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Abstract Ultrafast laser pulses interacting with plasmas can give rise to a rich spectrum of physical phe-
nomena, which have been extensively studied both theoretically and experimentally. Less work has been
devoted to the study of polarized plasmas, where the electron spin may play an important role. In this
short review, we illustrate the use of phase-space methods to model and simulate spin-polarized plasmas.
This approach is based on the Wigner representation of quantum mechanics, and its classical counter-
part, the Vlasov equation, which are generalized to include the spin degrees of freedom. Our approach is
illustrated through the study of the stimulated Raman scattering of a circularly polarized electromagnetic
wave interacting with a dense electron plasma.

1 Introduction

Laser-matter interactions have a long history in many
areas of physics. In condensed-matter and nanophysics,
laser pulses are used to investigate the electron response
on ultrafast time scales— femtosecond and, more
recently, attosecond. Indeed, the most typical elec-
tronic resonance for conduction electrons in metals
(i.e., the plasmon resonance) lies in the femtosecond
range, so that ultrafast laser pulses constitute an invalu-
able experimental tool to probe the collective elec-
tron response [1, 2]. Among the many possible applica-
tions, plasmonic resonances are routinely investigated
in biomedicine [3, 4] and high-harmonic generation
[5–7].

Laser–plasma interactions also play an important
role in plasma physics, particularly inertial fusion [8]
and laser–plasma accelerators [9, 10]. The latter are
based on the acceleration of charged particles by large-
amplitude plasma waves, which can be generated,
among others, through the stimulated Raman scatter-
ing mechanism [11–13] discussed in the present work.

However, electrons possess not only an electric
charge, but also a spin, i.e. an intrinsic magnetic
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moment. The use of the electron spin to store and trans-
fer information is at the basis of the currently burgeon-
ing field of spintronics [14, 15].

In nanophysics, spin effects are epitomized by the
unexpected loss of magnetization occurring on the fem-
tosecond timescale after irradiation of a ferromagnetic
thin film with a laser pulse [2, 16]. This effect was var-
iously attributed to mechanisms such as the spin-orbit
interaction [17, 18] or the superdiffusive electron trans-
port induced by the electromagnetic field [19], although
it has never been fully elucidated.

In plasma physics, the study of spin-dependent effects
is much more recent. However, polarized electron beams
of high spin polarization can now be created and pre-
cisely manipulated in the laboratory [20–22]. Theoret-
ical work on polarized plasmas dates back from the
1980s [23], and was much revived during the last decade
[7, 24–27]. Recently, Brodin et al. [28] developed a
particle-in-cell (PIC) code that includes the magnetic
dipole force and magnetization currents associated with
the electron spin. PIC methods for particles with spin
were also developed for applications to laser–plasma
interactions [29].

Most existing works on the spin dynamics in
the condensed-matter and nanophysics communities
rely on wavefunction-based methods, notably the
time-dependent density functional theory (TD-DFT)
extended to include spin effects [17, 30–32]. Here, we
propose a different approach based on Wigner func-
tions. In the Wigner representation, quantum states
are represented by a function of the phase-space vari-
ables plus time, which evolves according to an inte-
grodifferential equation (Wigner equation). The clas-
sical limit of the Wigner equation coincides with the
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Vlasov equation, well-known from plasma physics to
describe the dynamics of a collisionless plasma in the
mean-field approximation. Recently, this phase-space
approach was extended to systems with spin-dependent
degrees of freedom. More details on the foundations of
these methods can be found in our recent review [33].

2 Phase-space dynamics with spin

For a particle without spin, the Wigner function is a
scalar that depends on the phase-space variables and
time: f(r,v, t). It can be used as a classical probability
density to compute mean values, e.g.:

〈r〉 =
∫ ∫

rf(r,v, t)drdv
∫ ∫

f(r,v, t)drdv
.

However, it is not a true probability density, as it can
take negative values.

To extend the Wigner formalism to particles endowed
with spin degrees of freedom, two approaches are possi-
ble, which we describe in the forthcoming paragraphs.

2.1 Matrix approach

For spin-1/2 particles such as electrons, the Wigner
function becomes a 2 × 2 matrix [34]:

F =
(

f↑↑ f↑↓

f↓↑ f↓↓

)

, (1)

where ↑, ↓ denote respectively the spin-up and spin-
down components. By projecting the matrix F onto
the Pauli basis set [35], we can write

F =
1
2
σ0f0 +

1
2
f · σ, (2)

where

f0 = Tr{F} = f↑↑ + f↓↓, f = Tr(Fσ), (3)

f = (fx, fy, fz), and σ = (σx, σy, σz) are the Pauli
matrices.

The quantum and semiclassical dynamics of the dis-
tribution functions f0 and f were derived in [7, 24].
Taking the classical limit in the orbital variables, but
retaining the quantum nature of the spin, one obtains
the following system of equations:

∂f0
∂t

+ v · ∇f0 − e

m
(E + v × B) · ∇v f0

+
μB

2mc2
(E × ∇)ifi − μB

m
∇

[
Bi − 1

2c2
(v × E)i

]
· ∇v fi

− μBe

2m2c2
[E × (B × ∇v )]ifi = 0. (4)

∂fi

∂t
+ v · ∇fi − e

m
(E + v × B) · ∇v fi

+
μB

2mc2
(E × ∇)if0 − μB

m
∇

[
Bi − 1

2c2
(v × E)i

]

· ∇v f0 − μBe

2m2c2
[E × (B × ∇v )]if0

− 2μB

�

{[
B − 1

2c2
(v × E)

]
× f

}
i

= 0. (5)

where i = (x, y, z), μB = e�/(2m) is the Bohr mag-
neton, c is the speed of light, and e > 0 and m are
respectively the electron charge and mass. The electro-
magnetic fields (E, B) can be either external (e.g., a
laser pulse) or internal, generated self-consistently by
the plasma. In the latter case, they should be com-
puted by solving the corresponding Maxwell equations,
see also Sect. 2.2. Note that, in the above “spin-Vlasov”
equations, the orbital motion is purely classical, while
the spin is treated as a fully quantum variable [7, 24].

In the Eqs. (4)–(5), all the terms preceded by the
factor c−2 represent the spin-orbit interaction. In the
present work such terms will be neglected, but we still
write them here for completeness.

Recently, we have used the above matrix approach
to study the generation of spin currents in nickel films
[36].

2.2 Scalar approach

An alternative, but equivalent, method consists in
defining a scalar probability distribution g(r,v, s, t)
that evolves in an extended phase space, where the spin
s is treated as a classical unit vector [25, 37].

In the semiclassical limit [26], and neglecting the
spin-orbit coupling terms, the scalar spin-Vlasov equa-
tion reads as:

∂g

∂t
+ v · ∇g −

[ e

m
(E + v × B) +

μB

m
∇(s · B)

+
μB

m
∇

(

B · ∂

∂s

)]
· ∂g

∂v

− 2μB

�
s × B · ∂g

∂s
= 0. (6)

In the forthcoming simulations, the last term in front
of ∂g/∂v will be neglected. This is also a semiclassical
approximation, which can be justified by assuming that
variations of g in spin space are of moderate size (for
more details, see [25, 38, 39]). It should also be pointed
out that this quantum term contains derivatives in both
real and spin space, thus making the PIC algorithm
much more involved.
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For self-consistent problems, the above Vlasov equa-
tion should be coupled to the Maxwell equations

ε0μ0
∂E

∂t
= ∇ × B + μ0J ,

∂B

∂t
= −∇ × E,

∇ · E =
ρ0 − ρ

ε0
,

∇ · B = 0,

(7)

where the electronic charge and current densities are
defined as:

ρ = e

∫
g dvds, J = e

∫
v g dvds + μB∇ ×

∫
s g dvds,

(8)

and ρ0(r) is a fixed positive charge density (jellium
approximation), which will be assumed to be uniform in
space in the forthcoming simulations. Note the spin con-
tribution in the definition of the current (second term
on the right).

The relationship between the matrix Wigner func-
tion F(r,v, t) and the scalar function g(r,v, s, t) is as
follows:

g(r,v, s, t) =
1
4π

2∑

α,β=1

(δαβ + s · σαβ)Fβα(r,v, t),

(9)

where δαβ is the Kronecker delta and σαβ represents an
element of one of the Pauli matrices σ = (σx, σy, σz).

The scalar approach will be used in the next section
to study the effect of the electron spin on the Raman
scattering of an electromagnetic wave in a plasma.

Finally, we mention another scalar method to model
the spin dynamics [40]. In this method, the distri-
bution function only depends on the standard phase-
space variables (r,v), but is supplemented by a second
phase-space distribution for the spins, also dependent
on (r,v).

3 Stimulated Raman scattering

In this chapter, we shall illustrate the use of the scalar
Wigner function approach (Sect. 2.2) on a typical
laser–plasma interaction problem, namely the Stimu-
lated Raman Scattering (SRS) [11–13, 41]. Our main
purpose is to investigate the effect of the SRS on
the spin dynamics in the case of a polarized electron
plasma. A similar problem was studied recently using a
hydrodynamic approach [42].

The SRS is a parametric instability, whereby an inci-
dent electromagnetic wave (ω0, k0) drives two waves
inside the plasma: a scattered electromagnetic wave
(ωs, ks) and an electron plasma wave (ωe, ke), where

ω and k denote respectively the frequency and wave
number of each wave. The plasma wave is responsible
for the acceleration of the electron population, which
is usually the intended purpose of the setup. Here, our
objective is to investigate the effect of the electron spin
on the SRS instability [43].

The waves must respect the following matching con-
ditions (along their propagation direction, hereafter
denoted x ), which represent conservation of energy and
momentum:

ω0 = ωs + ωe, k0 = ks + ke, (10)

with dispersion relations: ω2
0,s = ω2

p + c2k2
0,s and ω2

e =

ω2
p + 3v2

thk2
e , where ωp =

√
eρ0
mε0

is the electron plasma

frequency, vth =
√

kBTe/m is the thermal speed of an
electron gas with temperature Te, and kB is the Boltz-
mann constant. Strictly speaking, the above dispersion
relations are valid for an unpolarized electron plasma
using Maxwell-Boltzmann statistics. The relevant dis-
persion relations for Fermi-Dirac statistics including
spin effects are more involved and were derived recently
in Ref. [44].

In order to obtain a tractable system of equations,
we introduce some further assumptions that simplify
the spin-Vlasov-Maxwell Eqs. (6)–(7). Following [41],
we consider the case of a plasma that interacts with an
electromagnetic wave propagating in the longitudinal x
direction and assume that all fields depend on x only.
Choosing the Coulomb gauge ∇ · A = 0, the vector
potential A lies in the perpendicular (transverse) plane
(y , z ), i.e. A = (0,A⊥). Using E = −∇φ − ∂tA and
B = ∇ × A, we get: E⊥ = −∂tA⊥ and Ex = −∂xφ,
which imply that the electric field is mainly electromag-
netic in the transverse plane and mainly electrostatic in
the longitudinal direction.

We then consider a distribution function of the form:
g(r,v, s) → δ(mv⊥ − eA⊥)g(x, vx, s), which amounts
to assuming that the plasma is cold in the transverse
direction1. After integrating with respect to v⊥, the
relevant extended phase space is reduced to 5D, i.e.
position x , velocity vx, and three components of the
spin vector s (which can be reduced to two considering
that the spin lies on the unit sphere).

A schematic view of this 1D configuration is shown
on Fig. 1.

Finally, in the (x, vx, s) phase space, the scalar spin-
Vlasov-Maxwell Eqs. (6)–(7) become:

1For a fully quantum plasma, described by a Fermi-Dirac
distribution, the velocity dispersion does not vanish even at
zero temperature, but would rather be determined by the
Fermi velocity. In that case, the present transverse model
should be modified.
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Fig. 1 Schematic view of our 1D configuration for SRS.
All fields depend only on the longitudinal variable x . The
electromagnetic wave is fully characterized by a transverse
vector potential A⊥ = (Ay, Az) and a longitudinal elec-
trostatic field Ex. The wave vectors and frequency of the
incident, scattered, and electromagnetic waves must obey
the matching relations (10)

∂g

∂t
+ vx

∂g

∂x
+

(
Ex − Hsy

∂2Az

∂x2
+ Hsz

∂2Ay

∂x2
− 1

2

∂|A⊥|2
∂x

)

∂g

∂vx
+ s × B · ∂g

∂s
= 0,

∂Ey

∂t
= −∂2Ay

∂x2
+ Ay

∫
g dvxds + H

∂

∂x

∫
szgdvxds,

∂Ez

∂t
= −∂2Az

∂x2
+ Az

∫
g dvxds − H

∂

∂x

∫
sygdvxds,

∂Ex

∂x
=

∫
g dvxds − 1,

(11)

where we have used nondimensional units, in which
time is normalized to the inverse of the plasma fre-
quency ωp, space to the skin depth c/ωp, velocities to c,
densities to the uniform background ρ0, and the scaled
Planck constant is defined as H = �ωp/(2mc2). The
above spin-Vlasov-Maxwell system conserves the total
energy, given by (in units of mc2):

E =
1

2

∫
v2

xg dxdvxds +
1

2

∫
|A⊥|2g dxdvxds

︸ ︷︷ ︸
kinetic energy

+
1

2

∫
|E|2dx

︸ ︷︷ ︸
electric energy

+
1

2

∫ ∣∣∣∣∂A⊥
∂x

∣∣∣∣
2

dx

︸ ︷︷ ︸
magnetic energy

+H

∫ (
sy

∂Az

∂x
−sz

∂Ay

∂x

)
gdxdvxds

︸ ︷︷ ︸
Zeeman energy

,

(12)

which is the sum of three components: kinetic, electro-
magnetic, and Zeeman energies.

Finally, we note that, although the standard spin-
orbit coupling is absent from the above model (see Sect.
(2.1)), there is still an interaction between the orbital

and the spin degrees of freedom. This interaction is
mediated by the self-consistent magnetic fields created
by the electron currents, which in turn act on the elec-
tron spin. However, this effect requires large electronic
currents that may be observed in dense plasmas, but
usually not in condensed matter physics.

4 Simulation results

The Eq. (11) were solved numerically using a recently-
developed PIC geometric scheme [43], with periodic
boundaries in x with spatial period L = 2π/ke. For
the simulations shown here, we used Np = 2 × 104 par-
ticles and Nx = 128 grid points to solve the Maxwell
equations. The time-step was Δt = 0.04ωp.

The initial condition is Maxwellian in velocity and
uniform in space, with a small sinusoidal perturbation
of amplitude α and wave number ke:

g(x, vx, s, t = 0) =
1
4π

(1 + ηsz) [1

+ α cos(kex)]
exp(−v2

x/2v2
th)√

2π vth

,

(13)

with α = 0.02, ke = 1.22ωp/c, and vth = 0.17c
(Te = 15 keV) [41]. The constant η ∈ [0, 1] represents
the degree of spin polarization of the electrons, with
η = 1 corresponding to a fully polarized gas. This is
related to the average values of the spin components
for our initial condition: 〈sx〉 = 〈sy〉 = 0, 〈sz〉 = η/3.

For the above temperature, the electron motion is
borderline relativistic, so that in principle some rela-
tivistic corrections should be taken into account. For
simplicity, here we do not consider these corrections
(nor the spin-orbit coupling, which is also a relativistic
effect, see Sect. 2.1). For a relativistic extension of the
model without spin, see [41].

The initial transverse electromagnetic field is taken
to be a circularly polarized wave with wave vector
(along x ) k0 = 2ke and electric field amplitude E⊥,0 ≡
E0 = 0.325mcωp/e. We expect that a circularly polar-
ized wave will be more efficient in coupling to the spin
degrees of freedom of the electron gas. The matching
conditions (10) then yield: ks = ke, ω0 = 2.63ωp,
ωs = 1.56ωp, and ωe = 1.06ωp. Further, we take
η = 1 and H = 2.3 × 10−4, which correspond to a
fully polarized electron gas with average density ρ0 =
4 × 1031 electrons/m3.

Figure 2 (left frame) shows the longitudinal electric
energy ε0

2

∫
E2

xdx as a function of time (this is actu-
ally an energy per unit surface, since the plasma is infi-
nite in the transverse plane). It is initially very small,
as it represents the internal electrostatic energy of the
plasma, which vanishes for a homogeneous equilibrium,
i.e., when α = 0 in Eq. (13). The early exponential
growth represents the onset of the parametric Raman
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instability. The instability rate observed in the simula-
tion is close to the one predicted by the theory in the
absence of spin effects, γ ≈ 0.04ωp [41]. After satura-
tion of the instability, one enters the nonlinear regime,
in which the electrostatic energy settles on an approx-
imately constant value significantly smaller than the
peak attained at the end of the linear regime. (We note
that, given the physical regime studied here, the effect
of the spin on the onset of the instability is rather small.
However, the main purpose of this work is to estimate
the loss of polarization and coherence of the initially
polarized electron gas following the SRS instability, as
will be apparent from the forthcoming results).

In contrast, the magnetic energy per unit surface
1

2μ0

∫ |B⊥|2dx is transverse and is carried by the elec-
tromagnetic wave. Its initial amplitude is proportional
to the square of the wave amplitude E⊥,0 and there-
fore considerably higher than the initial electrostatic
energy. During the same period of time (Fig. 2, right
frame), this term decreases by a factor ≈ 4.5, signalling
that the energy of the electromagnetic wave is greatly
absorbed by the plasma, and transformed partly into
electrostatic energy (left frame of Fig. 2) and partly
into kinetic energy, i.e., heating.

We note that our PIC code conserves the total energy,
as given by Eq. 12, with very good accuracy: δE/E <
5 × 10−4.

The y and z components of the average spin vec-
tor (Fig. 3) display some oscillations at the low fre-
quency ωspin ≈ 0.01ωp, which are progressively damped
away (the x component is very small and remains such
during the entire run). It can be shown [43] that, in
the regime where the Larmor frequency ωL = eB0/m
(where B0 = k0E0/ω0 is the magnetic field of the inci-
dent wave) is much smaller than the frequency ω0 of
the wave itself, the spin component Sz(t) rotates with
a frequency ωspin = ω2

L/(2ω0). With our parameters,
this yields ωspin = 0.0176ωp, which is not far from the
value observed in Fig. 3, considering that this simple
analytical estimate neglects all effects due to the Raman
instability and self-consistent fields.

Another interesting quantity to investigate is the
quantum purity of the system. In the present case,
which is partly classical (for the orbital variables) and
partly quantum (for the spin), it is not possible to
define a global density matrix. However, we can define a
reduced density matrix for the spin degrees of freedom.

To do so, we make use of the definition of g , Eq.
(9), to write: f0 =

∫
gds and f = 3

∫
sgds, and then

obtain the 2×2 Wigner function F through Eq. (2). The
reduced density matrix ρ̂ is computed by integrating
over the phase-space variables:

ρ̂ =
∫ ∫

F(x, vx) dxdvx =
1
2
(I + 3σ · 〈s〉), (14)

where I is the identity matrix. Finally, we can compute
the purity:

P (t) ≡ Trρ̂2 =
1 + 9 |〈s〉|2

2
. (15)

Note that, at t = 0, 〈sx〉 = 〈sy〉 = 0, 〈sz〉 = η/3, hence
P (0) = (1 + η2)/2. In the case studied here η = 1, so
that P (0) = 1, i.e. the initial state is a pure one. More
generally, the initial density matrix can be written as:

ρ̂t=0 =
1
2

(
1 + η 0

0 1 − η

)

. (16)

For a completely unpolarized gas η = 0 and the density
matrix is that of a maximally mixed state.

The time evolution of the quantum purity is shown
in Fig. 4 and begins at P (0) = 1 (apart from sampling
errors due to the finite number of particles in the PIC
code). As the spin system is not isolated, but rather
interacts with the (classical) orbital degrees of freedom,
there is no reason why the purity of the reduced spin
density matrix should stay constant. This is what we
observe in our simulation.

Two points are noteworthy. First, the behaviour of
the purity is not monotonous: it decreases initially until
ωpt ≈ 300, then grows until ωpt ≈ 1000, after which
it again decreases monotonically. The lapse of time
where the purity grows appears to correspond to the
change in behaviour of the electric and magnetic ener-
gies observed in Fig. 2, as if the system tried to set-
tle down at an equilibrium with higher electromagnetic
energies, but finally relaxes to a lower energy state.

Second, the purity appears to reach asymptotically
the value: P (t → ∞) = 0.5, which is the purity of a
maximally mixed system, with vanishing polarization
(η = 0). Thus, after around 3000ω−1

p the initial spin
polarization has been entirely lost. With our chosen
parameters, this corresponds to approximately 8.4 fs.

5 Conclusions

The primary aim of this work was to illustrate how
quantum effects (particularly the electron spin) can
impact ultrafast laser-matter interactions. To this pur-
pose, we proposed to use a phase-space approach, based
on Wigner functions, which includes the spin degrees
of freedom. In this hybrid model, the orbital electronic
motion is treated classically, while the spin is considered
as a fully quantum variable. The resulting spin-Vlasov
equation can be coupled to the full Maxwell equations
to obtain a self-consistent mean-field model.

In practice, the spin-Vlasov equations can be writ-
ten in two equivalent forms: (i) a scalar form, where
the probability distribution is defined over an extended
phase space that includes not only position and momen-
tum, but also a spin variable, and (ii) a matrix form,
where the probability distribution is a 2×2 matrix that
depends only on the standard phase-space variables.

Here, we used the scalar approach to investigate the
effect of the electron spin on the stimulated Raman
scattering, a well-known effect in laser–plasma physics.
An efficient PIC code, based on a geometric Hamil-
tonian technique, was developed recently to solve the

123



Eur. Phys. J. Spec. Top.

Fig. 2 Electrostatic energy ε0
2

∫
E2

xdx (left frame) and magnetic energy 1
2μ0

∫ |B⊥|2dx (right frame) as a function of time.
The inset shows a zoom of the electrostatic energies at short times, evidencing the exponential growth of the Raman
instability. Both energies are expressed in units of mc2

Fig. 3 Time evolution of the components of the average spin vectors: Sy(t) = 〈sy〉 (left frame) and Sz(t) = 〈sz〉 (right
frame). The x component remains very small all along the duration of the run

Fig. 4 Time evolution of the spin purity

spin-Vlasov-Maxwell equations [43]. The simulations
indicate that, following the Raman parametric instabil-
ity, an initially spin-polarized plasma loses its magneti-
zation in about 500 plasma periods. The polarization is
related to the purity of the reduced spin density matrix
(obtained by tracing over the orbital degrees of free-
dom). We observed that the spin system, which is ini-
tially in a pure quantum state corresponding to spin-up
in the z direction, turns into a maximally mixed state

(50/50 mixture of spin-up and spin-down states) over
the same lapse of time.

Future work will involve the implementation of a
grid-based method to solve the spin-Vlasov-Maxwell
equations in the matrix formalism of Sect. 2.1. The
matrix approach was already used to study the genera-
tion of spin currents in nickel films [36]. The next step
will be the development of an accurate grid-based code
that uses the same geometric Hamiltonian approach as
the PIC code employed in the present work.
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