L and time to a reference time 7', which define
a typical velocity V. = L/T. The fields and the sources are also normalized to reference
quantities denoted by an overline: E, B, p and J satisfying the relations: E = ¢cB andJ = V7.
In these units, Maxwell’s equations can be rewritten as

v.E= " )
o
V.-B=0 (6)
VxE=-8 o (N
xE=-8—
ot
oE
vxB=Lro gt ®)
o ot
where the following two dimensionless parameters have appeared naturally:
1% E
ﬁ = —, o = _—60 (9)
c oL

The first of these parameters, B, is just the reference velocity normalized to the speed of light
and is obviously small in any non-relativistic limit.

The parameter « requires some analysis to be expressed in more familiar terms. We
can think of our distribution of charges and currents as a classical plasma, with a certain
temperature Tj and typical charge density p. We then define a reference electrostatic potential
¢ = EL and express it in terms of the temperature, such that g¢ = kT, where ¢ is the electric
charge of the particles and kg is the Boltzmann constant. Then, « can be written as

2
o= (%’) , (10)

where Ap = +/kgTpeo/(¢p) is the Debye length. In plasma physics, this ratio is known as
the ‘quasi-neutrality’ parameter and it is small when deviations from local charge neutrality
are negligible. This is because, in most plasmas, charge imbalance can persist only on length
scales shorter than the Debye length [14, 15]. If the latter is very small, the plasma is almost
neutral at macroscopic scales ~ L. This requires, of course, that at least two types of charge,
positive and negative, be present in the system under consideration.

In the following sections, we will show that the electric and magnetic limits can be
obtained by making suitable assumptions on the parameters o and 8. In particular:

e if 8 < 1and o = O(1), we obtain the electric limit,
e if K lando < 1,buta/B = O(1), we obtain the magnetic limit.
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3. Electric limit

For convenience of notation, we define a smallness parameter € < 1. Then, for the electric
limit, we assume B ~ € and o = O(1). We expands both fields in a power series in €, such
that E=Ey+€E; +---and B = By + €B; + - - -, where Ey, E{, etc are quantities of order
unity. The density and current are also assumed to be of order unity.

To lowest (zeroth) order in €, one obtains

V-Ey=p/a, (11)
V.-By=V xEy=V xBy=0. (12)
Thus, By = 0 ! and we can write Eg = —V¢y, so that
Agy = —p/a. (13)
Let us now proceed to first order. We find

V-E1=V~B1=VXE1=O, (14)

oE
VB =34 o (15)

o ot

which imply that E; = 0. Introducing the vector potential at first order, By = V x A, and
substituting into equation (15), we obtain

V(V-A) — AA = J/a — 3, (Veo), (16)
which reduces to

AA| = —J/a a7
if we adopt the Lorentz gauge relation

0

%?+V~Ap=0 (18)

Putting together the results at zeroth and first order, Maxwell’s equations in the electric limit
can be written in terms of the potentials

Apy = —p/a, (19)
AA = —J/a, (20)
or in terms of the fields

V-Ey=p/a, 21
V-Bi=VxE;=0, (22)

oE
va=£+—ﬁ. (23)

o ot

Note that only Ey and B, appear in the above equations, because E; = By = 0. Equations (21)—
(23) are identical to those postulated by LBLL for the electric limit [1]. As anticipated in the
introduction, they can be heuristically obtained from the full Maxwell’s equations by dropping
Faraday’s induction term. Here, the same result was derived from a systematic expansion in
powers of a small parameter. The present method also allowed us to recognize that the electric
and magnetic fields actually appear at different orders in €.

1 Strictly speaking, the fact that V - By = V x By = 0 implies ABo = 0, but if By vanishes at infinity, then it must

be zero everywhere. Similar considerations apply to vector fields with zero curl and divergence encountered later in
this paper.
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Lorentz force.  Let us now evaluate the Lorentz force per unit volume: 6F = pE +J x B. In
our units, and using as a reference value for the force §F = pE, we obtain

SF = pE + BJ x B, (24)

where it appears that the magnetic term is of higher order. Since in the electric limit only Eg
and B, are non-vanishing and 8 ~ €, we obtain

SF = pEy + €°J x By. (25)

Thus, we conclude that first-order terms in Maxwell’s equations will induce a second-
order magnetic correction in the particle dynamics, which can be neglected in the present
approximation.

Condition of validity. Next, we would like to derive the condition of validity for the electric
limit as established by LBLL, i.e., |E| > c¢|B|. For this purpose, we compute the relative
strength of the electric and magnetic fields. One can write

@NEEo-f-GEl-i---- Eo+€E; + - --

A~ — =c . (26)
Bl BBo+e€By+--- By +e€By +---
For the electric limit, £, = By = 0, whereas Ey ~ B; = O(1). Therefore, we obtain
E E
Bl Lo ¢ 27)

Bl ‘eB, €
and since € < 1, we find that |[E| > ¢|B|, which is the expected result.
Finally, the continuity equation can be obtained by taking the divergence of equation (15)
and using equation (11), which yields

ap
—~4+v.J=0. 28
a J (28)

4. Magnetic limit

This is obtained by taking 8 — 0 and ¢ — 0, but keeping the ratio 8/« finite. In other words,
a ~ B ~ € K 1. By performing the same expansion as in section 3, we obtain at zeroth order

V-E():VXE():V-B():O, (29)

VXB():J. (30)

Note that Gauss’s law also implies that p = 0 if we assume—as we have so far—that the charge
density is a zeroth-order quantity (a more general case will be discussed shortly). Thus, the
magnetic limit deals with systems that are locally charge neutral, a fact already acknowledged
by LBLL.

Equation (30) represents the magnetostatic limit: no free charges, only currents; no electric
fields, only magnetic fields. We also note that the current is divergence free.

If we pursue the expansion to first order, then we obtain

VxB =V-B=V.E; =0 31
0By

VXxE =——. 32

X K ar (32)

Summarizing the results at zeroth and first order, we can write

V.By=V-E, =0 (33)
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VxBy=1J (34)
By
VxE =——, 35
1 o (35)
and B = E; = 0. We note that this is the approximation of Maxwell’s equations used

in magneto-hydrodynamics (MHD). Indeed, MHD is a one-fluid theory that describes the
motion of a fluid that carries electric currents but no electric charge. The currents generate
a self-consistent magnetic field through equation (34), which in turn acts back on the fluid
via the Lorentz force. Equations (33)—(35) are almost identical to the equations postulated by
LBLL for the magnetic limit [1], except that those authors found V - E; # 0. We will return
on this point later.

Introducing the vector potential By = V x Ay and using the Coulomb gauge V - Ag = 0
yields

AA = —J. (36)

Thus, it appears that the Coulomb gauge is the natural choice for the magnetic limit.
In dimensionless units, the electric field is written in terms of the potentials:

E=_vp_cA (37)
= — —€—.
ot
At first order, this becomes
0A
Ei =V - —°. (38)

which satisfies automatically equation (32).

Charge neutrality. The charge neutrality condition (p = 0) is correct only if one assumes
that the density is a zeroth-order quantity in €. Different equations are obtained if the density
is a first- or second-order quantity. For instance, if we assume p = €p;, with p; = O(1), then
Gauss’s law becomes V - Ey = p;. But in this case, we would have an electric field at zeroth
order, which is somewhat at odds with the spirit of a ‘magnetic’ limit.

More interestingly, we consider the case p = €2p,, with po = O(1). The only difference
with respect to equations (31)—(32) is that Gauss’s law now reads V - E; = p,. In summary,
the equations at zeroth and first orders, expressed in terms of the fields, become

V-E| = py, (39

V. -By=0, (40)

VxBy=1, 41)
0By

VXxE =——. 42

x Eq o (42)

The above equations are now identical to those of LBLL for the magnetic limit. It will appear
later that the condition p = €2p, yields the correct Lorentz transformations of the 4-current
in the magnetic limit (see section 6).

We also point out that it was already recognized in some textbooks on classical
electromagnetism [16] that the presence of free charges (p # 0) in a model based on the
magnetic limit is a second-order effect in 8. This effect is usually neglected in standard MHD,
which assumes that p = 0.
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Using equation (38) and the Coulomb gauge condition V - Ag = 0, we can write
equations (39)—(42) in terms of the potentials

AAy = -] (43)

Agr = —pa. (44)

Note that the above equations are the exact analogue of equations (19) and (20) that were
obtained in the electric limit, except that the orders are inverted (electric effects appear at
zeroth order in the electric limit, but at first order in the magnetic limit).

Continuity equation. Pushing the expansion to second order, we find that

E;
V x B2 = W, (45)
so that 9,(V - E;) = 9,0, = 0. This is compatible with the condition V - J = 0. In summary,

the continuity equation can be written as follows:
O +V-J=0, (46)
where each term is zero.

Lorentz force. Using equation (24) and remembering that, in the magnetic limit, E, = B; =0
and p = €2p,, we obtain

SF = € p,E; + €J x By. 47)
Thus, there is no force at zeroth order and only a magnetic force at first order. The electric
force appears at third order and is thus uninfluential.

Condition of validity. Using equation (26) and considering again that, in the magnetic limit,
Ey = B, = 0 while By ~ E; = O(1), we obtain
|E| €k
— XN — N ce (48)
IB| By
and since € < 1, we have that |E| < c¢|B|. This is the condition obtained by LBLL for the
validity of the magnetic limit.

5. Gauge relations

Let us begin with the general Lorentz gauge condition

C—t%—?+V~A=O. (49)
Using our dimensionless variables, this becomes
e%—f+V~A=O. (50)
Now, in the electric limit we have ¢; = Ay = 0, so that the gauge relation becomes
%+V~A1=O, (51)

i.e., in the electric limit the natural gauge is the Lorentz gauge.
In the magnetic limit, we have ¢9 = A; = 0, so that the gauge relation becomes

d
GZ%JFV.AO —0. (52)
At first order in €, the first term in the above equation can be neglected, so that we are left with

V - Ay =0, i.e., in the magnetic limit the natural gauge is the Coulomb gauge.
Once again, these ‘natural’ gauge conditions, well known in the literature, arise
automatically when applying our expansion procedure.
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6. Lorentz transformations

In this section, we apply the above expansion technique to the Lorentz transformations of the
spacetime coordinates, the electric and magnetic fields, and the sources. We will obtain—in a
simple and systematic way—all the known results in both limits.

6.1. Spacetime

Under a Lorentz transformation, the spacetime 4-vector (ct, X) transforms as follows:
v(V-X)

X =x—yvt+(y—1) , (53)

2

t’=y(t—¥>, (54)
C

where v is the relative velocity between the unprimed and primed reference frames. For low
velocities, the Lorentz factor y goes like y ~ 1 — $2/2 so that at first order in € = 8 we can
take y = 1. This yields

X =x—vt, (55)

, VX

r=t——. (56)
c

Now we normalize time to T, space to L and velocity to V = L/T. We obtain

X =x—vt, (57)

’r_ 2

t'=t—€"v-X. (58)

To first order in €, equation (58) becomes simply ¢’ = ¢, thus yielding the standard Galilean
transformations.

Note that, since |x| ~ L,t ~ T, we have that |x|/(ct) ~ L/(cT) ~ €. This yields |x| < ct,
so that the 4-vector (ct, X) is ultra-timelike.

6.2. Electric and magnetic fields

The Lorentz transformations for the fields are as follows:

E

E/zy(E—i—VXB)—i-(l—y)V(sz ). (59)

B/:y(B—izvxE>+(1—y)V(V'2B). (60)
C v

With the approximation y >~ 1 (valid up to first order) and using the normalized units defined
in section 1, one obtains (8 = ¢€)

E =E +¢v xB, (61)

B =B —¢vxE. (62)

Now we expand the electric and magnetic fields in the usual way: E = Eq + €E| + - - -,
B = By + €B; + - - -. Substituting into equations (61) and (62) and matching order by order
yields

E, = E (63)
B, =B, (64)
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E| =E; + v x By, (65)

B, =B; — v x E,. (66)
In the electric limit, E; = By = 0; therefore, equations (63)—(66) reduce to

E, =E (67)

B, =B; — v x E,. (68)

These are the correct Galilean transformations of the fields in the electric limit [1].
In the magnetic limit, B; = E¢ = 0; therefore equations (63)—(66) reduce to

B, =By (69)
E| =E; + v x B. (70)
These are the correct Galilean transformations of the fields in the magnetic limit [1].
6.3. Current and density

The current density 4-vector (cp, J) transforms as follows:

/ V(V ) J)
J=J—-ypv+(y -1 o (71)
v-J

/0/=)/( _c_2> (72)
Taking y = 1 and using dimensionless variables, we obtain

J=J-vp, (73)

p’:p—e2v~J, (74)
which to first order in € yield finally

J=J-vp, (75)

The above equations are the standard Galilean transformations in the electric limit. Indeed,
since p ~ p and |J| ~ J = Vp, one obtains that cp = J/e > |J|. The 4-current (cp, J) is
thus an ultra-timelike vector.

For the magnetic limit, we assume—as was done in section 4—that the density is a
second-order quantity, i.e., p = €2p,. Then, equations (73) and (74) become

J=J-¢vp, (77)

py=p2—Vv-J. (78)
The second-order term in equation (77) can be neglected, so that we finally obtain

J=1 (79)

py=p2—V-J. (80)

This is the standard Galilean transformation of the current and density for the magnetic limit.
Indeed, since |J| ~J = Vp and p ~ pe2, we have that
w_ovo1 s
co ce? €
and thus |J| ~ €~'cp > cp. In this case, the 4-current is an ultra-spacelike vector. Note also
that in the strictly neutral limit (o = 0), the relation |J| > cp is a fortiori satisfied.
Finally, it is possible to show [5] that the reduced Maxwell equations, both in the electric
and in the magnetic limit, are Galilei covariant according to the respective non-relativistic
transformations of the spacetime coordinates, the electromagnetic fields and the sources, as

derived in the preceding paragraphs.
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7. Lagrangian formulation

In the Lorentz gauge, the Lagrangian density for an electromagnetic field obeying Maxwell’s
equations can be written in the form [17, 18]

3p\>  (VA)? 1 [9A\?
—) - =) - A 82
ot ) 210 2ot \ ot po+J (82)
By applying the Euler—Lagrange equations to the above Lagrangian density

d dL Z oL oL

— 4 R
ot oy TG AL
(where  is either the scalar potential or one of the components of the vector potential and 9;

is the jth component of the gradient operator V), we obtain the usual wave equations for the
scalar and vector potentials in the Lorentz gauge

&0

_% 2_ 20
L= 2 V) 2c2<

=0 (83)

10% »p
A2 P 84
o+ ¢z A2 g (84)
1 92A
—AA+ —— = . 85
+ 2 912 tod (85)

Let us rewrite the Lagrangian density in the usual dimensionless variables (where £ is
normalized to p¢ ). We obtain

(V) 2[00\ (VA (AN’ pp B

L= - — | - — — ] ——+-=JA 86
2 p ot 2 P ot o + aJ (86)

where we have defined for convenience £ = L/«. Since we are interested in developments

up to first order, we can disregard the two terms proportional to 82. This finally yields

Vo)? VA)?
_ (Y0P (VAP pb B, &
2 2 o o
For the electric limit, as usual, 8 ~ € < 1 and « = O(1). Expanding the potentials in powers
of €, one obtains £ = L'g + €L, with

2 2
£y = (Vo)™ (VA9)~ ,0;450 (88)

2 2 o
/ J-A
£1=V¢O.V¢I_VAO.VAI_%¢I+TO_

Applying the Euler-Lagrange equations to ¢y, Ao and their derivatives, we obtain at zeroth

order

£/

(89)

Ado = —p/a, (90)

AA) = 0. O

At first order, the Euler—Lagrange equations with respect to ¢; and A yield the same equations
as above. In contrast, applying the Euler—Lagrange equations to ¢y and A results in

Ady =0, 92)
AA; = —J/a. (93)

If the functions ¢; and A are zero at infinity, then they must vanish everywhere, so that we
recover the usual equations for the electric limit expressed in terms of the potentials.
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In the magnetic limit, we have 8 ~ a ~ € < 1. If we also take p = €2, then we obtain
from equation (87) at zeroth and first order

(Véo)*  (VAy)?

Ly= - Ay, 94
0 > 5 T J-Ap 94)
L'y =Ve¢o- Vo1 — VAg- VA — pado +J - Ai. 95)
Proceeding as was done above for the electric limit yields the equations
AAy = -], (96)
Apy = —pa, C0)

together with A¢y = AA; = 0, which imply that the latter potentials vanish identically. Once
again, we have found the correct equations for the magnetic limit.

8. Other limits

From the present analysis, it appears that the electric and magnetic limits are the only
nontrivial Galilean limits of the Maxwell equations. However, they do not appear to be
perfectly symmetric. For the electric limit, no additional assumption had to be made on the
sources, whereas for the magnetic limit the charge density must be a second- or higher-order
quantity in €. The magnetic limit requires that the system be ‘quasi-neutral’ (using plasma
physics terminology) and therefore both negative and positive charges must be present.

Now, the question is whether it is possible to obtain an electric limit that is also quasi-
neutral. In plasma physics, for instance, it is common to employ approximate models that
are purely electrostatic (Poisson’s equation) and also quasi-neutral. The rationale behind this
approximation is that a plasma can be non-neutral only on distances shorter than the Debye
length Ap. Over longer distances, free charges are screened and the plasma is basically a
neutral medium, although electric fields can still be present’. Writing Poisson’s equation in
normalized units: A¢ = —p/a, itis clear that the charge density must be of order @ = (Ap/L)>
in order to generate a finite electric potential.

In the present context, one could obtain such an approximate model by first going to
the electric limit (83 — 0, with « finite) and then taking « — 0. But this procedure is not
completely satisfactory, because there is no reason why the relative smallness of the parameters
« and B should not be specified from the start. In the following paragraphs, we suggest a way
to derive, in a more rigorous way, an electric limit that is also quasi-neutral.

In deriving the standard electric limit, we had assumed that 8 ~ € and o ~ 1. Let us now
‘raise the order’ by one unit, i.e., § ~ €2 and o ~ ¢, so that we still have B/a ~ €. Further,
in order to have a zeroth-order electric field, we must require that p = €p;, with p; = O(1).
Then, Maxwell’s equations for the zeroth and first order fields read

V'E():ph VXBIZJ, (98)

V-B1=0, VXE():O, (99)

together with E; = By = 0. The above equations are sometimes referred to as the ‘quasi-static’
limit of Maxwell’s equations, because they are obtained by neglecting all time derivatives in
the original equations.

2 In one of the most popular plasma physics textbooks [14] one can read the following statement. ‘In a plasma, it is
usually possible to assume n, = n; and V - E # 0 at the same time. This is a fundamental trait of plasmas, one which
is difficult for the novice to understand’. This corresponds to the fact that a very small charge density (p ~ €) can
still generate a finite electric field.
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In terms of the scalar and vector potentials and assuming the Coulomb gauge V- A; = 0,
these equations can be written as

Apg=—p1, AA=-] (100)

From equation (24), the Lorentz force becomes §F = €pEq + €3J x By, and the last
term can be neglected. Therefore, we end up with a purely electric force and a quasi-neutral
system, because p ~ € ~ o K 1.

One can verify that the Lorentz transformations (up to first order in €) for the spacetime
variables reduce to the standard Galilei transformations. For the fields, since 8 = €2, we have
E’ = E and B’ = B, and for the sources p; = pj and J' = J — evp,.

Under the above transformations, Gauss’s law in equation (98) is invariant, but Ampere’s
law is not. However, since the resulting force is purely electric, only Gauss’s law V - Eg = p;
needs to be taken into account. We further note that the force §F = €pEy is also invariant
under the same transformations. In summary, the resulting model is indeed purely electrostatic
(only Ej counts), quasi-neutral (since p ~ €) and Galilei covariant (but only at zeroth order).

9. Conclusion

In this work, we developed a systematic yet simple approach to the non-relativistic limits
of Maxwell’s equations. When the latter are rewritten in suitable normalized variables, two
dimensionless parameters appear. These parameters represent the typical velocity normalized
to the speed of light (8) and the degree of charge neutrality of the system under consideration
().

The main result of this paper is that the non-relativistic limits of Maxwell’s equations can
be recovered by letting either or both these parameters go to zero: if § — 0 and @ = O(1),
we recover the electric limit; in contrast, letting 8 — 0 and « — 0, but keeping o/ = O(1),
leads to the magnetic limit.

These results were obtained by expanding the electric and magnetic fields in a power
series in the relevant smallness parameter, and then matching terms at zeroth and first order.
This procedure is both rigorous and systematic, and yields all known results on each of the two
limits. Most known properties arise naturally within the present approach: for instance, the
Lorentz gauge is shown to be the appropriate choice in the electric limit, whereas the Coulomb
gauge is more suited to the magnetic limit.

Our approach revealed some hitherto overlooked subtleties of the theory. For instance, we
learnt that (i) the magnetic and electric fields in the limit equations are actually quantities at
different orders in ¢; (ii) in the electric limit, the Lorentz force has no correction at first order;
(iii) in the magnetic limit, the charge density must be at least a second-order quantity (and is
usually neglected in MHD applications). In addition, we could derive an electric limit that is
also quasi-neutral, although this limit is Galilei covariant only at zeroth order, which reduces
to Gauss’s law.

Other limits might be found if one also expands the sources in powers of §. When the
Dirac 4-current is expanded in powers of ¢! (i.e., B), it displays several correction terms
beyond the standard Schrodinger expression. For instance, the charge density contains a
second-order term, arising from the so-called Darwin correction in the Hamiltonian [19],
which reads p, = %A(\W\D). In general, Galilei covariance will be lost at second order,
but the resulting limits are still worth investigating as they are important to understand the
coupling of the Maxwell and Dirac equations in semi-relativistic effective field theories [13].

Finally, as a further development of this work, it will be interesting to perform the
same analysis on the generalized Maxwell equations including magnetic charge (magnetic
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monopoles), which are invariant under duality transformations. The present approach might
reveal, in that case, some interesting relationships and symmetries between the two Galilean
limits.
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