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Density functional theory (DFT) is a powerful theoretical tool widely used in such
diverse fields as computational condensed-matter physics, atomic physics and quantum
chemistry. DFT establishes that a system of N interacting electrons can be described
uniquely by its single-particle density n(r), instead of the N-body wave function,
yielding an enormous gain in terms of computational speed and memory storage
space. Here, we use time-dependent DFT to show that a classical collisionless plasma
can always, in principle, be described by a set of fluid equations for the single-particle
density and current. The results of DFT guarantee that an exact closure relation, fully
reproducing the Vlasov dynamics, necessarily exists, although it may be complicated
(non-local in space and time, for instance) and difficult to obtain in practice. This goes
against the common wisdom in plasma physics that the Vlasov and fluid descriptions
are mutually incompatible, with the latter inevitably missing some ‘purely kinetic’
effects.
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1. Introduction
1.1. Vlasov and fluid models

It is common knowledge among plasma physicists that a collisionless plasma should
be described by a kinetic equation of the Vlasov type. Such an equation is obtained
formally from the N-body Coulomb problem through a BBGKY (Bogoliubov–Born–
Green–Kirkwood–Yvon) hierarchy procedure that amounts to neglecting two-body and
higher-order correlations (‘collisions’). The Vlasov equation describes the evolution of
the distribution function f (r, v, t) in the six-dimensional (6-D) phase space. Given the
high dimensionality of the phase space, the solution of the coupled Vlasov–Maxwell
or Vlasov–Poisson equations is a formidable computational task. In order to simplify
this task, one of the most common strategies is to take velocity moments of the
distribution functions, leading to a system of fluid (or hydrodynamic) equations for
such macroscopic quantities as the particle density n(r, t) (zeroth-order moment of f ),
the current density j(r, t) (first-order moment), the pressure P(r, t) (second-order
moment) and so on.
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The fluid models are obviously more tractable computationally compared to the
original Vlasov equation, because all fluid quantities depend only on the space
variables (plus time), and not on the velocity variables, which have been integrated
away. Needless to say, the fluid models can never reproduce the full richness of the
Vlasov approach, as some information is inevitably lost when performing the integrals
in the velocity moment expansion. A blatant example is Landau damping, perhaps
the most celebrated plasma effect, which is well present in Vlasov models, but totally
absent in the fluid description.

But is it really so? Hammett & Perkins (1990) already questioned this common
belief in the early 1990s by showing that Landau damping can be reproduced (at least
in the linear response regime) through a judicious choice of the fluid closure. The
closure they proposed is local in Fourier space, but non-local in real space, so that it
can be expressed in an integral form.

Another example of exact correspondence between the fluid and the Vlasov
approaches is provided by the water-bag model (Bertrand & Feix 1968), which
has been well studied since the 1960s. A ‘water-bag’ distribution function is a
special form of f which is constant within a certain contour of the phase space and
vanishing outside. By virtue of Liouville’s theorem, this property is exactly preserved
by the Vlasov equation. It can be shown that the two-fluid equations obtained from
the water-bag distribution are equivalent to the corresponding Vlasov equation. This
equivalence is strict as long as the phase-space contour is convex, which precludes
the formation of shocks.

Then, the question naturally arises whether it is always possible, at least in principle,
to construct a closed system of fluid equations that are fully equivalent (and not just
an approximation) to the original Vlasov model. Here, we will show this is indeed
possible under rather weak conditions. In other words, it is perfectly feasible to
describe the full collisionless electron dynamics within the framework of fluid theory.
This is a rather bold conceptual step which should give fluid theory a new, more
profound status. Nevertheless, not to overstate the preceding claim, we hasten to add
this is a result of principle. It only proves that it is possible to close the system
of fluid equations in an exact way, but does not offer any constructive method to
derive such closure, although it does suggest some ways to improve our current
closures. Further, the closure relation will in general be non-local in space and time
and dependent on the initial phase-space distribution function (although the latter
need not be a stationary state).

1.2. Density functional theory
Density functional theory (DFT) has had a huge impact on condensed-matter physics
and quantum chemistry over the last few decades, since its onset in the mid-1960s.
It was developed originally in two seminal papers by Hohenberg & Kohn (1964) and
Kohn & Sham (1965) to describe the ground state of a system of many electrons
confined by an external potential V(r). Hohenberg and Kohn showed that the
ground state can be expressed exactly in terms of the one-body electron density
n(r), instead of the N-body wave function Ψ (r1, r2, . . . , rN), which is of course a
huge simplification. They did so by establishing a one-to-one correspondence between
the density and the potential n↔ V . Since the ground-state wave function is fully
determined by V (if the ground state is not degenerate), this results in a one-to-one
correspondence between the density and the ground-state wave function n↔Ψ , which
is basically the content of the first Hohenberg–Kohn theorem (the second theorem
states that the ground-state density can be derived by minimizing a certain energy
functional). Shortly afterwards, Kohn & Sham (1965) proposed a practical scheme to
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compute the ground-state density, known as the Kohn–Sham equations, which is still
widely used today.

For instance, the Thomas–Fermi theory (Fermi 1927; Thomas 1927) (for a modern
account see Michta, Graziani & Bonitz (2015)) of the atomic electron gas can be
viewed as an ante-litteram version of modern DFT. In the Thomas–Fermi theory,
the external potential is that of the atomic nucleus, V(r) = −Ze/4πε0|r|. The total
energy functional to be minimized is the sum of the external energy, the internal
self-consistent Coulomb energy and the kinetic energy: ETF[n]=Eext[n]+Eint[n]+T[n].
These terms can be written respectively as

Eext[n] = e
∫

n(r)V(r) dr, (1.1)

Eint[n] =
1
2

e2

4πε0

∫∫
n(r)n(r′)
|r− r′|

dr dr′, (1.2)

and

T[n] =
3

10
(3π2)2/3

h̄2

m

∫
n5/3 dr. (1.3)

The total energy functional to be maximized is then F[n] = ETF[n] − µ
∫

n dr, where
µ is the chemical potential, which acts as a Lagrange multiplier to keep the total
number of electrons fixed. By setting the functional derivative of F[n] equal to zero,
one gets δF[n]/δn−µ=0, which yields the standard Thomas–Fermi equation as found
in textbooks

eV(r)+
e2

4πε0

∫
n(r′)
|r′ − r′|

dr′ +
h̄2

2m
(3π2)2/3n(r)2/3 =µ. (1.4)

Of course, the Thomas–Fermi model is a very crude theory (it does not even predict
the stability of atoms). But the point is that, by refining the energy functional E[n]
beyond the Thomas–Fermi approximation ETF[n], one could in principle obtain an
equation that predicts the exact density n(r) as given by the full N-body theory. Kohn
& Sham (1965) proved that such an exact energy functional exists, although it is not
known explicitly and can only be approximately guessed.

Modern DFT was later generalized to the time-dependent case (TD-DFT) by Runge
& Gross (1984) (for reviews, see Marques & Gross (2004), Ullrich (2014))1. These
authors proved that the same initial quantum state evolving in two different confining
potentials yields different electron densities at all subsequent times (more details about
this statement will be given later). This establishes a one-to-one correspondence
between the time-dependent potential and the density: V(r, t) ↔ n(r, t). Since
the wave function is fully determined by V , this fact translates into a one-to-one
correspondence between the time-dependent density and the time-dependent wave
function: n(r, t)↔Ψ (r1 . . . rN, t). Again, this is a proof of principle, which does not
furnish an explicit prescription regarding how to construct such a density. However,
along the same lines as was done for the stationary case, one can obtain a set of
time-dependent Kohn–Sham equations that yield the correct one-body density with
great accuracy.

1As of today, the original paper Runge & Gross (1984) has been cited approximately 7000 times. Even a
partial bibliography on TD-DFT is thus clearly out of the question here.
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Apart from applications to condensed-matter and atomic/molecular physics, TD-DFT
is commonly used to describe the dynamics of strongly coupled plasmas in the
so-called ‘warm dense matter’ regime (see, for instance, Magyar, Shulenburger &
Baczewski (2016)). This is a physical regime at the border between condensed-matter
and plasma physics, where quantum and correlation effects cannot be neglected.

Here, the Runge–Gross theorem will be applied to collisionless plasmas described
by the Vlasov–Poisson equations to show that it is always possible, in principle, to
construct a fluid model that reproduces exactly the kinetic results.

2. Runge–Gross theorem for collisionless plasmas
In order to illustrate this result, we consider the simple case of a single-species

plasma confined in an external potential in one dimension (1-D), governed by the
Vlasov–Poisson equations

∂f
∂t
+ v

∂f
∂x
−

q
m

(
∂φ

∂x
+
∂V
∂x

)
∂f
∂v
= 0, (2.1)

∂2φ

∂x2
=−

q
ε0

∫
+∞

−∞

f (x, v, t) dv =−
q
ε0

n(x, t), (2.2)

where q and m are respectively the charge and mass of the particles, V(x, t) is the
external confining potential and φ(x, t) is the self-consistent electrostatic potential.

The Runge–Gross (RG) theorem (Runge & Gross 1984) can be stated as follows,
using the language of 1-D plasmas relevant to the present work:

THEOREM. For every external potential V(x, t) which can be expanded into a Taylor
series with respect to the time coordinate around t = 0, a map V(x, t)→ n(x, t) is
defined by solving the Vlasov–Poisson equations with an initial state f (x, v, t = 0)=
f0(x, v), and calculating the corresponding distribution function f (x, v, t) and particle
density n=

∫
f dv at a subsequent time t. This map can be inverted up to an additive

merely time-dependent function, i.e. n(x, t)→ V(x, t)+ c(t).

The theorem establishes a one-to-one correspondence between n(x, t) and V(x, t).
Since V determines the evolution of f , it proves that the full kinetic evolution of the
system can be encoded in the density (without necessarily computing the distribution
function). We note that this correspondence is over the full space–time evolutions of
n and V , in a form depending also on the initial distribution function f0(x, v).

Proof. To prove the RG theorem is equivalent to demonstrating that the particle
densities n(x, t) and n′(x, t), evolving from the same initial state f0(x, v) under the
influence of the two external potentials V(x, t) and V ′(x, t), are always different
provided that the two potentials differ by more than a function of time, i.e.

V(x, t)− V ′(x, t) 6= c(t). (2.3)

We first prove that the corresponding current densities j(x, t) and j′(x, t) are different,
then we extend the proof to the densities; in other words, we first prove that j→ V ,
and then that n→ j.

Let us write the equation of motion for the current density, by taking the first
velocity moment of the Vlasov equation (2.1)

∂j
∂t
=−

2
m
∂T
∂x
− n

q
m
∂φ

∂x
− n

q
m
∂V
∂x
, (2.4)
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where T(x, t)= (m/2)
∫

fv2 dv is the kinetic energy density. (In the definitions of the
velocity moments, the velocity integrals will be assumed to extend to ±∞ and the
distribution function to decay sufficiently rapidly for those moments to exist and be
finite.) An equation similar to (2.4) can be written for j′. Since the initial state f0(x, v)
is the same for both cases, all terms on the right-hand side of (2.4) are identical at
the initial time t= 0, except for the last one (external potential). Taking the difference
between equations for j and j′ at t= 0, one obtains

∂( j− j′)
∂t

∣∣∣∣
t=0

=−n
q
m
∂(V − V ′)

∂x

∣∣∣∣
t=0

. (2.5)

If the potentials differ at t= 0, then the right-hand side of (2.5) will be different from
zero and thus j(x, t) and j′(xt, t) will become different infinitesimally later than the
initial time. In this case, the first part of the proof (i.e. j→ V) is almost trivial.

Next, we consider the case where V(x, 0)= V ′(x, 0), but their first time derivatives
differ, i.e. ∂t[V(x, t)−V ′(x, t)]t=0 6= c(t). In this case, equation (2.5) cannot be used to
predict the divergence of j and j′ for t> 0. In order to prove the RG theorem, we need
to differentiate (2.4) with respect to time. Taking the second-order velocity moment
of the Vlasov equation (2.1), we get

∂T
∂t
=−

∂Q
∂x
+ qj

∂U
∂x
, (2.6)

where Q(x, t) = (m/2)
∫
v3f dv is the kinetic energy flux and we defined U ≡ V + φ.

Inserting (2.6) into the time derivative of (2.4), we obtain

∂2j
∂t2
=

2
m
∂

∂x

(
∂Q
∂x
− qj

∂U
∂x

)
−

q
m

[
∂U
∂x
∂n
∂t
+ n

∂

∂x
∂U
∂t

]
=

2
m
∂

∂x

(
∂Q
∂x
− qj

∂U
∂x

)
+

q
m

[
∂U
∂x

∂j
∂x
+ n

∂

∂x

(
G ?

∂j
∂x

)
− n

∂

∂x
∂V
∂t

]
. (2.7)

To obtain (2.7), we made use of the continuity equation ∂tn = −∂xj and of the fact
that the self-consistent potential φ[n] is a linear functional of the density

φ[n] =
∫

G(x, x′)n(x′, t) dx′ ≡G ? n, (2.8)

where G(x, x′) is the integral kernel (Green function) of the interaction, which also
depends on the boundary conditions and on the dimensionality of the system. By
choosing the Coulomb kernel GCoul(x, x′) ≡ −(q/ε0) |x − x′|, then (2.8) is just the
integral form of the 1-D Poisson equation (2.2). Taking the time derivative of (2.8)
and using once again the continuity equation, one obtains

∂φ

∂t
=−

∫
G(x, x′)

∂j
∂x
(x′, t) dx′ =−G ?

∂j
∂x
, (2.9)

which was used to obtain the last line of (2.7). However, it is important to stress that,
for the proof of the RG theorem, G is not restricted to be the kernel that corresponds
to the Poisson equation. It is only required that the potential φ may be written as a
functional of the density, as in (2.8).
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Then, we can write the same expression as (2.7) for j′ and note that, if we assume
V(x, 0) = V ′(x, 0), all terms on the right-hand side are identical at the initial time.
Taking the difference between the two equations, one gets at t= 0

∂2( j− j′)
∂t2

∣∣∣∣
t=0

=−
q
m

n
∂

∂x

(
∂

∂t
(V − V ′)

)∣∣∣∣
t=0

. (2.10)

Now, if ∂t(V − V ′)|t=0 6= c(t), then the two currents j and j′ start diverging right after
the initial time, again in accordance with the RG theorem.

The above reasoning can be extended to the case where V and V ′ differ at a higher-
order time derivative. One obtains

∂k+1( j− j′)
∂tk+1

∣∣∣∣
t=0

=−
q
m

n
∂

∂x

(
∂k

∂tk
(V − V ′)

)∣∣∣∣
t=0

. (2.11)

Therefore, the currents j and j′ diverge if there exists some non-negative integer k such
that

wk(x)≡
∂k

∂tk
[V(x, t)− V ′(x, t)]t=0 6= const., (2.12)

which is a consequence of the assumption (2.3) and the requirement that the external
potential is expandable in a Taylor series around t= 0.

This completes the first part of the proof, namely that j→ V . Next, we turn to the
densities and consider the continuity equation

∂n
∂t
=−

∂j
∂x
. (2.13)

Taking the (k+ 1)th derivative of the continuity equation and using (2.11), we obtain

∂k+2(n− n′)
∂tk+2

∣∣∣∣
t=0

=
q
m

∂

∂x

[
n
∂

∂x

(
∂k

∂tk
(V − V ′)

)]∣∣∣∣
t=0

≡
q
m
∂

∂x

(
n0
∂wk

∂x

)
, (2.14)

where n0(x)= n(x, t = 0). All we need to prove is that the right-hand side of (2.14)
cannot vanish if (2.12) holds. Let us consider the integral∫

+∞

−∞

n0

(
∂wk

∂x

)2

dx=−
∫
+∞

−∞

wk
∂

∂x

(
n0
∂wk

∂x

)
dx+

1
2

n0
∂w2

k

∂x

∣∣∣∣+∞
−∞

. (2.15)

Assuming that the density falls sufficiently fast at infinity, the boundary term in (2.15)
vanishes. Then, if (2.12) holds, the left-hand side of (2.15) cannot vanish, and hence

∂

∂x

(
n0
∂wk

∂x

)
(2.16)

cannot vanish everywhere. This completes the second part of the proof that the density
determines the current, i.e. n→ j. For some limitations and mathematical subtleties
regarding the validity of the RG theorem, see Dhara & Ghosh (1987).

All in all, we have proven that n→V , and since the potential V trivially determines
n through the solution of the Vlasov–Poisson equations, one can finally deduce that
the map between n and V is invertible, i.e. n↔V . This is summarized in the diagram
of figure 1. We stress that this map is understood as being over the full space–time
evolutions of n and V , and also depends on the initial distribution function f0(x, v).
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FIGURE 1. Schematics of the TD-DFT approach. The RG theorem proves the equivalence
between n and V . But V determines f through the Vlasov–Poisson equations and n is
obtained from f by velocity–space integration. Thus, the counterclockwise arrows show
that n↔ f , i.e. the full Vlasov dynamics can be encoded in the evolution of the density.

3. Consequences of the Runge–Gross theorem
3.1. Fluid equations

By virtue of the RG theorem, one can represent the full kinetic dynamics in terms
of the particle density n, and the current as an auxiliary variable. This is achieved
through the momentum conservation and continuity equations (2.4) and (2.13), which
we reproduce here for clarity

∂n
∂t
+
∂j
∂x
= 0, (3.1)

∂j
∂t
=−

2
m
∂T
∂x
− n

q
m

(
∂φ

∂x
+
∂V
∂x

)
. (3.2)

The point is that, given the initial data f0(x, v), we can express every term in the above
equations as a functional of the density or the current (which is itself determined by n).
This is already the case for the self-consistent potential φ[n], because it is a solution
of Poisson’s equation. The RG theorem implies that also the kinetic energy density can
be expressed as T[n]. This is what is usually called a ‘closure’ in fluid theory. The
RG theorem provides no explicit recipe to obtain this functional, and finding accurate
expressions is all the difficulty of DFT. First, we separate the centre-of-mass kinetic
energy and the pressure

T[n] =
m
2

j2

n
+

1
2

P[n]. (3.3)

In the first term on the right-hand side of (3.3), j is determined by the evolution of
n according to the continuity equation (3.1). As to the second term, we know, from
the RG theorem, that there exists a functional Pexact[n] that makes the fluid equations
(3.1)–(3.2) exactly equivalent to the Vlasov equations. In contrast to φ[n] (which is
an instantaneous functional of the density), the functional Pexact[n] will generally be
non-local in space and time and dependent on the initial datum f0(x, v). Note, however,
that f0(x, v) need not be a stationary state. The challenge is then to find an accurate
approximation for Pexact[n]. Of course, many closure relations have been proposed in
plasma physics, notably polytropic equations of state of the type P[n] ∝ nγ , which are
valid for specific types of equilibrium states.
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3.2. Fluid closures
Here, we will revisit two closures which, as mentioned in the Introduction, challenge
the common belief that the fluid equation are necessarily less complete than the
corresponding kinetic model. In addition to these classical closures, we should also
mention that a non-local fluid closure that is exact within the linear response has
recently been presented by Moldabekov, Bonitz & Ramazanov (2018) for the case of
a quantum plasma.

3.2.1. Water-bag model
The water-bag model (Bertrand & Feix 1968; Feix & Bertrand 2005) is based on

a special form of the distribution function, which is constant ( f =A) within a certain
closed contour in the phase space, and f = 0 outside. This property is preserved
during the Vlasov evolution and only the shape of the contour is modified. As long
as the contour can be defined by two single-valued curves v+(x, t) and v−(x, t), for
the maximum and minimum velocity respectively, the Vlasov equation is strictly
equivalent to the two equations for the contour evolution

∂v+

∂t
+ v+

∂v+

∂x
=−

q
m
∂U
∂x
, (3.4)

∂v−

∂t
+ v−

∂v−

∂x
=−

q
m
∂U
∂x
, (3.5)

where U = φ + V includes both the self-consistent and the external potentials.
With this prescription, it is easy to compute the particle and current densities

n=
∫ v+

v−

f dv =
A
2
(v+ + v−); j=

∫ v+

v−

vf dv =
A
2
(v2
+
− v2

−
). (3.6a,b)

The sum of equations (3.4) and (3.5) yields the continuity equation. Their difference
yields the following momentum conservation equation

∂j
∂t
+
∂

∂x

(
j2

n

)
=−

q
m
∂U
∂x
−

1
m
∂P
∂x
, (3.7)

where
P[n] =

m
12A2

n3. (3.8)

Equations (3.7)–(3.8) are exactly equivalent to the Vlasov equation, as long as the
contours v± remain single valued. This is therefore a special case where the functional
Pexact[n] is perfectly known. Note that the closure (3.8) corresponds to an adiabatic
equation of state. The strict equivalence is broken when the velocity contours become
multivalued: in that case, although (3.4)–(3.5) still hold, the fluid equations (3.7)–(3.8)
are no longer exact.

3.2.2. Landau fluid models
In the early 1990s, Hammett and co-workers tried to include (linear) Landau

damping in a fluid model (Hammett & Perkins 1990). They considered a 1-D electron
plasma in an infinite medium, with homogeneous immobile ions. As Hammett,
Dorland & Perkins (1992) showed, common fluid closures where the pressure is an
algebraic function of the density or where the lth-order moment is set to zero, fail to
reproduce Landau damping, because all coefficients in the corresponding dispersion
relation are real, yielding both damped and unstable modes.



Density functional theory for collisionless plasmas 9

Nevertheless, it is possible to include damping in the fluid equations, if the closure
relation depends on the gradients of the lower-order moments. The simplest example
is Fick’s law, j=−D∂xn, which yields the diffusion equation for n. Extending to the
second-order moment (Hammett et al. 1992), one can approximate the pressure as

P= nkBT0 −µkmn
∂( j/n)
∂x

, (3.9)

where T0 is a constant temperature, kB is Boltzmann’s constant and µk is a parameter
that plays the role of a viscosity. The simple prescription (3.9) already introduces
an imaginary term into the dispersion relation and therefore can lead to damping. If,
in addition, the parameter µk is taken to be a function of the wavenumber k, then
the dispersion relation can be tailored to reproduce the kinetic Landau damping to
some accuracy. For instance, Hammett et al. (1992) took µk =

√
π/2 vth/|k| (where

vth is the thermal speed), which yields for the imaginary part of the frequency Imω=
−
√

π/8 |k|vth. In this case, the closure relation in real space becomes an integral one.
Better approximations can be obtained by carrying out the expansion to higher-order

moments (a three-moment fluid system is required to conserve energy, for example).
More generally, it can be shown (Hammett & Perkins 1990) that one can always
construct an equilibrium distribution that exactly yields the l-moment closure. So,
at least at the level of the linear response, we know that some kinetic evolutions
(including Landau damping) can be exactly represented by a fluid model. For more
recent work on Landau fluid models, see for instance Hunana et al. (2018). This
is in line with the formal result of the RG theorem. Also note that, in standard
DFT, so-called generalized gradient approximations are commonly used to express
the kinetic energy functional (Perdew 1992).

A challenge with viscosity-based closures is that they break the entropy conservation
of the Vlasov equation. This is not a big problem for the linear response considered
in the above-cited papers, as the linearized Vlasov equation does not preserve entropy
anyway. For the full nonlinear response, the equivalence between a dissipative fluid
model and an entropy-preserving Vlasov equation should involve a connection which
is non-local in time.

3.3. Equivalence to a non-interacting system
In the Kohn–Sham equations of DFT (Kohn & Sham 1965), the kinetic energy
is approximated by considering an equivalent non-interacting system with the same
density n as the original interacting one. Here, we can also show a similar equivalence,
as was done by van Leeuwen (1999) and Vignale (2004) for TD-DFT. Indeed, in our
proof of the RG theorem, we only used the fact that the interaction potential φ[n] is
a functional of the density, as in (2.8). But the Green function G(x, x′) need not be
the one of the Poisson equation for the proof to be valid. For instance, for a contact
interaction with coupling constant g, one has G(x, x′) = gδ(x − x′), so that φ = gn,
and the proof of the RG theorem is still valid.

Therefore, the result
n

φ[n]
←−→ V (3.10)

is independent of the specific choice of the potential. We could have carried out
the same derivation for another interaction potential φ′[n] and demonstrated the
equivalence

n
φ′[n]
←−→ V ′. (3.11)

This is summarized in figure 2.
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FIGURE 2. There is a one-to-one correspondence between the density n(x, t) and the
external potentials V and V ′, for different interactions φ and φ′.

But one could also take φ′=0 (non-interacting particles) and the theorem would still
hold. This means that we can recover the correct time-dependent density n(x, t) of the
interacting Coulomb system with external potential V by solving the fluid equations
for a non-interacting system with external potential V ′ (unknown a priori, but which
could be guessed or approximated on physical grounds). This approach might reveal
itself fruitful for the task of approximating the kinetic energy functional T[n] in the
fluid equation (2.4). Incidentally, the equivalence between the interacting and non-
interacting systems provides a justification for the fact that closures based on the
equation of state of an ideal (i.e. non-interacting) gas, P= nkBT , work relatively well
in many situations.

4. Conclusions
The purpose of this paper was primarily paedagogical. We showed that the results

of time-dependent density functional theory (widely used in condensed-matter and
high energy-density physics) can be applied to collisionless (Vlasov) plasmas. The
main result is that the description of such a plasma can be done purely in terms of
the particle density, instead of the phase-space distribution function. We presented a
proof of this result (Runge–Gross theorem) for the simple case of an electron plasma
confined in a 1-D potential well, which can be extended in a straightforward way to
the 3-D case. Hence, the full plasma dynamics (including typical ‘kinetic’ effects, such
as Landau damping) can be exactly described by a set of fluid equations, endowed
with an appropriate closure for the kinetic energy density T[n]. Such a closure
is generally non-local in space and time and dependent on the initial phase-space
distribution function.

Although it does not provide an explicit recipe to construct T[n], which must
therefore be approximated, the RG theorem has nevertheless a considerable theoretical
reach. It puts fluid theories on a solid conceptual basis as being capable of accounting,
at least in principle, for all plasma effects, even those usually considered as ‘purely
kinetic’. This result may also be useful in practice when searching for better
expressions of the closure relations, for instance for improving the Landau fluid
closures. The closures first proposed by Hammett & Perkins (1990) are capable of
recovering damping (to some approximation) because they depend on the gradients
of the lower-order moments. In addition, to properly model Landau damping, one
has to resort to non-local (integral) expressions. However, these closures remain local
in time (i.e. adiabatic). A generalization to closure relations that depend on the past
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history of the system (non-adiabatic) may improve the reach and accuracy of this
approach.

It should also be mentioned that, in standard TD-DFT, it is possible to include
damping effects in a local way if the theory is formulated in terms of the current
density instead of the particle density (Vignale & Kohn 1996; Vignale, Ullrich &
Conti 1997) (this approach is referred to as current-DFT). Such developments may
also be useful for collisionless plasma applications. Likewise, the considerations
of § 3.3 may suggest new closures based on an equivalent non-interacting system.
Finally, improved closures may also be determined empirically by systematic computer
simulations of the kinetic model, from which the relationship between pressure and
density is extracted numerically.
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