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The main drawbacks of the original free-streaming equations for edge localised mode transport in the
scrape-off layer [W. Fundamenski, R.A. Pitts, Plasma Phys. Control Fusion 48 (2006) 109] are that the

plasma potential is not accounted for and that only solutions for ion quantities are considered. In this
work, the equations are modified and augmented in order to address these two issues. The new equations
are benchmarked against (and justified by) a numerical simulation which solves the Vlasov equation in
1d1v. When the source function due to an edge localised mode is instantaneous, the modified free-
streaming ‘impulse response’ equations agree closely with the Vlasov simulation results. When the
source has a finite duration in time, the agreement worsens. However, in all cases the match is encour-
agingly good, thus justifying the applicability of the free-streaming approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Edge localised mode (ELM) plasma instabilities will probably be
present in future tokamak devices employing high-confinement
mode. Due to the large energies contained in ELMs, it is important
to understand the physical mechanisms which govern the duration
and area over which they spread their energy onto divertor targets.
In this regard, the free-streaming model for ELM transport in the
SOL (conceived in [1]) has proven useful. It has been successfully
used to fit experimental time profiles of the ELM target power on
JET and ASDEX Upgrade [2] and on TCV [3]. It has not, however,
been properly benchmarked against a numerical kinetic simula-
tion. This is an important step in understanding the validity of
the physics assumptions made in the free-streaming model and
is the topic of this contribution.

In the original free-streaming model for ELM transport in a flux
tube of open field lines [1], all Coulomb forces are ignored. The ion
distribution function f;(x, »,t) is assumed to evolve according to
the 1d force-free Vlasov equation

of o
a"r ya_sl(x’ v, t)7 (1)

where x € [-L, L] is the 1d spatial coordinate, v is the parallel veloc-
ity, S; is the ion source function and L is the connection length. For
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the initial value case where S; =0 and fi(x, v,t = 0) = fi, (1) has
solution fiR = finit(x — pt, v,t). Considering an initial Gaussian den-
sity profile n;(x, t = 0) = ny exp(—x?/20?) and an initial velocity dis-
tribution that is Maxwellian with temperature Ty, this gives

fiIR :fiinit(x —ut, v, t)

= g exp - ot ! exp (— v )» )
20° V2T v 203

where vrp = \/To/m; is the initial ion thermal speed (typically, the
actual values used for Ty and 1y are those associated with the ped-
estal region, since that is where the ELM originates). Note that this
initial value case is identical to the case of an impulse source in
time: S; = 5(t)fi"t. Therefore, fiR is called the free-streaming ‘im-
pulse response’ ion distribution function. Furthermore, since (1) is
linear, the response to an arbitrary source can be found by convolv-
ing that source with f%, i.e. fi = fF «S; .

In the interest of finding expressions for experimentally mea-
surable quantities, velocity moments of f} are taken. For the zeroth
moment (i.e. the ion density) this gives an analytic expression (see
Eq. (4)). Higher moments, however, must be calculated numeri-
cally. If analytic expressions are required for these higher mo-
ments, then the limit ¢ — 0 can be assumed (it will be shown in
Section 4 that this assumption has little effect on the solution at
temporal and spatial coordinates of interest). This ¢ — 0 limit cor-
responds to a Dirac delta function for the initial density, i.e.
ni(x,t = 0) = v27nyed(x), so that Eq. (2) gives
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15 = Ma3(x— 00) 2L exp(—12/20%). 3)

Taking velocity moments of f/* | now yields equations for mea-
surable quantities (such as the ion energy flux density on the tar-
gets), as previously given in [1] and [4].

As recognised in [1], the primary drawback of the approach de-
scribed above is that the role of the electric potential has been ig-
nored. Furthermore, expressions have thus far only been derived
for ion quantities and not for electron quantities. In this paper,
these two omissions will be accounted for in modified free-stream-
ing equations, justified on the basis of a numerical Vlasov simula-
tion. That simulation is now discussed.

2. Kinetic simulation observations

The code, used for all the simulations presented in this paper,
solves the collisionless 1d1v Vlasov equation for electrons and
ions, with the electric potential calculated from the Poisson equa-
tion. It is described in detail in [4]. The particular simulation ana-
lysed in this section is the one presented in Section 4.1 of [4]. To
allow comparison with the impulse response free-streaming equa-
tions, there was no electron or ion source in this initial value sim-
ulation. The initial ion and electron densities were set equal:
ni(x,t = 0) = ne(x,t = 0) = npexp(—x?/20%), with ¢ =0.1L. The
ion and electron velocity distribution functions were initially Max-
wellian with equal ion and electron temperatures: Teg = Tip = To.
As a result, for both ions and electrons, the initial total number
of particles was Ny = v2mngo, the initial parallel energy was
Ejo =1/2NoTo and the initial gyro-energy was E o = NoT,. Note
that, in fact, No has units of particles/unit area, while Ejo and E,,
have units of energy/unit area. The area here is perpendicular to
x and all quantities in this 1d model are an average over this area.
Note also that there was no interaction between parallel and gyro-
motion and the temperature associated with gyration was as-
sumed to remain constant for all time and space, at a value Tj.
The mass ratio and ion charge were hydrogenic:
A =m;/m, =1836, Z =1, and the boundary conditions at the
walls were fi(x = £L) = fo(x = L) = ¢(x = £L) = 0. The actual val-
ues of Ty, ng and L are only important in so far as they set the ratio
2 = Jpo/L, where Apg = /€ To/€2ny is the initial Debye length at
peak density. A value of . =102 was used here (Note that
although this value of 2 is ~10° times larger than for realistic
ELM parameters, the solution remained almost unchanged for
smaller values [4]).

Consider now the transfer of parallel energy from electrons to
ions. Fig. 1a shows the total parallel energy in the ions and elec-
trons as a function of time for the simulation described above (nor-
malised to Ep). By time t = 0.167, the electrons donate 71% of

2 1 1
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Fig. 1. (a) Total parallel energy in the ions and electrons as a function of time
according to the Vlasov simulation. (b) The parallel-integrated distribution func-
tions when t =0 and when t = 0.1674, according to the simulation (solid lines).
Shown for comparison is the dotted line, which is a Maxwellian with standard
deviation cy. (c) Density profiles when t = 0 and when t = 0.167. All figures only
shown for positive x only due to symmetry of the solutions about x =0 .

their initial parallel energy to the ions (here, 750 = L/cy is the loss
time at the initial sound speed, cso = v1i0v/1 + Z). Furthermore, as
shown in Fig. 1b, this energy transfer corresponds to a transition
in the simulated parallel-integrated ion distribution function,
fint = [fi(x, v,t)dx, from a Maxwellian with standard deviation
vro at t=0 to a Maxwellian with standard deviation ¢y at
t = 0.167yx (note that in the Fig. 1bfj”‘ is normalised to its maxi-
mum initial value, fii). Finally, Fig. 1c shows n;/n, (as a function
of x/L) when t = 0 and when t = 0.167. These plots demonstrate
that the bulk plasma has not moved far from its initial position by
the time the aforementioned transition has occurred (in fact, the
particle flux density to the target peaks on a timescale ~ty, as will
be shown in Fig. 5).

As a result of the timescale for the transition being significantly
shorter than the timescale on which the bulk plasma reaches the
target, the Maxwellian with standard deviation ¢y, can be assumed
as an initial condition. After the transition, there is no longer any
parallel energy available in the electrons to accelerate the ions,
so that the ions will free stream towards the targets. Thus it is ex-
pected that the free-streaming model should be able to account for
the electric potential acting on the ions by simply substituting
vrio — Cso in Eq. (2) (or in Eq. (3) if 0 — O is assumed). This is a
key result of this paper. Although this substitution has been made
previously in other publications [2,3,5], it has never been physi-
cally justified by the rapid transition to a Maxwellian with stan-
dard deviation ¢y observed in a kinetic simulation which
corresponds to the free-streaming ELM.

To assess the validity of the assumption that the plasma is col-
lisionless, the timescale on which electrons donate energy to ions
should be compared to the shortest collision time, i.e. the elec-
tron-ion collision time, given by T, ~ 1.67 x 10" x T3/?n;1z!
[6], where T. has units of eV and n. has units of m=3. For
Teo = To = 1500 eV o = 5 x 10" m~3, L = 30 m and hydrogen ions,
the initial electron-ion collision time is 19 ps, whereas the time-
scale on which the electrons donate their energy to the ions is
~ 0.16L/c; = 9 ps. Thus, we expect electron-electron collisions to
alter the electron distribution function, but only after the energy
transferral has occurred. This is of little importance, since by then
the ions carry the majority of the parallel kinetic energy. Neverthe-
less, since t,; is of a similar order to the electron-to-ion energy
transferral time, we accept that electron-electron collisions may
play a role in ELM parallel transport and their effect will be inves-
tigated in a future study.

3. Modified impulse response free-streaming equations

Making the substitution vy — ¢y in (3) and taking appropriate
integrals of f/®_, gives impulse response equations for the total ion

number Nj*(t) = [*}},(Jf®_,dx)dv, the total ion energy Ef(t) =

Ef +Ef = fo/t ;m *([fR ,dx)dv+N{*To, the ion
= [flR_.d the ion pR(x,t)
dv+ n’RTo, the ion flux density I*(x,t) = [ offs_od
and the ion density Q (x,t) = QlH + Q
SImAfR o dv+ T{To. For electrons, the same quantities can be
derived by assuming quasineutrality and using energy conserva-
tion. That is, the electron density is assumed to move with the

ion density, but electrons have only their gyro-energy since they
are assumed to immediately donate all of their parallel energy to
the ions. Thus NX=ZzNF, n®=2znfk, X =2zIF, EX=NZ’T,,
PR — nikT, and Q' = I'"T,. These electron equations are a simple
but important addition to the free-streaming model, presented
here for the first time. The resulting equations, for both ions and

density
nik(x,t) :pfﬁ+pf’i:

J‘ImUZ

pressure

i,0-0
energy flux
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Table 1

Modified free-streaming equations for the total number of particles, total energy,
density, pressure, particle flux density and energy flux density. Each quantity is given
for ions (j = i) and electrons (j = e).

NE(t) ER (1)
No Ejo
j=i o T /2 1t )2 2R
erf( 72 (1+2Z){erf(Jg) — %o\ /Zexp (-3 (%) )} + J-
j=e g e
z ~ 2 i
nf(x.t) pf(xt)
no noToy
j=i a/L exp (7 (x/L)? ) n® [ L2
/%0 me?) w21+ 2) (T’zgo) +1
j=e nik niR
o ny
I (xt) Qf(xt)
TNoCso noCsoTo
j=i x/L * [y x/L\2%
t/T50 no noCso 2 (1 +Z)(t/no) +1
j=e I rf
Z"oczc NoCso

electrons, are given in Table 1 (note that j € {i,e} is the species
index).

It should be recognised that the equations in Table 1 were de-
rived using f®_, i.e. in the limit & — 0. Without this assumption,

an analytic solution could only be derived from (2) for the density,
as follows:

M:/ﬂw

B nyo /L - (x/L)?
() + (@) P ( 2((t/70)" + <a/L>2>) @

(note that (4) corresponds to the equation in Table 1 when ¢ — 0).
For the other quantities, arbitrary values of ¢ can be accounted for
by convolving the equations in Table 1 with an appropriate function
representing the initial density distribution in x. For an initial
Gaussian density, the appropriate function is a normal distribution
N(0,0) = (1/v271o) exp(—x?/26?), which integrates to unity and
therefore conserves the number of particles after convolution. In
fact, it will be shown in the next section that accounting for finite
o in this way has little effect when ¢ = 0.1L, compared to the direct
application of the equations in Table 1.

4. Comparison of impulse responses to simulation

The modified free streaming equations are now compared to
the simulation described at the beginning of Section 2. To begin,
the normalised free-streaming impulse response function for gen-
eral o (i.e. f® from Eq. (2) with vgo — ¢x) is compared to the sim-
ulation. This comparison is shown in Fig. 2, with the free-streaming
distribution function in red and the simulated distribution function
in black (both are normalised to no/\/Z—m:so). By time t = 0.167,
the simulation and free streaming model are seen to agree well.
Beyond this time there is no longer any parallel energy in the elec-
trons available to accelerate the ions, so that the ions free-stream
towards the targets. This is shown by the agreement between the
free-streaming model and the simulation at times
t = 0.55T50 = topeak and t = 1.2775 = toru. These times correspond,
respectively, to the times required for the total target energy flux
density Q(L,t) = Q;(L,t) + Q.(L,t) to reach its maximum and to
subsequently fall to 1/e times its maximum.

Fig. 3 compares N; and E; according to the simulation (solid
lines) and the free streaming equations in Table 1 (dotted lines).
Note that these equations are unaltered for general o. It is seen
that, as a result of quasineutrality, the simulated N, and N; align al-
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Fig. 2. Comparison of Vlasov simulation (black) and free-streaming (red) norma-
lised ion distribution functions, f;/(no/v27cy), for the initial value case at four
different times. At each time, the contour levels (shown in boxes) are the same for
simulated and free-streaming plots. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

most exactly for this Z = 1 plasma. Also, the free-streaming equa-
tion for N® (which equals N® when Z = 1) agrees almost perfectly
with the simulation. For the energies in the ions and electrons, the
free streaming model assumes that all of the parallel energy of the
electrons is transferred to the ions as an initial condition, i.e.
Ei(t =0) = 4Ejo and E.(t = 0) = 2Eo. In Fig. 3, this assumption is
seen to be violated in the initial phase of transport, while the tran-
sition of parallel energy from electrons to ions is taking place. By
time t = tgpeak, however, the free-streaming and simulated values
for E; and E, agree well and afterwards become increasingly well
matched as time passes.

The comparisons between free-streaming values and Vlasov
simulation values for n; and pj, as functions of x/L at time
t = tgpeak, are shown in Fig. 4. The free-streaming impulse equa-
tions for ¢ — 0 (i.e. directly from Table 1) are shown as dotted
lines, while the free-streaming values which account for ¢ = 0.1L
(i.e. from Eq. (4) for the species density or using numerical convo-
lution for the species pressure) are shown as dashed lines.
Although the accounting for ¢ = 0.1L improves the fit with the
simulation slightly, the effect is minimal for this value of ¢ and
the analytic equations in Table 1 are sufficient to recover the sim-
ulated values to a high degree of accuracy. The electron and ion
densities are seen to align almost everywhere, confirming the
quasineutrality assumption (except in the sheath region by the tar-
gets, where there is the expected drop in electron density).

27 O8] red:el.
z" blue: ion
06 solid: sim
' dots: FS
0 0.5 1 1.5
t/1:SO

Fig. 3. Comparison between the Vlasov simulation (solid lines) and free-streaming
equations (dotted lines) for the total number of particles and total energy as a
function of time for the initial value case. Electron values are in red, ion values are in
blue. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 4. Comparison between the Vlasov simulation and free-streaming model for
the density and pressure profiles in space at time t = tgpea. The same colours and
line styles are used as for Fig. 3, with the additional dashed lines accounting for
o = 0.1L. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 5. Comparison between the Vlasov simulation and free-streaming model for
the particle and energy flux densities at the target as a function of time. The same
colours and line style are used as for Fig. 4. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison between the Vlasov simulation and free-streaming Eq. (5) for
the energy flux densities at the target as a function of time, due to a uniform ELM
source of duration 7g.. Plots are shown for three different values of .. Electron
values are in red, ions values in blue and total values in black. Solid lines are
simulated values and dotted lines are from the free-streaming equation. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The comparison for the particle and energy flux densities at the
targets (as a function of time) is shown in Fig. 5. Again, the agree-
ment between free-streaming and simulated values is excellent,
and the effect of convolution in x (to account for ¢ = 0.1) is small.
This level of agreement should be compared to the relatively poor
level of agreement shown in Fig. 1 of [4]. Importantly however, in
that figure the free-streaming equations were used with vy as an
initial condition for the standard deviation of the ion distribution
function, rather than cy. In terms of divertor lifetime, the most
important quantities are the energy flux densities. It is therefore
highly encouraging that such good agreement is found between

the simulation and the modified free-streaming equations for these
quantities, at least for the impulse response.

It is important to realise that the numerical simulation does re-
solve a sheath at the wall, while the free-streaming equations
ignore it. Thus, the excellent agreement observed for the energy
flux densities would not be obtained if the sheath was playing an
important role in transferring energy from ions to electrons. For
the impulse response simulation, the sheath potential is so small
that it has a negligible effect on the electron and ion energy flux
densities. This is because the energy transfer from electrons to ions
occurs on a timescale shorter than the time on which the bulk plas-
ma reaches the target. Thus, by the time the majority of electrons
reach the wall, they no longer have sufficient parallel energy to
create a significant sheath potential. This topic will be investigated
further in future work.

Finally, consider the timescales on which particles and energy
reach the target. The free-streaming equations predict that the par-
ticle flux density peaks at t = T5/v/2, while the total energy flux
density peaks at t = fgpeax = 0.556T5 and subsequently reaches
1/e times its maximum when ¢ = tom = 1.247 .

5. Effect of a time-distributed source

The effect of a time-distributed source in the Vlasov equation,
mimicking the flow of particles and energy into the SOL due to
an ELM, is now assessed. The source used was as follows:

ny x* 1 v?
— eXx —5> | =—— eXpP(— 55 for0<t<t
Sy, 0,0) — | 7 P (~35) i, OXPL2) < T

0 otherwise,

(5)

i.e. a constant source in time starting at t = 0, with duration 5. and
with the same total number of particles and energy as there were in
the initial-value case. The impulse responses Q®(L,t) and Q(L,t)
from Table 1 can be convolved with this uniform source function
to yield the following free-streaming equation for the energy flux
densities:

nocoTo  NoCsoTo

t'=t

L3 (-5, ©

where a, =0 and b, =Z for electrons, while a; = (1 +Z2)/2 and
bi = (3 +Z)/2 for ions. Also, for both ions and electrons, c = 0 when
0 <t < Tgeand ¢ =t — tgc When t > 74.. Note that accounting for fi-
nite g by numerically convolving with a normal distribution in x has
very little effect on Eq. (6) when ¢ =0.1L .

Fig. 6 shows the electron, ion and total energy flux densities to
the target according to the Vlasov simulation (solid lines) and
according to Eq. (6) (dotted lines), for three different source dura-
tions of Ty = 0.337s, Tse = 0.667 and Ty = 1.6574. The free-
streaming solution differs from the simulation most strongly for
the 74 = 0.667 case, when the source duration is similar to
topeak for the impulse response. For all source durations, however,
the agreement between the analytic free-streaming expressions
and the simulations is reasonable, especially given the former’s
ease of application compared to solving the Vlasov equation
numerically. This is particularly true of the total energy flux den-
sity (shown in black), which is the most important quantity in
terms of divertor lifetime.
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6. Conclusions

The free-streaming equations for ion ELM transport with the
substitution vr — Cs, and the new free-streaming equations for
electron ELM transport, have been shown to agree well with equiv-
alent solutions from a Vlasov simulation, particularly for the im-
pulse response (initial value) case. This important validation adds
credence to a model which has already been successfully fitted
to existing experimental ELM power loading data [2,3] and justifies
its future applicability for predicting the duration of ELM power
loading on ITER. The following questions remain, however, and will
be the focus of future work. What is the effect of a radially varying
connection length on the time profile of the power to the target?
Do the predictions made by the free-streaming model agree with
the experimentally observed Z -dependence of ELM power load-
ing? What is the effect of different impurity concentrations on
the duration of the ELM power load? What sets the transfer time
required for electrons to donate their parallel energy to the ions
and at what point will this transfer time become long enough that
the free-streaming equations break down? What effect do colli-
sions and/or a pre-existing background plasma have on the validity

of the free-streaming model? Finally, and most importantly, what
will set the duration of the ELM power load on ITER? The results
presented here show that the free-streaming model is a physically
relevant and easily applicable tool that hopefully can be used to
answer these questions.
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