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Abstract
Conduction electrons in metallic nano-objects ( 1 nm = 10−9 m ) behave as mobile 
negative charges confined by a fixed positively charged background, the atomic ions. 
In many respects, this electron gas displays typical plasma properties such as screen-
ing and Langmuir waves, with more or less pronounced quantum features depend-
ing on the size of the object. To study these dynamical effects, the mathematical 
artillery of condensed matter theorists mainly relies on wave function �(r, t)-based 
methods, such as the celebrated Hartree–Fock equations. The theoretical plasma 
physicist, in contrast, lives and breaths in the six-dimensional phase space, where 
the electron gas is fully described by a probability distribution function f (r, p, t) that 
evolves according to an appropriate kinetic equation. Here, we illustrate the power 
and flexibility of the phase-space approach to describe the electron dynamics in 
small nano-objects. Starting from classical and semiclassical scenarios, we progres-
sively add further features that are relevant to solid-state plasmas: quantum, spin, 
and relativistic effects, as well as collisions and dissipation. As examples of applica-
tions, we study the spin-induced modifications to the linear response of a homoge-
neous electron gas and the nonlinear dynamics of the electrons confined in a thin 
metal films of nanometric dimensions.
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1 � Introduction: plasmas and nanophysics

The physics of metallic nano-objects has stimulated a vast amount of scientific inter-
est in the last 2 decades, both for fundamental research and for potential technologi-
cal applications to nanophotonics (Moreau et  al. 2012; Stockman 2011), physical 
chemistry (Daniel and Astruc 2004), and even biology and medicine (Hainfeld et al. 
2004; Tatsuro et al. 2006). Metallic nano-objects are mesoscopic systems composed 
of a relatively small number of atoms, typically between a few tens and several 
millions. The typical size of these systems ranges from a few to several hundred 
nanometres ( 1 nm = 10−9 m ), with properties that are intermediate between those of 
molecules and bulk solids. They can be synthesized in different geometries, ranging 
from spherical nanoparticles, to thin films, nanorods, cubes or pyramids (see Fig. 1).

Metallic nano-objects also present a fundamental interest as large objects that 
still display some quantum features (Luo et  al. 2013; Raza et  al. 2013; Scholl 
et al. 2012; Tame et al. 2013). Quantum effects arise because at metallic densities 
( n ≈ 1028 m−3 ), the electrons are so closely packed together that their wave func-
tions overlap even at room temperature, but also because of finite-size effects and 
the related presence of surfaces where the density varies significantly across very 
short distances (less than 1 nm).

Many of the optical properties of metallic nano-objects are mediated by their 
conduction electrons. The conduction electrons in a metal are delocalized over 
comparatively large distances, so that they can be treated, at least to first approxi-
mation, as an electron plasma confined by a fixed positively charged background, 
the atomic ions. Such plasma is known to display collective effects, giving rise to 
typical plasma properties such as pronounced resonances near the plasma fre-
quency �p =

√
ne2∕m�0 . Due to the very large electron density, the plasma period 

�p = 2�∕�p lies in the femtosecond range ( 1 fs = 10−15 s ). Thus, it is not surprising 

Fig. 1   Some examples of silver nano-objects with different shapes and sizes. From Cobley et al. (2009)
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that the study of collective electron resonances in nano-objects became possible fol-
lowing the development of ultrafast spectroscopy techniques (“pump-probe experi-
ments”) in the femtosecond regime (Bigot et al. 2000; Voisin et al. 2000). Today, 
plasmonic resonances are actively investigated for applications to such diverse areas 
as biomedicine (Loomba and Scarabelli 2013; Salata 2004) and high-harmonic gen-
eration (Butet et al. 2010; Singhal et al. 2010).

Spectroscopy experiments Pump-probe experiments involve a sequence of two 
ultrafast laser pulses. The first pulse (the pump) is more intense and excites the elec-
tron dynamics, while the second (the probe) is weaker and serves as a measure of the 
time-dependent response. A typical experimental scenario is depicted schematically 
in Fig. 2 for the case of a ferromagnetic nano-object, where the charge and the spin 
dynamics are closely intertwined. In the first few tens of femtoseconds, the electric 
field of the laser couples coherently to the electron charges [direct coupling between 
the laser magnetic field and the electron spins occurs only at very high intensities 
(Bigot et al. 2009)]. Some of the laser energy is absorbed by the electrons, which 
are then driven out of equilibrium. After the laser pulse is switched off, the electrons 
evolve coherently under the action the self-consistent mean field. A typical response 
mode is the so-called surface plasmon, which is a rigid-body oscillation of the entire 
electron cloud around the fixed ion lattice. For an ideal spherical nanoparticle, the 
oscillation frequency of the surface plasmon mode is equal too �p∕

√
3 . The surface 

plasmon eventually damps away by coupling to the single-particle modes, an effect 
that is akin to the standard Landau damping of ordinary plasmas. Such Landau 
damping, which occurs on a very short time scale (10–50 fs), was observed experi-
mentally in gold nanoparticles (Lamprecht et al. 1999) and was studied theoretically 
in several works (Kreibig and Vollmer 1995; Molina et al. 2002; Shahbazyan 2016).

However, electrons possess not only a charge, but also a spin—i.e., a mag-
netic moment—which is a crucial property for ferromagnetic nano-objects. A 

Fig. 2   Schematic diagram of the different physical processes and the associated timescales following the 
excitation of a ferromagnetic nano-object by a femtosecond laser pulse. From Bigot et al. (2009)
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remarkable result, first observed by Beaurepaire and Bigot in nickel films (Beau-
repaire et al. 1996; Bigot et al. 2009), is the ultrafast loss of magnetization occur-
ring during the first 100 fs that follows the laser pulse. Over 20 years after its 
discovery, there is no general agreement about the underlying causes of this 
ultrafast demagnetization, which was attributed to various mechanisms such as 
the spin–orbit interaction (Krieger et  al. 2015; Stamenova et  al. 2016) (a semi-
relativistic effect, as we shall see) or the superdiffusive electron transport induced 
by the laser field (Battiato et al. 2010).

During these initial ultrafast processes, the ionic background remains frozen 
and the electron energy distribution is nonthermal due to the laser excitation. For 
longer times ( t > 50 fs , see Fig. 2), the laser energy is redistributed amongst the 
electrons through electron–electron (e–e) collisions and spin-flip processes, lead-
ing to the internal thermalization of the electron gas. During this stage, the elec-
tron population can still be much hotter (up to several thousand degrees) than 
the ion lattice, which remains close to room temperature. Finally, on the picosec-
ond timescale, electron–phonon (e–ph) scattering leads to the exchange of energy 
between the electrons and the ion lattice and the subsequent thermalization of the 
full system.

Theory and modeling From a theoretical point of view, the description of the 
electronic dynamics in metallic nano-structures is a very complex challenge. Exact 
approaches based on the N-body Schrödinger equation are necessarily limited to a 
very small number of particles. Although such few or even single-electron systems 
can nowadays be realized in the laboratory, in most practical situations, a great many 
electrons are involved (Müller et al. 2004; Pereira and Wenzel 2004). In that case, 
self-consistent effects arising from the Coulomb interactions (between all the elec-
trons) play a crucial role on the dynamics. Several theoretical and computational 
studies, which treat the many-body dynamics in an approximate way, focused on the 
linear and nonlinear electron responses. Earlier works were based on macroscopic 
phenomenological models (Aeschlimann et  al. 2000; Guillon et  al. 2003; Reth-
feld et al. 2002) that employed Boltzmann-type equations within the framework of 
the Fermi-liquid theory (Pines and Nozières 1995). Studies based on microscopic 
models are more recent and limited to relatively small systems, due to their con-
siderable computational complexity. In the quantum regime, the ultrafast electron 
dynamics in metallic clusters was studied by Calvayrac et  al. (2000) and more 
recently by Teperik et  al. (2013) using time-dependent density functional theory. 
The many-particle quantum dynamics of the electron gas in a thin metal film was 
studied by Schwengelbeck et al. (2000) within the framework of the time-dependent 
Hartree–Fock approximation. All the above-mentioned methods, being essentially 
quantum, are based on the evolution of a set of wave functions �j(r, t) , each obeying 
a Schrödinger-like equation.

In this work, we will review a possible alternative that relies on the use of phase-
space models inspired from classical plasma physics, for which the system is gov-
erned by a probability distribution function f (r, p, t) that evolves according to a 
kinetic equation. Indeed, the semiclassical limit of the above-mentioned quantum 
models is the self-consistent Vlasov–Poisson system, largely employed in plasma 
physics.
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The Vlasov–Poisson model itself was used by several authors to model semi-
classically the electron dynamics in metal clusters (Calvayrac et al. 2000; Daligault 
and Guet 2003; Fomichev and Zaretsky 1999) and in thin metal films (Manfredi 
and Hervieux 2005a; Zaretsky et al. 2004). These works were later extended to the 
quantum regime using the Wigner phase-space description (Jasiak et al. 2009). The 
Wigner representation is a way to express standard quantum mechanics in a classical 
phase-space language and is suitable to treat both single-particle and many-particle 
systems. It is often more intuitive than the standard Schrödinger approach, especially 
for problems where semiclassical considerations are important. For these reasons, it 
is used in many areas of quantum physics, including quantum optics (Smithey et al. 
1993), semiclassical analysis (Dittrich et  al. 2010; Heller 1976), electronic trans-
port (Bertoni et  al. 1999), nonlinear electron dynamics (Jasiak et  al. 2009), and 
quantum plasma theory (Haas 2011). It is also the starting point for the construc-
tion of quantum hydrodynamic equations, which are approximate models obtained 
by taking velocity moments of the Wigner function. Such models were used in the 
past to study the electron dynamics in molecular systems (Brewczyk et  al. 1997), 
metal clusters and nanoparticles (Banerjee and Harbola 2000; Domps et  al. 1998; 
Manfredi et al. 2012), thin metal films (Crouseilles et al. 2008), quantum plasmas 
(Shukla and Eliasson 2006, 2010), and semiconductors (Haas et al. 2009).

The above studies included the electron charge, but not its spin. However, it is 
well known that spin effects [particularly the Zeeman interaction and the spin–orbit 
coupling (SOC)] can play a decisive role in nanometric systems such as semicon-
ductor quantum dots (Puente et al. 2000; Serra and Puente 2001) or diluted magnetic 
semiconductors (Morandi et  al. 2009; Morandi 2010). The coupling between the 
spin degrees of freedom and the electron’s orbital motion is of the utmost impor-
tance in many experimental studies involving magnetized nano-objects, such as the 
above-mentioned laser-induced ultrafast demagnetization (Bigot et al. 2009).

Phase-space models based on the Boltzmann equation (Thomas and Snider 1970), 
and the corresponding fluid models (Snider and Lewchuk 1967), were derived in 
the past to describe the dynamics of a gas where the constituents possess internal 
degrees of freedom (internal angular momentum). However, in these models the 
spin is not treated ab initio as a fundamental quantity, but is rather incorporated into 
the transport equations to ensure the correct conservation properties. More recently, 
a few theoretical models that include the spin in the Wigner formalism were also 
developed. One approach (Zamanian et al. 2010) consists in defining a scalar prob-
ability distribution that evolves in an extended phase space, where the spin is treated 
as a classical two-component variable (related to the two angles on a unit-radius 
sphere) on the same footing as the position or the momentum. This approach was 
used to derive a Wigner equation that incorporates spin effects through the Zeeman 
interaction (Zamanian et al. 2010). Semiclassical (Zamanian et al. 2010) and hydro-
dynamic (Asenjo et al. 2012) spin equations were also derived from those models, 
as well as other relativistic effects.

An alternative approach is to use a matrix form for the phase-space distribu-
tion function (Arnold and Steinrück 1989), which originates from the 2 × 2 den-
sity matrix for spin-1/2 particles. Using this approach, the corresponding Wigner 
equations were derived from the full Dirac theory (Bialynicki-Birula 2014). In their 
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semiclassical limit, these equations give rise to a matrix spin-Vlasov equation, which 
treats the electron motion in a classical fashion while preserving the intrinsically 
quantum character of the spin degrees of freedoms (Hurst et al. 2014, 2017). This 
approach was recently used to study the generation of spin currents in ferromagnetic 
thin films (Hurst et al. 2018).

Both approaches (extended phase space and matrix Wigner function) are equiv-
alent from the mathematical point of view. However, the extended phase-space 
approach leads to cumbersome hydrodynamic equations that are in practice very 
hard to solve, either analytically or numerically, even in the non-relativistic limit. 
The matrix technique separates clearly the orbital motion from the spin dynamics 
and leads to simpler and more transparent hydrodynamic models. From a computa-
tional point of view, the extended phase space method is more apt to be simulated 
using particle-in-cell (PIC) codes, because the corresponding distribution function is 
transported along classical trajectories in the extended phase space (which is eight-
dimensional: three positions, three velocities, and two spin angular coordinates). In 
contrast, the matrix Wigner function methods is more naturally amenable to grid-
based Vlasov codes, because the corresponding distribution function only depends 
on the six variables of the ordinary phase space.

Summary In this review, we will first recall the basic concepts, parameters and 
physical mechanisms characterizing the electron plasma in a solid nano-object 
(Sect.  2). This will be followed by a very short review of wave function-based 
methods (Hartree–Fock and density functional theory), which are the golden stand-
ard of computer simulations in condensed matter physics (Sect. 3). Then, we will 
introduce the Wigner phase-space representation of quantum mechanics (Sect.  4) 
and its extension to spin-1/2 fermions (Sect.  5). One of the attractive features of 
phase-space methods is that they can incorporate dissipative effects more naturally 
than wave function-based methods—this is described in Sect. 6. All the above con-
cepts are illustrated by two examples. First (Sect. 7), we study the linear response 
of a homogeneous electron gas including spin effects and derive the corresponding 
spin-dependent dispersion relation, for both Maxwell–Boltzmann and Fermi–Dirac 
equilibria. Second (Sect. 8), we summarize a series of computational studies on the 
nonlinear electron dynamics in thin metal films carried out in our research group 
over the last 15 years, culminating in the recent observation of spin currents in a fer-
romagnetic nickel film (Hurst et al. 2018).

2 � Basic concepts, parameters, mechanisms

In this paper, we focus our attention on the theoretical description of the electron 
dynamics in metallic nano-objects. Metals are condensed matter systems with the 
specificity of having a half-filled conduction band. The electrons that belong to the 
conduction band are not attached to a particle nucleus, but are rather delocalized in 
the material and behave, to first approximation, as a non-interacting electron gas. This 
property was exploited by Drude (1900) at the beginning of the twentieth century to 
derive approximate estimations of the electric and thermal conductivities of a metal. A 
more accurate understanding may be achieved by treating electrons as a one component 
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plasma, i.e., by considering the interactions between the electrons. Due to the large 
density of solid-state objects, such system display prominent quantum properties, thus 
deserving the name of “quantum plasmas”.

In a fermion gas, quantum effects become important when the temperature of the 
gas is comparable to, or smaller than, the Fermi temperature, defined as:

For metals, TF ≈ 104 K , and, therefore, conduction electrons are in the quantum 
regime even at room temperature. Indeed the Fermi–Dirac distribution deviates dras-
tically from the classical Maxwell–Boltzmann distribution for temperatures much 
lower than the Fermi temperature. Quite often it is a sufficiently good approximation 
to assume that the electron temperature is equal to zero. In that case, all energy lev-
els up to the Fermi energy EF = kBTF are occupied, whereas all levels with E > EF 
are empty, and the electron gas is said to be fully degenerate.

One also defines the Fermi velocity:

and with it, the Thomas–Fermi screening length: �TF = vF∕�p . This is the quantum 
analog of the classical Debye length �D =

√
�0kBTe∕(ne

2) , and represents the typi-
cal distance over which the Coulomb force is screened.

In the fully degenerate regime, the coupling parameter can be written as:

where Eint is the typical Coulomb interaction energy between two electrons situ-
ated at a distance d = n−1∕3 , rs is the Wigner–Seitz radius rs = (3∕4�n)1∕3 , and 
a0 = h2�0∕(�me

2) is the Bohr radius. The coupling parameter discriminates between 
the collisionless or weakly correlated regime ( gq ≪ 1 ), where two-body collisions 
are unimportant and the system can be described in the mean-field approximation, 
and the collisional or strongly correlated regime ( gq ≈ 1 ), where two-body correla-
tions cannot be neglected. From Eq. (3), the collisionless regime can be interpreted 
in various ways as the regime where: (1) the number of electrons in a Thomas–Fermi 
volume is large, (2) the plasmon energy ℏ�p is small compared to the Fermi energy, 
or (3) the Wigner–Seitz radius is small compared to the Bohr radius. The latter ratio 
is the one that is usually employed in solid-state and nanophysics and is often tab-
ulated in standard textbooks. The quantum coupling parameter gq should be com-
pared to its classical counterpart:

(1)TF =
ℏ
2

2mkB
(3�2n)2∕3.

(2)vF =

√
2EF

m
=

ℏ

m
(3�2n)1∕3,

(3)gq =
Eint

EF

∼
e2m

ℏ2�0 n
1∕3

∼

(
1

n�3
TF

)2∕3

∼

(
ℏ�p

EF

)2

∼
rs

a0
,

(4)gc =
e2n1∕3

�0kBTe
.
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Note that a quantum plasma becomes less strongly correlated at high densities, 
whereas the opposite is true for a classical plasma (Manfredi 2005) (this is because 
of the density dependence of the Fermi energy).

Finally, relativistic effects, in the quantum regime, may be quantified by the ratio 
vF∕c . This parameter is small ( ≈ 10−3 ) for electrons in metals, but becomes of order 
unity for n ≈ 1035 m−3 , which is compatible with the density of compact astrophysi-
cal objects like white dwarfs and neutron stars. Nevertheless, some low-order relativis-
tic effects—in particular, the SOC—may still be important for magnetic nano-objects, 
where the spin dynamics plays a crucial role. This will be discussed in Sect. 5.

An overview of the typical parameters for gold nano-objects is provided in Table 1.
The three dimensionless parameters gc , gq and Te∕TF depend on the density and the 

temperature of the electron gas, and determine four different regions in the (n, T) plane, 
represented in Fig. 3. We notice that electrons in metals are situated in the quantum and 
strongly coupled regime and indeed a quick estimation shows that for solid-state densi-
ties, the coupling parameter is of order unity (see Table 1). Nevertheless, the mean-field 
approximation is still used in condensed matter physics, in the form of the Hartree and 
Hartree–Fock equations, which will be reviewed briefly in Sect. 3.

This is in part due to the fact that e–e collisions are mitigated in degenerate (quan-
tum) plasmas by the so-called “Pauli blocking” effect, which is a consequence of the 
exclusion principle (Manfredi 2005). Without going into the details, this effect stipu-
lates that, in strongly degenerate plasmas, the electrons below the Fermi energy can-
not undergo any collisions, since most quantum states are already occupied. The col-
lision rate can be heuristically estimated as the inverse of the electron lifetime at finite 
temperature kBTe∕ℏ , multiplied by the number of electrons above the Fermi energy 
∼ Te∕TF , which yields: �ee ∼ kBT

2
e
∕(ℏTF) , or in dimensionless units:

Hence, the collision rate can be small even when the coupling parameter is of order 
unity, provided the temperature is low enough. This contrasts with the classical case, 

(5)
�ee

�p

∼ g−1∕2
q

(
Te

TF

)2

.

Fig. 3   Phase diagram of the 
various physical regimes as a 
function of the density and tem-
perature of the electron plasma
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where the collision rate scales as �ee∕�p ∼ g
3∕2
c  . This rough estimation yields an e–e 

collision time �ee = �
−1
ee

 of the order of the picosecond, thus much larger than the 
typical period of plasma oscillations. However, in current pump-probe experiments, 
the electrons absorb the laser energy very quickly, so that the “temperature” Te 
appearing in Eq. (5) should actually refer to the average kinetic energy of the result-
ing out-of-equilibrium electron gas, which can easily attain a few thousand degrees. 
This brings the theoretical e–e collision time down to 100 fs or less, depending on 
the intensity of the laser, which is consistent with the experiments (Fourment et al. 
2014). At the end of this phase, the electrons have thermalized to a temperature 
much higher than the lattice, which has not yet had the time to interact with the elec-
tron gas.

On even longer timescales, the electrons couple to the phonons, i.e., vibrations 
of the ion lattice. A detailed microscopic description of this phenomenon is very 
complex, so it it useful to resort to empirical macroscopic models. The two-tem-
perature model (TTM) is a simple description of e–ph interactions that considers 
two thermal baths for the electrons and the lattice, with temperatures Te and T l , 
which interact through a coupling constant G, and obey the evolution equations:

where � is the heat conductivity, Ce and Cl are, respectively, the electron and lattice 
heat capacities, G is the e–ph coupling constant, and P(t) is the power absorbed by 
the electron gas following the laser excitation. For gold, typical measured values of 

(6)C e (Te)
�Te

�t
=�∇2Te − G(Te − T l ) + P(t),

(7)C l

�T l

�t
=G(Te − T l ),

Table 1   Typical parameters 
for electrons in gold at room 
temperature

The values show that the relevant time, space, and energy scales are, 
respectively, the femtosecond, the nanometer, and the electron-volt

Parameter Value Units

rs 0.16 nm
n 59 nm−3

Te 300 K
2�∕�p 0.46 fs
TF 64000 K
EF 5.6 eV
ℏ�p 9.1 eV
vF 1.4 fm/ns

�TF 0.1 nm
� ee ≈ 50 fs
�e-ph ≈ 5 ps
gq 5.5 –
rs∕a0 3 –
v F ∕c 0.0047 –
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these parameters are (Ekici et  al. 2008): G = 2 × 1016 W m−3K−1 , 
Cl = 2.1 × 106 J m−3K−1 , and Ce = 70Te J m

−3K−1 . We note that Ce is rather close to 
the heat capacity of an ideal Fermi gas: CFermi =

�
2

2
nkB

Te

TF
 ( = 62.8 Te J m

−3K−1 for 
the density of gold). Since Cl ≫ Ce , the electrons respond much more quickly than 
the ions to the e–ph coupling. Neglecting the heat conductivity, the typical timescale 
is given by �e-ph ∼ Ce∕G ≈ 1 ps . At the end of this phase, the electron and lattice 
temperature are equilibrated. Finally, on even longer timescales ( ≈ 1 ns ) any excess 
temperature is evacuated into the external environment.

The various timescales, from the ultrashort laser pulse to the lattice relaxation are 
represented pictorially in Fig. 4.

In summary, there exists an early stage of the laser-induced electron dynam-
ics, lasting around 50  fs, which is essentially collisionless. This early stage can be 
described in the phase space by a Vlasov equation, or its quantum counterpart, the 
Wigner equation, as we will show in the remainder of this article. For longer times, 
collisions (either e–e or e–ph) should be taken into account. This is an issue where 
phase-space-based models have an advantage with respect to wave function-based 
ones. Indeed, there is a large literature on dissipative kinetic equations for classical 
plasmas (Boltzmann, Fokker–Planck, Lenard–Balescu, ...), which can inspire useful 
extensions to the quantum regime. In contrast, wave function-based methods, being 
essentially Hamiltonian, face more difficulty in incorporating dissipative effects.

3 � Wave function‑based methods: Hartree, Hartree–Fock, and DFT

The dynamics of N interacting bodies is a fascinating and challenging problem in 
physics. Classically, solving the exact N-body problem involves integrating the equa-
tions of motion of the N particles using some time-stepping technique. The compu-
tational cost of such an operation grows like N2 . Sometimes, using special tricks as 
in hierarchical tree codes, this can be brought down to N logN . For systems where 
the number of particles is very large, like plasmas, this is still a formidable problem, 
but it can be attacked using modern molecular dynamics techniques.

The quantum N-body problem is even worse, because the complexity of the Hilbert 
space of a system made of N particles grows exponentially with N. Indeed, a quantum 
system is described by the N body wave function:

Fig. 4   Pictorial view of the different timescales involved in the electron dynamics following the initial 
laser excitation
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where ri is the position of the ith particle. This evolves according to the Schrödinger 
equation:

where V(r) = e2

4��0

1

|r| is the Coulomb potential. The wave function lives in the 
3N-dimensional configuration space. If we use 10 points for each direction, then we 
need 103N points to code the whole wave function, which is a huge number even for 
small systems made of a few dozen particles.

It is clear, therefore, that some kind of approximation is mandatory if we want to 
model the dynamics of nano-objects that contain hundreds or thousands of electrons. 
In this section, we will briefly review the standard methods that are used in condensed 
matter theory to describe the electron dynamics. These fall in two broad categories: 
(1) Hartree and Hartree–Fock methods and (2) time-dependent density functional the-
ory (TD-DFT). Both are based on the propagation of some reduced one-body wave 
functions.

3.1 � The mean‑field approach: Hartree equations

The approximation leading to the Hartree equations is the same that is used classically 
to obtain the Vlasov equation from the N-body Liouville equation, namely, neglecting 
two-body (and higher order) correlations. Mathematically, this consists in factoring the 
N-body wave function into N single-particle wave functions:

This approximation was first considered by Hartree in 1927 (Hartree 1928), in the 
context of atomic physics, to describe the self-consistent effect of the atomic elec-
trons on the Coulomb potential of the nucleus. As we saw in the preceding sec-
tion, this mean-field approximation is valid only when the corresponding coupling 
parameter gq is small.

Using Eqs. (9) and (10), one obtains that the single-particle wave functions obey the 
following Hartree equations:

(8)�
N = �

(
r1, r2,… , rn, t

)
,

(9)iℏ
��

N

�t
= −

ℏ
2

2m

N∑
i=1

[
�2
i
�

N +

N∑
k=1,k≠i

1

2
V
(|ri − rk|

)
�

N

]
,

(10)�
N = �1

(
r1, t

)
�2

(
r2, t

)
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where the quantum states of each particle are labeled by the wave functions {
�
�
(r, t), � = 1,… ,N

}
 . The Hartree potential VH is the self-consistent potential cre-

ated by the ensemble of all electrons. The term Vsic is known as the self-interaction 
correction (SIC) and takes into account the fact that an electron should not interact 
with itself. The SIC is often neglected for classical plasmas, because its contribution 
goes like 1 / N, but in small nano-objects, it has sometimes to be taken into account. 
For instance, the SIC correction may be important to enforce the correct asymptotic 
behavior of the Coulomb potential ( ∼ 1∕r ) at long distances (Ullrich et al. 2000). 
Here, we shall neglect the SIC correction, so that Eq. (11) can be rewritten as a set 
of Schrödinger–Poisson equations:

The simplification achieved through the Hartree equations is enormous, because 
now we only need to solve N equations for a wave function evolving in three-dimen-
sional (3D) space. Using 10 points per dimension, we only need 103N points to 
encode the wave functions, instead of 103N for the full N-body problem.

3.2 � The exchange interaction: Hartree–Fock equations

However, the Hartree equations suffer from two problems. First, they violate the Pauli 
exclusion principle, which stipulates that two fermions cannot be in the same quantum 
state. Consequently, the total wave function should be antisymmetric with respect to the 
exchange of two particles, for instance exchanging particles 1 and 2:

This property creates some special (purely quantum) correlation between the fermi-
ons, which is known as the exchange interaction. In 1930, Fock (1930) proposed an 
exact method to describe the exchange interactions. He introduced the Slater deter-
minant (Slater 1929) to write the N-body wave function as follows:

In this case, the total wave function is no longer a product of one-body wave func-
tions, but it satisfies the antisymmetry property required by the Pauli principle. 
Using Eq. (14) into Eq. (8), one obtains the Hartree–Fock (HF) equations:
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The above HF equations differ from the Hartree equations by the last term in Eq. 
(15), which encodes the effect of the exchange interactions. Note that the exchange 
term cannot be represented as a Poisson equation like the Hartree term. It is inher-
ently nonlocal, in the sense that it couples all wave functions together, whereas in 
the Hartree case, the wave functions are only coupled through the partial densities 
|�

�
|2 appearing in Poisson’s equation (12). This fact renders the HF equations con-

siderably more difficult to solve numerically.
The second limitation, inherent to both the Hartree and the HF methods, is that 

two-body correlations are not taken into account. This drawback has been overcome 
since the advent of density functional theory (DFT), first for the ground state in the 
1960s, and then for time-dependent problems in the 1980s.

3.3 � Time‑dependent density functional theory (TD‑DFT)

A big step forward in the treatment of many-body problems was achieved thanks to 
the results of Hohenberg and Kohn (1964) and Kohn and Sham (1965), which can 
be summarize in two theorems. The first Hohenberg–Kohn theorem states that the 
ground-state properties of a many-electron system are exactly and uniquely deter-
mined by the electron density. This is a huge progress, as the extremely complex 
N-body problem (wave function depending on 3N spatial coordinates) has been 
reduced to find the correct electron ground-state density (3 spatial coordinates). The 
second Hohenberg–Kohn theorem states that the ground-state density can be found 
by minimizing a certain energy functional:

where T[n] is the kinetic energy functional, Eext[n] is the external energy, and Eint[n] 
is the Coulomb interaction energy. The interaction energy can be decomposed into 
the Hartree energy EH[n] , the exchange energy EX[n] , and the correlation energy 
EC[n]—the latter containing all higher order correlations beyond the mean field 
(Hartree) and the Pauli principle (exchange). The above expression (16) is in prin-
ciple exact, in the sense that we know that such functionals exist. However, some of 
the terms are not known and thus need to be approximated.

As an example, the old Thomas–Fermi theory (Thomas 1926) of the atomic elec-
tron gas can be viewed as an early precursor of modern DFT. In the Thomas–Fermi 
theory, exchange and correlations are neglected and the external potential is that of 

(15)
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e2

4��0
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|r − r′| dr′.

(16)
E[n] =T[n] + Eext[n] + Eint[n]

=T[n] + Eext[n] + EH[n] + EX[n] + EC[n],
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the atomic nucleus, Vext(r) = −Ze2∕4��0|r| . Then, we have for the external energy 
functional: Eext[n] = ∫ n(r)Vext(r)dr , and for the Hartree energy:

Finally, Thomas and Fermi chose a semiclassical functional for the kinetic energy of 
an ideal fermion gas at zero temperature:

Minimizing the total energy functional E[n] with the constraint ∫ n dr = N , yields 
the usual Thomas–Fermi equation for the ground-state density.

Apart from neglecting exchange and correlation effects, the main drawback of 
the Thomas–Fermi approach is its poor approximation of the kinetic energy func-
tional. To improve on this approximation, Kohn and Sham (1965) suggested that 
one uses the kinetic energy Ts[n] of a fictitious non-interacting electron gas, with the 
same density n as the original interacting one, which evolves in an effective poten-
tial Veff[n] = −eVH[n] + Vext + VX[n] + VC[n] . Each term of the effective poten-
tial is obtained as a functional derivative of the corresponding energy functional: 
Vk[n] = �Ek[n]∕�n . The Kohn–Sham (KS) equations are then:

where the �j are the single-particle wave functions of the fictitious non-interacting 
system. The electron density is then obtained as: n(r) =

∑
j pj��j(r)�2 , where the pj 

are occupation probabilities. The KS equations are potentially exact, provided one 
knows all the terms of the effective potential Veff[n] . Unfortunately, this is not true 
for the exchange and correlation potentials, for which we need to find approximate 
expressions.

This caveat notwithstanding, the KS accomplish the truly impressive task of repre-
senting in an exact way the full N-body problem through a set of one-body wave func-
tions. In addition, unlike the HF equations, the KS equations are local and only coupled 
to each other via the electron density n. Their computational complexity is thus similar 
to that of the Hartree equations. Thus, the KS equations can be seen as a way to make 
the Hartree approach exact by including the appropriate exchange and correlation func-
tionals. As the latter functionals are not known exactly, all the art of DFT is to find 
the best way to approximate them. The simplest choice is the so-called local-density 
approximation (LDA) (Kohn and Sham 1965), whereby the exchange and the correla-
tion functionals depend locally on the electron density. For instance, the LDA approxi-
mation for the exchange potential is

Many other sophisticated approximations have been developed over the years 
(such as the generalized gradient approximation, GGA), making DFT methods a 

(17)EH[n] = ∫ VH[n] n dr =
e2

4��0 ∫ ∫
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3

10
(3�2)2∕3

ℏ
2

m ∫ n5∕3dr.

(19)−
ℏ
2

2m
�2

�j(r) + Veff[n(r)]�j(r) = �j�j(r),

(20)VX = −
e2

4��0

(
3

�

)1∕3

n1∕3.



1 3

Reviews of Modern Plasma Physics            (2019) 3:13 	 Page 15 of 55     13 

cornerstone of computational materials science and theoretical chemistry (Jones 
2015).

A time-dependent version of DFT (TD-DFT) was developed by Runge and Gross 
(1984) in the 1980s. The Runge–Gross theorem stipulates that, for the same initial 
N-particle state, two external potentials differing only by a time-dependent function c(t) 
cannot give rise to the same density n(r, t) . Using this theorem, one can construct the 
time-dependent KS equations:

Compared to their static counterpart, the time-dependent KS have the additional dif-
ficulty of requiring a time-dependent approximation for the functionals. The sim-
plest choice is to use the same functional as in the ground state, but allowing a time 
dependence in the density. This is known as the adiabatic local-density approxima-
tion (ALDA). Note also that, by setting VX = VC = 0 in the KS equations, one recov-
ers exactly the time-dependent Hartree equations (11).

Finally, we stress that, since the time-dependent KS equations (21) have the same 
mathematical form as a set of nonlinear Schrödinger equations, they can be used to 
construct a phase-space formalism by taking the Wigner transform of the KS wave 
function.

4 � Quantum mechanics in the phase space

In this section, we summarize the main properties of Wigner’s phase-space formulation 
of quantum mechanics, which was first introduced by Eugene Wigner in 1932 to study 
quantum corrections to classical statistical mechanics (Wigner 1932). The goal was to 
link the wave function that appears in the Schrödinger equation to a pseudo-probability 
distribution defined in the classical phase space. This pseudo-probability distribution 
changes in time according to an evolution equation (Wigner equation) that is somewhat 
similar to the classical Liouville equation.

A mathematically rigorous treatment of the Wigner formulation is based on the 
Weyl transformation (Cohen 2013; Weyl 1927), which is a general method to transform 
operators defined in the Hilbert space into phase-space functions. We have developed 
these arguments at some length in a previous publication (Hurst et al. 2017), to which 
we address the reader for further details. Here, we will summarize the main properties 
of the Wigner approach for particles in electric and magnetic fields, with and without 
spin.

4.1 � The Wigner equation for a scalar electric potential

The density matrix of a quantum mixture of N particles is given by

(21)−
ℏ
2

2m
�2

�j(r, t) + Veff[n(r, t)]�j(r, t) = iℏ
��j(r, t)

�t
.

(22)� =

N�
�=1

p
�
����
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�
��,
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where p
�
 is the probability for one particle to be in the state �

�
 . The wave functions 

are supposed to obey a set of Schrödinger-like equations such as the time-dependent 
Hartree equations (12) or Kohn–Sham equations (21) discussed in Sect. 3.

The Wigner function of the system is defined as:

The Wigner function evolves in time according to the following Wigner equation:

where the subscripts ± denote the shifted positions r± = r ± �∕2 and V(r, t) indi-
cates a generic scalar potential, which can be the Hartree potential or the effective 
potential of TD-DFT.

The Wigner equation (24) is completely equivalent to the Schrödinger-like equa-
tions from which it is derived. Therefore, it provides a useful way to cast TD-DFT in a 
phase-space formalism without any loss of generality. In addition, the Wigner function 
can be used to compute all macroscopic quantities in the same way as a classical prob-
ability distribution. For instance, the particle and current densities:

Finally, the Wigner approach is particularly useful to obtain the semiclassical limit. 
By developing the integral term in (24) up to order O(ℏ2) we obtain:

The Vlasov equation is thus recovered in the formal semiclassical limit ℏ → 0.

4.2 � The Wigner equation in a magnetic field

So far, we did not include any magnetic effects. This approximation may be justified in 
some cases, for instance if we are only interested in plasmonic excitations. However, 
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magnetic interactions cannot be escaped if we want to include the spin degrees of free-
dom in our treatment. The introduction of a magnetic field in the Wigner formalism 
is not trivial. In the presence of magnetic fields, one should use the kinetic momen-
tum operator �̂ = p̂ − qÂ , instead of p̂ (with q = − e for an electron), where Â is the 
vector potential operator. However, it can be proven that simply substituting p with 
� ≡ mv in the definition (23) will not work, as the resulting Wigner function is not 
gauge invariant.

A gauge-independent definition of the Wigner function was first introduced by Stra-
tonovich (1957):

where the momentum p was replaced by mv − e ∫ 1∕2

−1∕2
d�A(r + ��).

After some rather convoluted algebra, one finally obtains the gauge-invariant Wigner 
equation for a spinless particle interacting with an electromagnetic field:

where ��̃  depends on the magnetic field and corresponds to a quantum shift of the 
velocity:

and Ẽ and B̃ are written in terms of the electric and magnetic fields

This form of the Wigner equation was first proposed by Serimaa et al. (1986), where 
the authors also discuss the case where the electromagnetic fields are quantized. In 
the classical limit, it is straightforward to see that: Ẽ = E , B̃ = B , and ��̃ = 0 , so 
that the Wigner equations becomes

thus recovering the classical Vlasov equation with the Lorentz force.
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5 � Spin and relativistic effects

5.1 � Semi‑relativistic Pauli equation

In the previous chapter, we omitted all mentions to the spin of the electrons. The spin 
is an intrinsic property of any elementary particle as much as the mass or the charge. It 
was first discovered in 1922 thanks to the experiments of Gerlach and Stern (1922) and 
was interpreted as an internal angular momentum of the electron. From a theoretical 
point of view, the spin appears naturally in the Dirac equation, which is the relativistic 
extension of the Schrödinger equation for spin 1/2 particles. For an electron interacting 
with an external electromagnetic field, the Dirac equation reads as:

where V(r, t) and A(r, t) are, respectively, the scalar and vector potentials. The opera-
tors � and � are 4 × 4 matrices

where � = (�x, �y, �z) is the vector of the 2 × 2 Pauli matrices

and �0 is the 2 × 2 identity matrix. Therefore, the wave functions �D(r, t) that obey 
to the Dirac equation (33) are four-component objects called bispinors.

The Dirac equation contains much more information than just the spin, as it 
deals at the same time with the dynamics of particles (electrons) and antiparticles 
(positrons), described, respectively, by the two upper (lower) components of the 
Dirac wave function. In our case, since we are only interested in the low-energy 
phenomena occurring in condensed matter physics, we would like to discard all 
effects related to electron–positron pair formation.

For this purpose, it is helpful to use the unitary Foldy–Wouthuysen transfor-
mation (Foldy and Wouthuysen 1950), which enables one to separate the electron 
and the positron dynamics in the Dirac equation. This transformation is exact in 
the field-free case, and leads to a semi-relativistic expansion in 1/c (where c is 
the speed of light) for a particle interacting with an electromagnetic field (Strange 
1998).

At second order in 1/c, the Dirac Hamiltonian transforms into the following 
semi-relativistic Pauli Hamiltonian (Dixit et al. 2013):
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where the electromagnetic fields are defined as usual as: E = −∇V − �tA and 
B = ∇ × A , and p̂ = −i�∇ . The first term on the right-hand side is the rest-mass 
energy of the electron; the next two terms are the standard non-relativistic Hamil-
tonian in the presence of an electromagnetic field; the fourth term is the Pauli spin 
term (Zeeman effect); the (p̂ + eA)4 term is the first relativistic correction to the 
electron mass (expansion of the Lorentz factor � to second order); the ∇ ⋅ E term 
is the Darwin term; and the last two terms represent the SOC. The wave function 
� = t(� ↑,� ↓) is a spinor, the upper and lower components describing, respectively, 
the spin-up and the spin-down electrons, and it obeys the spinorial Schrödinger 
equation: i�𝜕t𝛹 = Ĥ 𝛹 . Higher order extensions of the Foldy–Wouthuysen expan-
sion can be found in Hinschberger and Hervieux (2012).

The Zeeman and spin–orbit effects are of paramount importance to describe 
the magnetic properties of ferromagnetic nano-objects. For instance, there are 
strong indications that the SOC plays a crucial role in many experiments where 
the magnetisation is excited with optical pulses (Krieger et al. 2015). Thus, in the 
following, we will retain the Zeeman and SOC effects, but neglect the relativis-
tic correction to the electron mass (which would generate awkward fourth-order 
gradients in the Schrödinger equation) and the Darwin term. The latter is a mani-
festation of the so-called Zitterbewegung, i.e., a quivering motion of the electron 
around its mean path (Dixit et al. 2013), which is due to the interference between 
the positive and negative energy states in the Dirac equation. This term could be 
reintroduced in our treatment without much difficulty.

5.2 � The Wigner equation with spin

For spinless particles, the Wigner function is a scalar function related to the density 
matrix by Eq. (28). In the case of spin-1/2 particles, both the Wigner function F  and 
the density matrix � are 2 × 2 matrices:

where ↑, ↓ denote, respectively, the spin-up and spin-down components.
It is convenient to project the matrix F  onto the Pauli basis set (Barletti 2003; 

Morandi and Schürrer 2011):

where

Here, � = (�x, �y, �z) are the Pauli matrices and f = (fx, fy, fz).
With this definition, the particle density n and the spin polarization S of the elec-

tron gas are easily expressed as moments of the pseudo-distribution functions f0 and 
f :
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(39)f0 = Tr{F} = f ↑↑ + f ↓↓, f = Tr(F�).
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In this representation, the Wigner functions have a clear physical interpretation: f0 is 
related to the electron density (in the phase space), whereas fi ( i = x, y, z ) is related 
to the spin polarization density in the direction i. In other words, f0 represents the 
probability to find an electron at one point of the phase space at a given time, while 
fi represents the probability that the spin polarization of such electron is directed 
along the ith direction. One can prove the following interesting bound:

Equation (42) is a direct consequence of the property of the density matrix: 
Tr
(
�
2
) ≤ 1 . The equality sign holds true for a pure state or for a system where all the 

spins are aligned along the same direction (fully spin-polarized electron gas).
The full (quantum) evolution equation for the matrix Wigner function F  was derived 

in Hurst et al. (2014) and is mathematically very complicated. A better physical insight 
can be gained from its semiclassical limit, i.e., keeping only terms of order O(ℏ) . One 
obtains:

where the factor ℏ is hidden in the definition of the Bohr magneton �B = eℏ∕(2m) , 
which precedes all quantum corrections in Eqs. (43) and (44), and we used Ein-
stein’s summation convention over repeated indices i = x, y, z. Such quantum cor-
rections couple the orbital motion with the spin terms, through the Zeeman effect 
or the spin–orbit interactions. There are no quantum corrections to the orbital elec-
tron dynamics, because they would only appear at second order in ℏ . Therefore, the 
orbital motion of the electrons is purely classical and determined by the Lorentz 
force. In contrast, the spin degree of freedom is treated as a quantum variable.
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B −

1

2c2
(v × E)

]
× f

}
i
= 0,
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In summary, Eqs. (43) and (44) represent the semi-relativistic (order c−2 ) and semi-
classical (order ℏ ) form of the kinetic equations for particles with spin 1/2, which we 
shall term the “spin-Vlasov equations” in the following.

5.3 � Self‑consistency

Equations (43) and (44) can be used, in a mean-field approach, to describe the self-
consistent spin dynamics of an ensemble of interacting charged particles. In this case, 
the electric and the magnetic fields are solutions of the Maxwell equations:

where P and M are, respectively, a polarization and a magnetization vector. These 
terms arise because, in the Foldy–Wouthuysen procedure, both the Dirac Hamilto-
nian and the wave functions are expanded in powers of 1/c. The expansion of the 
wave function to order c−2 , entails that the charge and current densities are modified, 
as was shown using a variational method in Dixit et  al. (2013), Manfredi (2013). 
The resulting source terms are the following:

The spin-Vlasov equations (43) and (44), coupled to the Maxwell equations (45), 
constitute a self-consistent set of equations to describe the spin dynamics of an 
interacting electron gas in the mean-field approximation. Such mean-field approach 
can also be extended, in the spirit of TD-DFT (see Sect. 3.3), to include exchange 
and correlation effects by adding suitable potentials and fields that are functionals of 
the electron density (Manfredi et al. 2010).

(45)

� ⋅ E =
�

�0

−
� ⋅ P

�0

,

� ⋅ B = 0,

� × E = −
�B

�t
,

� × B = �0j + �0�0

�E

�t
+ �0

�P

�t
+ �0� ×M.

(46)� = −e∫ f0dv,

(47)j = −e

[
∫ vf0dv +

E ×M

2mc2

]
,

(48)M = −�B ∫ fdv,

(49)P = −
�B

2c2 ∫ v × fdv.
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5.4 � Scalar representation in an extended phase space

There exists another way to include the spin in a phase-space Wigner formalism, 
which is mathematically different but physically identical to the approach described 
in Sect. 5.2. The basic idea (Marklund et al. 2010; Zamanian et al. 2010) is to define 
an extended phase-space distribution g that depends not only on the position r and 
the velocity v , but also on a unitary vector s (defined by two angles on the unit-
radius sphere) which represents the spin direction:

where F
��

 is the matrix Wigner function as in Eq. (37), �
�,� is the Kronecker 

delta function, and �
�,� represents the (�, �) element of one of the Pauli matrices 

� = (�x, �y, �z) defined in Eq. (35).
The distribution g(r, v, s, t) is a scalar function that evolves in the extended 

phase space, which is, therefore, eight-dimensional (8D): three positions, three 
velocities, and two angles for the spin. This is in contrast with the approach of 
Sect.  5.2, where the phase space is the usual 6D one ( r, v ), but the distribution 
function is a 2 × 2 matrix. The correspondence relations between our distribu-
tion functions f0(r, v, t) and fi(r, v, t) and the scalar distribution g(r, v, s, t) used by 
Zamanian et al. (2010) can be written as:

The semi-relativistic theory in the extended phase space, equivalent to the matrix 
approach of Eqs. (43) and (44), was derived in Asenjo et al. (2012) and a fully rela-
tivistic extension of this scalar theory was established later in Ekman et al. (2017).

The semi-relativistic scalar kinetic equations reads as follows:

where the summation over repeated superscripts i = x, y, z is understood and we have 
defined the quantities

The deformed magnetic field B is the same expression that appears in Eqs. (43) and 
(44) and corresponds to the first relativistic correction to the Thomas precession 
(Dragan and Odrzygóźdź 2013; Thomas 1926).

(50)g(r, v, s, t) =
1

4�

2∑
�,�=1

(�
�,� + s ⋅ �

�,�)F��
(r, v, t),

(51)f0 = ∫ g ds, f = 3∫ s g ds.

(52)
�g

�t
+ w ⋅ �g −

e

m
(E + w × B) ⋅ �vg +

2�B

ℏ
s × B ⋅ �s g

(53)+
�B

m
(s + �s) ⋅

(
�
iB �

i
v
g
)
+

eℏ2

8m3c2
�
i(� ⋅ E) �i

v
g,

w = v −
�B

2mc2
E × (s + �s), B = B −

v × E

2c2
.
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The deformed velocity w is related to the spin–orbit correction of the velocity 
operator. Indeed, in the Heisenberg picture, the velocity operator V̂ is determined 
by the evolution equation of the position operator r̂:

where we used the Pauli Hamiltonian (36). The related phase-space function is

which is also the velocity appearing in Eqs. (43) and (44).
From a computational point of view, it is interesting to note that the matrix and 

the scalar formalism of the spin-Vlasov equations lend themselves better to two 
different families of numerical methods. The scalar formalism is better adapted to 
PIC methods, because the two degrees of freedom related to the spin only act as 
two additional labels attached to each particles. The computational cost is, there-
fore, only marginally greater than that required for spinless particles. In contrast, 
the scalar approach is hardly applicable to grid-based Vlasov codes, as it would 
require to mesh the extended 8D phase space. Grid-based codes are better suited 
for the matrix formalism, because the phase space is at most 6D and the only 
drawback compared to spinless particles is that one has to advance in time four, 
instead of one, distribution functions.

6 � Beyond the mean field: collisions and relaxation to equilibrium

The mean-field approach described so far is accurate to treat the electron dynamics on 
very short timescales ( < 100 fs ), see Fig. 4. On longer timescales (0.1–1 ps), the laser 
energy is redistributed among the electrons via e–e collisions, and finally delivered to 
the ion lattice via e–ph collisions.

One of the advantages of phase-space-based methods is that effects going beyond 
the mean-field approximation (e.g., two-body collisions) can be incorporated with rela-
tive ease in the governing equations. This is not the case for wave function-based meth-
ods (Hartree–Fock, DFT), which have an essentially Hamiltonian nature reflected in 
the unitary propagation of the wave function.

Collisions are dynamical correlations that cannot be included in adiabatic correlation 
functionals in TD-DFT. There have been some attempts to include potentially dissipa-
tive effects in TD-DFT. The most accomplished of such attempts is the so-called time-
dependent current-density functional theory (TD-CDFT) (Vignale and Kohn 1996), 
which uses the electron current density j(r, t) as the basic building block, instead of the 
density n(r, t) . However, the equations of TD-CDFT are mathematically very compli-
cated and not of easy implementation in practical situations.

For phase-space methods, the construction of dissipative terms can rely on the expe-
rience acquired in plasma physics. Generally speaking, the relevant kinetic equation 
(Vlasov, Wigner) may be augmented by a collision term of the form:

(54)V̂ =
1

i�

[
r̂, Ĥ

]
=

𝝅̂

m
−

𝜇B

2mc2
E × 𝝈,

(55)V = v −
�B

2mc2
E × �,
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We also note that it is conceptually harder to include collisions in fully quantum 
models. A significant constraint is that non-unitary corrections to the Wigner equa-
tion should be written in Lindblad form Lindblad (1976), which guarantees that the 
evolved Wigner function always corresponds to a positive-definite density matrix. 
This constraint is not always satisfied for the models described below.

In the following, we will discuss three different collision integrals for e–e and e–ph 
collisions, based on a relaxation term, a Boltzmann-like approach, and a Fokker–Planck 
approach.

Relaxation methods To model e–e collisions, a relaxation term can be added to the 
right-hand side of the Vlasov or Wigner equation (Manfredi and Hervieux 2005a):

where �ee is the average e–e collision rate and feq(r, v) is a Fermi–Dirac distribution. 
The idea behind this model is that the electron distribution will eventually relax, 
on a time scale of the order �−1

ee
 , towards a Fermi–Dirac equilibrium feq with total 

energy equal to that of the electron distribution f (r, v, t = 0+) after the initial excita-
tion. For electrons near the Fermi surface, the e–e collision rate can be written as 
Pines and Nozières (1995):

where Te is the instantaneous electron temperature. The proportionality constant 
can be estimated from experimental considerations or extracted from first-principles 
simulations (Domps et al. 1998).

Equation (57) conserves the total number of particles, but not the total momentum 
or energy. It can only ensure that the distribution function relaxes to the correct equilib-
rium distribution, but its relevance for the nonequilibrium transient is questionable. To 
conserve energy and momentum, the function feq[n, u, T] should be a local equilibrium 
with density n(r, t) , mean velocity u(r, t) , and temperature T(r, t) computed instantane-
ously from the electron distribution f (r, v, t) . Note that the task of computing the local 
temperature is not trivial for a Fermi–Dirac distribution.

Boltzmann-like methods A Boltzmann-like e–e collision integral that respects Pau-
li’s exclusion principle was devised long ago by Uehling and Uhlenbeck (1933):

where v12 is the relative velocity of the colliding particles 1 and 2, �(�) is the dif-
ferential cross-section depending on the scattering angle � , and indices 3 and 4 
label the outgoing momenta, fi = f (�, �i, t) and f i = 1 − fi∕2 . This collision term is 

(
�f

�t

)

coll

.

(56)
(
�f

�t

)

rel

≡ −�ee(Te)(f − feq),

(57)�ee(Te) = const. × (kBTe)
2,

(58)
(
�f

�t

)

UU

= ∫
d3��d�

(2�ℏ)3
�(�)|v12|(f1f2f 3f 4 − f3f4f 1f 2),
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similar to the well-known classical Boltzmann collision term but for Pauli block-
ing factors f if j . As seen in Sect. 2, Pauli blocking plays a major role for electronic 
systems. At zero electron temperature, all collisions are Pauli-blocked and the col-
lisional mean free path of the electrons becomes infinite. However, after a strong 
excitation, the distribution function is no longer a Fermi–Dirac one and collisions 
become possible. The effect of the above e–e collision term on the semiclassical 
Vlasov dynamics in metal clusters was investigated numerically in Domps et  al. 
(1998).

Fokker–Planck methods By coupling to the ionic lattice vibrations (phonons), the 
electrons progressively relax to a thermal distribution with a temperature equal to that 
of the lattice Tl . This behavior can be described phenomenologically using the TTM 
illustrated in Sect. 2. The typical relaxation time for metal nano-objects is �e-ph ≈ 1 ps . 
In addition, the lattice acts as an external environment for the electrons, leading to the 
loss of quantum coherence over a timescale �D (decoherence time). The relaxation and 
decoherence times correspond, respectively, to the decay of diagonal and nondiagonal 
terms in the density matrix describing the electron population.

Such effects can be modeled, in the Wigner representation, by a classical Fok-
ker–Planck (FP) term (Jasiak et al. 2010):

where Dr,v are diffusion coefficients in real space and velocity space, respectively, � 
is the e–ph relaxation rate, and G[f] is a functional that depends on the statistics and 
on the dimensionality of the system.

For classical particles obeying an exclusion principle, the corresponding FP equa-
tion was derived by Kaniadakis and Quarati (1993). For instance, G[f ] = f  for particles 
obeying Maxwell–Boltzmann statistics and G[f ] = f (1 − f ) for fermions in 3D. For 
fermions in 1D, which is the case of the electrons in thin films that we shall consider 
later, we assume that the electron distribution always remains a Fermi–Dirac one in the 
transverse directions (vy, vz) . Then, integrating the collision term (59) along these two 
directions, one obtains the expression G[f ] = f0[1 − exp(−f∕f0)] , where f0 =

3

4

n0

vF

Tl

TF
 , Tl 

is the lattice temperature, and f (x, vx, t) is now the 1D distribution function. The pre-
ceding expression must be changed slightly to account for the fact that the Wigner dis-
tribution can be negative: G[f ] = f0[1 − exp(−|f |∕f0)]sgn(f ).

It can be proven that (�f∕�t)e-ph = 0 when the electron distribution is given by a spa-
tially homogeneous 1D Fermi–Dirac distribution ( � is the chemical potential):

provided Dv and � satisfy the relation: Dv = �kBTl∕m . Thus, the FP term ensures 
that the electron distribution relaxes to a classical Fermi–Dirac distribution with a 
temperature equal to that of the lattice. The latter constitutes a perfect reservoir with 
infinite heat capacity, so that Tl remains constant.

(59)
(
�f

�t

)

e−ph

= Dr �
2
r
f + Dv �

2
v
f + ��v ⋅ (�G[f ]),

(60)feq(vx) =
3

4

n0

vF

Tl

TF
ln

[
1 + exp

(
−
mv2

x
∕2 − �

kB Tl

)]
,
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As seen in Sect. 2, the electron relaxation rate can be written as � ≡ �
−1
e-ph

∝ G∕Ce , 
where G is the e–ph coupling constant appearing in the two-temperature equations (6) 
and (7) and Ce is the electron heat capacity. For an ideal Fermi gas, the heat capacity 
depends on the temperature as Ce(Te) = �

2n0kB(Te∕2TF) . In a dynamical simulation, 
the electron temperature is a time-dependent quantity that can be computed self-con-
sistently from the Wigner distribution function f.

We note that a Vlasov or Wigner equation endowed with the e–ph collision term 
(59) can be viewed as the microscopic counterpart of the electron Eq. (6) in the phe-
nomenological TTM. This can be proven easily in the case of a 1D Maxwell–Boltz-
mann distribution, using the diffusion operator in the phase space:

The above collision term is in the Lindblad form whenever Dx Dv ≥ �
2
ℏ
2∕16m2 

(Lindblad 1976; Zurek 2003). Taking the first and second velocity moments of 
the Vlasov or Wigner equation (there are no quantum corrections to these orders), 
neglecting all electromagnetic fields, and defining the kinetic electron temperature 
in the usual way: kBTe = m⟨(v − ⟨v⟩)2⟩ , where ⟨A⟩ = ∫ ∫ fAdxdv denotes the phase-
space average, one obtains:

Then, taking Dv = �kBTl∕m and � = �
−1
e-ph

= G∕(2Ce) , we get:

which is the electron temperature equation (6) in the TTM with � = P = 0.
Finally, we would like to mention the recent work of Daligault (2016), who 

derived a quantum form of the Landau/Fokker–Planck collision operator.

(61)
(
�f

�t

)

coll

= Dx

�
2f

�x2
+ Dv

�
2f

�v2
+ �

�(vf )

�v
.

(62)
�Te

�t
=

2Dvm

kB
− 2�Te .

(63)Ce

�Te

�t
= G(Tl − Te) ,

Fig. 5   Schematic illustration of a surface plasmon resonance resulting from the collective oscillations of 
delocalized electrons in response to an external electric field. From Sun et al. (2016)
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7 � Application I: spin corrections to longitudinal plasma waves

The linear response of a homogeneous spinless electron gas has been studied the-
oretically for a long time, starting with the pioneering works of Vlasov (1938) 
and Landau (1946). The main linear mode is an oscillation at the plasma fre-
quency �p =

√
e2n0∕m�0 (“plasmon”) , corresponding to the collective motion of 

the electrons immersed in a neutralizing background of positive ions, which are 
assumed to be fixed because of the large mass difference between the two species.

In spherical nano-objects, a typical example of plasmonic oscillation is the 
localized surface plasmon (LSP), which originates from a displacement of the 
electron gas that creates a net charge imbalance (see Fig. 5). The resulting Cou-
lomb force pulls the electrons back inside the system but, due to their inertia, 
they will travel further away, thus recreating a new Coulomb force in the opposite 
direction. After a few cycles, the plasma oscillations are usually damped away 
through Landau damping, which results from the mixing of single-electron oscil-
lations at slightly different frequencies. LSPs have been observed in all sorts of 
nano-objects (Luo et  al. 2013; Raza et  al. 2013; Scholl et  al. 2012; Tame et  al. 
2013; Tanjia et al. 2018) and are one of the basic features of the fast-developing 
field of plasmonics (Manfredi 2018).

Here, our aim is to show a possible signature of the electron spin polarization 
on the plasmonic oscillations.

7.1 � General linear response theory

In this section, we will derive the dielectric function of the spin-Vlasov equations 
coupled to the relevant Maxwell equations and then find the associated dispersion 
relation. In general, this is a very complicated task. Here, we simplify the problem 
by assuming that the equilibrium ground-state distribution is homogeneous and iso-
tropic and that the electron spins are polarized along the z direction only (collinear 
approximation). Therefore, the diagonal components of the Wigner matrix for the 
spin-up and spin-down equilibria can be written as (only one arrow is used, to sim-
plify the notation):

where G can be a Maxwell–Boltzmann or a Fermi–Dirac distribution and 
B = Bez is a uniform magnetic field parallel to the z axis. From Eq. (39), one has: 
f
(0)

0
= f ↑(0) + f ↓(0) and f (0)

z
= f ↑(0) − f ↓(0).

The uniform magnetic field in Eq. (64) creates a difference between the spin-up 
and spin-down distributions; hence, it creates a net spin polarization at equilibrium. 
However, as it is homogeneous in space, it has no influence on the ensuing dynam-
ics. The equilibrium distribution functions also verify the following properties: 
∫ f

(0)

0
dv = n0 and ∫ f (0)

z
dv = m0 , where n0 and m0 are, respectively, the electron den-

sity and magnetization at equilibrium.
To obtain a tractable system of equations, we need to make several assumptions. 

First, we neglect the effect of the magnetic field on the orbital motion: thus, there is 

(64)f ↑(0)(|v|) = G
(
m|v|2∕2 + �BB

)
, f ↓(0)(|v|) = G

(
m|v|2∕2 − �BB

)
,
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no Lorentz force v × B in the Vlasov equations. Second, we consider purely longi-
tudinal plasma waves, with wave vector k = kex . Therefore, all physical quantities 
only depend on the spatial coordinate x, and the corresponding phase space (x, v) 
is 2D, where v ≡ vx stands for the x-component of the velocity. As was mentioned 
before, the electron gas is polarized along the z direction. With these assumptions, 
the spin-Vlasov equations (43) and (44), together with Maxwell’s equations (45), 
become:

where VXC[n] and BXC[n] are the exchange and correlation functionals (Maurat and 
Hervieux 2009), and Bz is the self-consistent magnetic field.

To perform the linear wave analysis, we expand all quantities around the equilib-
rium configuration. For the distribution functions, we have

and for the exchange and correlation potentials

and similarly for BXC . Inserting Eqs. (68) and (69) into Eqs. (65) and (67) and 
neglecting the second-order terms, we obtain the linearized spin-Vlasov equations. 
We then follow the standard Landau procedure of Fourier transforming in space and 
Laplace transforming in time. This leads to the dielectric function of the system:

(65)
�f0

�t
+ v �xf0 −

1

m
�x

(
−e� + VXC

)
�vf0 −

�B

m
�x

(
BXC + Bz

)
�vfz = 0,

(66)
�fz

�t
+ v �xfz −

1

m
�x

(
−e� + VXC

)
�vfz −

�B

m
�x

(
BXC + Bz

)
�vf0 = 0,

(67)
�
2
�

�x2
=

e

�0

(
∫ f0dv − n0

)
,

�Bz

�x
= −�B�0

�

�x

(
∫ fzdv

)
,

(68)
f0(x, v, t) =f

(0)

0
(v) + f

(1)

0
(x, v, t) and

fz(x, v, t) =f
(0)
z

(v) + f (1)
z

(x, v, t),

(69)
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where � is the frequency of the perturbation and k the wave number, and the 
integrals:

only depend on the ground-state properties. The zeros of the dielectric function 
determine the dispersion relation of the system: � = �(k).

Finally, one should specify the form of the exchange and correlation function-
als. The minimal requirement is to neglect correlations and take an exchange func-
tional that is spin dependent and local in space and time (Gunnarsson and Lundqvist 
1976):

The above functionals are the exact solutions of the Hartree–Fock equations in the 
case of homogeneous electronic densities. In our case, we are close to this situation, 
since we study perturbations around homogeneous ground states.

7.2 � Fermi–Dirac ground state

In the case of electrons in metals, the spin-up and spin-down ground states obey 
a Fermi–Dirac distribution in one dimension, obtained after integrating the 3D 
Fermi–Dirac function over the transversal velocities: f 1d(vx) = ∫ ∫ f 3d(v)dvydvz . 
Renaming v ≡ vx , we obtain the ground state distributions:

(71)I0,z(�, k) = ∫
�vf

(0)

0,z

� − kv
dv,

(72)VX[n,m] = −
e2

4��0

(
3

4�

)1∕3
[(

n + m

2

)1∕3

+

(
n − m

2

)1∕3
]
,

(73)�BBX[n,m] = −
e2

4��0

(
3

4�

)1∕3
[(

n + m

2

)1∕3

−

(
n − m

2

)1∕3
]
.

(74)f ↑
(0)

(v) =
2�kBT

m

(
m

2�ℏ

)3

ln

[
1 + exp

(
−

1

kBT

(
m

2
v2 + �BB − �

))]
,

Fig. 6   Chemical potential (red 
line) and electron magnetization 
(blue line) as a function of the 
external magnetic field in the 
case of a Fermi–Dirac ground 
state. The calculations were per-
formed for an electron gas with 
density n0 = 5.9 × 1028 m−3 
(gold) and temperature 
T = 300K . The dashed lines 
represent analytical solutions 
valid for |𝜇BB| ≫ EF
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where a magnetic field B = Bez is present to yield a spin-polarized system. The 
magnetic field can be either external or internal, i.e., originating from the local mag-
netic exchange interaction between the localized ions and the itinerant electrons. 
The chemical potential � is set to fix the electron density to n0 , i.e., 
∫ (

f ↑
(0)

+ f ↓
(0)
)
dv = n0 . This integration can be performed exactly only in the zero-

temperature limit, leading to the following identity:

where vF±
= ℜ

{√
2
[
�T=0 ± �BB

]
∕m

}
 , �T=0 is the chemical potential at zero tem-

perature, and ℜ denotes the real part. In the same way, we can express the magneti-
zation at equilibrium as follows:

In Fig. 6 we plot the polarization at equilibrium:

as a function of the magnetic field. For a magnetic field larger than EF∕�B , the 
electron gas is completely polarized. Note that, for metals, one typically has 
EF∕�B ≈ 105 T , which is a huge value for a magnetic field generated by external 
coils. However, internal magnetic fields due to the interatomic exchange interaction 
can reach such large values, an effect that is at the basis of ferromagnetism.

In the case of a totally unpolarized ( � = 0 ) or fully polarized ( � = 1 ) electron gas, 
Eq. (76) can be inverted exactly, leading to the following expressions for the chemical 
potential:

For intermediate cases ( 0 < |𝜂| < 1 ), one has to find �T=0 numerically. In Fig. 6, we 
plot the chemical potential as a function of the applied magnetic field in the case of 
a Fermi–Dirac distribution with a temperature equal to 300K and a density relevant 
to metals.

In general, the full determination of the dispersion relation has to be done numeri-
cally. However, in the limit of zero temperature and long wavelengths, i.e., k ≪ |𝜔|∕vF , 
one can develop the integrals I0 and Iz , defined in Eq. (71), in a power series of kv∕� , 
leading to:
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(79)�T=0 = EF (for � = 0),

(80)�T=0 = 22∕3EF ± �BB (for |�| = 1).
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Using these expressions together with the dielectric function defined in Eq. (70), we 
get the following dispersion relation:

Equation (83) constitutes an extension of the celebrated Bohm–Gross dispersion 
relation in the case of a fully degenerated ( T = 0 ) spin-polarized electron gas with 
exchange and magnetostatic interactions. All the dispersive terms depend on the 
electron density n0 and the spin polarization � . The second term on the right-hand 
side corresponds to the electron degeneracy pressure. The third and fourth terms 
represent, respectively, the exchange and the magnetostatic contributions.

To assess the relative importance of each term, it is useful to express Eq. (83) in 
non-dimensional form:

where CX = 2∕(12�2)5∕3 ≈ 0.017 , f (�) = (1 + �)4∕3 + (1 − �)4∕3, 
�C = ℏ∕(mc) = 3.86 × 10−4 nm is the reduced Compton wavelength, and 
�TF = vF∕�p is the Thomas–Fermi screening length. The first term in the curly 
brackets is the dominant one. The next term is small except for very large magnetic 
fields, of the order of EF∕�B ≈ 105 T for metallic densities. The third term is due to 
the spin-dependent e–e exchange interaction. It is a beyond-mean-field contribution, 
as is evidenced from the fact that it is proportional to the quantum coupling param-
eter gq ∼ rs∕a0 (see Sect.  2). The fourth term originates from the self-consistent 
magnetostatic contribution, see Eq. (67), and it is almost always negligible, since 
for metals �TF ≈ 0.1 nm (Table 1). All these corrections have an opposite sign with 
respect to the leading term, but they can never render the right-hand side of Eq. (84) 
negative. Indeed, when rs∕a0 ≫ 1 , correlation effects (here neglected) start playing a 
role, so that the resulting frequency is always real.
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Interestingly, even in the absence of magnetic interactions, the dispersion relation 
still depends on the spin polarization. Indeed, in the limit of an unpolarized (� = 0) 
or fully polarized (|�| = 1) electron gas and using Eqs. (79) and (80), the dispersion 
relation becomes:

This behavior is specific to the Fermi–Dirac distribution function and is absent in 
the case of a Maxwell–Boltzmann equilibrium, as we shall see in Sect. 7.3. A spin-
polarization dependence of the longitudinal Langmuir modes was predicted in Hurst 
et  al. (2014), where it was shown, using a fluid model, that the pressure tensor is 
spin-dependent.

To obtain an explicit form of the dispersion relation, we have used the long wave-
length approximation ( k ≪ |𝜔|∕vF ), which allowed us to avoid the singularity in the 
integrals of Eq. (71). As is well known, the correct treatment of the singularity leads to 
a complex � and the appearance of Landau damping. However, this is a delicate math-
ematical issue when considering a Fermi–Dirac distribution (Vladimirov and Tyshet-
skiy 2011), due to the particular form of the Fermi–Dirac function, which has several 
singularities in the complex plane. We could not obtain a satisfactory solution to this 
problem and thus leave it open for the time being. In the next section, we will study 
a Maxwell–Boltzmann distribution, for which the calculations can be performed all 
along, at least numerically.

7.3 � Maxwell–Boltzmann ground state

The plasma dispersion relation for spinless systems, obtained from the Vlasov–Pois-
son equations with a Maxwell–Boltzmann equilibrium, was intensively studied in the 
plasma physics literature since the seminal work of Landau. In that case, the dispersion 
relation can be fully evaluated even in the strong damping regime.

For a system of electrons endowed with spin, the Maxwell–Boltzmann distributions 
read as:

where vT =
√
2kBT∕m is the thermal speed and � = tanh

[
�BB∕

(
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)]
 represents 

the spin polarization of the electrons gas. In this case, the integrals I0 and Iz in Eq. 
(71) become:
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We use the Landau contour method (Lyu 2014) to compute the integral in Eq. (89). 
For this purpose, we introduce the plasma dispersion function:

where �  is a contour in the complex plane following the real axis at infinity and 
passing under the singularity z = � . This function, originally introduced by Fried 
and Conte (1961), is well defined for ℑ(𝜔) > 0 and can be analytically continued in 
the lower part of the complex plane, i.e., for ℑ(𝜔) < 0 . Then, the integrals I0 and Iz 
can be expressed in terms of the plasma dispersion function:

where the following property was used: Z�(�) = −2�Z(�) − 2. Using the above 
expressions for I0 and Iz and the local density approximation of VX and BX [see Eqs. 
(72) and (73)], one obtains the following dielectric function for the Maxwell–Boltz-
mann equilibrium:
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The zeros of the dielectric function provide the dispersion relation �(k) of the 
system. The latter can be obtained analytically in the long wavelength limit, i.e., for 
k ≪ |𝜔|∕vT and � ∈ ℜ . In that case, the derivative of the plasma dispersion func-
tion can be developed in a power series:

leading to the following dispersion relation:

We recover almost the same expression as with the Fermi–Dirac ground state, see 
Eq. (83).

To obtain the full dispersion relation, we use ZEAL (Kravanja et al. 2000), a 
mathematical software package for computing the zeros of analytic functions. The 
dielectric function is parameterized by the electron density n0 and the temperature 
T. We first consider an electron gas having a metallic density n0 = 5.9 × 1028 m−3 
(gold). Since the corresponding Fermi temperature is very high ( TF = 64, 000K ), 
we need to use a temperature of the same order of magnitude for the Max-
well–Boltzmann approximation to be valid. Here, we take exactly T = TF . The 
zeros of the dielectric function, Eq. (93), are shown in Fig. 7. They are symmetri-
cally located with respect to the vertical axis, which is due to the symmetry prop-
erties of the plasma dispersion function. We also note that there exist an infinite 
number of zeros (black crosses) for which the imaginary part of the frequency 
is larger than the corresponding real part. These solutions are irrelevant for the 
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Fig. 7   Zeros of the dielec-
tric function, Eq. (93), in the 
complex plane. The symbols 
correspond to different types 
of modes: plasmon modes 
(blue circles), paramagnon 
mode (red square), and strongly 
damped modes (black crosses). 
The following parameters are 
used: n0 = 5.9 × 1028 m−3 , 
T = 64, 000K , and k = 0.4kD , 
where kD = 2�∕�D
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dynamics, as they are rapidly damped away. Finally, there are three other zeros 
that have a different origin. Two of them, represented by blue circles, correspond 
to the plasmon response at the plasma frequency. For small value of k, they have 
a real part larger than the imaginary part, therefore, they are weakly damped and 
govern the dynamics of the system according to the long-wavelength dispersion 
relation Eq. (95).

The last zero (red square) has a vanishing real part and disappears when the 
magnetic exchange interactions are removed. This zero corresponds to a para-
magnon mode, i.e., an oscillation in antiphase of the two spin populations (up and 
down), with no associated charge excitation. For infinite systems, it was shown 
that paramagnons have a vanishing real frequency (Jones and March 1985), 
which is in accordance with the result of Fig. 7. Their real frequency can become 
nonzero for systems with finite size (Yin et al. 2009).

Further, exchange interactions do not only lead to paramagnons, but also mod-
ify the plasmonic excitations. In Fig. 8, the plasma dispersion relation is depicted 
for two different physical systems. The first (Fig. 8, top panel) corresponds to the 
case of electrons in a metal, with the density of gold n0 = 5.9 × 1028 m−3 and tem-
perature T = 64 000K . As already mentioned, the temperature had to be set very 
high for the Maxwell–Boltzmann distribution to be a valid approximation. The 
second system (bottom panel) corresponds to an artificial case where the electron 
density is about n0 = 1022 m−3 . For such a system, the Fermi temperature is close 

Fig. 8   Complex-valued frequency �(k) for two different physical systems. a Electron gas with metallic 
density n0 = 5.9 × 1028 m−3 (gold) and high temperature T = TF = 64, 000K ; b low-density electron gas 
with n0 = 1022 m−3 and T = 300K . For both panels, the upper lines represent the real part of � , whereas 
the lower lines represent the imaginary part. The black lines refer to the case without exchange interac-
tions, the blue lines to a fully polarized system ( � = 1 ), and the red lines to an unpolarized system ( � = 0)
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to 2K so that, at room temperature (here, we take T = 300K ), it is justified to use 
a Maxwell–Boltzmann equilibrium.

In the metallic case (Fig. 8, top panel), the resonant frequency is dominated by 
the electrostatic interactions, while the exchange interactions do not change signifi-
cantly the dispersion relation. They may decrease slightly the value of the frequency 
for larger values of k, but in this case, the plasma oscillations are strongly damped. 
Moreover, there are no appreciable changes in the dispersion relation depending on 
the spin polarization of the electron gas. In contrast, in the idealized low-density 
system (Fig. 8, bottom panel) exchange interactions play a significant role. For small 
wave numbers, the plasmon frequency decreases instead of increasing and we note 
a signature of the spin polarization, in particular a shift in k for the minimum of the 
plasmon frequency.

8 � Application II: nonlinear electron dynamics in thin metal films

Thin metal films have long been the object of intense investigations in many subfields 
of nanophysics. They constitute key components in many modern technologies, rang-
ing from integrated circuits to sensors. From a more fundamental point of view, due 
to the symmetry reduction and the associated electron confinement, thin metal films 
exhibit properties (both static and dynamic) remarkably different form their bulk coun-
terparts. They are usually made of noble (Au, Ag, ...) or simple metals (Na, K, ...) and 
their sizes typically vary from a few nanometers to several hundred nanometers (Mani-
yara et  al. 2019). As a notable example, the first experimental signature of ultrafast 
demagnetization was observed in thin nickel films in 1996 (Beaurepaire et al. 1996).

In this section, we illustrate the usefulness of phase-space methods to study the 
ultrafast electron dynamics in thin metal films. The particular geometry of thin 
films, whereby their thickness is much smaller than the transversal size, means that 
they can be described by a one-dimensional (1D) model, at least as far as longitu-
dinal modes are concerned. Here, we mainly report on earlier work of ours on this 
topic, spanning the years from the early 2000s until today. The simulations are of 
increasing complexity. In Sect. 8.1, the electron motion is purely classical and fol-
lows the Vlasov equation, although the ground state is described by a Fermi–Dirac 
distribution. The main effect observed in these simulations is the emergence of a 
nonlinear ballistic mode due to bunches of electrons that travel across the film at 
the Fermi speed of the metal. Section 8.2 revisits this effect using a fully quantum 
Wigner model and it is a good example of interplay between wave function methods 
(used to compute the ground state) and phase-space methods (used to compute the 
dynamics). The Wigner simulations allow us to identify the parameter range where 
the ballistic oscillations may be observed. Finally, in Sect. 8.3, the description of the 
electron dynamics is augmented to include the spin degrees of freedom, according 
to the theoretical considerations presented in Sect. 5.2. The inclusion of these effects 
allowed us to study ballistic modes that include a magnetic component, thus explor-
ing the possibility to generate a spin current in the film via an electromagnetic pulse.
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8.1 � Thin metal films: Vlasov

Several experiments have shown (Brorson et al. 1987; Suárez et al. 1995) that elec-
tron transport in thin metal films occurs on a femtosecond timescale and involves 
ballistic electrons traveling at the Fermi velocity of the metal vF . Later, a regime of 
low-frequency nonlinear oscillations, corresponding to ballistic electrons bouncing 
back and forth on the film surfaces, was measured in transient reflection experiments 
on thin gold films (Liu et al. 2005). These experimental findings were corroborated 
by the Vlasov–Poisson simulations carried out in our research group (Manfredi and 
Hervieux 2004, 2005a, b), which are summarized in this section.

In these simulations, the electrons are initially prepared in a 1D Fermi–Dirac 
equilibrium at finite (typically, room) temperature:

where �(x, vx) = mv2
x
∕2 − e�(x) and � is the electrostatic self-consistent potential, 

solution of the Poisson equation:

For the ion charge distribution, we use a jellium model with continuous density 
ni(x) = n0∕

(
1 + exp

[
(|x| − L∕2)�

])
 , where L is the thickness of the film, n0 is the 

ion density of the bulk metal and � ≈ 0.1 nm represents the typical distance over 
which the density falls to zero on the border of the film. The density profile is 
sketched in Fig.  9. The ions are supposed to be fixed during the electron motion 
because their typical timescale is significantly longer than that of the electrons. The 
effect of ionic vibrations (phonons) will be addressed in Sec. 8.2.

The electrons are subsequently excited by imposing a constant velocity shift 
�v = 0.08vF to the initial equilibrium distribution, after which they evolve accord-
ing to the 1D Vlasov–Poisson equations. This scenario is appropriate when 
no linear momentum is transferred parallel to the plane of the surface (i.e., 
k∥ = 0 ), so that only longitudinal modes can be excited. As a reference case, we 
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Fig. 9   Schematic view of the 
ion density profile in a thin 
metal film
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studied a sodium film ( rs = 4a0 , where a0 is the Bohr radius) with initial tempera-
ture Te = 0.008 TF ≈ 300 K and thickness L = 10�TF ≈ 12 nm , where �TF is the 
Thomas–Fermi screening length.

We consider the evolution of several energy quantities: (1) the self-consistent 
potential energy Epot =

�0

2
∫ (�x�)2dx , (2) the center-of-mass energy 

Ecm =
1

2
∫ j2

e
(x,t)

ne(x,t)
dx (where je = ∫ vxfedvx is the electron current), and (3) the ther-

mal energy Eth . The latter is defined as: Eth = Ekin − Ecm − ETF , where the total 
kinetic energy is Ekin =

m

2
∫ v2

x
fedvx . The Thomas–Fermi energy, defined as 

Fig. 10   Time evolution of the 
thermal, potential (electrostatic) 
and center-of-mass energies. 
From Manfredi et al. (2010)

Fig. 11   Phase-space portraits of the electron distribution function at different times. Here, and in the 
forthcoming figures, LF is the same as the Thomas–Fermi screening length �TF. From Manfredi et  al. 
(2010)
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ETF =
EF

5
∫ ne(x)

5∕3dx , represents the kinetic energy of a state with same density but 
vanishing temperature and mean velocity, so that Ekin(Te = 0) = ETF.

During an initial rapidly oscillating phase, the center-of-mass energy is almost 
entirely converted into thermal energy, due to Landau damping, whereas the thermal 
and potential energies reach a plateau. This plateau is characterized by low-fre-
quency oscillations with a period close to 50�−1

p
≈ 5.3 fs . This period is close to the 

time of flight of electrons traveling ballistically through the film at the Fermi veloc-
ity of the metal. The existence of such nonlinear ballistic mode is the main novel 
observation reported in Refs. Manfredi and Hervieux (2004, 2005a). Later, we pro-
posed to exploit this ballistic mode to enhance the absorption of infrared light in the 
film (Manfredi and Hervieux 2005b).

The phase-space portraits of the electron distribution, shown in Fig. 11, clearly 
reveal that the perturbation starts at the film surfaces and then proceeds inward at 
the Fermi velocity of the metal. The structure formation at the Fermi surface, which 
has spread over the entire film for 𝜔pt > 150 , is responsible for the increase of the 
thermal energy (and thus the electron temperature) observed in Fig. 10. As no col-
lisional terms are present, the low-frequency oscillations of Fig. 10 are never com-
pletely damped away.

To include the effect of e–e collisions in a simple manner (Manfredi et al. 2010), 
we have augmented the Vlasov equation by a relaxation term, as described in Sec. 6. 
The constant in Eq. (57) is taken to be ≈ 0.4 fs−1eV−2 , which was obtained from 
first-principles numerical simulations of the electron dynamics in sodium clusters 
(Domps et al. 1998). The electron temperature is computed instantaneously during 
the simulation, and plugged into the expression for the collision rate Eq. (57). When 
this collision model is applied to our case, the slow ballistic oscillations of Fig. 10 
are still observed, but they are damped away on a timescale of the order of 
500�−1

pe
≃ 50 fs (see Fig. 12).

8.2 � Thin metal films: Wigner

One of the most important properties of metal films, when their thickness is reduced 
to only a few nanometers, is the quantization of the energy levels along the direction 
perpendicular to the film surface (quantum size effects). The continuum that charac-
terizes the bulk materials is replaced by a discrete spectrum of quantum states with 

Fig. 12   Evolution of the thermal energy for a case with e–e collisions. From Manfredi et al. (2010)
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their energies and wave functions depending on the boundary conditions (Eguiluz 
et al. 1984). The consequent modifications of the electronic structure with respect to 
a classical description lead to significant changes in their physical properties and, as 
shown in the following, their dynamical behavior.

Our numerical study of the quantum electron dynamics in thin metal films 
is performed in two steps: first, the ground state of the electron population (pos-
sibly at finite temperature) is determined self-consistently; subsequently, the equi-
librium distribution is perturbed by injecting some energy into the system. The 
quantum dynamics is then described by solving the time-dependent Wigner equa-
tion (24) coupled to the Poisson equation. Although the Wigner approach is a fully 
quantum-mechanical description, it is intrinsically ill-suited to deal with stationary 
states (indeed, quantization rules are overlooked in the Wigner formalism and must 
be imposed as additional constraints). Therefore, it is more convenient to determine 
the ground state from a standard density functional approach (Kohn–Sham equa-
tions) and then to construct the corresponding Wigner function from the computed 
Kohn–Sham wave functions.

Fig. 13   Ground-state electron and ion densities for a sodium film with L = 50�TF and Te = 300K in the 
classical (VP) and quantum (WP) regimes. The inset shows a zoom near the film surface

Fig. 14   Ground-state Wigner 
function f(x, v) for a sodium film 
with L = 50�TF at Te = 300K
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The electron gas is assumed to be at thermal equilibrium with temperature 
Te , as in the Vlasov approach described above in Sect.  8.1, while the ions are 
described by a continuous, immobile density with soft edges, as in Fig.  9. The 
electrons obey a Fermi–Dirac distribution at the corresponding temperature (for 
more details about the model, see Jasiak et al. 2009). The Kohn–Sham equations 
(19) are solved numerically using a finite-difference iterative method (Eguiluz 
et al. 1984). Some typical density profiles are shown in Fig. 13. In this example 
N = 18 Kohn–Sham orbitals are occupied. The classical Vlasov–Poisson result 
(VP) yields a smooth density profile, without spatial oscillations. In the quantum 
regime (labeled WP), the standard Friedel oscillations are observed, particularly 
near the film surface (see the inset). Note that the profiles are weakly depend-
ent on the electron temperature, because all considered cases are in the strongly 
degenerate regime Te ≪ TF.

After computing the N Kohn–Sham wave functions �k(x) and their respec-
tive occupation numbers pk (Jasiak et al. 2009), we can proceed to construct the 
ground-state Wigner function f(x, v). We first compute the partial Wigner func-
tions corresponding to each Kohn–Sham wave function �k of the ground state:

The total Wigner function (Fig. 14) is given by the sum of the partial Wigner func-
tions, weighed by the occupation numbers pk , f (x, v) =

∑N

k=1
pkfk(x, v).

To study the electron dynamics, we make use of the evolution equation for 
the Wigner function (24). In the classical limit (i.e., taking ℏ → 0 ), this equa-
tion reduces to the Vlasov equation that was used in our previous works, sum-
marized in Sect.  8.1. The Wigner results were obtained with a numerical code 
based on a uniform grid covering the relevant phase space (Suh et al. 1991). The 
method combines a splitting technique with fast Fourier transforms in the veloc-
ity coordinate.

Similarly to the Vlasov simulations described in Sect. 8.1, the electron dynam-
ics is excited by perturbing the ground-state equilibrium. Again, this is done by 
imparting a uniform velocity shift �v to the initial distribution. The ensuing electron 
dynamics also reveals some low-frequency oscillations for the thermal and potential 
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Fig. 15   Period of the low-
frequency ballistic oscillations 
as a function of the perturba-
tion �v , for Wigner–Poisson 
simulations of a thin film of 
thickness L = 50�TF and differ-
ent temperatures in the range 
Te = 0−2000K
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energies, as in the Vlasov case. By plotting the observed period T of the low-fre-
quency oscillations against the value of the perturbation (see Fig. 15), we observe an 
interesting feature. While, for a large excitation �v , the period is close to the ballistic 
value T = L∕vF (as in the Vlasov simulations, see Sect. 8.1), it diverges from this 
classical value below a certain excitation threshold �vth

This departure from the ballistic oscillation period constitutes a clear transition 
between the classical and the quantum regime. The estimation of the threshold value 
requires the investigation of the microscopic electron dynamics in the phase space. 
In the classical case, we saw that the ballistic oscillations are due to bunches of non-
equilibrium electrons traveling at the Fermi speed between the two surfaces of the 
film (Fig. 11). These bunches (i.e., vortices in the phase space) have a spatial exten-
sion roughly equal to 2��TF and a width of the order of �v in velocity space. The sur-
face of the these vortices in the phase space (which has the dimension of an action) 
is thus approximately A ≈ 2��TFm�v . Quantum effects are expected to become sig-
nificant when this action is of the same order as Planck’s constant, i.e., A ≈ ℏ . For 
sodium, this leads to the following estimate for the threshold: �vth ≈ 0.15vF , which 
is fairly close to the observed value (see Fig. 15). This is confirmed by the inspec-
tion of the classical and quantum phase-space portraits, as seen in Fig. 16. For the 
large excitation �v = 0.15vF , the phase-space vortices are clearly visible in the quan-
tum Wigner simulations and they resemble the analog vortices of the Vlasov case. 

Fig. 16   Plots of the electron distribution function in the phase space at different times, �pt = 35 and 
�pt = 50 , for a large excitation �v = 0.15vF (left panel) and a small excitation �v = 0.06vF (right panel). 
Top panels: classical results; bottom panels: quantum results
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In contrast, the vortices have completely disappeared in the low-excitation case 
( �v = 0.06vF ), whereas they are still present in the corresponding Vlasov portraits.

So far, we focussed exclusively on the ultrafast (up to ≈ 100 fs ) electron dynam-
ics, while the ionic background was assumed to be frozen. To describe the long-time 
dynamics ( > 1 ps ) it is mandatory to include e–ph interactions in the model (see 
Fig. 4 for a visual representation of the various timescales). In Jasiak et al. (2010), 
we developed a microscopic phase-space model, based on the quantum Wigner dis-
tribution, which encompasses all relevant timescales from the femtosecond plasmon 
oscillations up to the phonon-mediated coupling to the ionic lattice, which occurs 
on a picosecond time scale. The main ingredients of the model are summarized in 
Sect. 6 in the paragraph devoted to Fokker–Planck methods.

For a system of quantum particles interacting with an environment, two dis-
tinct timescales are particularly important. The relaxation time measures the speed 
at which the energy is exchanged between the electrons and the lattice, while the 
decoherence time represents the typical time over which quantum correlations are 
lost to the external environment (here, represented by the ion lattice). In a density 
matrix language, the relaxation time corresponds to the decay of the diagonal terms, 
whereas the decoherence time is related to the nondiagonal terms of the density 
matrix.

Fig. 17   Negative values of the Wigner distribution function in the phase space, at four different times �pt 
= 1000, 5000, 10,000, and 20,000
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Our simulations (see Jasiak et al. (2010) for details) showed that the relaxation 
time is of the order of �R ≈ 2−3 ps , for the sodium films considered here. It also 
increases with the amplitude of the excitation, in agreement with measurements per-
formed on sodium clusters (Maier et al. 2006).

In our phase-space representation, the decoherence time �D is defined in a dif-
ferent way compared to the density matrix approach. We recall that the Wigner 
distribution function f(x,  v,  t) can take negative values. The degree of “classical-
ity” of a Wigner distribution can thus be estimated from the weight of its negative 
parts (Deléglise et  al. 2008; Kenfack and yczkowski 2004). The negative part of 
the Wigner function in the phase space is shown in Fig. 17 at different times, for a 

Fig. 18   Evolution of the total 
negative part of the Wigner 
function S(t), for different exci-
tations �v (in units of vF ), with 
the corresponding exponential 
fits (red curves)

Fig. 19   Top panel: decoher-
ence time as a function of the 
excitation amplitude for two 
values of the lattice temperature. 
Bottom panel: decoherence 
time as a function of the lattice 
temperature for two values of 
the excitation amplitude
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typical case. As time goes on, the quantum distribution progressively loses its nega-
tive values and becomes more and more classical.

To quantify more precisely this loss of classicality, we define the “negativity” of 
the distribution function as S(t) = ∫ ∫ f

<
(x, v, t)dxdv , where f

<
= −f  if f < 0 and 

f
<
= 0 elsewhere (S is then a positive quantity). The typical behavior of S(t) is dis-

played in Fig. 18. The initial equilibrium distribution possesses only small negative 
parts, so the initial value of S(0) is rather small. Soon after the excitation, when the 
system is driven out of equilibrium, S grows very rapidly, then it decays more slowly 
to zero for longer times.

The decoherence time �D can be estimated by fitting S(t) (after the initial sudden 
growth) with a simple decaying exponential function Sfit(t) = S0 exp(−t∕�D) . We 
observed that the the decoherence time �D increases with the excitation energy and 
decreases with the lattice temperature (Fig.  19), also in agreement with measure-
ments on thin metal films (Komori et al. 1987). At room temperature ( T = 300K ) 
the decoherence time is roughly �D ≈ 0.4 ps , shorter than the relaxation time 
�R ≈ 3 ps.

8.3 � Thin metal films: spin effects

In this section, we extend the above investigation of the electron dynamics in 
thin metal films by including the spin degrees of freedom. To this end, we turn 
to ferromagnetic materials and study the coupled charge and spin dynamics in 
nickel films. We will use the self-consistent spin-Vlasov model defined in Eqs. 
(43) and (44). To keep the model as simple as possible, we restrict our problem to 
a reduced phase space (x, v), where the electrons are only allowed to move in the 
direction normal to the surfaces of the film (x). We only take into account elec-
trostatic interactions through the Poisson equation and disregard effects due to 
exchange and correlations. The spin–orbit interaction, a higher order effect in c−2 , 
is also neglected. With these assumptions, the set of spin-Vlasov–Poisson equa-
tions that we solve is the following (see Sect. 5.2):

where k = (x, y, z) and Ex = −�x�.
The typical parameters of the nickel films under consideration, expressed in both SI and 

atomic units (a.u.) are as follows: rs = 2.6 a.u. = 0.14 nm , n0 = 0.0136 a.u. = 91.8 nm−3 , 
Tp = 2��−1

p
= 15.32 a.u. = 0.37 fs , vF = 0.74 a.u. = 1.62 nm fs−1 , 

�TF = 1.80 a.u. = 0.095 nm and EF = 0.27 a.u. = 7.34 eV . We have studied films of 
thickness L = 5 nm.
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In a realistic model of ferromagnetism, one should take into account the elec-
tronic structure of nickel, which comprises ten valence electrons of which eight 
are in the 3d shell and the remaining two are in the 4s shell. The 3d electrons are 
more localized around the ions than the 4s electrons. Therefore, we model the 4s 
(“itinerant”) electrons with the spin-Vlasov equations (99), whereas the localized 
3d electrons and the corresponding nuclei  form a motionless positively charged 
background. The localized ions interact among themselves and with the itiner-
ant electrons through magnetic exchange. The internal magnetic fields involved in 
these interactions can be very strong, of the order of 103−104 T , and are responsi-
ble for the ferromagnetic properties of nickel. A study of laser-matter interaction 
using such realistic model of itinerant and localized magnetism was used recently 
to study spin-current generation in a nickel film (Hurst et al. 2018).

Here, to illustrate the main effects of the spin dynamics, we shall use a simpli-
fied “toy” model, where the internal magnetic field (generated by the magnetic 
ions) is replaced by a uniform external field of similar intensity directed along 
the z axis: B = Bez . This field will be responsible for the spin polarization of the 
electron gas. Hence, in this toy model the ions have no magnetic properties and 
are simply taken as a positively charged density ni(x).

The ground state of the system is given by a 1D Fermi–Dirac equilibrium, 
see Eqs. (74) and (75). In practice, the ground state is obtained self-consist-
ently by plugging Eqs. (74) and (75) into Poisson’s equation and solving for 
� (for instance, iteratively) and then injecting the obtained potential back into 
the Fermi–Dirac distributions. This procedure can be performed numerically 
and the resulting ground state is shown in Fig.  20 for different magnetic fields. 
As expected, when B = 0 the electron gas is totally unpolarized, meaning that 

Fig. 20   Self-consistent ground state for a 5  nm nickel film. Left panel: spin-resolved electron and ion 
densities for an external magnetic field B = 0.25BF . Right panel: spin polarization of the electrons in a 
nickel film (red stars) as a function of the magnetic field; the black dashed line represents the theoretical 
prediction for a free electron gas at zero temperature
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the spin-up and spin-down densities are identical. Increasing the magnetic field 
induces a partial polarization of the electron gas, which becomes fully polarized 
when B approaches BF = EF∕�B . The relation between the magnetic field and the 
degree of polarization is in agreement with the free electron gas model at zero 
temperature.

To simulate a laser pulse excitation, we shift the ground-state distributions f↑ and 
f↓ in the velocity space by an amount �v = 0.05vF . This is equivalent to applying 
an instantaneous electric field in the direction normal to the film surfaces. We per-
formed several simulations starting from different ground states with increasing spin 
polarization. To characterize the spin dynamics, we study the time evolution of the 
magnetic dipole:

as well as the electric dipole

Both dipoles vanish in the ground state.
The dynamics of the magnetic dipole is shown in Fig. 21 for the different spin-

polarized ground states. For an unpolarized electron gas ( B = 0 ), the magnetic 
dipole remains equal to zero, as the spin-up and spin-down distribution functions 
are identical for all times. For a partially polarized ground state, the magnetic dipole 
mainly oscillates at the ballistic frequency �b = 2�vF∕2L = 2�∕6.17 fs−1 . These 
oscillations are similar to the ballistic oscillations observed in non-magnetic materi-
als (see Sects. 8.1 and 8.2) and correspond to electrons traveling back and forth in 
the film at the Fermi speed.

(100)⟨X⟩m = ∫ ∫ xfz(x, v, t) dxdv,

(101)⟨X⟩e = ∫ ∫ xf0(x, v, t) dxdv.

Fig. 21   Time evolution of the magnetic dipole for several values of the external magnetic field B 
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The presence of a magnetic dipole implies that the spin-up and spin-down elec-
tron populations oscillate out of phase, because:

Since the spin-up and spin-down components were excited in phase in the initial 
excitation, we deduce that their dephasing occurs during the first instants of the 
dynamics (roughly the first 5  fs in Fig.  21, before the magnetic dipole is clearly 
formed). One can show that this dephasing is a subtle effect due to the interplay 
of the self-consistent dynamics with the presence of strong electric fields at the 
boundaries of the film (Hurst et al. 2018). When the electron gas is fully polarized 
( B = BF ), no magnetic dipole is observed, simply because only one component 
(spin-up or spin-down) is present. Some faster oscillations at the plasma frequency 
�p = 2�∕0.37 fs−1 are also observed, but are rapidly removed by Landau damping. 
It is interesting to stress that, while the plasmon mode is quickly damped away, the 
magnetic mode at intermediate values of B persists for much longer times.

Importantly, these ballistic oscillations of the magnetic dipole are still 
observed if one uses a more realistic model for both the magnetic mate-
rial and the laser-film interaction (Hurst et  al. 2018). We also stress that 
an oscillating magnetic dipole is equivalent to an AC spin current, since: 
d⟨X⟩m∕dt = ∫ vxfzdxdvx = ∫ vx(f↑ − f↓)dxdvx = J↑ − J↓ ≡ JS

xz
 , where JS

xz
 is a spin 

current that propagates in the direction x and is polarized along z (in the general case 
JS is a tensor, see Hurst et al. 2014). Thus, the generation of a time-dependent mag-
netic dipole amounts to the generation of a spin current, which is an important issue 
for modern spintronic devices (Alekhin et al. 2017).

Finally, in Fig. 22, we show the time evolution of the electric dipole. Note that 
this is the same for all values of the magnetic field, because there is no backreaction 
of the spin dynamics on the charge dynamics in this toy model—see Eqs. (99) with 
a constant magnetic field. The electric dipole shows prominent plasmon oscillations 

⟨X⟩m = ∫ ∫ x
�
f↑(x, v, t) − f↓(x, v, t)

�
dxdv.

Fig. 22   Time evolution of the electric dipole
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that decay away through Landau damping. A weak signature of the ballistic mode 
can be seen between 5 and 15 fs.

9 � Conclusions

A number of advanced methods to model the many-electron dynamics in nano-
metric condensed matter systems have been developed over the years. In particu-
lar, TD-DFT has been developed to such a high level of accuracy to be capable of 
reproducing quantitatively many experimental results on large molecules and small 
nano-objects. Recent developments have extended its range of application to the 
spin dynamics (Krieger et al. 2015), shedding new light on old, but never properly 
understood, problems such as the ultrafast demagnetization occurring in ferromag-
netic nano-objects illuminated with a laser pulse (Beaurepaire et al. 1996). All these 
methods are based on the propagation of a set of wave functions according to some 
Schrödinger-like equations. Notwithstanding these successes, TD-DFT and Har-
tree–Fock methods remain computationally very costly for large nano-objects con-
taining more than a few hundred electrons. They are also not easily compatible with 
dissipative dynamics, because of their intrinsically Hamiltonian (hence, unitary) 
character, in spite of recent attempts to include dissipation in a mean-field formalism 
(Dinh et al. 2018).

Here, we have made a case for an alternative approach based on Wigner’s rep-
resentation of quantum mechanics in the classical phase space. Phase-space mod-
els are certainly not a panacea and remain computationally costly for large systems. 
But they do have some advantages, in particular: (1) they are better adapted for the 
semiclassical limit and to compare to classical results, (2) they can profit from exist-
ing numerical methods, either grid-based or particle-based, which have been devel-
oped over the years most notably in the plasma physics community, (3) they can be 
adapted to include non-unitary evolutions to model dissipative effects, and, last but 
not least, (4) the phase-space representation can be a powerful visual aid to help 
intuition and to display the numerical results.

The main scope of this review was to summarize the theoretical basis of 
phase-space methods in condensed matter physics, particularly at the nanoscale 
(Sects. 1–6) and to illustrate these concepts through two relevant examples, namely 
the propagation of linear waves in an infinite medium (Sect.  7) and the nonlin-
ear electron dynamics in thin metal films (Sect. 8). Beyond this, we would like to 
increase the awareness of plasma physicists for the emerging field of nanoplasmon-
ics, i.e., the study of collective effect arising from the interaction between elec-
tromagnetic radiation and free electrons in metallic nano-objects (Manfredi 2018; 
Stockman 2011), which is evolving very rapidly since its beginnings in the 1980s. 
The topics treated here show that the methods and tools of plasmas physics can 
be fruitfully extended and adapted to model typical plasma phenomena occurring 
in solid-state nanometric devices. Given these common goals and approaches, the 
present review hopes to encourage future exchanges between the plasmonics and 
plasma physics communities.
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