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Abstract: The relationship between individual and collective effects in a two-component
plasma is investigated in the case of an unstable equilibrium given by a cold two-stream
distribution. The full dynamics of this system is solved using an exact N-body code. As
the graininess parameter is large, such a cold plasma should be dominated by individual
effects. Indeed, during an initial phase much longer than the plasma period, ions and
electrons simply oscillate around each other forming neutral “molecules.” Sub-
sequently, however, the system switches to a regime where collective effects are
important: the two-stream configuration becomes unstable and phase space structures
appear. On a longer time scale, the streams are destroyed and the system evolves
towards thermal equilibrium. The present results show that collective effects can
emerge even in a plasma dominated by individual interactions, provided that the
initial distribution is unstable.

Keywords: Strongly correlated plasmas, two-stream instability, numerical simulations

1. INTRODUCTION

A plasma is a system composed of a large number of charged particles inter-
acting via Coulomb forces (electromagnetic effects will be neglected here).
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For such a system, interactions can be divided into collective (i.e., resulting
from the mean field created by all other particles) and individual (i.e.,
binary collisions). The importance of collective versus individual effects is
measured using the so-called graininess parameter

8§=—7> (1)

defined, for a one-dimensional (1D) plasma of density n, as the inverse of the
number of particles contained in a Debye length Ap = vy/w, Here,
vy = /(kgT/m) is the thermal speed and w, = (no* /mso)l/ 2 is the plasma
frequency; m and o are the mass and charge per unit area, respectively. Col-
lective effects are dominant when g < 1, in which case the plasma is said to be
collisionless, and its dynamics is accurately described by a Vlasov equation
(coupled to Poisson’s equation to compute the electrostatic mean field). The
graininess parameter is also related to I', the ratio of total potential to
kinetic energy. For a 1D plasma at thermal equilibrium, one has I'=g/2.

For a stable equilibrium, individual effects are described, to first order in
g, by the collision integral of Lenard (1960) and Balescu (1960), which was
tested numerically (Rouet and Feix 1991; Ricci and Lapenta 2002) for a
stable “water-bag” type equilibrium. First-order effects in the graininess
parameter g were studied by Dawson (1962) in the case of a one-
component plasma at thermal (Maxwellian) equilibrium, and more recently
by Rouet and Feix (1998, 1996) for two other Vlasov equilibria (double
water-bag and Lorentzian velocity distributions). Numerical results
recover with good accuracy the theoretical predictions for the electric field
fluctuation spectrum, and even for the shape of the dynamical cloud of
a test particle, which is the central concept in the description of a weakly
correlated plasma.

The standard Lenard—Balescu theory should not apply to an unstable
equilibrium, as a crucial assumption is that the dispersion relation possesses
no poles with positive imaginary part (Balescu, 1963). A generalization of
the theory was attempted by Balescu (1963): it yields extremely complicated
equations that are manageable only for weakly unstable plasmas, which is not
the case for the instability considered here. In the present work, our aim is to
perform numerical simulations that clarify the relationship between individual
and collective effects in the case of a one-dimensional, two-component plasma
(ions and electrons will have the same mass and charge in absolute value) for
an unstable two-stream equilibrium. Finally, for a theoretical study of the
equilibrium statistical mechanics of a 1D plasma, we refer the reader to the
works of Kunz (1974) and Choquard (1980).

Our strategy is to study the plasma dynamics as a full N-body problem,
without making any assumptions on the dominance of individual or collective
effects. In order to do so, we shall use a numerical code that solves the exact
N-particle dynamics (Rouet and Feix 1991) without any numerical
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approximations other than the inevitable truncation errors resulting from the
finite number of bits used to represent real numbers. This powerful tool
enables us to follow the plasma evolution over very long time scales.

The two-stream instability is a well-known process occurring in collision-
less (Vlasov) plasmas and has received a lot of attention in the last few
decades (see, for instance, Knorr 1968; Freidberg and Armstrong 1968;
Biskamp and Chodura 1973; Goldman 2000). More recently, a quantum
version of the two-stream instability was also studied both analytically and
numerically (Haas 2000). The initial condition is given by a two-stream dis-
tribution, with half of the particles (both electrons and ions) traveling to the
right with velocity a, and the other half traveling to the left with velocity
—a. The instability rate can be computed from the linearized Vlasov-
Poisson equations, and numerical results obtained from Vlasov simulations
are in agreement with the theoretical estimate (Ghizzo et al. 1988). For com-
pletely cold streams (vy=0), only perturbations for which kA,<1 are
unstable, and their growth rate is:

1 1
Ve = wp\/—kmi — EJFE,H + 8k2A2 ®)

where A, = a/w,. The maximum growth rate yp.x >~ 0.35w, is obtained for
kA, ~ 0.6. Although the Vlasov picture should not, in principle, be appropri-
ate for the case of zero-temperature streams, we shall see that Equation (2)
does reproduce well the observed growth rate, even for plasmas that are rela-
tively far from the Vlasov limit (g ~ 1).

In this article, we shall study the full N-body problem in a regime corre-
sponding to a graininess parameter g>>1. In order to gain some insight, let us
first consider the case of a single cold stream with zero velocity. If the
positions of the ions and electrons are initially distributed at random, the
total potential energy of the system will generally be large (because clumps
of positive or negative charge can be formed). As soon as the system is let
to evolve, this potential energy will turn into kinetic energy thus destroying
the stream structure. The potential energy can be reduced by matching ions
and electrons one by one to form ion-electron pairs. If the ion and the
electron in each pair are close enough, the system is in fact constituted of
neutral “molecules.” Further, in 1D, the electric field outside each molecule
will be equal to zero, so that no interactions between the molecules should
occur. As the one-stream distribution is stable from the viewpoint of Vlasov
theory, the plasma will remain indefinitely in this configuration and no collec-
tive effects are expected to emerge. In order to have interaction between two
neighboring molecules, the size of either of them should be large enough, so
that one of its particles can penetrate into the other molecule. By progressively
increasing the size of the molecule, Bonomi (1978) studied numerically the
propagation of a wave into a one-component plasma at zero temperature.
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In the two-stream case, we prepare the system in an similar way, by
matching ions and electrons one by one on each stream. Therefore, each
molecule has a velocity equal to either a or —a. For the same reasons as
given in the previous paragraph, molecules belonging to the same stream
should not directly interact with each other. However, two molecules from
different streams can indeed interact when they cross each other. In this
case, it is possible that, after a number of collisions, the molecules are
somehow destroyed, leading to a change in physical behavior. This interaction
mechanism is naturally of an individual (not collective) nature. Therefore, it is
not obvious that it will lead to the excitation of the same two-stream instability
as observed in collisionless systems. This question will be investigated in the
rest of this article.

2. NUMERICAL METHOD

Numerical simulations have been performed to follow the evolution of a 1D
two-component plasma: the system is composed of N/2 ions and N/2
electrons of equal mass m and charge o (in absolute value) by unit area,
and periodic boundary conditions are assumed. Note that these 1D
“particles” correspond (in 3D) infinite parallel plane sheets normal to the x
axis. The restriction to 1D systems is justified for our purposes, as the
relevant physical ingredient are still present in the 1D model. Further, this
assumption allows us to follow the exact trajectories of the N particles
without any approximations (Rouet and Feix 1991). This is because: (a) a
relation of order between the positions of the particles exists in a 1D
geometry, and (b) the electric field created by the particles is piecewise
constant. The motion of a particle is thus uniformly accelerated until it
reaches its neighbor on either side. When such an event occurs, as the 1D
electric field has no divergence, the particles are allowed to cross each
other. After the crossing, the field is changed locally and the particles will
experience a new constant acceleration until the next crossing event. The
code follows the trajectories of the N particles without any numerical approxi-
mations, except the round-off errors due to the finite number of bits used to
code a real number on the computer (Rouet and Feix 1991). We stress that
this is not a particle-in-cell (PIC) simulation: PIC codes solve the Vlasov
mean-field dynamics by integrating the orbits of a large number of discrete
particles, whereas our code solves the exact N-body dynamics, including
both mean-field and individual effects.

The initial condition is prepared as follows: the ion-electron pairs
(molecules) are spaced regularly on each stream and all pairs have a
velocity close to either a or —a. The ion and the electron in each pair are
located at a distance =+ & from the center of mass of the molecule, with &
chosen at random with equiprobability in the interval [0, A]. Here, A rep-
resents the average size of a molecule and is also proportional to its total
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energy in the reference frame of the stream. The field generated by a pair
of planar particles separated by a distance 26 is spatially uniform and equal
to o/eo. The corresponding potential energy is Epy = 0-28/ g. All
molecules are given the same total energy in the reference frame of the
stream: E, = mv? + 0’28/80 = ogA/so (the latter equality is obtained by
noting that v =0 when & = A). The particle velocity is thus given by the
expression

v2=i(A—5)=w§¥. (3)

mego

With the above prescriptions, all molecules will initially oscillate with the
same amplitude (proportional to A) and random phases.

As an approximate measure of the thermal speed of the streams, we take
the maximum velocity that can be obtained from Equation (3): v% = w,z,A /n.
This leads to the following expressions for the Debye length Ap = \/(A/n)
and, using Equation (1), for the graininess parameter

1
VT

4)

The latter expression implies that, if the size of a molecule 2A is smaller than
the average distance between two molecules (2n~ 1), then g>1 and the
plasma is dominated by individual effects. For a single cold stream, this
means that the molecules cannot, in this case, cross each other, and thus
they preserve their identity over indefinitely long times. For a two-stream dis-
tribution, molecules from different streams are allowed to collide, so that the
intermolecular distance can in principle change in time. In order to switch to a
collisionless regime (g < 1), the molecules size must become larger than the
intermolecular distance: but this means, in practice, that the molecules are
destroyed. It is clear, therefore, that the existence of stable ion-electron
pairs (molecules) is linked to the observed plasma regime (collective or
individual). The details of this link will become apparent in the forthcoming
simulation results.

In the simulations, time is normalized to w,, ! and lengths are normalized
to the inverse density n~ ', which in practice amounts to assuming w,=n=1.
For the following numerical results, we have taken N = 8000 particles (/2
ions and N/2 electrons), a = 500/27 ~80w,/n, L= N/n= 8000 and
nA = 0.08. This yields A, ~ 80 n_l, v~ 0.28 wp/n, and g ~3.54. As
g > 1, we are are in a regime where individual effects can play a significant
role. The fundamental Fourier mode of the system has wave number
koA, = 0.0625, so that a large number of modes are unstable (all those with
0<kA,<1).
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Figure 1. Trajectories x(¢) (normalized to A,) of seven ion-electron pairs in the
streams reference frame, for a system with N = 8000 ion and electrons, a ~ 80,
L = 8000 and nA = 0.08.

3. NUMERICAL RESULTS

Figure 1 shows the trajectories of seven pairs of particles in the reference
frame of the stream they belong to. Initially, the ion and the electron of
each molecule simply oscillate around each other with an amplitude A
(however, some slight changes in the oscillation amplitude and period are
observed during this phase). Although each molecule of a stream interacts
(briefly, but frequently) with all the molecules of the other stream, this oscil-
lating regime is very robust and persists on a long time scale (until w,t >~ 700).
During this phase, the molecules preserve their identity and the plasma
remains locally neutral, so that individual effects clearly dominate the
dynamics. This “individual” regime suddenly breaks down around
w,t =700, when the amplitude of the oscillations increases rapidly leading
to the destruction of the pairs

Figure 2 shows the time-evolution of the system in the phase space. The
two streams remain unperturbed up to w,t ~ 680, when the system enters a
violently unstable regime. This event corresponds to the destruction of
neutral molecules observed in Figure 1. After this time, the streams are
quickly destroyed and coherent phase-space structures appear briefly: these
are reminiscent of the vortex structures observed in Vlasov simulations
(Ghizzo et al. 1988). Subsequently, such structures are damped away by colli-
sional diffusion in phase-space, which drives the system towards thermal
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Figure 2. Phase-space evolution for the same run as in Figure 1. For each snapshot,
the left frame shows the particle density in velocity space (i.e., integrated over x), the
dashed line representing a Maxwellian with thermal speed equal to the stream velo-
cities a; the right frame shows the particles in the phase-space (x, v). In this figure,
lengths are normalized to A, and velocities are normalized to a.

equilibrium, as shown in the last picture of Figure 2 (w,t = 1500) (Lenard
1960; Balescu 1960; Rouet and Feix 1991; Ricci and Lapenta 2002). After
thermalization, the plasma remains essentially Maxwellian with a thermal
speed close to the original stream velocity a. At this stage, as the streams
have been completely destroyed, the original graininess parameter g is no
more relevant to describe the collisionality of the plasma. One should
instead use

8« = > (5)

obtained by replacing the streams thermal velocity vy with a, and therefore the
original Debye length Ap with A,. Such modified graininess parameter takes
the value g, = 0.0125, so that the plasma is now mainly collisionless,
although collisional effects still persist over long time-scales.

According to the Lenard—Balescu theory (Lenard 1960; Balescu 1960;
Rouet and Feix 1991; Ricci and Lapenta 2002), the thermalization time 7y,
is proportional to the inverse of the square of the graininess parameter, as
was verified numerically in Rouet and Feix (1991) and Ricci and Lapenta
(2002). However, the Lenard—Balescu theory is only valid for stable equili-
bria and in the limit of small g (whereas here g = 3.54). Since the initial
two-stream distribution is quickly destroyed after the occurrence of the
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instability, it seems more appropriate to use g, as the relevant graininess
parameter. With this choice, one obtains: w,7y = g, 2 = 6400, which is in
better agreement with the results of Figure 2. However, a more detailed
analysis should be performed in order to check this issue properly.

In Figure 3 we show the ratio I' of the potential energy to the kinetic
energy of the system. As expected, I" approaches g../2 at the end of the simu-
lation, indicating that g, is indeed the relevant graininess parameter during the
thermalization phase. The small value of I" at the beginning of the run is due to
the large kinetic energy contained in the streams velocity, which is equal to
a2/2 = 3200 per particle. Neglecting the thermal energy of the streams
(which is small compared to ), and estimating the potential energy per
particle as E,, = 0‘2A/(480) =0.02, one obtains I'(r=0) = 0.02/3200
~6 x 107°, in agreement with Figure 3.

We now consider the destruction of the “individual regime” occurring
around w,t ~ 700. As we had anticipated, this effect is linked to the destruc-
tion of the neutral molecules. From Figure 1, it appears that the size of a
molecule increases shortly before the onset of the instability, probably
because of collisions with molecules from the other stream. According to
Equation (4), the graininess parameters should decrease with increasing
molecular size. At some point, g must become small enough for collective
effects to take over and trigger the two-stream instability. A typical
signature of collective effects is the presence of oscillations at the plasma
frequency, at least for long wavelengths (the thermal correction
ka = 0.0625 is indeed negligible). Figure 4 shows the squared amplitude of
the space and time Fourier transform of the particle density p(ky, ®), where

Epot/E cin

10

I LR

LBLELLLLL B

T

0 500 1000 1500
w,t

Figure 3. Ratio I of the potential energy to the kinetic energy for a run with the same
parameters as Figure 1. The dashed horizontal line represents the value g,/2.



Collective Effects Triggered by Individual Effects 283

olpkw)® olplkw)®
4.0x10 T 4.0%10 T
a.0x107 81 3.0x1078F
2.0x107 8} 2.0x10 8}
1.0x1078F 1.0x1078F
0 oh_ ‘ :
0 1 2 3 4 [ 1 2 3 4
w/w, w/w,

Figure 4. Square of the density fluctuation spectrum | p(ko,w)l2 for the fundamental
mode ko for the same run as Figure 1. Left frame: fluctuation spectrum before the
instability (100 < w,t < 600); right frame: fluctuation spectrum after the instability
(600 < w,t < 1100).

ko = 27/L is the smallest wave number accessible to the simulated system
(fundamental mode). The left frame shows | p(ko,w)|2 in the individual
regime (100 < w,t < 600). It displays a broad spectrum corresponding to the
different periods of oscillation of the molecules, but no excitation
for w = w), is observed. The right frame of Figure 4 shows | p(ko,w)|2 after
the excitation of the instability (600 < w,t < 1100). A single peak at
w ~ w, is now clearly visible, indicating that collective effects are indeed
playing a major role. The previous results demonstrate that a collective
phenomenon (the two-stream instability) can be triggered by individual
effects (which dominated before the onset of the instability).

i E.(t)] kA, =0.625 k/k,=10.
10 ‘ ‘ ) ' T ) ) " ' ' '

povond v vl vl

600 650 700 750
w,t

Figure 5. Time evolution of the Fourier mode with k = 10k of the electric field. The
straight line represents the growth rate given by Vlasov theory, ¥ = 0.353w),.
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A more precise measure of the impact of collective effects is given by the
growth rate of the instability. Figure 5 shows the time-evolution of the most
unstable Fourier mode of the electric field E(f) on a semi-log graph. It is
given for k = 10k, i.e., kA, = 0.625 (the maximum growth rate is attained
for kA, ~ 0.61, but wave numbers are discrete in a periodic system). The
growth rate predicted by Vlasov theory (given in Equation (2)) is equal to
v=0.353w, and is represented by the straight line on the figure: it fits well
the computational result during the instability phase. It is therefore
clear that the effect observed in Figure 5 is indeed the standard Vlasov
two-stream instability.

The same kind of behavior (neutral individual regime followed by a violent
Vlasov two-stream instability, and eventually thermalization) has been
observed in other simulations performed with different values of a, L, and A.

4. CONCLUSION

The full N-body dynamics has been solved for a 1D, two-component plasma in
the case of a cold two-stream initial condition. We have found that, although
individual effects are not strong enough to induce macroscopic (large-scale)
phenomena, they are able to trigger collective effects. Indeed, after a
transient period during which the ion-electron pairs oscillate, a collective
regime appears suddenly. The signature of collective effects is the appearance
of long wavelength oscillations at the plasma frequency. Moreover, the growth
rate of the instability is in agreement with the one given by the Vlasov theory.
After the onset of the instability, coherent structures appear in the phase space,
as was previously observed in Vlasov numerical simulations (Ghizzo et al.
1998). Here, these structures are quickly destroyed because of individual
effects which, on a longer time-scale, drive the system towards thermal
equilibrium.

In summary, the above results point out that standard arguments based on
the plasma temperature and/or the graininess parameter should be taken with
care when dealing with unstable equilibria such as the two-stream distribution
considered here. Indeed, even when the plasma is strongly coupled (g > 1),
the collisionless, two-stream instability may still be excited by small individ-
ual interactions. This instability, in turn, triggers the growth of large collective
modes, which are eventually damped away by collisional phase-space
diffusion, leading to thermal equilibrium. Thus, the plasma has gone
through a sequence of three different phases: (i) the initial “individual”
regime (oscillating neutral molecules); (ii) a collective nonneutral
regime characterized by the instability and oscillations at frequency
w,; and, finally, (iii) relaxation towards neutral thermal equilibrium on a
longer time-scale: in this final stage, both collective and individual
effects coexist, as demonstrated by the persistence of oscillations at the
plasma frequency.
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