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Abstract

The ultrafast electron dynamics in metallic nanoparticles and thin metal films can be investigated using a semiclassical model

based on self-consistent Vlasov–Poisson simulations. Here, we present an �Eulerian� code that solves the Vlasov equation on a reg-

ular phase-space mesh. Eulerian codes possess several remarkable advantages over standard test-particle techniques: (i) they display

a very low level of numerical noise; (ii) they are accurate even in regions of low electronic density; (iii) and, most importantly for

nanosized objects, they preserve the fermionic character of the electron distribution at all times. Numerical examples are provided to

illustrate the potential applications of this method to the study of electron transport in metallic nanostructures.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is nowadays possible, by means of ultrafast

spectroscopy techniques, to assess the femtosecond
dynamics of an electron gas confined in metallic thin

films [1–4] or nanoparticles [5,6], so that theoretical pre-

dictions can be directly compared to experimental

measurements. In order to model and interpret such

experimental results, ab-initio methods can hardly be

employed, as they involve prohibitive computational

times. A possible alternative relies on the use of micro-

scopic kinetic methods, originally developed in nuclear
and plasma physics, and applied more recently to metal

clusters [7]. In these models, the valence electrons are

assimilated to an inhomogeneous electron plasma. The

quantum electron dynamics can be described in phase-

space by the Wigner equation, coupled self-consistently

to the Poisson equation. In the semiclassical limit, this
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Wigner–Poisson system reduces to the Vlasov–Poisson

equations.

The numerical resolution of the Vlasov equation is

usually performed with particle-in-cell (PIC) methods,
which approximate the distribution function by a finite

number of test particles [7]. However, the numerical

noise inherent to this method is too large to allow a pre-

cise description of the distribution function in phase-

space. Further, due to the finite number of particles

used, PIC methods inevitably introduce some amount

of random noise in the Vlasov dynamics, which drives

the system towards classical Maxwell–Boltzmann ther-
malization. Therefore, the fermionic character of the

electrons is not preserved during time evolution, which

constitutes a major drawback for any PIC method.

On the contrary, Eulerian codes [8–12] rely on the

resolution of the Vlasov equation on a regular mesh

on the phase-space (x,v). They generally achieve finer

resolution and display better convergence and stability

properties than the corresponding PIC codes. In this
work, we shall illustrate the good properties of a

recently developed Eulerian scheme [11], which is capa-

ble of preserving the fermionic character of the electron
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distribution exactly and for all times. Thanks to this

numerical technique, we have been able to obtain clean

and meaningful information on the electron dynamics in

a metallic nanostructure.
2. Model

For simplicity, we shall only consider one-dimen-

sional (1D) situations, although the numerical technique

can easily be extended to higher dimensions. The elec-

tron dynamics is governed by the 1D Vlasov equation

ofe
ot

þ v
ofe
ox

þ e
me

o/
ox

ofe
ov

¼ 0; ð1Þ

where fe(x,v, t) represents the electron distribution func-

tion in phase-space, and e > 0 and me are the electron
charge and mass respectively. The electrostatic potential

/(x) is given self-consistently by Poisson�s equation

d2/
dx2

¼ e
e0
½neðxÞ � niðxÞ�; ð2Þ

with ne ¼
R
fe dv. The ions are supposed to be motion-

less and described by a density profile ni(x) = n0[1 +
exp((jxj � L/2)/ri)]

�1, where n0 is the ion density of the

bulk metal, ri a diffuseness parameter [7], and L is the

spatial extension of the ion density. The above model

(1) and (2) can be viewed as the classical limit of the fully

quantum Wigner–Poisson system.

As an initial condition for Eqs. (1) and (2), we use the

ground state calculated semiclassically using a Thomas-

Fermi-like approach. The electron distribution is repre-
sented by a Fermi–Dirac (FD) function with finite

temperature Te

f FD
e ðx; vÞ ¼ n0 1þ exp

mev2 � 2e/ðxÞ
2T e

� �� ��1

ð3Þ

Note that the chemical potential is implicitly included in

the arbitrary additive constant of the electric potential /
(x). By plugging the above FD distribution into Pois-

son�s Eq. (2), we obtain a nonlinear equation for / that

can be solved by an iterative method to obtain the self-

consistent potential / and then the corresponding
ground state distribution from Eq. (3).

The above Vlasov–Poisson equations represent a use-

ful model to study the electron dynamics in nanosized

objects such as metallic nanoparticles and thin metal

films. The model is semiclassical in the sense that it

includes the Fermi–Dirac statistics of the ground state,

but neglects the quantum character of the electron

dynamics. In order to take the latter into account, one
should turn to the Wigner equation, which is the fully

quantum analogue of the Vlasov equation. We are cur-

rently developing an Eulerian codes for the Wigner
equation [13] in order to compare the present results

with those obtained with a fully quantum model.

Returning to the present Vlasov–Poisson model, the

main challenge is now to implement an accurate numer-

ical technique that solves the time-dependent Vlasov

equation. In particular, it is important that the numeri-
cal scheme preserves the fermionic character of the elec-

tron distribution, so that Pauli�s exclusion principle is

not violated. Note that the Vlasov equation does satisfy

the exclusion principle, because of the conservation of

phase-space volume in time (Liouville�s theorem). How-

ever, numerical schemes do not necessarily preserve this

property. The rest of this paper will be devoted to the

presentation of a numerical technique for the Vlasov
equation that, besides being stable and accurate, auto-

matically satisfies this crucial physical property.
3. Eulerian Vlasov codes

The Vlasov equation is usually solved numerically by

means of particle-in-cell (PIC) techniques. The basic

idea is to represent the distribution function as a sum

of delta functions:

feðx; v; tÞ ¼
XN
j¼1

wjdðx� xjðtÞÞdðv� vjðtÞÞ; ð4Þ

where the wj are constant weights, and the positions xj
and velocities vj of the N test-particles obey the equa-

tions of motion (characteristics of the Vlasov equation):
_xj ¼ vj and _vj ¼ �eEðxjÞ=me. The electric field E = �o//
ox is computed by projecting the particle density on a

spatial mesh and then solving Poisson�s equation. For

applications to degenerate electron plasmas, this method

presents at least two drawbacks: (i) In the initial state

the particles are loaded at random, so that a statistical

noise is introduced, which will pollute the simulation

results at all subsequent times. Statistical noise is pro-

portional to N�1/2, and is therefore difficult to eliminate
by simply increasing the number of particles; (ii) Most

importantly, PIC methods violate the exclusion princi-

ple, so that the initial FD quickly relaxes to a Max-

well–Boltzmann distribution (this relaxation is caused

by the very same statistical noise mentioned above).

For semiclassical Vlasov simulations, Pauli�s exclu-

sion principle can be written in the following form:

fe(x,v, t) 6 fe(x,v, t = 0), where fe(x,v, t = 0) is the ground
state FD distribution. In mathematical language, this

means that the distribution function must respect a

�maximum principle� (and also a minimum principle,

since obviously fe P 0): this is guaranteed by the proper-

ties of the Vlasov equation, but generally not satisfied by

PIC codes. The accuracy of PIC simulations can

be somewhat improved by using finite-size particles

(i.e. replacing the Dirac deltas in Eq. (4) with smoother
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functions) [14] or by introducing ad-hoc collision opera-

tors [15]. Nevertheless, Maxwell–Boltzmann thermaliza-

tion is still observed after some time. In addition, these

corrections make it difficult to separate the collisionless

Vlasov dynamics from the effect of such ad-hoc terms.

Eulerian methods [8] do not suffer from these draw-
backs and should therefore be a useful tool for the sim-

ulation of nanoscale metallic objects, for which the

electrons are highly degenerate. They are based on the

resolution of the Vlasov equation on a regular mesh cov-

ering the entire phase-space (both position and velocity

co-ordinates), which makes them somewhat more costly

than PIC codes in terms of memory storage and com-

puting time. The main advantage of Eulerian codes is
that good accuracy is guaranteed even in regions of fee-

ble electron density, where the statistical noise of a PIC

code would be most prominent. The timestepping tech-

nique is based on a splitting algorithm [8], which

amounts to solving separately the free-streaming term

ofe
ot

þ v
ofe
ox

¼ 0; ð5Þ

and the acceleration term

ofe
ot

� eE
me

ofe
ov

¼ 0 ð6Þ

in the Vlasov Eq. (1). The solution from time tn to time

tn+1 can thus be obtained in three steps, corresponding

to the solution of the free-streaming term (5) over half
a time step, then the solution of the acceleration term

(6) over a full time step, and finally again the free-

streaming term (5) over half a time step:

fH

e ðx; vÞ ¼ feðx� vDt=2; v; tnÞ ð7Þ
fHH

e ðx; vÞ ¼ f H

e ðx; vþ eEDt=meÞ ð8Þ
feðx; v; tnþ1Þ ¼ fHH

e ðx� vDt=2; vÞ ð9Þ

where fH

e and f HH

e denote intermediate solutions. Pois-

son�s Eq. (2) is solved just before Eq. (8) to provide

the electric field. Using the above symmetric scheme,

the method is second order accurate in Dt.
We note that each term (7)–(9) gives rise to a constant

shift in either position or velocity space. In their numer-

ical implementation, these shifts require the interpola-

tion of the distribution function in phase-space, which

can be performed according to different schemes (cubic

splines, finite volumes, fast Fourier transforms, . . .).
However, not all interpolation schemes will satisfy the

exclusion principle. Here, we employ a numerical tech-
nique based on a finite-volume technique, in which the

electron distribution is assimilated to a phase-space

�fluid� [9]. The scheme performs a detailed balance of

the fluid entering and leaving each phase-space cell: in

this way, the total mass
RR

fe dxdv is conserved exactly

(except, of course, for particles lost at the boundaries).

This method has recently been upgraded by Filbet
et al. [11] by introducing a slope corrector that prevents

the distribution function from exceeding its initial max-

imum level (and from developing spurious negative val-

ues), while still conserving the total mass. With this

correction, the model is able to preserve the fermionic

nature of the electron distribution exactly and for all

times.
4. Simulation results

In order to illustrate the potential applications of

Eulerian Vlasov codes to the study of the electron

dynamics in metallic nanostructures, we have performed
several simulations in 1D slab geometry. A 1D geometry

can actually have realistic applications to the electron

dynamics in a thin metal film [16], as the film can be

assumed to be infinite in the directions parallel to its sur-

face. In all runs, time is normalized in units of the in-

verse plasmon frequency x�1
pe , velocity in units of the

Fermi speed vF, and length in units of LF = vF/xpe.

The slab thickness is taken to be L = 40LF and the dif-
fuseness parameter in the ion density is ri = 0.5 LF.

The initial electron temperature is Te = 0.1TF. The typ-

ical number of phase-space mesh points used in a simu-

lation is Nx = 5000 and Nv = 300, with a time step

xpeDt = 0.05.

First, the stability properties of the code have been

tested by preparing the system in its ground state and

letting it evolve self-consistently without any perturba-
tion. By definition, the ground state is a stationary solu-

tion of the Vlasov–Poisson system and should remain

stable under the time evolution. However, PIC codes

show a rather quick deterioration of the Fermi–Dirac

ground state, which relaxes to a Boltzmann distribution

in a few (�13) electron plasmon cycles [14,15]. With our

Eulerian code, no departure from the Fermi–Dirac equi-

librium can be detected for times as long as xpet = 600,
corresponding to almost 100 plasmon cycles. The initial

and final energy distributions F(E) (obtained by inte-

grating fe over different energy surfaces) are shown in

Fig. 1, and are almost indistinguishable on the scale of

the figure. Further, during the evolution, the total en-

ergy is conserved with a relative error less than

3 · 10�6. Such remarkable stability could not have been

achieved with a PIC code.
Subsequently, in order to excite the electron dynam-

ics, we have perturbed the electron ground-state distri-

bution by shifting it in velocity space of a fixed

quantity dv = 0.06vF. In this way, an amount of energy

E*/EF = n0L(dv/vF)
2 is injected into the system in the

form of kinetic energy of the center of mass of the elec-

tron population. After applying such perturbation, the

electron cloud is left to evolve under the action of the
self-consistent electric potential. The electron relaxation

is studied by following the time history of several energy



Fig. 3. Time evolution of the electron dipole.
Fig. 1. Energy distribution at t = 0 (solid line) and xpet = 600 (dashed

line) for an unperturbed Fermi–Dirac equilibrium.
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quantities. The total energy of the electron gas is given
by: Etot = Ekin + Epot. The kinetic energy can further

be split into three parts: (i) the kinetic energy of the cen-

ter of mass: Ecm ¼ 1
2

R j2e ðxÞ
neðxÞ dx (where je ¼

R
vf e dv is the

electron current); (ii) the Thomas-Fermi energy (energy

of the equivalent zero-temperature state with same den-

sity), which in 1D reads as: ETF ¼ 1
6

R
neðxÞ3 dx; and (iii)

the thermal energy: Eth = Ekin � Ecm � ETF.

The evolution of such energy quantities is plotted in
Fig. 2. The center-of-mass kinetic energy displays an

oscillatory behavior at the plasmon frequency and

decays down to a negligible value in a relatively short

time (xpet ’ 100). At the same time, the thermal energy

rises of about 0.13EF, which is very close to the value of

the injected center-of-mass energy E* = 0.144EF. The

remaining part of E* goes into the potential energy,

which readjusts itself to a value slightly larger than that
of the ground state. The Thomas-Fermi energy (not

shown in figure) is almost unchanged during the entire

run. It appears, therefore, that the center-of-mass energy

is converted into thermal energy of the electron popula-

tion. At the end of the run, the electrons have relaxed to
Fig. 2. Time evolution of the thermal, potential and center-of-mass

energies (normalized to EF). The initial value of the thermal energy

Eth(0) ’ 0.4 has been subtracted for clarity.
a new quasi-stationary state characterized by a larger

thermal energy (and therefore larger temperature) and

an electric energy compatible with such a high tempera-

ture state. The evolution of the electron dipole

hxi ¼
RR

fexdxdv (Fig. 3) confirms that the motion of
the center of mass of the electron distribution is gradu-

ally damped. The observed oscillations occur at the elec-

tron plasma frequency, as expected.

This picture is in agreement with the evolution of the

energy distribution, shown in Fig. 4. The final distribu-

tion is indeed close to a Fermi–Dirac function character-

ized by a temperature higher than that of the ground

state. We point out that this quasi-thermalization pro-
cess is driven by purely mean-field effects, as no elec-

tron-electron collisions are taken into account in the

model. Note that the exclusion principle is still satisfied

even for this perturbed simulation (i.e. nowhere is the

value fe = 1 exceeded). The total energy is conserved

with a relative error less than 2 · 10�4.

Further, the fine resolution obtained with the Eule-

rian code allows us to follow the microscopic electron
dynamics in the relevant phase-space, as illustrated in

Fig. 5. It is clear from this figure (see, in particular,

xpet = 150) that only electrons located near the Fermi

surface play a significant role in the thermalization
Fig. 4. Energy distribution at t = 0 (solid line) and xpet = 600 (dashed

line). The initial Fermi–Dirac equilibrium was perturbed with dv =
0.06vF.



Fig. 5. Contour plots of the electron distribution function in phase-

space at different times.
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process. The initial perturbation propagates at a speed

close to the Fermi velocity, so that the thermalization

process appears to be of a ballistic rather than diffusive

nature. This is in agreement with experimental results

obtained with thin gold films [1,2].
5. Conclusion

In this work, we have presented a numerical method

for the solution of the Vlasov equation that is particu-

larly well adapted to the study of degenerate electron

plasmas. The method is stable and accurate, and is capa-

ble of preserving the fermionic character of the electron
distribution exactly. Numerical evidence has been pre-

sented in order to illustrate the good properties of such

Eulerian codes. The numerical results have allowed us to

describe with high accuracy the semiclassical electron

dynamics and thermalization in a typical metallic

nanostructure.

Although only 1D examples were reported for the

sake of simplicity, the code can be easily extended to
more spatial dimensions. Indeed, Eulerian codes are

based on a splitting algorithm that treats each phase-
space direction independently. Adding more dimensions

would just increase the number of steps in the time-step-

ping algorithm (7)–(9).

Several extension of this work are possible and cur-

rently under way. The classical ion dynamics [16] can

easily be added through an additional ion Vlasov equa-
tion. Further, it should be possible to include a collision

integral (of the Ühling-Uhlenbeck type) that accounts

for electron–electron collisions. As the Eulerian tech-

nique treats the collisionless (mean-field) dynamics with

great accuracy, the effect of electron–electron collisions

could then be studied without being polluted by spuri-

ous ‘‘numerical collisions’’ that are unavoidable with

PIC codes.
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