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Using the phase-space formulation of quantum
mechanics, we derive a four-component Wigner
equation for a system composed of spin- 1

2 fermions
(typically, electrons) including the Zeeman effect and
the spin–orbit coupling. This Wigner equation is
coupled to the appropriate Maxwell equations to
form a self-consistent mean-field model. A set of
semiclassical Vlasov equations with spin effects is
obtained by expanding the full quantum model to
first order in the Planck constant. The corresponding
hydrodynamic equations are derived by taking
velocity moments of the phase-space distribution
function. A simple closure relation is proposed to
obtain a closed set of hydrodynamic equations.

This article is part of the themed issue ‘Theoretical
and computational studies of non-equilibrium and
non-statistical dynamics in the gas phase, in the
condensed phase and at interfaces’.

1. Introduction
The formulation of quantum mechanics in the phase
space was first introduced by Eugene Wigner in 1932
to study quantum corrections to classical statistical
mechanics [1]. The goal was to link the wave function
that appears in the Schrödinger equation to a pseudo-
probability distribution function defined in the classical
phase space. This pseudo-probability distribution
changes in time according to an evolution equation
(Wigner equation) which is somewhat similar to the
classical Liouville equation. Mathematically speaking,
the Wigner formulation is based on the Weyl
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transformation [2,3], which is a general method to transform operators defined in the Hilbert
space into phase-space functions.

As it is based on the classical phase space, the Wigner formulation is often a more intuitive
approach than the standard Schrödinger equation, especially for problems where semiclassical
considerations are important. For these reasons, it is used in many areas of quantum physics,
including quantum optics [4], semiclassical analysis [5,6], electronic transport [7], nonlinear
electron dynamics [8] and quantum plasma theory [9]. It is also the starting point to construct
quantum hydrodynamic equations, which are approximate models obtained by taking velocity
moments of the Wigner function. Such models were used in the past to study the electron
dynamics in molecular systems [10], metal clusters and nanoparticles [11–13], thin metal films
[14], quantum plasmas [15,16] and semiconductors [17].

The works cited above only considered the charge dynamics and disregarded the spin degrees
of freedom. However, it is well known that spin effects (particularly the Zeeman splitting and
spin–orbit coupling) can play a decisive role in nanometric systems such as semiconductor
quantum dots [18,19] and diluted magnetic semiconductors [20,21]. The coupling between the
spin degrees of freedom and the electron orbital motion is of the utmost importance in many
experimental studies involving magnetized nano-objects. A particularly interesting example is
the ultrafast demagnetization induced by a femtosecond laser pulse in ferromagnetic thin films
[22], an effect that is not yet completely elucidated from the theoretical viewpoint. Recent time-
dependent density functional theory (TDDFT) simulations suggest that the spin–orbit coupling
plays a central role in the demagnetization process [23].

Phase-space models based on the Boltzmann equation [24]—and the corresponding fluid
models [25]—were derived in the past to describe the dynamics of a gas where the constituents
possess internal degrees of freedom (internal angular momentum). However, in these models, the
spin is not treated ab initio as a fundamental quantity, but is rather incorporated into the transport
equations to ensure the correct conservation properties. More recently, a few theoretical models
that include the spin in the Wigner formalism were also developed. One approach [26] consists
of defining a scalar probability distribution that evolves in an extended phase space, where the
spin is treated as a classical two-component variable (related to the two angles on a unit-radius
sphere) on the same footing as the position or the momentum. This approach was used to derive a
Wigner equation that incorporates spin effects through the Zeeman interaction [26]. Semiclassical
[27] and hydrodynamic [28] spin equations were also derived from those models, including other
relativistic effects such as the spin–orbit coupling, the Darwin term and the relativistic mass
correction.

An alternative approach keeps the 2 × 2 matrix character of the distribution function [29], so
that the orbital and spin dynamics are represented by different Wigner functions. Using this
approach, the corresponding Wigner equations were derived from the full Dirac theory [30];
however, their complexity makes them unsuitable for applications to condensed matter and
nanophysics. A more tractable Wigner equation was derived from the Pauli (instead of Dirac)
theory, but only included the Zeeman effect [31].

Both approaches (extended phase space and matrix Wigner function) are equivalent from the
mathematical point of view. However, the extended phase-space approach leads to cumbersome
hydrodynamic equations that are, in practice, very hard to solve, either analytically or
numerically, even in the non-relativistic limit. The matrix technique, which is the one used here,
separates clearly the orbital motion from the spin dynamics and leads to a simpler and more
transparent hydrodynamic model.

In this paper, we go beyond our previous work [31] by including both the Zeeman effect and
the spin–orbit coupling, the latter being a relativistic effect to second order in 1/c. In terms of a
semiclassical expansion, these terms are respectively first and second order in h̄. Other relativistic
corrections such as the Darwin term or the mass correction are neglected here, although they
could be included with relative ease in our model.

First, we use a gauge-invariant formulation of the Weyl transformation [32] and the Moyal
product [33] to derive a set of Wigner equations describing a system of spin- 1

2 fermions.
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A self-consistent mean-field model can further be obtained by coupling these Wigner equations to
the set of Maxwell equations for the electromagnetic fields, where the sources (charge and current
densities) are related to velocity moments of the Wigner function. A related mean-field model
was obtained recently by Dixit et al. [34] in the framework of the Schrödinger–Pauli equation.

Subsequently, we derive the corresponding semiclassical limit and obtain the Vlasov equations
describing the evolution of an electron gas with spin and semirelativistic effects. In this model, the
orbital dynamics is treated classically, whereas the spin is represented as a fully quantum variable.
Finally, the Vlasov equations will be used to derive a hierarchy of hydrodynamic equations by
taking velocity moments of the probability distribution function. This is an infinite hierarchy that
needs to be closed by using some additional physical hypotheses. Although this is relatively easy
for spinless systems (where the closure can be obtained by assuming a suitable equation of state),
things are subtler when the spin degrees of freedom are included. Here, we shall use an intuitive
closure to obtain a closed set of fluid equations with spin effects.

2. Quantummechanics in the phase space
The basic idea of the phase-space formulation of quantum mechanics is to associate at each
operator Ô(R̂, P̂), depending on the position and momentum operators R̂ and P̂, a function
O(r, p) of the classical phase-space variables r and p. This correspondence is provided by the
Weyl transformation [3,35], and is given by

Ô(R̂, P̂) ≡
∫

dr dp O(r, p)F̂(r, p), (2.1)

where F̂ (r, p) is the Wigner operator defined as

F̂ (r, p) ≡ 1
(2π h̄)6

∫
du dv exp

[
i
h̄

(u · (P̂ − p) + v · (R̂ − r))
]

. (2.2)

The inverse of the Weyl transformation can be deduced1 from the above definition:

O(r, p) = (2π h̄)3 tr[F̂ (r, p)Ô(R̂, P̂)], (2.3)

where tr denotes the trace.
Considering a system in a statistical distribution described by the density operator ρ̂,

equation (2.1) can be used to determine the mean value of an arbitrary operator:

〈Ô(R̂, P̂)〉 = tr[Ô(R̂, P̂)ρ̂] =
∫

dr dpO(r, p) tr[F̂ (r, p)ρ̂].

The Wigner function is then defined as the phase-space function associated with the density
operator

f (r, p) = tr[F̂ (r, p)ρ̂] = 1
(2π h̄)3

∫
dλ exp

(
i
h̄
λ · p

) 〈
r − λ

2
ρ̂ r + λ

2

〉
. (2.4)

The Wigner function obeys the following equation of motion (Wigner equation):

ih̄
∂f
∂t

= {H, f }�, (2.5)

where the last term is referred to as the Moyal bracket

{A(r, p), B(r, p)}� = 2i sin
[

h̄
2

(L∂i
R∂pi − L∂pj

R∂j)
]

(A(r, p), B(r, p)). (2.6)

The superscripts L and R mean that the derivative acts only on the left or on the right
term in the parenthesis (i = x, y, z and here and in the following we use Einstein’s summation
convention). The Wigner equation is the analogue of the density matrix evolution equation in the
operator representation of quantum mechanics: h̄∂tρ̂ = [Ĥ, ρ̂], sometimes called the von Neumann

1For the demonstration, we use the following properties of the Wigner operator: tr[F̂ (r, p)F̂ (r′, p′)] = (1/(2π h̄)3)δ(p − p′)
δ(r − r′).
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equation. The Moyal brackets can be easily developed as a power series of h̄, which makes the
Wigner formulation particularly interesting to study the semiclassical limit. The lowest-order
term leads to the standard Poisson brackets and to the equations of classical mechanics.

In equation (2.5), H is the phase-space function associated with the Hamiltonian operator
Ĥ of the system, and they are related by equation (2.1). In order to determine the phase-space
function of any arbitrary operator Ô(R̂, P̂), one should apply the Weyl correspondence rule [3,32],
defined as follows: (i) first symmetrize the operator Ô(R̂, P̂) with respect to the position and the
momentum operators R̂ and P̂, (ii) then replace Ô(R̂, P̂) by their associated classical variables. For
instance, for the operator P̂xX̂, one finds

P̂xX̂ = 1
2

(P̂xX̂ + X̂P̂x) − ih̄
2

→ xpx − ih̄
2

, (2.7)

where use has been made of the commutator [P̂x, X̂] = h̄/i. We note that the Weyl correspondence
defined above is not unique, and one could have defined other rules leading to a different phase-
space function, such as the Husimi representation [36].

In the case of a spinless particle moving in a scalar potential V(r), the Wigner evolution
(equation (2.5)) reads as

∂f (r, p, t)
∂t

+ 1
m

p · ∇f (r, p, t) = − i
h̄

1
(2π h̄)3

∫
dλ dp′ exp

[
i(p − p′) · λ

h̄

]
×
[

V
(

r + λ

2

)
− V

(
r − λ

2

)]
f (r, p′, t). (2.8)

However, complications arise when we want to include magnetic interactions. It is well known
that in the presence of magnetic fields one should use the kinetic momentum operator Π̂ = P̂ − qÂ
instead of P̂ (q = −e, e > 0 for an electron). This situation cannot be addressed by simply replacing
P̂ with Π̂ in the Weyl transformation. Indeed, it can be easily proven that with such substitution
the Wigner function, equation (2.4), is not gauge invariant. As spin effects, such as the Zemann
interaction or the spin–orbit coupling, strongly depend on the magnetic field, it is of paramount
importance to work with a gauge-invariant formulation of the Weyl transformation. A gauge-
independent definition of the Wigner function was first introduced by Stratonovich [37]:

f (r, v, t) =
(

m
2π h̄

)3 ∫
dλ exp

[
iλ
h̄

· (mv + q
∫ 1/2

−1/2
dτA(r + τλ))

] 〈
r − λ

2
ρ̂ r + λ

2

〉
, (2.9)

where the momentum p was replaced by mv + q
∫1/2

−1/2 dτA(r + τλ).
To be consistent with this new definition of the Wigner function, one should also modify the

Weyl correspondence rule [32]. The procedure is identical, except that one should use Π̂ instead
of P̂. The main difference is that one must also symmetrize operators with respect to the different
components of Π̂, because they do not commute, i.e. [Π̂i, Π̂j] = ih̄qεijkB̂k(R̂), where εijk is the Levi–
Civita symbol and B̂ is the magnetic field operator (B̂ = ∇ × Â). The classical phase-space variable
associated with the kinetic momentum operator is the linear momentum Π̂ → π = mv.

The Moyal product defined in equation (2.6) is also modified in the presence of magnetic fields.
A gauge-invariant Moyal product was derived by Müller [38], and reads

A(r, π) � C(r, π) = exp

[
ih̄L + ie

∞∑
n=1

h̄nLn

]
(A(r, π), C(r, π)), (2.10)

where L is the operator corresponding to the free magnetic field case:

L(A(r, π), C(r, π)) = 1
2 (L∂i

R∂πi − R∂j
L∂πj )(A(r, π), C(r, π)) (2.11)
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and Ln is a new operator that depends on the magnetic field:

Ln (A(r, π), C(r, π)) =
(

i
2

)n+1 εjlr

(n + 1)2 n!

3∑
i1...in−1=1

(
∂n−1

∂ri1 ...∂rin−1

Br

)
L∂πj

R∂πl

n∑
p=1

(
n + 1

p

)

g(n, p)
∂p−1

∂πi1 . . . ∂πip−1

∂n−p

∂πip . . . ∂πin−1

(A(r, π), C(r, π)) , (2.12)

with g(n, p) = [(1 − (−1)p)(n + 1) − (1 − (−1)n+1)p], (r1, r2, r3) = (x, y, z) and (π1, π2, π3) = (πx, πy, πz).
This new definition of the Moyal product makes the calculation of the evolution equation much
more cumbersome than in the unmagnetized case. Its great advantage is that it ensures that the
final equations of motion are gauge invariant.

3. Derivation of the spin Wigner model
We consider an ensemble of fermions in the presence of an electromagnetic field E, B. We denote
the Schrödinger wave function of the μth particle state by

Ψμ(r, t) = Ψ ↑
μ (r, t)| ↑〉 + Ψ ↓

μ (r, t)| ↓〉, (3.1)

where Ψ
↑
μ (r, t) and Ψ

↓
μ (r, t) are respectively the spin-up and spin-down components of the wave

function. The evolution of the system is governed by the Pauli–Schrödinger equation

ih̄
∂Ψμ(r, t)

∂t
= ĤΨμ(r, t) (3.2)

and

Ĥ=
(

Π̂
2

2m
− eV̂

)
σ0 +

[
μBB̂ + μB

4mc2 (Ê × Π̂ − Π̂ × Ê)
]

· σ . (3.3)

Here, μB = eh̄/2m is the Bohr magneton, σ is the vector made of the 2 × 2 Pauli matrices, and σ0
is the 2 × 2 identity matrix. V and A are, respectively, the scalar and vector potential. Equation
(3.3) can be derived from the Dirac equation by means of a Foldy–Wouthuysen transformation
[39,40]. This semirelativistic development leads to plenty of terms that couple the spin to the
charge dynamics. In this work, we keep terms only up to second order in 1/c, where c is the speed
of light in vacuum, namely the Zeeman interaction (order 1/c0) and the spin–orbit coupling (order
1/c2). We neglect, however, the Darwin term and the relativistic mass correction, which are also
second-order effects.

Without spin, the Wigner function is a scalar function related to the density matrix ρ through
equation (2.9). This definition can be generalized as follows to take into account the spin degrees
of freedom:

F(r, v, t) =
(

1
2π h̄

)3 ∫
dλ exp

[
iλ
h̄

·
(

mv + q
∫ 1/2

−1/2
dτA(r + τλ)

)]
ρ

(
r − λ

2
, r + λ

2
, t
)

, (3.4)

where, for particles with spin 1
2 , F is a 2 × 2 matrix. The elements of the density matrix ρηη′

(r, r′, t),
where η =↑, ↓, are given by

ρηη′
(r, r′) =

∑
μ

Ψ η
μ (r, t)Ψ η′∗

μ (r′, t). (3.5)

In order to study the macroscopic properties of the system, it is convenient to project F onto the
Pauli basis set [41,42]

F = 1
2
σ0f0 + 1

h̄
f · σ , (3.6)

where

f0 = tr{F} = f ↑↑ + f ↓↓, f = h̄
2

tr(Fσ ) (3.7)
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and tr denotes the trace. With this definition, the particle density n and the spin polarization S
of the electron gas are easily expressed by the moments of the pseudo-distribution functions f0
and f :

n(r, t) =
∑
μ

|Ψ †
μ(r, t)|2 =

∫
f0(r, v, t) dv (3.8)

and

S(r, t) = h̄
2

∑
μ

Ψ †
μ(r, t)σΨμ(r, t) =

∫
f (r, v, t) dv. (3.9)

In this representation, the Wigner functions have a clear physical interpretation: f0 is related to
the total electron density (in phase space), whereas fk (k = x, y, z) is related to the spin polarization
in the direction k. In other words, f0 represents the probability of finding an electron at one point
of the phase space at a given time, while fk represents the probability of that electron having a
spin-polarization probability in the direction k.

There exist different ways to include the spin in the Wigner formalism other than the one
described above. For instance, Brodin and co-workers [26] introduced an extended phase space
(r, v, s), where s is a unitary vector that defines the spin direction. The corresponding probability
distribution is a scalar function of the extended phase-space variables. This is in contrast
with our approach, where the spin is treated as a fully quantum variable (evolving in a two-
dimensional Hilbert space). Nevertheless, the two approaches are equivalent, as shown in [31].
The correspondence relations between our distribution functions f0(r, v, t) and f (r, v, t) and the
scalar distribution used by Zamanian et al. [26] fZ(r, v, s, t) read as

f0 =
∫

fZ d2s, f = 3
∫

sfZ d2s. (3.10)

Let us now turn to the evolution equation for the Wigner functions f0(r, v, t) and fk(r, v, t). After
some tedious calculations, developed in the electronic supplementary material, equation (2.5)
leads to the following Wigner equations:

∂f0
∂t

+ 1
m

(π + �π̃ ) · ∇f0 − e
m

[mẼ + (π + �π̃) × B̃]i∂πi f0

− μB∇
(

B̃ − 1
2mc2 π × Ẽ

)
i
· ∇π fi + μB

4mc2 [(E+ + E−) × ∇] · f

− μBe
2mc2 [Ẽ × [B̃ × ∇π ]] · f − μB

2mc2
i
h̄

[�π̃ × (E+ − E−)] · f = 0, (3.11)

∂fk
∂t

+ 1
m

(π + �π̃) · ∇fk − e
m

[mẼ + (π + �π̃) × B̃]i∂πi fk

− μB∇(B̃ − 1
2mc2 π × Ẽ)k · ∇π f0 + μB

4mc2 [(E+ + E−) × ∇]kf0

− μBe
2mc2 [Ẽ × [B̃ × ∇π ]]kf0 − μB

2mc2
i
h̄

[�π̃ × (E+ − E−)]kf0

− e
2m

[(
B+ + B− − 1

2mc2 (π + �π̃) × (E+ + E−)
)

× f
]

k

+ μB

2mc2
i
2

[((E+ − E−) × (∇ − eB̃ × ∇π )) × f ]k = 0, (3.12)

where �π̃ depends on the magnetic field and corresponds to a quantum shift of the velocity

�π̃ = −ih̄e∇π ×
[∫ 1/2

−1/2
dττB(r + ih̄τ∇π )

]
(3.13)

and Ẽ and B̃ are written in terms of the electric and magnetic fields

Ẽ =
∫ 1/2

−1/2
dτE(r + ih̄τ∇π ), B̃ =

∫ 1/2

−1/2
dτB(r + ih̄τ∇π ). (3.14)
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The subscripts ± mean that the corresponding quantity is evaluated at a shifted position
r ± ih̄∇π/2. This particularly illuminating form of the Wigner equations was proposed by
Serimaa et al. [32] for the case of a charged particle without spin evolving in an external
electromagnetic field.

Equations (3.11) and (3.12) can be viewed as a generalization of those obtained in our previous
work [31], where only the Zeeman interaction was included. The latter has two effects: the
first is to couple the spin to the orbital dynamics through the gradient of the magnetic field
(terms μB∇B̃k · ∇π in the equations); the second effect is the spin precession around an effective
magnetic field [terms (B+ + B−) × f ]. In addition, many new terms appear owing to the spin–
orbit interaction, which can be easily identified because they are proportional to 1/c2. Some of
these terms couple the spin to the orbital dynamics, whereas others provide corrections to the
spin precession or the Lorentz force. The physical origin of all these terms will appear clearly in
the next session, when we discuss the semiclassical limit of the Wigner equations.

Equations (3.11) and (3.12) can be used, in the context of a mean-field approach, to describe
the self-consistent spin dynamics of an ensemble of interacting electrons. In this case, the electric
and the magnetic fields are solutions of the Maxwell equations:

∇ · E = ρ

ε0
− ∇ · P

ε0
,

∇ · B = 0,

∇ × E = −∂B
∂t

and ∇ × B = μ0j + μ0ε0
∂E
∂t

+ μ0
∂P
∂t

+ μ0∇ × M,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.15)

where we introduced some relativistic corrections to the source terms, namely a spin
magnetization M, a spin polarization P and a new contribution to the current density; see
equation (3.17). These corrections appear when one considers an expansion in 1/c of the Dirac–
Maxwell equations and are consistent with the Hamiltonian of equation (3.3), as was shown
recently using a Lagrangian method [34,43]. Using equation (2.9), we can transpose their results
to our formulation, which yields

ρ = −e
∫

f0dv, (3.16)

j = −e
[∫

vf0 dv + E × M
2mc2

]
, (3.17)

M = −μB

∫
f dv (3.18)

and P = − μB

2c2

∫
v × f dv. (3.19)

This mean-field approach could, in principle, be extended, in the spirit of density functional
theory, to include exchange and correlation effects by adding suitable potentials and fields that
are functionals of the electron density [44].

4. Semiclassical limit and spin Vlasov model
The form of equations (3.11) and (3.12) is particularly useful to study the semiclassical limit of the
model. Indeed, we can easily expand Ẽ, B̃ and �π̃ as a power series of h̄

Ẽ =
∞∑

n=0

(
h̄

2m

)2n (−1)n

(2n + 1)!

3∑
i1...i2n=1

(
∂2n

∂ri1 . . . ∂ri2n

E

)
∂2n

∂vi1 . . . ∂vi2n

= E − h̄2

12m2

3∑
i1,i2=1

∂2E
∂ri1∂ri2

∂2

∂vi1∂vi2
+ O

(
h̄4
)

, (4.1)
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B̃ =
∞∑

n=0

(
h̄

2m

)2n (−1)n

(2n + 1)!

3∑
i1...i2n=1

(
∂2n

∂ri1 . . . ∂ri2n

B

)
∂2n

∂vi1 . . . ∂vi2n

= B − h̄2

12m2

3∑
i1,i2=1

∂2B
∂ri1∂ri2

∂2

∂vi1∂vi2
+ O

(
h̄4
)

, (4.2)

�π̃ = mμB

∞∑
n=0

(
h̄

2m

)2n+1 (−1)n(2n + 2)
(2n + 3)!

3∑
i1...i2n=1

(
∂2n+1

∂ri1 . . . ∂ri2n+1

B

)
∂2n+1

∂vi1 . . . ∂vi2n+1

=
3∑

i=1

μBh̄
6

∂B
∂ri

∂

∂vi
+ μBO

(
h̄3
)

. (4.3)

From these semiclassical expansions, we note that the velocity shift �π̃ has a purely quantum
origin, because the leading term in the expansion is of first order in h̄. Therefore, it has no classical
counterpart. In the case of Ẽ and B̃, the leading term in the expansion simply corresponds to the
classical electric or magnetic field.

To zeroth order, the equations for f0 and fi decouple, so that one can study the particle motion
irrespective of the spin degrees of freedom. To first order in h̄, equations (3.11) and (3.12) become

∂f0
∂t

+ v · ∇f0 − e
m

(E + v × B) · ∇vf0 + μB

2mc2 (E × ∇)ifi

− μB

m
∇
[

Bi − 1
2c2 (v × E)i

]
· ∇vfi − μBe

2m2c2 [E × (B × ∇v)]ifi = 0, (4.4)

∂fi
∂t

+ v · ∇fi − e
m

(E + v × B) · ∇vfi + μB

2mc2 (E × ∇)if0

− μB

m
∇
[

Bi − 1
2c2 (v × E)i

]
· ∇vf0 − μBe

2m2c2 [E × (B × ∇v)]if0

− 2μB

h̄

{[
B − 1

2c2 (v × E)
]

× f
}

i
= 0, (4.5)

where the factor h̄ is hidden in the definition of the Bohr magneton μB = eh̄/(2m). The quantum
corrections in equations (4.4) and (4.5) couple the orbital and the spin dynamics through the
Zeeman and spin–orbit interactions. There are no quantum corrections to the orbital electronic
dynamics because they would appear only at the second order in h̄. For instance, the Darwin
term would not appear in the above equations (even if we had included it in the full Wigner
equations) because it is a correction of order h̄2 to the orbital motion of the electron. In summary,
equations (4.4) and (4.5) represent a semiclassical model where the orbital dynamics is classical
(hence the familiar Lorentz force terms), whereas the spin is treated as a fully quantum variable
(two-dimensional Hilbert space).

In equations (4.4) and (4.5), the Zeeman interaction gives two contributions: (i) the term
μB∇Bi · ∇v, which represents the force exerted on a magnetic dipole by an inhomogeneous
magnetic field and is at the basis of Stern–Gerlach-type experiments, and (ii) the term f × B, which
describes the precession of the spin around the magnetic field lines.

The spin–orbit interaction yields a correction to the magnetic field B → B − (v × E)/2c2, which
is the first-order correction in the non-relativistic limit of the Thomas precession [45,46]. The other
terms are related to the spin–orbit correction of the velocity operator. Indeed, in the Heisenberg
picture, the velocity operator V̂ is determined by the evolution equation of the position operator

V̂ = 1
ih̄

[R̂, Ĥ] = Π̂

m
− μB

2mc2 Ê × σ , (4.6)

where we used the Hamiltonian defined in equation (3.3). The associated phase-space function is
determined by the Weyl correspondence rule and reads as

V = v − μB

2mc2 E × σ . (4.7)
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This is the phase-space function that can be used to calculate the average velocity or the charge
current. Therefore, the particles are transported with a modified velocity. The term (E × ∇)i in
equation (4.4) and (4.5) is a direct consequence of this effect, whereas the term [E × (B × ∇v)]i
corresponds to the same velocity correction in the Lorentz force v × B.

The spin Vlasov equations (4.4) and (4.5) are correct to second order in 1/c and can be viewed
as a generalization of those obtained in [31], where only the Zeeman interaction was included. An
alternative form of these equations was obtained by Asenjo et al. [28] in the extended phase-space
formalism.

The Maxwell equations (3.15), combined with the spin Vlasov equations (4.4) and (4.5), form
a self-consistent model for the charge and the spin dynamics of a system of interacting particles.
One can show that the following quantities are conserved during the time evolution:

Mtot = m
∫

f0 dv dr, (4.8)

Ptot = m
∫

vf0 dv dr +
∫

D × B dr, (4.9)

Etot = m
2

∫
v2f0 dv dr + μB

∫
f · B dv dr + ε0

2

∫
E2 dr + 1

2μ0

∫
B2 dr (4.10)

and Jtot = m
∫

(r × v)f0 dr dv + h̄
2

∫
f dr dv +

∫
r × (D × B) dr, (4.11)

where D = ε0E + P and H = B − μ0M. The conserved quantities are the total mass Mtot, the total
linear momentum Ptot (sum of the particles and fields momenta), the total energy Etot (sum of
the kinetic, Zeeman and the electromagnetic field energies), and the total angular momentum Jtot
(sum of the orbital, spin and electromagnetic field angular momenta).

For simulation purposes, the spin Vlasov equations (4.4) and (4.5) are much easier to solve
numerically than the corresponding Wigner equations (3.11) and (3.12), mainly because the
former are local in space while the latter are not. The Vlasov approximation is valid when
quantum effects in the orbital dynamics are small. From equation (2.6), it appears that the
semiclassical expansion is valid when h̄/(mL0v0) � 1, where L0 and v0 are typical length and
velocity scales. For a degenerate electron gas with density n, the typical velocity is the Fermi
speed vF = h̄(3π2n)1/3/m. Inserting into the previous inequality, we obtain the validity condition
L0n1/3 � 1, which means that the typical length scale must be larger than the interparticle distance
d = n−1/3. For this reason, the semiclassical limit is also referred to as the long-wavelength
approximation. All in all, the above spin Vlasov equations constitute a valuable tool to simulate
the charge and spin dynamics in condensed matter systems, particularly semiconductor and
metallic nano-objects.

5. Hydrodynamic model with spin–orbit coupling
In this section, starting from equations (4.4) and (4.5), we derive the hydrodynamic evolution
equations by taking velocity moments of the phase-space distribution functions. In addition to
the particle density and spin polarization (equations (3.8) and (3.9)), we define the following
macroscopic quantities:

u = 1
n

∫
vf0 dv, (5.1)

JS
iα =

∫
vifα dv, (5.2)

Pij = m
∫

wiwjf0 dv, (5.3)

Πijα = m
∫

vivjfα dv (5.4)

and Qijk = m
∫

wiwjwkf0 dv, (5.5)
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where we separated the mean fluid velocity u from the velocity fluctuations w ≡ v − u. Here, Pij
and Qijk are respectively the pressure and the generalized energy flux tensors. They coincide with
the analogous definitions for spinless fluids with probability distribution function f0. The spin–
velocity tensor JS

iα represents the fluid current along the ith direction of the αth spin polarization
vector, whereas Πijα represents the corresponding spin-pressure tensor.2 The evolution equations
for the above fluid quantities are obtained by the straightforward integration of equations (4.4)
and (4.5) with respect to the velocity variable. One obtains

∂n
∂t

+ ∇r · (nū) = 0, (5.6)

∂Sα

∂t
+ ∂iJ̄

S
iα + e

m
(S × B)α + e

2mc2 εjkαεrljElJ
S
rk = 0, (5.7)

∂ui

∂t
+ uj(∇jui) + 1

nm
∇jPij + e

m
[Ei + (ū × B)i] + e

nm2 Sα(∂iBα)

+ μB

2mc2n
εjkl[ui∂j(EkSl) + Ej(∂kJS

il) − (∂iEk)JS
jl − (∂jEk)JS

il] = 0, (5.8)

∂JS
iα

∂t
+ ∂jΠijα + eEi

m
Sα + e

m
εjkiBkJ̄S

jα + e
m

εjkαBkJS
ij + μBh̄

2m
(∂iBα)n

+ μB

2mc2 εklα∂l(Eknui) − μB

2mc2 εklα(∂iEl)nuk + μB

h̄c2 εklαεrskEsΠ
S
irl = 0 (5.9)

and
∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk + e

m
[εkliPjk + εkljPik]Bl

+ μB

m
[∂iBk(JS

jk − ujSk) + ∂jBk(JS
ik − UiSk)] + μB

2mc2 εrsl∂s[Er(ΠS
ijl − uiujSl)]

+ μB

2mc2 εrkpEr[εkli(J
S
jp − ujSp) + εklj(J

S
ip − uiSp)]Bl

− μB

2mc2 εrsl[∂iEs(ΠS
jrl − ujJ

S
rl) + ∂jEs(ΠS

irl − uiJ
S
rl)]

− μB

2mc2 uiεrsl∂s[Er(JS
jl − ujSl)] − μB

2mc2 ujεrsl∂s[Er(JS
il − uiSl)] = 0, (5.10)

where we introduced a new average velocity and a new spin current

ū = u − μB

2mc2n
E × S, J̄S

ij = JS
ij + μB

2mc2 εijkEkn. (5.11)

The above corrections reflect the modification of the velocity owing to the spin–orbit coupling.
Indeed, the average velocity can be immediately obtained from the velocity phase-space function,
equation (4.7), yielding

ū = 1
nm

tr
[∫

V(r, π)F dπ

]
= u − μB

2mc2n
E × S, (5.12)

where F is the 2 × 2 distribution function defined in equation (3.6). The same holds for the spin
current operator, which is defined as follows:

ĴS
ij = v̂iσj = Π̂i

m
σj − μB

4mc2 [(Ê × σ )iσj + σj(Ê × σ )i], (5.13)

where we symmetrized the operator so that it is Hermitian. Then the associated phase-space
function,

JS
ij(r, π ) = Πi

m
σj − μB

4mc2 [(E × σ )iσj + σj(E × σ )i], (5.14)

can be used to determine the spin current

J̄S
ij = 1

m
tr
[∫

Js
ij(r, π)F dπ

]
= JS

ij + μB

2mc2 εijkEkn. (5.15)

2Strictly speaking, a pressure tensor should be defined in terms of the velocity fluctuations wiwj, but this would unduly
complicate the notation. Thus, we stick to the above definition of Πijα while still using the term ‘pressure’ for this quantity.

 on October 23, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


11

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160199

.........................................................

As is always the case for hydrodynamic models, some further hypotheses are needed to close
the above set of equations (5.6)–(5.10). A particularly interesting strategy, based on the maximum
entropy method (MEP), was used in a previous work [31] to close the set of hydrodynamic
equations in the presence of the sole Zeeman interaction. Unfortunately, when one adds the spin–
orbit interaction, the MEP does not provide any conclusive analytical results (the difficulty arises
from the fact that the spin–orbit interaction couples all the components of the velocity). However,
an intuitive closure can be found by inspecting the evolution equation (5.10) for the pressure
tensor. There, most spin-dependent terms cancel if we set

JS
iα = uiSα and ΠS

ijα = uiJ
S
jα . (5.16)

The physical interpretation of the above equations is that the spin of a particle is simply
transported along the mean fluid velocity. This is of course an approximation that amounts
to neglecting some spin–velocity correlations [27]. With this assumption, equation (5.9) and
the definition of the spin-pressure Πijα are no longer necessary. The system of fluid equations
simplifies to

∂n
∂t

+ ∇r · (nū) = 0, (5.17)

∂Sα

∂t
+ ∂i(uiSα) − μB

2mc2 (∇ × nE)α + e
m

[
S ×

(
B − 1

2c2 u × E
)]

α

= 0, (5.18)

∂ui

∂t
+ uj(∇jui) + 1

nm
∇jPij + e

m
[Ei + (ū × B)i] + e

nm2 Sα(∂iBα)

+ μB

2mc2n
εjkl[Ej(∂kui) − uk(∂iEj)]Sl = 0 (5.19)

and
∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk + e

m
[εkliPjk + εkljPik]Bl = 0. (5.20)

In order to complete the closure procedure, one can proceed in the same way as is usually
done for spinless fluids, for instance by supposing that the system is isotropic and adiabatic.
The isotropy condition imposes that Pij = (P/3)δij, where δij is the Kronecker delta, whereas the
adiabaticity condition requires that the heat flux Qijk vanish. In that case, the pressure takes the
usual form of the equation of state of an adiabatic system, i.e. P = const. × n(D+2)/D (where D is
the dimensionality of the system), which replaces equation (5.20). In summary, equations (5.17)–
(5.19), together with the preceding expression for the pressure, constitute a closed system of
hydrodynamic equations with spin–orbit effects.

6. Conclusion
Phase-space methods can be applied to condensed matter and nanophysics to model the electron
dynamics in either the quantum or the semiclassical regime. Several studies were performed
in the past but neglected spin effects [8,44,47]. In this paper, we showed that phase-space
methods can be conveniently generalized to include the spin dynamics at different orders. In
an earlier work, we had developed a phase-space model that includes the lowest order spin term
(the Zeeman effect), but neglects all relativistic corrections (spin–orbit coupling, Darwin term,
mass correction, . . .). Here, we considered the case where both the Zeeman and the spin–orbit
interaction are present (other relativistic corrections could be added with relative ease). The spin–
orbit interaction plays an important role, for instance, in ultrafast spectroscopy experiments on
magnetic nano-objects, where the electron spin is known to interact with the incident laser field
and with the self-consistent field generated by the electron gas.

We first derived a four-component Wigner equation to describe the quantum dynamics of a
system of spin- 1

2 particles. These equations, together with the appropriate Maxwell equations,
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form a fully quantum self-consistent model to study the spin and charge dynamics in the mean-
field approximation. This model is not limited to the linear response, but can deal with nonlinear
effects, which are often important, particularly for large incident laser powers.

Next, using a semiclassical expansion to first order in h̄, we obtained a four-component
Vlasov equation. The orbital part of the motion is classical, i.e. the particles follow the classical
phase-space trajectories, while the spin degrees of freedom are treated in a fully quantum fashion
(two-dimensional Hilbert space). These spin Vlasov equations constitute a good approximation
of the quantum electron dynamics for wavelengths larger than the typical inter-electron distance.

The corresponding hydrodynamic equations were derived by taking velocity moments of
the phase-space distribution functions. The spin–orbit interaction modifies considerably our
earlier hydrodynamic equations [31], where the only spin effect was the Zeeman interaction. We
proposed a simple, intuitive closure for the hydrodynamic equations whereby the spin is simply
transported along by the fluid velocity of the electrons.

The present models (Vlasov and hydrodynamic) constitute two valuable tools to study the
intertwined spin and charge dynamics in condensed matter systems and nano-objects. The
challenge now is to implement these models in performing numerical codes and to study the
electron dynamics in realistic nanoscale systems that are relevant to current experiments.
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