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The existence and time evolution of charge separation at a plasma edge is
studied using a code in which both ions and electrons are described by
gyrokinetic equations that include the finite-Larmor-radius correction and the
polarization drift. The ion finite-Larmor-radius effect allows the existence of
charge separation between ions and electrons, and the polarization drift, which
has opposite signs for ions and electrons, has a tendency to accentuate the
charge separation in a time-varying electric field. We compare our results with
those previously obtained using a code in which the ions were described by
using a fluid guiding-centre model, and only the electrons were treated
kinetically. In particular, we present results showing excellent agreement
between the two codes on the transition of the spectrum of the nonlinear
solution from a turbulent spectrum to one dominated by the fundamental
mode, where the energy is condensing in the lowest-k modes (inverse cascade).

1. Introduction

The formation and existence of charge separation and an electric field at a
plasma edge is an important problem in plasma-edge physics. This problem has
received considerable attention in tokamak physics in connection with what is
known as the L-H transition at the edge of a tokamak, which consists of a
sudden increase in the plasma rotation accompanied by the creation of a radial
electron field, which, by E x B drift, gives rise to a poloidal rotation (Burrell et
al. 1990; Weynants et al. 1992). This drift is charge- and mass-independent.
Important physical phenomena can be included in the study of this drift motion
if we add the effect of the finite Larmor radius. In this case important new
physics appears when spatial scales are close to the ion gyroradius and temporal
scales are close to an ion gyroperiod. The effect of the finite Larmor radius is to
allow the existence of charge separation between electrons and ions in the E x B
flow. A powerful analysis of the two-dimensional finite-Larmor-radius guiding-
centre equations was presented by Knorr and Pécseli (1989). This system has
three ‘rugged’ quadratic invariants. A canonical-ensemble probability dis-
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tribution characterized by three temperature states has been derived (Knorr
and Pécseli 1989), and it has been shown that this system can have possible
negative-temperature states, leading to an inverse cascade for the energy, with
the equilibrium spectral energy density condensing in the low-£ modes. Under
these conditions, charges of equal sign tend to concentrate and form large
vortices. Once this stage has been reached, the energy remains in the lowest-£
modes. For the higher modes, less energy is available, so that the level of
turbulence is significantly reduced.

The extension of this model by including polarization drift and a small
dissipation in the form of a diffusion term was presented by Shoucri et al. (1997,
1998). The polarization drift has different signs for ions and electrons, and
accentuates charge separation in a time-varying electric field. A small diffusion
term simulates anomalous transport at the edge of the plasma. It was shown
using this model that a small diffusion term can have an important effect on the
evolution of charge separation at the edge of a plasma, which can be unstable,
leading to a higher electric field and greater E x B drift at the plasma edge.

Manfredi et al. (1998) introduced kinetic effects in the guiding-centre
equations for the electrons, while fluid guiding-centre equations were used for
the ions. A study was presented on the evolution of the spectrum associated
with the linear and nonlinear solutions (Kelvin—Helmholtz instabilities), and it
was shown that as the magnetic field direction approaches the direction of the
normal to the plane of the plasma, the nonlinear solution evolves from a
turbulent solution to a solution dominated by the fundamental (lowest) & mode.
This corresponds to a transition from a solution dominated by a diffusion in
velocity space to a solution dominated by particle diffusion in space. The
present work extends the results of Manfredi et al. (1998) by using kinetic
guiding-centre equations for both the ions and the electrons. We have been able
in the present work to confirm the results presented by Manfredi et al. (1998)
concerning the transition from a nonlinear solution dominated by a turbulent
spectrum to a nonlinear solution dominated by the fundamental mode when the
magnetic field direction approaches the direction of the normal to the plane of
the plasma. The present results offer a powerful kinetic self-consistent treatment
for conditions under which the nonlinear solution for charge separation at a
plasma edge, dominated by E x B drift, is turbulent or is dominated by the
lowest-k mode. The effect of a small spatial-diffusion term on these solutions
will be studied. This powerful kinetic treatment is effected using an FKulerian
Vlasov code, which is discussed in the Appendix (see also Ghizzo et al. 1993;
Manfredi et al. 1996).

2. The pertinent equations

The geometry, the equations and the numerical methods are essentially those
presented by Manfredi et al. (1998). We consider a two-dimensional slab
geometry, x being the periodic (poloidal) direction and y the non-periodic
(radial) one. The magnetic field B is situated in the (x,z) plane and makes an
angle ¢ with the x axis (see Fig. 1). So the two-dimensional charge separation
is located in the (x,y) plane, and z is the homogeneous toroidal direction. We
assume that the motion perpendicular to the magnetic field is completely
described by the E x B and polarization drifts. We include in the equations a
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Figure 1. Geometry used for the numerical solution. The charge separation is in the (x,y)
plane, and z is the homogeneous toroidal direction.

correction that takes into account the finite-Larmor-radius effect for the ions
(the finite-Larmor-radius effect for the electrons is small, and is neglected),
which allows the existence of charge separation between electrons and ions.
Important physical phenomena can be added to the study of this drift motion
if we include the effect of the finite ion Larmor radius. Furthermore, both
species are assumed to be homogeneous in the z direction. With these
assumptions, the gyrokinetic equations for electrons and ions are

6fb e 6fb e € afze
a—t‘+V-(Vifi,g)+chos0 a i@chosﬁa—UuzO, (la)
VJ. = VD+Vp,[’e7 (1b)
E*xB
vy = B (1c)
m; ,| OE%
Vo =t [atL—l—(vD—i—v)'VlEf]. (1d)

Note that in our definition of the polarization drift we have neglected the term
v,-V, E¥, which would render (1d) an implicit definition of v, (Shoucri et al.
1997). The subscripts ¢ and e stand for ions (positive sign) or electrons (negative
sign).

The asterisk indicates the action of an integral operator that takes into
account the finiteness of the Larmor radius, and is defined by (Knorr and
Pécseli 1989)

a*(r) = JG(T—T’)@(V’)dV’, (2)

where (/(r) is a Gaussian kernel. In Fourier space, this operation becomes a
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filtering operation, which is numerically easy to perform: each coefficient of the
¢™ T mode is multiplied by a factor G, = exp(—1k? p?,), where p, , is the Larmor
radius (p; , = vy /0, ,) for ions or electrons, and k| is the component of the
wave vector perpendicular to the magnetic field (in our geometry, we have
k% = k% sin* 0+ k). Since the system is finite in the y direction, we convolute the
function in (2) by first mirroring the function at the right boundary in y and
thus doubling the y interval. We then take the Fourier transform and multiply
the coefficients by exp(—1k? p?); the function is then Fourier-transformed back.
The Poisson equation is as follows:

Vigp = —dme(nf —n}k), (3)
E=-V¢, (4)

where n; , = [ f; ,dv,, and the asterisk n; , again indicates the filtering defined in
(2). We note from (3) the charge created from the finite-gyroradius effect due to
the difference n¥ —n¥. Only when #,(y) has a gradient do we have n¥(y) & n,(y).
and this difference is greater the more important is the gradient. Hence it is the
combined effect of the finite gyroradius, (2), and a gradient (as in a plasma edge)
that gives an nf(y) # n,(y), and hence results in the charge separation that
appears in (3). The more important the gradient, the more important is the
charge separation associated with it due to the finite ion gyroradius, and the
more important is the self-consistent electric field calculated from (4).

Equations (1)—(4) constitute the mathematical model that we shall solve
numerically. One of its peculiarities is that it couples the typical drift
phenomena perpendicular to the magnetic field to the electron kinetic effects in
the direction parallel to the magnetic field lines when the magnetic field is
slightly tilted with respect to the normal (see Fig. 1). Details of the numerical
scheme are presented in the Appendix.

3. Numerical results for 6 = 89°
We take, for both species, the following initial density profile (the same as in
Manfredi et al. 1998):

N(y) = 3(1 +tanh 1.6y). (5)

The initial conditions for ions and electrons are given by

AV(LI/) 2,9 . . .
e 12 (1 4+ esin kgx + e sin 2k + € sin 3k,x), (6)

Jiolw y vt =0) = @aT; )2

where a perturbation of amplitude equal to ¢ has been introduced. The relevant
physical parameters, in dimensionless form, are chosen as follows:
T, m; o

=1, —L=1840, —“£=09, e=0.005.
m

3

” (‘)pi

Note that the actual parameter entering the equations with our normalization
(see the Appendix) is the following:

(&)

. . 1/2
o _ w_(ﬁ) — 0.9 % V18490, (7)

e Wpi\M,

S
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Figure 2. Time evolution of the logarithm of the first three Fourier modes calculated with
the present code (kinetic equation for the ions, the curves a, b and ¢ ending with a heavy dot
at w,,t = 3 x 10%), together with the time evolution of the first four Fourier modes calculated
by Manfredi et al. (1998) up to w,,t =4 x 10* (fluid guiding-centre equations for the ions).

The ion Larmor radius is therefore

Pi _ L'Ti/(‘)ci _ (71‘/7:3)1/2 — L (8)
ADe /\De wci/wpi 0'9'

The computational domain is the following:

0sax<28, —6<y<6, —5<y <5
the number of points is N, xN, xN, =64x 128 x 128, and the time step
,, At = 1.
Our simulations were performed with a non-uniform temperature profile

T o(y) =T, ,0(0.240.4 tanh 1.6y), 9)

with T,, = T;, = 1.

From the calculations presented by Manfredi et al. (1998), we repeat the
calculations for 8 = 89° and 89.5°, since the transition from a nonlinear solution
dominated by a turbulent spectrum to a nonlinear solution dominated by the
fundamental £ mode appeared between these two angles. The calculation for
the first simulation with 6 = 89° was carried up to w,,t = 3.0 x 10*. The time
evolutions of the first three harmonics are shown in Fig. 2 (curves a, b and ¢
ending with a heavy dot), together with the first four harmonics previously
presented for the same parameters by Manfredi et al. (1998) where the ions were
treated with fluid guiding centre equations. The time evolutions of the first
three modes are almost identical up to w,,t & 2 x 10*. There is a small difference
that develops afterwards, due to the fact that the motion and diffusion of the
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(a) (b)

Figure 3. Contour plots and three-dimensional plots for the potential for 0 = 89° at (a)
w1 =18x10*; (b) w,,t =3.0x10%

ions in phase space calculated from the kinetic code are different from those
calculated from the code with fluid ions, which only diffuses the ions in space.
The nonlinear spectrum, however, is still turbulent and dominated by the
second harmonic (although the curve b calculated with the present code is
slightly higher for w,,t > 2 x 10* than the curve b calculated from the code with
fluid equations for the ions in Manfredi et al. 1998). This dominance of the mode
2k, is also clear in Fig. 3, which shows contour plots and three-dimensional plots
of the potential. A two-dimensional contour plot of the distribution function
(averaged over the y direction) at w,,t = 1.8 x 10* and 3.0 x 10* is presented in
Fig. 4, together with a three-dimensional view of the plot, and shows the
signature of the mode 2k, essentially around small values of v. The present
code also provides us with the distribution function of the ions. Figure 5 shows
at wy,t=1.8x10* and 3.0x 10* (x,v;) plot of the ion distribution function
integrated over y, as contour plots and three-dimensional plots.

The density profile as a function of y (the distribution function integrated
over x and v) is shown in Fig. 6 for the electrons (full curves) and for the
smoothed ion density »n} (dotted curves). Figure 7 shows the profiles of the
potential (full curves) and charge (dotted curves) averaged over x. Note the
small deformation of the potential profile and the charge, since the dominant
2k, mode and higher harmonics saturate at low level.

Test particles were used in order to sample some regions of phase space. These
particles are put in selected regions of phase space and driven by the electric
fields computed from the Vlasov simulation, although they do not themselves
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(@ (b)

Figure 4. Contour plots of the electron distribution function (averaged over the y direction)
ign()the] 814, v)) plane, together with three-dimensional views, at (a) w,,t = 1.8 x 10*; (b) 0t =
3.0 x 10%.

contribute to the creation of the fields. The particles follow the characteristics
of the Vlasov equation (1a), which, in our normalized units, are written as

d: sin 0

ditc = E;“%+vm+v‘oos€, (10a)

da sin 6

j: L 5 +o,,, (10Db)

% =+ LE;“ cos 0, (10c¢)
mi,e

dw

=V, (10d)

Equation (10d) comes from the fact that (1a) contains a source term of the form
SV v, since the polarization drift is not divergence-free. The quantity w(f) is
just a weight attached to each particle, reflecting the effect of this source term.

The evolution of the electrons in (v, y) space is shown in Fig. 8. This figure
is particularly instructive. From (10), we see that an invariant of the motion
would exist if »,, = 0. The expression of this invariant is easily found by
dividing (10b) and (10c¢). When »,, = 0, we get

B
v, + ¢

————y = const. 11
_me’itanﬁy e ()
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Figure 5. Contour plots of the ion distribution function (averaged over the y direction) in the
(x,v)) plane, together with a three-dimensional view, at (a) o, t=1.8x10* (b) w,t=
3.0 x 104,
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Figure 6. Density profiles as a function of y for the electrons (full curves) and the
smoothed ions (dotted curves) at (a) w,,t = 0: (b) w,,t = 3.0 x 10*.
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Figure 7. Profiles of the potential (full curves) and charge (dotted curves) spatially
averaged over the periodic direction x at (a) w,,t = 0; (b) w,,t = 3.0 x 10*.

Figure 8. Electron test particles in (v, y) space at w,,t = 3.0 x 10*. (The electrons were
initially distributed uniformly at —1 <» <l and —2<y<1)

The invariant in (11) represents a straight line in (y, v|) space. In Fig. 8 we show
(v, y) space for the electrons at w,,t = 3.0 x 10*. These electrons were initially
uniformly loaded at —1 <, <1 (where the electron distribution function is
distorted in Fig. 4) and —2 <y < 1 (along the gradient in y). They essentially
show motion in a straight line according to (11), whose slope is given by
eB/(m,tan@). This is an indication that the effect of v, is small for the
electrons — as one would expect.

https://doi.org/10.1017/50022377898007338 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377898007338

200 M. Shoucri et al.

4.0 -
0.5}
M2 3.0t 1
6.5t 1
—6/5
~10.0 .
0 1.5x104 3.0x10%
4.0
0.5F .
A;:ﬁ 3.0k p
6.5} .
-10.0 .
0 1.5x104 3.0x10%
Time

Figure 9. Plots of Ay® and Avf as functions of time for the electrons, calculated from (12)

and (13).
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Figure 10. Plots of Ay* and Avf as functions of time for the ions, calculated from (12)
and (13).
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We have subsequently calculated the mean-square displacements Ay® and
Av?, defined as (similar equations hold for electrons and ions)

A’rpart

1
Ay =— Y wit)ly(t) —y,0) . (12)
Apart i=1
1 Npart
Avt = 7 Y wit)[v(t)—v, (0)]. (13)
“Ypart i=1

These quantities are related to the diffusion coefficients in space, D,, and in
velocity space, D, . by the following formulae:

Dty="2, D _ A (14)

The time evolutions of Ay* and Av} are shown in Fig. 9 for the electrons and in
Fig. 10 for the ions. When the polarization drift is negligible, the weight w(f)
remains very close to its initial value w(0) = 1. In this case (11)—(14) gives the
following result (written in our normalized units):

D, tan?0

Y 2 ’
(Uce,z‘

(15)

where w,, ; is the cyclotron frequency for electrons (ions) normalized to w,,. The
diffusions in space y and in velocity space v are connected by (15). This
constant ratio between D, and DvH is clearly apparent in Figs 9 and 10,
indicating again that for the parameters we have and for the results we are
presenting, the polarization drift seems to play a minor role for the ions (it is
neglected for the electrons).

4. Numerical results for § = 89.5°

Figure 11 shows the time evolutions of the first three Fourier modes calculated
with the present code (curves ending with a heavy dot) up to w,,t = 1.2 x 10*.
We also present in the same figure the results obtained for the first four Fourier
modes with the code using fluid equations for the ions in Manfredi et al. (1998)
(calculated up to w,,t = 1.8 x 10*). The agreement between the results obtained
from the two codes is remarkable. The fundamental mode dominates slightly
over the mode 2k, towards the end. The two codes seem to agree on the angle
0 at which there is a transition from a nonlinear solution dominated by a
turbulent spectrum to a nonlinear solution dominated by the fundamental
mode. Indeed, we do expect the fluid equations for the ions to become valid the
closer 0 is to 90°. Contour plots and three-dimensional plots for the potential are
shown in Fig. 12, and agree very well with what has been presented by Manfredi
et al. (1998). Note the vortices coalescing together in this case as the
fundamental mode becomes dominant. Figure 13 shows the profiles of the
potential and charge averaged over the periodic direction x. They show the
potential profile evolving from a sine shape to a shape close to a half-sine when
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| ] i
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Time

Figure 11. Time evolutions of the first three Fourier modes calculated with the present code
(curves ending with a heavy dot up to w,,{ = 1.2 x 10%), and of the first four Fourier modes
calculated with the code with fluid equations for the ions up to 1.8 x 10* (presented in
Manfredi et al. 1998).

03 7 14

Y 7260 X

Figure 12. Contour plots and three-dimensional plots for the potential for 6 = 89.5° at
(a) w,t = 1.0x10*; (b) w,,t =1.2x10%

https://doi.org/10.1017/50022377898007338 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377898007338

Charge-separation velocity shear in the gyrokinetic approximation — 203

0.30 .

0.15

-0.15

1

6 -3

- < of

nd charge (dotted curves), averaged over
a) w,,t =0;(b)6.0x10%; (c) 8.0x 10%; (d)

=

Figure 13. Profiles of the potential (full curves) a
the periodic direction x, for the case 6 = 89.5°, at (

1.0x 10%; (e) 1.2x 104,
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Figure 14. Profiles of the electric field £, (spatially averaged over x) (note that v, ~ K ), for
the case 0 = 89.5°, at (a) w,,t = 0; (b) 6.0 x 10%; (¢) 8.0 x 10%; (d) 1.0 x 10*; (e) 1.2 x 10*.
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Figure 15. Profiles of the electron density (electron distribution function integrated over a
and v ; full curves) and the smoothed ion density (dotted curves) at (a) w,t = 0; (b) 6.0 x 10°;

(¢) 8.0 x 10°; (d) 1.2 x 10%.
(b)
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Figure 16. Contour plots and three-dimensional views for the ion density for the case
t=1.0x10*; (b) w,,t =1.2x10%

with 0 = 89.5°, at (a) w
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Figure 17. Ion test particles at w,,{ = 1.2 x 10* (initially loaded uniformly in x, and between
—2 <y < 1), and reproducing nicely the ion-density contours shown in Fig. 16 at ot =
1.2 x 10

the fundamental mode becomes predominant, in agreement to what has been
presented and discussed by Shouecri et al. (1997) and Manfredi et al. (1998),
when 0 is very close to 90°. The energy is cascading to the longest wavelength
available in the system (condensing in the low-k modes) and the potential is
distorting itself simultaneously to a shape close to a half-sine, at the same time
where the fundamental mode is dominating in the periodic directory. The
electric field £, (spatially averaged over x) is shown in Fig. 14 (note that
Vpe ~H,).

The electron-density profiles (electron distribution function integrated over
v, and x) are shown in Fig. 15 (full curves), together with the smoothed ion-
density profiles n} (dotted curves) calculated from n, using (2). Contour and
three-dimensional plots for the ion density are shown in Fig. 16.

We followed, as in Sec. 3, the motion of test particles in phase space, in the
self-consistent field calculated from the Vlasov code. Ions were initially loaded
in (y,x) space uniformly in x, and between —2 <y < 1 in the y direction. At
Wyt =1.2x10% the distortion shown in Fig. 17 of the particles reproduces
very well the ion-density contour shape presented in Fig. 16.

5. Effect of a spatial-diffusion term

We present in this section the effect of small spatial diffusion on the solution
given in Sec. 4. Spatial-diffusion terms are important since anomalous transport
is usually modelled by such a term. They can also be present in the numerical
scheme (as in many particle codes), or added to smooth the microstructure that
develops during a simulation and to control numerical instabilities. From the
physical and numerical point of view, it is interesting to quantify the effect of
a small diffusion term on the solution. We repeat the results for 6 = 89.5° with
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Figure 18. Time evolutions of the first three Fourier modes calculated for 6 = 89.5° with
v, = 0and v, = 0 (similar to Fig. 11), and with v, = 5 x 107 % and v, = 2 X 107% (dotted curves).

0.300 , | .
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Figure 19. Profiles of the potential (full curves) and charge (dotted curves), averaged over
the periodic direction x, for the case 0 = 89.5°, with v, =5x10"% and v, =2x107%, at (a)
W, =0; (b) 6.0x 10%; () 8.0x 10%; (d) 1.2x 10'; (e) 1.4x 10%; (f) 1.8 x 101,

a spatial-diffusion term added to the equations as presented in the Appendix,
with v, =5x107% and v; = 2 x 1075, Figure 18 shows the time evolution of the
first three Fourier modes calculated for 6 = 89.5° with v, = 0 and v, = 0 (full
curves, similar to Fig. 11), and the first three Fourier modes for 6 = 89.5° with
v,=5x10"%and v, = 2x 107% (dotted curves). The values of v, and v, are very
small, and the difference between the full and dotted curves in Fig. 18 is minor.
The effect on the charge distribution and the potential curves, however, is
substantial. (Similar results were reported in Manfredi et al. (1996) for ITG
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Figure 20. Profiles of the electric field £, (spatially averaged over x) (note that v,,, ~ K ) for
the case 6 = 89.5°, with v, =5x107% and v, =2x107%, at (a) w,,t=0; (b) 8.0x10%; (c)
1.2% 10%; (d) 1.4 x 10%; (e) 1.8 x 10,

0 9.0x103 1.8x104
Time

Figure 21. Time evolutions of the first three Fourier modes calculated for 6 = 89.5° with
v, = 0and v, = 0 (similar to Fig. 11), and with v, = 1 x 107 and v, = 2 X 107% (dotted curves).

modes.) Figure 19 shows the profiles of the potential (full curves) and charge
(dotted curves), averaged over the periodic direction x. Note the important
increase in the potential, which is evolving to a complete half-sine, and the
important increase in the value of £, in Fig. 20, which is associated with the
velocity v, Figures 21-23 present, for the case v, = 1 x 107> (while v, is kept
constant, v, =2x107%), results similar to those presented in Figs 18-20.
Although v, and v; are still very small, note the more important modifications
in the time evolutions of the first three Fourier modes towards the end of the
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—0.350
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—0.675

Figure 22. Profiles of the potential (full curves) and charge (dotted curves), averaged over
the periodic direction x, for the case 6 = 89.5°, with v, =1x107® and v, =2 x107%, at (a)
0w, t =0;(b) 6.0x10%; (¢) 8.0x10%; (d) 1.2x10%; (e) 1.4 x 10*; (f) 1.8 x 10*.

0.4 T T T

0.2

0.4 ! ! L
-6 -3 0 3 6

v

Figure 23. Profiles of the electric field £, (spatially averaged over x) (note that v, ~ K ) for
the case 0 = 89.5°, with v, =1x107 and v, =2x107% at (a) w,,t=0; (b) 8.0x10%; (c)
1.2x10%; (d) 1.4 x 10*; (e) 1.8 x 10*.

simulation (dotted curves in Fig. 20 compared with those in Fig. 18 and the
more rapid evolution of the charge separation and substantial increase in the
potential in Fig. 22. The increase in £, (and vj,,) in Fig. 23 is again substantial.
The result can even be an instability, as discussed by Shoucri et al. (1995).
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6. Conclusions

A code with gyrokinetic equations for both ions and electrons has been used to
study the existence and time evolution of charge separation at a plasma edge.
The equations include the finite-Larmor-radius correction for the ions and the
polarization drift. We have compared our results with those previously
obtained using a code in which the ions were described using a fluid guiding-
centre model and only the electrons were treated kinetically. We have
investigated in detail the two cases where 8 = 89° and 6 = 89.5°, which, for the
parameters we have, show a transition from a turbulent nonlinear solution to
a nonlinear solution dominated by a fundamental mode. The agreement
between the two codes is very good, especially when 6 gets closer to 90° (at
0 = 89.5°), where the fluid approximation used for the ions by Manfredi et al.
(1998) is more valid. The suppression of turbulence is essentially the effect of
energy flowing to the longest wavelength available in the system, when 0 gets
closer to 90° This is reflected by the potential evolving to a profile in the y
direction that is close to a half-sine shape, as in Fig. 13, and the fundamental
mode dominating in the periodic x direction. We note at this point that, from
(12) and (13), we have for the electrons

42 2
_Avf _ e

*= Ay tan?@’

For 0 = 89°, for our set of parameters, we have o = 0.45, while for 6 = 89.5° we
have oo = 0.11. The diffusion in space is much more important than the diffusion
in velocity space at 0 = 89.5°. We observe in this case the beginning of an
inverse cascade, where the fundamental £ mode in the periodic direction
dominates, and the potential in the y direction is evolving to a profile close to
a half-sine. Hence the value of « seems to separate the regime where diffusion
in velocity space is dominant or important (kinetic regime, o > 1) from the
regime where diffusion in real space is important (fluid regime, o <€ 1), and it
could be determinant in the appearance of an inverse cascade.

In Sec. 5, we have studied the effect of a small spatial-diffusion term on the
solution, which is relevant to both the numerical and physical aspects of the
problem. We have shown that this small diffusion term has an important effect
on the physics of redistributing the charge separation on the edge of the plasma,
and can significantly enhance the radial electric field and the rotation associated
with the edge.
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Appendix. The numerical code

Time is normalized to w,}, space to A,, and velocity to v,. With this

normalization, the electron Vlasov equation reads as follows:

%-"/UH cos@f—e+E sinfof, K, sin0df,

e _ e
ot o TE TG T oy HeeslG, = Vi (A1)

v,
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where Q = w,,/w,,. We have neglected the electron polarization drift and the
electron gyroradius. The ion Vlasov equation is as follows:

sin 0

aﬂ—i—{@cosﬁ—i—E;‘qg
Msin? 0| oK oK sm@ ,*8E* 2 OB\ |1 9f;
+7Q2 [8 + v cos—= . 3 (L o — % 3y )]}8%

E¥sinG  M|OE oK% smﬁ LOE%  OE¥\]\ Of;
+{ Q +§22[6t Foeosf5 g (Ey a2y ey
+ % cos 0+ o

v,
. Mf(o( ., OE* O 0*E¥
= . 2 L, — vy S 2 x
v, VEf; o0 {at<sm 0 o + a/)-f-L(Obe 3y
0*E* §1nt9 0*E* LY
+ sin? 0[ v, cos 0 5952 3 ( . e —B* o 2)]
smH 0*E* Y

E¥—2— K% A2
Q ( Yoy T oy )} 42

The asterisk indicates the smoothing operation presented in (2), and M =
m;/m,. The numerical technique is based on a splitting algorithm (which
separates the evolution in the x, y and v directions). The distribution function
is advanced as follows (we present the details for (A 2): (A 1) is treated in a
similar way.

1. Solve for At/2

f’—i—E* cosﬁjf 0. (A3)
Y

The solution of (A 3) is
Silt+At/2) = fi(x,y, 0, — B, cos O At/2).

2. Solve for At/2
O T F +LH(Ob6' o

2 * *
%JZ —1—{0 0080+F* sinf M sin H[@F’ O

sind (L OEY L OER\||9f; _
005w T Lm0

The solution of (A 4) is

f;r =fi(x—3x,y,@*”,t),
where dx is the term in braces in (A 4), multiplied by A¢/2.
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3. Solve for At/2

f++ _ E¥sind AV[ oE oK
a 1T o E ™
sin ¢ oK OE*\ 1) of;
E* —EFL) | ===0. (A
0 ( s aj)]}aj 0 (A9
The solution of (A 5) is
Ji =fi(x,y—3y,vu),
where Jy is the term in braces in (A 5), multiplied by A¢/2.
4. Solve for At/2
Q}‘l_ oy M([O( ., OEY O 0PE
2 v, V3, — Qz{ﬁt(sm 0 o +—= 8y +v, cos O ——- 3y 5
ZF* ZF* ZF*
+sir120[v cosﬁaa%2 Sme(ﬁ"; a& % a@ 5 )]
Slnﬁ O*E* 52E*
B ——r—B* A
Equation (A 6) is solved for At/2 as follows:
At L M OB} OB}
fi<t+2>_fi eXp{ Qz[ ‘9( ox  ox
OEF* OB | vy oy A
T ey T3
2 Jk 2 *
xexp{ A;vHLos@aaE; —A;bin 0[@(050 5902
ilnﬁ 0*E* LY
* *
Q (Ey ox? —B ox? )]

Atsm@( £ OB E*aZE’;)}, (A7)

2 Q 7Y e T o
The superscripts + and — on the electric field indicate the present value of

the electric field and the value calculated right before Step 1.

5. Solve the Poisson equation at time ¢+ At¢/2. This equation is solved using the
method presented in Shoucri et al. (1997, 1998) with zero boundary
conditions for ¢. The equation, in dimensionless units, is given by

Vi) = —nf+n,. (A8)
The electric field is calculated from ¢ through the relation E = —V¢. This is
subsequently smoothed using the filtering operator in (2) to give E* when
advancing the ions in time.

6. Repeat Step 4.
7. Repeat Step 3.
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8. Repeat step 2.
9. Repeat step 1.
10. Repeat Step 5 to solve for the electric field.

One then goes back to Step 1 and repeats the cycle. Each cycle advances the
distribution function by one time-step. Note that the Poisson equation is solved
twice per cycle: at ¢ and {4+ At/2.
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