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a b s t r a c t

This work focuses on the numerical simulation of the Wigner–Poisson–BGK equation in the diffusion
asymptotics. Our strategy is based on a ‘‘micro–macro’’ decomposition, which leads to a system of
equations that couple the macroscopic evolution (diffusion) to a microscopic kinetic contribution for the
fluctuations. A semi-implicit discretization provides a numerical scheme which is stable with respect
to the small parameter ε (mean free path) and which possesses the following properties: (i) it enjoys
the asymptotic preserving property in the diffusive limit; (ii) it recovers a standard discretization of the
Wigner–Poisson equation in the collisionless regime. Numerical experiments confirm the good behavior
of the numerical scheme in both regimes. The case of a spatially dependent ε(x) is also investigated.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ongoingminiaturization of microelectronics devicesmakes
classical transport models (e.g., the drift-diffusion equation) un-
able to capture the main features of a variety of systems – such
as semiconductor quantum dots and resonant tunneling diodes –
where quantum mechanical effects are expected to play a central
role. This fact motivates the development of quantum transport
models for charged particle systems.

TheWigner representation [1,2] is a useful tool to express quan-
tummechanics in a phase space formalism. In this representation,
a quantum state is described by a Wigner function (i.e., a function
of the phase space variables), whose temporal evolution obeys an
integro-differential equation (Wigner equation) that is similar to
the classical Liouville equation. The Wigner function cannot be re-
garded as a true probability density in the phase space, as it may
take negative values. Nevertheless, it can be used to compute av-
erages just like in classical statistical mechanics.

TheWigner equation can be coupled to the Poisson equation for
the electrostatic potential to obtain a suitable model to describe
the quantum dynamics of electrons [3,4]. Such self-consistent
Wigner–Poisson equations have been extensively used to study
quantum transport in semiconductors and metallic nanostruc-
tures, such as nanoparticles and thin films [5,6]. A large literature
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on the numerical analysis ofWigner–Poisson schemes also exists—
see for instance Refs. [7–10].

In semiconductor devices, the electronmotion is coupled to the
ion lattice vibrations (phonons)which act as a thermal bath driving
the electronpopulation toward classical equilibriumona timescale
τ [6]. Therefore, in order to deal with a wide range of physical
regimes, it is important to construct a numerical model that is
stable and accurate both in the fully quantum regime (τ large
compared to some typical timescale) and in the classical collision-
dominated regime (τ small).

In the present context, the classical limit model is the drift-
diffusion (DD) equation, corresponding to the limit τ ≈ ε → 0 in
the scaled Wigner equation (2.1). Our purpose is to design an effi-
cient asymptotic-preserving (AP) scheme for the diffusion asymp-
totics of the Wigner equation. The term ‘‘asymptotic preserving’’
has been introduced in [11] for numerical schemes that are stable
with respect to a small parameter ε and degenerate into a consis-
tent numerical scheme for the limit model when ε → 0. We can
also mention the search for macroscopic models containing quan-
tum informations [12–17].

The diffusion limit has already been studied for the radiative
transfer equation or the collisional Vlasov equation—we refer the
reader to Refs. [18–26] for further details. Other asymptotic limits,
such as the fluid limit or the high field limit, have been investigated
in Refs. [27–30].

In thiswork,we study the diffusion limit of theWigner equation
using the so-called ‘‘micro–macro’’ decomposition [27,31,32,29].
This strategy seems to be a robust and systematic way to design
AP schemes. The main idea is to develop a micro–macro model
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(equivalent to the original Wigner equation) which couples the
macroscopic part of the evolution to a microscopic part. A suitable
semi-implicit discretization then ensures that the corresponding
numerical scheme satisfies the asymptotic-preserving property.
However, in the collisionless limit (ε → ∞), such a scheme dis-
plays amodified timediscretization of the originalWigner–Poisson
model, which may affect the long-time behavior of the solution.
Hence, we introduce a slight improvement that ensures a standard
time discretization of the Wigner–Poisson equation in the colli-
sionless limit without affecting the asymptotic-preserving char-
acter of the numerical scheme. Note that in [33], an asymptotic
preserving scheme has been obtained by separating odd and even
part of the unknown.

We shall restrict our analysis to one-dimensional (1D) problems
and consider theWigner distribution function f (t, x, v), which de-
pends on time t ≥ 0, space x ∈ [0, L] and velocity v ∈ R. De-
noting by φ(t, x) the self-consistent electric potential (E = −∂xφ
is the electric field), the collisional Wigner equation reads as (with
e andm representing the electron charge and mass, respectively)

∂ f
∂t

+ v∂xf −
e
m

Th̄/m[φ]f =
1
τ
Q (f ), (1.1)

where τ is a relaxation time and

(Th̄/m[φ]f )(t, x, v)

=
i

2π


Rξ


Rv′

φ

t, x +

h̄
2mξ


− φ


t, x −

h̄
2mξ


h̄/m

× f (t, x, v′) exp[−i(v − v′)ξ ]dv′dξ,

with h̄ the Planck constant. The self-consistent potential obeys the
Poisson equation

∂2x φ(t, x) = −e[ρ(t, x)− ni(x)], (1.2)

where ρ(t, x) =


R f (t, x, v)dv and ni is a given ion density.
The collision operator Q (f ) is the Bhatnagar–Gross–Krook (BGK)
collision operator

Q (f )(t, x, v) = ρ(t, x)MΘ(v)− f (t, x, v),

with MΘ(v) =
1

√
2πΘ

exp


−
v2

2Θ


, (1.3)

with Θ = kBT/m, kB being the Boltzmann constant and T a given
temperature.

We consider a spatially periodic plasma with period L. The
distribution function f satisfies the following boundary conditions:

f (t, 0, v) = f (t, L, v), ∀v ∈ R, t ≥ 0. (1.4)

In order to obtain awell-posed problem, a zero-mean condition has
to be imposed on the electric field: L

0
E(t, x)dx = 0, ∀t ≥ 0. (1.5)

Finally, an initial condition should be specified

f (0, x, v) = f0(x, v), ∀x ∈ [0, L], v ∈ R. (1.6)

The rest of the paper is organized as follows. In Section 2, the
diffusive scaling and the corresponding asymptotics are presented
in the Wigner–BGK case. In Section 3, a linear stability analysis is
performed and the relevant growth rate is computed. In Section 4,
we present the asymptotic-preserving numerical scheme for the
Wigner–BGK equation in the diffusive scaling. The results of
several numerical tests are shown in Section 5, and conclusions are
finally drawn in Section 6.
2. Diffusion regime for Wigner–BGK

In this section, we detail the diffusion scaling for (1.1) and the
corresponding asymptotic model (we refer the reader to [34] for
more details).

2.1. Diffusion scaling

We normalize space to a characteristic macroscopic length ℓ,
velocity to the thermal speed

√
Θ , and time to ℓ/U0, where U0 is a

typical drift velocity. The electric potential is normalized to mΘ/e
and the electron density to the average density ρ0. We also assume
that the ion density profile is uniform, i.e., ni(x) = ρ0.

With these normalizations, theWigner–BGK equation becomes

η∂t f + v∂xf − Tνh0 [φ]f =
1
ν
(ρMΘ − f ),

and the Poisson equation can be written as

∂2x φ = −γ (ρ − 1),

where η = U0/
√
Θ, ν =

√
Θτ/ℓ, and γ = ρ0e2ℓ2/(mΘϵ0) =

ω2
pℓ

2/Θ = ℓ2/λ2D, where λD is the Debye length. In the forthcom-
ing simulations, we will always take γ = 1.

In the diffusion regime, we assume that η = ν = ε ≪ 1,
which means that the drift velocity U0 ∼ ε is small compared to
the thermal velocity

√
Θ ∼ 1, which in turn is small compared to

the relaxation velocity ℓ/τ ∼ ε−1. The relevant ordering can thus
be written as

U0 ≪
√
Θ ≪

ℓ

τ
.

With the above scaling, the Wigner equation becomes

ε∂t f + v∂xf − Tεh0 [φ]f =
1
ε
(ρMΘ − f ), (2.1)

where the normalized Planck constant h0 is defined as

h0 =
h̄

mΘτ
,

and

Tεh0 [φ]f =
i

2π


Rξ


Rv′

φ

t, x +

εh0
2 ξ


− φ

t, x −

εh0
2 ξ


εh0

× f (t, x, v′) exp[−i(v − v′)ξ ]dv′dξ .

2.2. Derivation of the asymptotic drift-diffusion model

To derive the DD model from Eq. (2.1) in the asymptotic limit
ε → 0, the usual procedure is to perform a Hilbert expansion of
theWigner function: f = f0 +εf1 +ε2f2. This expansion is injected
in (2.1), and the terms of same order are identified. At the lowest
order ε−2, we obtain

f0(t, x, v) = ρ(t, x)MΘ(v), ρ(t, x) =


f0(t, x, v)dv.

In particular, the first moment of f is equal to the first moment of
f0; as a consequence, the first moment of f1 and f2 is equal to zero.
Identifying terms of order ε−1, we find that f1 has to satisfy

v∂xf0 − ∂xφ∂v f0 = −f1. (2.2)

This equation has a solution if and only if the right hand side
satisfies the null average condition:
(v∂xf0 − ∂xφ∂v f0)dv = 0.
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Using the relation f0 = ρMΘ , we have


R v∂xf0dv = 0, and
R ∂xφ∂v f0dv = 0. Hence, the integral of the right hand side of (2.2)

is equal to zero and (2.2) has a unique solution f1 given by
f1 = −v∂xf0 + ∂xφ∂v f0. (2.3)

Finally, keeping terms of order unity leads to
∂t f0 + v∂xf1 − Tεh0 [φ]f1 = Q (f2) = −f2.
The solvability condition for f2 implies that

∂tρ + ∂x


R
vf1dv


= 0, (2.4)

since

Tεh0 [φ]f1dv = 0. Using (2.3), we get

R
vf1dv = −∂x


R
v2f0dv +


R
v∂xφ∂v f0dv

= −∂x(ρΘ)− ρ∂xφ,

so that (2.4) becomes the so-called DD equation
∂tρ − ∂x [ρ∂xφ + ∂x(ρΘ)] = 0. (2.5)

2.3. Derivation of the micro–macro model and the asymptotic limit

This section is devoted to the derivation of the micro–macro
model starting from theWigner–BGK equation (see [27,29,32,31]).
Derivation of the micro–macro model

Let us suppose that f satisfies the following decomposition (we
assumeΘ = 1 for simplicity)

f = ρM + g, with M(v) =
1

√
2π

exp


−
v2

2


, ρ =


fdv.

We introduce the transport operator T f = v∂xf − Tεh0 [φ]f of the
Wigner equation (1.1), which leads to

∂t(ρM)+ ∂tg +
1
ε
T (ρM)+

1
ε
T g = −

1
ε2

g. (2.6)

We define Π as the orthogonal projection in L2(M−1dv), en-
dowed with the weighted scalar product (ϕ, ψ)M = ⟨ϕψM−1

⟩ =
(ϕψ/M)dv, onto the kernel of the collision operator

N (Q ) =


f = ρM where ρ =


fdv

.

For any function ϕ depending on v, the explicit orthogonal
projection onto the kernel is given by

Π(ϕ) =


ϕdv M. (2.7)

In this case, the projection is nothing but an integration in v
multiplied by theMaxwellian function. But this approach is general
and can be adapted to different cases (see [27,29,32,31,35]).

Themicro–macromodel is obtained by applyingΠ and (I −Π)
to (2.6). Applying Π to (2.6) provides an equation for ρ, whereas
applying (I −Π) gives an equation for g . The micro–macro model
of unknown (ρ, g, φ) can then be written

∂tg +
1
ε
(I −Π)T g

=
1
ε2

[−g − ε(I −Π)T (ρM)] , ‘‘micro’’

∂tρ +
1
ε
∂x


vgdv = 0, ‘‘macro’’

∂2x φ = −(ρ − 1), ‘‘Poisson’’

(2.8)

where Π is defined in (2.7), T g = v∂xg − Tεh0 [φ]g and
M(v) = (1/

√
2π) exp(−v2/2). This micro–macro model is a good

candidate to construct an asymptotic preserving scheme, as was
done in Refs. [31,29], since the asymptotic model is already almost
contained in the ‘‘macro’’ part of the above formulation.
Proposition 2.1. (i) If (f , φ) is a solution of (1.1)–(1.2)–(1.3) with
the initial data (1.6), then (ρ, g, φ) = (


fdv, f −ρM, φ) is a solution

of (2.8) with the associated initial data

ρ(t = 0) =


f (t = 0)dv,

g(t = 0) = f (t = 0)− ρ(t = 0)M, and

∂2x φ(t = 0) = −(ρ(t = 0)− 1).

(2.9)

(ii) Conversely, if (ρ, g, φ) is a solution of (2.8) with initial
data (2.9), then


gdv = 0 and f = ρM + g is a solution of

(1.1)–(1.2)–(1.3).

Chapman–Enskog expansion
In this paragraph, we want to verify formally that the asymp-

totic limit of (2.8) is indeed the DD model (2.5) derived previ-
ously. Multiplying the first equation of (2.8) by ε2, we deduce that
g = O(ε) so that we can write from the first equation of (2.8),
g = −ε(I −Π)T (ρM)+ O(ε2)

= −ε(I −Π)(vM∂xρ − Tεh0 [φ](ρM))+ O(ε2),

= −ε(I −Π)(vM∂xρ − ∂xφ∂v(ρM))+ O(ε2)

= −ε(vM∂xρ − ∂xφ∂v(ρM))+ O(ε2)

= −ε(vM∂xρ + vρM∂xφ)+ O(ε2).

If we now inject the above expression into the second equation of
(2.8), we obtain

∂tρ − ∂x


v2Mdv∂xρ + ρ∂xφ


= O(ε2)

or, when ε goes to zero,
∂tρ − ∂x [∂xρ + ρ∂xφ] = 0, (2.10)
which is exactly the drift-diffusion model (2.5).

These basic computationswill bemimicked at the discrete level.

3. Linear stability analysis

In this section, we study the linear response of theWigner–BGK
equations in order to validate the collisionless limit (i.e., ε → ∞

in (2.1)) in the numerical simulations. Note that the forthcoming
calculations are performed only at a formal level, with the aim of
deriving a damping (or instability) rate that can be compared to the
numerical results of Section 5. Regularity conditions on f will not
be addressed.

In order to investigate the linear response of theWigner–Poisson
equations, we expand the distribution function and the potential
around the equilibrium solution f = f0(v), φ = 0:
f (t, x, v) = f0(v)+ f1(t, x, v), φ(t, x) = φ1(t, x), (3.1)
and then neglect second order terms. Further, we assume that the
perturbed quantities can be expanded in a Fourier series both in
space and in time, i.e.:
f1(x, v, t) = f1(v) exp(−iωt + ikx),
φ1(x, t) = φ1 exp(−iωt + ikx),
where ω and k are the frequency and the wave number of the
perturbation, respectively.

We first apply this approach to the Wigner–Poisson equations
without the BGK term, which disappears in the limit ε → ∞. In
this case, the relevant dispersion relation can be written in terms
of the Lindhardt ‘‘dielectric constant’’ [36]

D(Ω, k) ≡ 1 +
1

Hk2

×


+∞

−∞

f0(v + Hk/2)− f0(v − Hk/2)
Ω − kv

dv = 0, (3.2)

where we have definedΩ = ωε and H = h0ε.
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Expanding in a Taylor series the difference term in the integral
in Eq. (3.2), we obtain

D(Ω, k) ≈ 1 +
1
k


f ′

0(v)

Ω − kv
dv

+
H2k
24


f ′′′

0 (v)

Ω − kv
dv + · · · (3.3)

where the apex denotes derivation with respect to v. Notice that
the first two terms are identical to the dispersion relation for the
Vlasov–Poisson equations, whereas the last term is a quantum
correction.

We further assume that the wave number of the perturbation
is small, i.e., kv ≪ Ω , and use this fact to write the following
expansion:

1
Ω − kv

≈
1
Ω

+
kv
Ω2

+
k2v2

Ω3
+

k3v3

Ω4
+ · · ·

.
If the equilibrium distribution f0(v) is an even function of v, the

dielectric constant can then be expressed in the following way:

D(Ω, k) ≈ 1 −
1
Ω2

−
3k2⟨v2⟩
Ω4

−
H2k4

4Ω4
, (3.4)

where ⟨v2⟩ :=

v2f0(v)dv, or, equivalently to the relevant order

D(Ω, k) ≈ 1 −


Ω2

− 3k2θ −
H2k4

4

−1

, (3.5)

where we have used the fact that, for a Maxwellian distribution
f0(v) = Mθ (v), we have ⟨v2⟩ = θ . Note that another equilibrium
can be considered; see [37] for the Lorentzian equilibrium case.

Now, for an equilibrium distribution shifted by a constant
velocity ±V , the above dispersion relation becomes

D±(Ω, k) = 1 −


(Ω ± kV )2 − 3k2θ −

H2k4

4

−1

. (3.6)

In the forthcoming sections, we will be interested in two-
stream distributions composed of two Maxwellians traveling with
velocities ±V . In that case, the dielectric constant can be written
as

D(Ω, k) =
D+(Ω, k)+ D−(Ω, k)

2
. (3.7)

Setting D(k, ω) = 0, we obtain the dispersion relation for the
two-stream plasma

Ω4
−


1 + 2k2(V 2

+ 3θ)+
H2k4

2


Ω2

− k2

V 2

− 3θ −
H2k2

4


×


1 − (V 2

− 3θ)k2 +
H2k4

4


= 0. (3.8)

Solving forΩ2, one obtains

Ω2
=

1
2

+ k2

V 2

+ 3θ +
H2k2

4



±
1
2


1 + 8k2


V 2

+ 6k2θ +
H2k4

2

1/2
. (3.9)

Instability occurs when Ω2 < 0, and the instability rate is simply
given by Im(Ω)/ε (see Fig. 1).
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k

Fig. 1. Plot of the instability rate for a two-stream distribution, h0 = 0.01, ε =

1000, V = 2, θ = 0.2.

4. Numerical approximation

In the following, we introduce a formal discrete finite
difference operator for the spatial derivative Dx such that (Dxf )
is an approximation of ∂xf . Hence we shall reuse the previous
continuous notation T f in this discrete framework T f = vDxf −

Tεh0 [φ
n
]f (the electric potential is evaluated at time tn).

First, we focus on the time discretizationwithout specifying the
spatial discretization (Dx is used for all spatial derivatives). Then, a
detailed full discretization is proposed.

4.1. Time discretizations

Semi-implicit time discretization
Following [31,29], the main idea is to treat the stiffest terms in

an implicit way. In the micro equation, the stiffest term is g/ε2,
whereas in the macro equation the flux


vgdv should also be

treated implicitly. We then get the following semi-discretization
in time for (2.8):

gn+1
− gn

1t
+

1
ε
(I −Π)T gn

=
1
ε2


−gn+1

− ε(I −Π)T (ρnM)

,

ρn+1
− ρn

1t
+

1
ε
Dx


vgn+1dv = 0,

−∂2x φ
n

= ρn
− 1.

(4.1)

The first equation can be rewritten as

gn+1
=


1 +

ε2

1t

−1 
ε2

1t
gn

− ε(I −Π)T (ρnM + gn)


. (4.2)

Once gn+1 has been computed, the macro equation on ρ can be
advanced to get ρn+1 and the electric potential can be solved to
obtain φn+1. This numerical scheme has been proved to be stable
independently of ε, at least in the linear case (radiative transfer
equation) in [31,38].
AP property

Let us verify that the previous numerical scheme provides a
consistent scheme for (2.5) when ε goes to zero. When ε << 1,
we have from the micro equation that gn+1

= O(ε). Then, in this
regime, we have from (4.2)

gn+1
= −ε(I −Π)T (ρnM)+ O(ε2),

= −εT (ρnM)+ O(ε2),

= −ε(vMDxρ
n
− Tεh0 [φ

n
](ρnM))+ O(ε2),

= −ε(vMDxρ
n
− Dxφ

n∂v(ρ
nM))+ O(ε2),

= −ε(vMDxρ
n
+ vρnMDxφ

n)+ O(ε2),
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which, injected into the macro equation, leads to

ρn+1
− ρn

1t
− Dx


v2MdvDxρ

n
+


v2MdvρnDxφ

n


= 0.

Using

v2Mdv = 1, the above equation can be rewritten as

ρn+1
− ρn

1t
− Dx


Dxρ

n
+ ρnDxφ

n
= 0, (4.3)

which is an explicit time discretization of the limit model (2.5). Let
us alsomention that an implicit discretization of the diffusion term
∂2x ρ can be derived using the methods described in Refs. [32,29].
This numerical scheme is detailed at the end of the present section.
Mixed scheme

Here, we want to design a numerical scheme which, in the
limit ε → +∞, recovers an explicit numerical scheme for the
Wigner–Poisson equation

f n+1
= f n −

1t
ε

T f n + O


1
ε2


, (4.4)

which was not the case for the above time discretization. Indeed,
adding together the first two equations of (4.1) leads to

f n+1
= f n −

1t
ε

T f n −
1t
ε
Π(vDx(gn+1

− gn))+ O


1
ε2


,

which involves an additional term of orderO(1t2) that can pollute
the long-time behavior of the numerical solution.

On the other hand, an explicit (but not stable) discretization of
the macro equation gives

ρn+1
= ρn

−
1t
ε


T f ndv, (4.5)

where f n = ρnM + gn. Multiplying Eq. (4.5) by M and adding to
the first of equations (4.1) for g yields

f n+1
= f n −

1t
ε

T f n + O


1
ε2


.

If the transport dominates over the dissipation phenomena (which
occurs when ε → +∞), then one would like to recover this
discretization of the initial kinetic equation.

One way to derive a numerical scheme that is well behaved
both when ε → 0 and when ε → ∞ is to combine the flux in
(4.5)with the fluxΠ(vDxgn+1). To that purpose, we choose a linear
combination of these two fluxes

ρn+1
= ρn

− β
1t
ε


T f ndv

− (1 − β)
1t
ε

Dx


(vgn+1)dv, (4.6)

where we require β to satisfy the following properties:

• β ∈ [0, 1], for the consistency;
• β = O(ε2)when ε → 0, to preserve the AP property;
• limε→∞ β = 1 to ensure the correct collisionless limit when
ε → +∞.

One good choice appears to be β = ε2/(1 + ε2).
Hence, we still keep the consistency with respect to the initial

model for a fixed ε > 0 since we have used a linear combination of
two consistent fluxes with β ∈ [0, 1]. Moreover, when ε → 0, we
haveβ/ε → 0 so thatwe recover the previous stable discretization

ρn+1
= ρn

−
1t
ε

Dx


(vgn+1)dv + O(ε),
which is consistentwith the limit drift-diffusionmodel (see above).
On the other hand, when ε → +∞, we have β → 1 so that we
recover

ρn+1
= ρn

−
1t
ε


T f ndv + O


1
ε2


,

which, added to the equation for g (i.e., the first equation of (4.1)),
leads to the explicit discretization (4.4) of the initial Wigner–
Poisson equation.

Implicit diffusion
Following Refs. [32,29], it is possible to obtain, in the diffusion

limit, a numerical scheme in which the diffusion term is implicit.
This is of great interest since the restrictive condition 1t =

O(1x2) can be avoided when one deals with small values of ε.
We now provide some details on this strategy in the context of the
Wigner–BGK equation.

First, we rewrite gn+1 from (4.2)

gn+1
=

ε2

1t + ε2
gn

−
ε1t

1t + ε2
(I −Π)T (ρnM + gn)

=
ε2

1t + ε2
gn

−
ε1t

1t + ε2


vMDxρ

n
+ (I −Π)vDxgn

− Tεh0 [φ
n
](ρnM + gn)


= hn

−
ε1t

1t + ε2
vMDxρ

n,

where hn is defined as hn
= gn+1

+

ε1t/(1t + ε2)


vMDxρ

n.
Injecting this expression of gn+1 into (4.6), we get

ρn+1
= ρn

− β
1t
ε


T f ndv − (1 − β)

1t
ε

Dx


(vgn+1)dv

= ρn
− β

1t
ε


T f ndv

−(1 − β)
1t
ε

Dx


vhndv + (1 − β)

1t2

1t + ε2
Dx

×


v2Mdv Dxρ

n.

The last term can be considered implicit so that themacro equation
becomes

ρn+1
= ρn

− β
1t
ε


T f ndv − (1 − β)

1t
ε

Dx

×


vhndv + (1 − β)

1t2

1t + ε2
Dx

×


v2Mdv Dxρ

n+1, (4.7)

coupled with the micro equation

gn+1
= hn

−
ε1t

1t + ε2
vMDxρ

n, (4.8)

with hn given by

hn
=

ε2

1t + ε2
gn

−
ε1t

1t + ε2


(I −Π)vDxgn

− Tεh0

× [φn
](ρnM + gn)


. (4.9)
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4.2. Full discretization

Startingwith the numericalmethod proposed in [39], we derive
a numerical scheme for (2.8), in particular for the numerical
resolution of Tεh0 [φ].

Let us denote xi = i1x, i = −1, . . . ,Nx and vk = vmin +

k1v, k = 0, . . . ,Nv − 1 where 1x = L/Nx and 1v =

(vmax − vmin)/Nv (with vmax = −vmin) are the uniform phase
space discretizations. Hence we denote by gn

i,k an approximation
of g(tn, xi, vk) andMk = M(vk). On the other hand, the macro part
of (2.8) is approximated at xi = i1x, i = 0, . . . ,Nx so that we use
the notations ρn

i ≈ ρ(tn, xi). The electric potential is evaluated at
xi by φi(tn) and we can reconstruct the total distribution function
f ni,k = ρn

i Mk + gn
i,k.

Recalling that T = v∂x − Tεh0 [φ
n
], we use a finite volume

scheme for the transport in the spatial variable to get the following
approximation for (T f )(tn, xi, vj):

(T f n)i,k = v+

k

f ni,k − f ni−1,k

1x
+ v−

k

f ni+1,k − f ni,k
1x

− Tεh0 [φ
n
]f ni,k,

so that the numerical scheme for (4.2) reads as

gn+1
i,k


1 +

ε2

1t


=
ε2

1t
gn
i,k − ε(I −Π)(T f n)i,k. (4.10)

Here the projectionΠ f is approximated by the following discrete
operator (Π f )i,k ≈


k fi,k1v


Mk, whereas the integrals in v are

approximated by a sum on the discrete velocities. Once gn+1
i,k is

computed, the time-stepping of the macro equation is

ρn+1
i = ρn

i − β
1t
ε


k

(T f n)i,k1v


− (1 − β)

1t
ε

×


k


vk

gn+1
i+1,k − gn+1

i−1,k

21x
1v


. (4.11)

The Poisson equation can be discretized to get the potential at xi:

− [φn
i+1 − 2φn

i + φn
i−1] = 1x2(ρn

i − 1). (4.12)

Finally, the Wigner term Tεh0 [φ
n
] is discretized using the spectral

method described in Ref. [39].
The asymptotic property can also be proven in the fully dis-

cretized context. Indeed, in the discrete micro equation for g , we
get as ε goes to zero

gn+1
i,k = −ε(I −Π)


v+

k

f ni,k − f ni−1,k

1x

+v−

k

f ni+1,k − f ni,k
1x

− Tεh0 [φ
n
]f ni,k


+ O(ε2),

= −ε(I −Π)


Mkv

+

k
ρn
i − ρn

i−1

1x

+Mkv
−

k
ρn
i+1 − ρn

i

1x
− Tεh0 [φ

n
]f ni,k


+ O(ε2),

= −ε


Mkv

+

k
ρn
i − ρn

i−1

1x
+ Mkv

−

k
ρn
i+1 − ρn

i

1x


+ ε

ρn
i − ρn

i−1

1x
Π(Mkv

+

k )+ ε
ρn
i+1 − ρn

i

1x

×Π(Mkv
−

k )+ εTεh0 [φ
n
]f ni,k + O(ε2),

= −ε


Mkv

+

k
ρn
i − ρn

i−1

1x
+ Mkv

−

k
ρn
i+1 − ρn

i

1x



+ ε
ρn
i − ρn

i−1

1x
Π(Mk|vk|)/2 − ε

ρn
i+1 − ρn

i

1x

×Π(Mk|vk|)/2 + εTεh0 [φ
n
]f ni,k + O(ε2),

= −ε


Mkv

+

k
ρn
i − ρn

i−1

1x
+ Mkv

−

k
ρn
i+1 − ρn

i

1x


+ ε

2ρn
i − ρn

i+1 − ρn
i−1

21x
Π(Mk|vk|)/2

+ εTεh0 [φ
n
]f ni,k + O(ε2),

= −εMkvk
ρn
i+1 − ρn

i−1

21x
+ ε

ρn
i+1 − 2ρn

i + ρn
i−1

21x

× (I −Π)(Mk|vk|)+ εTεh0 [φ
n
]f ni,k + O(ε2).

But (I − Π)(Mk|vk|) = Mk(|vk| −
√
2/π), which is even, so that

vk(I − Π)(Mk|vk|) is odd and Π(vk(I − Π)(Mk|vk|)) = 0. Then,
injecting gn+1

i,k into (4.11) leads to

ρn+1
i − ρn

i

1t

= Π(v2kMk)
ρn
i+2 − 2ρn

i + ρn
i−2

41x2

−
Π(vkTεh0 [φ

n
]f ni+1,k)−Π(vkTεh0 [φ

n
]f ni−1,k)

21x
+ O(ε),

= ∂x

∂xρ

n
+ ρn∂xφ

n
i + O(1x +1v)+ O(ε),

which is consistent with the diffusion equation (2.5).
Using staggered grids xi+1/2 and a specific transport scheme for

ρ enables us to obtain the standard centered scheme for the second
derivative in (2.5): (ρi+1 − 2ρi + ρi−1)/1x2. These steps are fully
detailed in [27].

For themixed implicit version,when ε is smallwe get from (4.9)

hn
= εTεh0 [φ

n
](ρn

i Mk)+ O(ε2),

so that (4.7) becomes

ρn+1
i = ρn

i − β
1t
ε
Π(T f ni,k)− (1 − β)

1t
21xε

×Π(vk(hn
i+1,k − hn

i−1,k))+ (1 − β)
1t2

1t + ε2

×
ρn+1
i+1 − 2ρn+1

i + ρn+1
i−1

1x2
,

= ρn
i − β

1t
ε
Π(T f ni,k)− (1 − β)1t∂x(ρn∂xφ

n)i

+ (1 − β)
1t2

1t + ε2
∂2x ρ

n+1
i + O(1x +1v)+ O(ε),

which is a consistent discrete scheme for the drift-diffusion
equation with an implicit diffusion term.

5. Numerical results

We consider the following initial condition:

f (t = 0, x, v) =
1
a


exp


−

1
2θ

|v − 2|2


+ exp


−
1
2θ

|v + 2|2


(1 + αϕ(x)) (5.1)

where a is a normalization factor, α = 10−3, ϕ(x) = cos(kx + bj),
bj being a random number between 0 and 2π , and k is the wave
number (here we use k = 0.2). For the micro–macro model (2.8),
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Fig. 2. Diffusive regime. Time history of the electric energy for ε = 10−4 (left) and ε = 10−8 (right) for the limitmodel (DD), themicro–macromodel (MMW,1t = 5×10−3

for both values of ε) and the micro–macro model with an implicit treatment of the diffusion (MMW-implicit,1t = 5 × 10−2 for both values of ε).
Fig. 3. Intermediate regime. Time history of the electric energy for ε = 1 (left) and ε = 0.6 (right).
the initial conditions read as

ρ(t = 0, x) = 1 + αϕ(x), and

g(t = 0, x, v) = f (t = 0, x, v)− ρ(t = 0, x)
exp(−v2/2)

√
2π

,
(5.2)

whereas for the limit model (2.5) we have

ρ(t = 0, x) = 1 + αϕ(x).

The numerical parameters are chosen as follows: Nx = 300,
Nv = 512 and 1t is chosen to respect the CFL condition 1t <
1x/vmax, with vmax = 20. As to the physical parameters, the
normalized Planck constant is fixed to h0 = 10−2, the temperature
is either θ = 1 or θ = 0.2, and ε spans awide range of values, from
10−8 to 104.

The cost of a numerical simulation using the MMW model is
about twice the cost of a Wigner–BGK simulation in terms of
computing time. Obviously, this cost is constant with respect to ε,
whereas the cost of a Wigner simulation scales in 1/ε2.

We are interested in three regimes: the diffusive regime
(ε ≪ 1), the intermediate regime [ε = O(1)], and the collisionless
transport regime (ε ≫ 1). We shall compare the micro–macro
Wigner–BGK model (2.8), here denoted by MMW, to either the
drift-diffusion (DD) model (2.5) in the diffusive regime or to the
full Wigner–BGK model (2.1) in the other regimes.

As a diagnostic tool, we consider the time history of the electric
energy ∥E(t)∥2

L2
(the integral of the square of the electric field) for

the three models, in the semi-log scale. In the collisionless regime,
we also compare the numerical results to the analytical expression
for the linear growth rate given in Section 3.

5.1. Diffusive regime

First, we consider very small values of ε. In Fig. 2, the electric
energy is shown for the MMW (2.8) and DD (2.5) models, for
ε = 10−4 and 10−8. For the two cases shown in Fig. 2, the time
step for MMW is 1t = 5 × 10−3, which is much larger than
the time step required for simulating the full Wigner equation
(2.1), which requires 1t = O(ε2). Moreover, we also display the
numerical results obtained by MMWwith an implicit treatment of
the diffusion (see the end of Section 4.1); for this scheme, we use a
time step1t = 5 × 10−2.

We notice that, for these values of ε, the diffusive regime is
already attained, since the three curves (MMW and DD) are nearly
superimposed. The observed damping of the electric energy is a
consequence of the BGK relaxation operator, which acts to restore
the equilibrium configurationMΘ .

5.2. Intermediate regime

Here, we are interested in the intermediate regimes ε = O(1),
for which the original Wigner–BGK model (2.1) can be simulated
and compared to MMW. The time step 1t used for both MMW
and Wigner–BGK is equal to 10−3 (so that the CFL condition1t <
1x/vmax is satisfied).

The two models agree very well in this regime, as can be seen
in Figs. 3 and 4. For the MMW model, the damping of the electric
energy continues for longer times compared to the Wigner–BGK
model. This behavior may be explained by the fact that the
MMW code is less sensitive to round-off errors than the Wigner
code.

We further consider the difference between f (x, v) (given
by the Wigner scheme) and its micro–macro counterpart
ρ(x)M(v) + g(x, v), where M(v) is the absolute Maxwellian,
ρ(x) =


f (x, v)dv, and g(x, v) is themicro part of the distribution

function. This quantity is plotted in Fig. 5 at a fixed velocity v = 0.5
for ε = 1, 0.6 and 0.1, and in Fig. 6 at a fixed position x = 10
for the same values of ε. Its maximum value is always very small
(≈10−8

− 10−9) and is lower than 1t2. Let us also recall that, for
large values ε, this quantity vanishes by construction of the mixed
scheme.

5.3. Collisionless transport regime

In this regime ε ≫ 1. Thus, if we rescale the time t by t/ε in
Eq. (2.1), we recover the standard collisionless Wigner–Poisson
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Fig. 4. Intermediate regime. Time history of the electric energy for ε = 0.55 (left) and ε = 0.5 (right).
Fig. 5. Plot of δf (x) ≡ f (x, v = 0.5)− ρ(x)M(v = 0.5)− g(x, v = 0.5) as a function of x, at time t = 1, for ε = 1 (left), ε = 0.6 (middle), and ε = 0.1 (right).
Fig. 6. Plot of δf (v) ≡ f (x = 10, v)− ρ(x = 10)M(v)− g(x = 10, v) as a function of v, at time t = 1, for ε = 1 (left), ε = 0.6 (middle), and ε = 0.1 (right).
equations.We can therefore compare the numerical results to ana-
lytical estimates based on the linearization of the Wigner–Poisson
equations (see Section 3).

In Fig. 7, we show the results for ε = 50 and ε = 300. Again,
the MMW and Wigner models yield practically the same results.
The electric energy is still damped, but the damping rate is smaller
compared to the diffusive and intermediate regimes. This is due
to a competition between two effects: (i) on the one hand, the
BGK term tends to damp the electric energy with a rate going as
ε−1; (ii) on the other hand, the initial two-stream equilibrium is
potentially unstable, which would lead to a growth of the electric
energy. The net result is still damping, but with a lower rate.

Very large values of ε (103 and 104) are considered in Figs. 8 and
9. Even in this regime, it is clear that the MMW code is capable of
perfectly reproducing the Wigner–Poisson results. We note that,
for ε = 103, the electric energy grows exponentially during the
early stages of the simulation, signaling an instability (left panel
of Figs. 8 and 9). The instability is even more visible in the zooms
of these plots, shown in Fig. 10. Indeed, if we plug the relevant
parameters (k = 0.2, V = 2, h0 = 0.01) in Eq. (3.9) for the linear
frequency, we obtainΩ2 < 0 so that the frequency has a non-zero
imaginary part. For instance, for ε = 103 and θ = 0.2, one obtains
Im(Ω)/ε ≈ 0.21, which is in good agreement with the observed
growth rate shown in the right panel of Fig. 10 (since the energy is
a quadratic quantity in the electric field, the growth rate has to be
multiplied by a factor two). For θ = 0.2 (left panel of Fig. 10) the
agreement is also good.

Using the same parameters but taking ε = 104 leads to a
positive value of Ω2 in Eq. (3.9), so that the frequency is a real
quantity and no instability should occur. This is confirmed by the
right panel of Figs. 8 and 9, where we see that the electric energy
is damped away.

Finally, we note that this regime is well reproduced by the
MMW code thanks to the use of the ‘‘mixed scheme’’ detailed in
Section 4, which makes it possible to recover asymptotically an
explicit numerical scheme for the Wigner–Poisson equations.

5.4. Position-dependent ε(x)

In this paragraph, we consider the micro–macro Wigner–BGK
model (2.8) in which the smallness parameter ε depends on the
spatial variable x so that several regimes can coexist in the same
simulation. The Wigner equation (2.1) should then be rewritten in
the conservative form

∂ f
∂t

+ v∂x


1
ε(x)

f


−
1
ε(x)

Tε(x)h0 [φ]f =
1

ε2(x)
(ρMΘ − f ).
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Fig. 7. Collisionless transport regime. Time history of the electric field for ε = 50 (left frame) and ε = 300 (right frame).
Fig. 8. Collisionless transport regime. Time history of the electric energy for θ = 1, ε = 103 (left frame) and ε = 104 (right frame).
Fig. 9. Collisionless transport regime. Time history of the electric energy for θ = 0.2, ε = 103 (left frame) and ε = 104 (right frame).
Fig. 10. Zoom of the left frames in Figs. 8 and 9. ε = 103 and θ = 1 (left frame); ε = 103 and θ = 0.2 (right frame). The slope of the dashed straight lines corresponds to
the instability rate multiplied by two.
This type of problem has already been investigated in the
hydrodynamic regime [28]. A similar profile for ε(x) is considered
here

ε(x) = ε0 + εmax exp


−
|x − π/k|2

4


, x ∈ [0, 2π/k],

where k = 0.2, ε0 is a threshold value for ε(x), and εmax can in
principle be very large. This spatial profile of ε(x) represents a
system where a collisionless region is surrounded by two strongly
collisional buffer zones.

The micro–macro model is well suited for this kind of situation,
since the time step1t is chosen to respect the CFL condition1t <
1x/vmax, whereas for the full Wigner model one needs to take
1t < ε20 , which can be too restrictive when ε0 is small.

Two cases will be considered here. First, we set ε0 = 0.1
and εmax = 10 so that comparisons between the MMW and
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Fig. 11. Phase space distribution function f (x, v) at time t = 0.1. Left frame: MMW; right frame: Wigner.
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Fig. 12. Phase space distribution function f (x, v) at time t = 2. Left frame: MMW; right frame: Wigner.
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Fig. 13. Phase space distribution function f (x, v) at time t = 10. Left frame: MMW; right frame: Wigner.
Wigner models can still be performed (we use 1t = 10−3 for
both schemes). In the second case, we shall take ε0 = 10−7 and
εmax = 103. For this value of ε0, Wigner simulations are not feasi-
ble and therefore only the MMW results will be shown, which are
obtained with a time step1t = 5 × 10−4.

We use the same initial condition (5.1)–(5.2) as in the cases
with constant ε and the number of points in the phase space
is Nx = 200,Nv = 256. We are interested in the density
ρ(x) as well as the full distribution function f (x, v) at different
times (for the MMW scheme, the distribution function is fMMW =

ρ(x) exp(−v2/2)/
√
2π + g(x, v)).

In Figs. 11–13, we plot the phase–space distribution function
at times t = 0.1, 2 and 10, obtained with the Wigner and MMW
schemes, for the case ε0 = 0.1 and εmax = 10. For early
times, a vortex is created in the middle of the domain, where the
plasma is essentially collisionless. Outside this domain the plasma
quickly becomes strongly collisional so that the formation of phase
space structures is inhibited. The transition to the diffusive regime
occurs around x = 10 and x = 20. Even in the middle of the do-
main, the collisions bring the system back to equilibrium for later
times (t = 20).

We stress that the phase space plots obtained from the Wigner
and MMWmodels are virtually identical. The good behavior of the
MMW scheme is emphasized in Fig. 14, where the densities ρ(x)
obtained with the two methods are displayed at t = 1.

For the second run, we take ε0 = 10−7 and εmax = 103. In
this case, the Wigner scheme cannot be used as it would require a
time step 1t ∼ ε20 . Hence, only numerical results obtained with
the MMW method are shown. In Fig. 15, the distribution function
f (x, v) is plotted at time t = 1, whereas the spatial density ρ(x)
is displayed in Fig. 16. As in the previous case, a transition zone –
separating the diffusion regime from the collisionless regime – can
be clearly identified around x = 10 and x = 20.

Note that this case is rather challenging, since the numerical
schememust be capable of handling two very disparate regimes at
the same time. An alternative strategy – inwhich a diffusionmodel
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Fig. 14. Spatial density ρ(x) at time t = 1 obtained with the MMW scheme (solid
red line) and the Wigner scheme (dashed green line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

0 5 10 15 20 25 30
x

-10

-5

0

5

10
2.5

2

1.5

1

0.5

0

-0.5

Fig. 15. Distribution function at time t = 1 obtained with the MMW scheme:
fMMW(t = 1, x, v) = ρ(t = 1, x) exp(−v2/2)/
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Fig. 16. Spatial density ρ(x) at time t = 1 obtained with the MMW scheme.

such as Eq. (2.5) is used in the small ε region and aWignermodel is
used in the large ε region – would require some carefully tailored
boundary conditions at the interface between the two subdomains,
which is usually a very delicate task.

6. Conclusion

In this work, we developed a micro–macro numerical scheme
for theWigner–Poisson–BGK equation (named theMMWscheme),
which satisfies the following asymptotic properties: (i) when
ε → 0, it reduces to a consistent discretization of the drift-
diffusion equation, for a fixed set of numerical parameters that
is not restricted by ε; (ii) when ε → +∞, it reduces to the
original explicit discretization of the collisionless Wigner–Poisson
equation.

Numerical tests have proven that theMMWscheme reproduces
correctly the results of the drift-diffusionmodel in the limit ε → 0
and those of the Wigner–Poisson model when ε = O(1) or ε ≫ 1.
In addition,when ε is very large, the numerical computations agree
with the analytical calculations of the linear instability rates.

Finally, we studied the case of a spatially dependent ε, forwhich
this approach is well suited, since no domain decomposition is
required and the AP scheme can be applied to the whole domain
using a fixed set of numerical parameters. Again, the comparison
between the MMW and Wigner schemes yielded very satisfactory
results.

Several extensions of the present workmay be envisaged. More
physically realistic collision operators (e.g., Fokker–Planck) could
be considered and the present strategy could be extended along the
ideas presented in [32]. It would also be interesting to use higher
order numerical schemes for the phase space discretization of the
micro–macro model.
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