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Abstract

®

CrossMark

When an unmagnetized plasma comes in contact with a material surface, the difference in
mobility between the electrons and the ions creates a non-neutral layer known as the Debye
sheath (DS). However, in magnetic fusion devices, the open magnetic field lines intersect

the structural elements of the device with near grazing incidence angles. The magnetic field
tends to align the particle flow along its own field lines, thus counteracting the mechanism
that leads to the formation of the DS. Recent work using a fluid model (Stangeby 2012 Nucl.
Fusion 52 083012) showed that the DS disappears when the incidence angle is smaller than

a critical value (around 5° for ITER-like parameters). Here, we study this transition by means
of numerical simulations of a kinetic model both in the collisionless and weakly collisional
regimes. We show that the main features observed in the fluid model are preserved: for
grazing incidence, the space charge density near the wall is reduced or suppressed, the ion
flow velocity is subsonic, and the electric field and plasma density profiles are spread out over
several ion Larmor radii instead of a few Debye lengths as in the unmagnetized case.

As there is no singularity at the DS entrance in the kinetic model, this phenomenon depends
smoothly on the magnetic field incidence angle and no particular critical angle arises.

The simulation results and the predictions of the fluid model are in good agreement, although
some discrepancies subsist, mainly due to the assumptions of isothermal closure and

diagonality of the pressure tensor in the fluid model.

Keywords: sheaths, plasma-wall transition, Vlasov simulations, magnetized plasma

(Some figures may appear in colour only in the online journal)

l. Introduction

In magnetic fusion devices such as tokamaks, the confining
magnetic field is designed so that the field lines that intersect
some machine components do so with near grazing incidence
in order to maintain power deposition within sustainable
limits. Due to the large difference in inertia between the ions
and the electrons, the latter tend to be lost to the absorbing
wall faster than the former, leading to the formation of a thin
(afew Debye lengths wide) positively-charged transition layer
in front of the wall, the so-called Debye sheath (DS) (see [1]
for a large-scope review on the topic). The resulting large

0741-3335/16/025008+14$33.00

electric field in the DS repels the electrons and accelerates
the ions, leading to a sustainable steady-state with zero net
current at the wall.

In the presence of a magnetic field whose direction is not
normal to the wall, the structure of the transition is more intri-
cate. The magnetic field maintains the ions flow aligned with
its own direction, while the electric field tends to accelerate
them normally to the wall, leading to a competition between
these two effects. In the case of nearly grazing incidence, the
particle motion along the normal to the wall is essentially
cyclotronic, resulting in a strongly reduced net flow in that
direction. The efficiency of the confinement decreases when

© 2016 IOP Publishing Ltd  Printed in the UK
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one approaches the wall, as more and more Larmor orbits
intersect the wall. As the electrons are more strongly con-
fined than the ions, there exists a new transition layer, the
so-called Chodura sheath (CS) or magnetic pre-sheath [2],
where the imbalance between the ionic and electronic flows
is sufficiently compensated by the difference in confinement
to maintain quasi-neutrality. This transition layer, between a
fully magnetized plasma flow and the wall is typically a few
ion Larmor radii thick. Since generally p; > Ap the plasma-
wall transition is globally smoother than in the purely electro-
static case, with smaller spatial gradients for the electric field
and plasma density near the wall.

In the most general case, the DS and the CS coexist: the
imbalance between the ionic and electronic parallel flow still
requires the formation of a positively charged DS in order to
ensure ambipolarity at the wall. The boundary between the
CS and the DS is characterized by the breakdown of quasi-
neutrality and the onset of a supersonic ion flow velocity at the
entrance of the DS. For unmagnetized plasmas, this reduces
to the well-known Bohm criterion [3, 4]. A similar criterion
was derived by Chodura [2] in the magnetized case, which
requires the parallel ion flow velocity at the entrance of the
CS to be supersonic.

In the landmark study by Chodura [2], the main features
of the CS-DS transition were described using both a fluid
model and numerical results from particle-in-cell (PIC) simu-
lations. Further studies of the plasma-wall transition, focus-
sing on its stability, were performed with PIC simulations
[5, 6]. The fluid model was later extended with friction terms
to encompass both the magnetic and collisional presheath [7]
(and more recently [8]). This model was recently used to show
some partial agreement with experimental data [9] in a dif-
ferent regime (Acon = p; > Ap) with respect to the one consid-
ered here (Acon>> p; > Ap).

In a recent work [10], Stangeby also used a fluid model to
examine the CS-DS transition for low values (a few degrees)
of the incidence angle of the magnetic field, i.e. in the range
relevant to the plasma-divertor interaction in fusion devices.
Importantly, this study showed the existence of a critical inci-
dence angle under which the plasma-wall transition occurs
without the need for the formation of the DS. As a result,
the electric field and the plasma density gradients are not
restricted to the (very thin) DS, but extend much further (a
few ion Larmor radii) into the CS. This effect is significant
enough to have a non-negligible impact on prompt redeposi-
tion of sputtered neutrals in a tokamak scrape-off-layer (SOL)
[11,12].

This potentially important application warrants a more
detailed analysis of this phenomenon, going beyond the simple
fluid approach that was used in [10]. The main objective of
the present paper is to examine the robustness of Stangeby’s
results by means of numerical simulations of a kinetic model
[13]. Various effects that can have an impact on the transi-
tion will be analyzed in details, such as the magnitude and
incidence of the magnetic field, the effect of collisions, and
isotopic effects. Generally speaking, Stangeby’s results are
confirmed: the DS disappears for small angles of incidence
(1°-5°), although the transition is not as clear-cut as in the fluid
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Figure 1. Geometry of the model.

model. Note that we will not consider here the extreme case
a < me/m;~ 1° (for deuterium), for which the ions reach the
wall faster than the electrons, and consequently the sheath
structure changes considerably [14].

The present paper is organized as follows: In section II,
we summarize the results obtained by Stangeby using a
fluid model. In section III, we describe the kinetic model
and the numerical method and parameters. In section IV, we
examine the CS-DS transition using a collisionless model,
with parameters and boundary conditions chosen to match
as closely as possible those of [10]. In section V, we directly
compare the spatial profiles obtained from the fluid model
and kinetic simulations. In section VI, we introduce a col-
lision operator in our kinetic model, and use it to check the
robustness of the observations made in the collisionless
regime. In section VII, we summarize the main conclusions
of this study and mention some of the key issues that remain
to be addressed.

Il. Stangeby’s result from fluid theory

Stangeby [10] considered a plasma composed of electrons of
charge —e and a single ion species of charge g; = Zie. The
plasma is bounded by a fully absorbing wall on one side,
while thermal equilibrium is assumed far from the wall (see
figure 1). Noting x the direction corresponding to the normal
to the wall, the system is assumed invariant by translation in
the (y, z) plane parallel to the wall. The plasma is magnetized
by an external magnetic field By, constant in space and time,
whose direction is normal to e, and makes an angle o with
the wall, i.e. Bo = Bo(sin ce, + cos cvey). The self-consistent
magnetic field generated by plasma currents is neglected.

The main result of [10] is the existence of a critical angle o,
for which there is strictly no Debye sheath, or more precisely
the average flow along the normal to the wall never becomes
sonic. We will first reestablish this result with slightly more
relaxed assumptions in order to treat both sonic and super-
sonic regimes, and then examine the actual simulation results.
Though the model used in [10] is a fluid one, the result is actu-
ally quite generic. From the ion flux conservation 0,j,; =0
we have:

W W
J xi Z‘] xi

k) =2 = ) + ple”

e))
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where (1), is the mean ion velocity, j; is the mean ion current,
ni. is the ion (electron) number density, and p = e(Zin; — ne)
is the charge density. The superscript ‘W’ refers to the wall
and (-) stands for the averaging operator over velocity space.

Using the ambipolarity condition at the wall Z; j}vx. = j}‘?; we
have

w
e

(vey ) = [y sina + (v, - e,) cosal o)+ e 2)

Now we make two assumptions. The first is on the ratio
L, which we will take to be less than unity. Such
ne(x) + p(x) /e
condition is fulfilled in the case of a quasi-neutral region
(p~ 0, as in the CS) or a positively charged region (p > 0, as
in the standard DS), subject to the condition of a decrease of
the electron density when one approaches the wall (01, < 0).
This is clearly the case for Boltzmann electrons and a nega-
tively charged wall, as was assumed in [10]. Whatever the
nW

m<1 we obtain a

exact assumptions, as long as

bound on the ion flow velocity
(X < (), sina+ (v - e)) cosal.  (3)

The second assumption is that the electrons are perfectly
magnetized up to the wall, i.e. (v, - ex)ZV = 0. This becomes
obviously false for distances smaller than the electron Larmor
radius p, from the wall, but can be considered a reasonable
approximation as long as the electron flow variation is mild.
We then have

[(vey (0] < sinar| (v | (4)

For sufficiently small «, the bound of equation (4) may pre-
vent the ion mean velocity (v); from becoming supersonic, in
which case no DS is required to guarantee ambipolarity. This
happens when « is equal or smaller than the critical value a,
defined as

sin o, =

&
o] ©
In the case of a half-Maxwellian electron parallel velocity

distribution at the wall, one has (v"):V = JT.0/2wm,) and
the result of [10] is readily obtained. The underlying physical
phenomenon is essentially the limitation of the electron cur-
rent at the wall by the magnetic field, which entails a limita-
tion of the ion current. For sufficiently small «, an ambipolar
flow along x can be maintained at the wall without requiring
strong ion acceleration, so that there is no need for a DS.
A few points of importance should be noted:

1. While the bound on the CS ion flow velocity in equa-
tion (3) is quite generic, the notion of a well-defined
critical angle stems from two assumptions: a Bohm crite-
rion on the ion velocity for the existence of the sheath (i.e.
[{w);| = ¢ at the sheath entrance) and perfect magnetiza-
tion of the electrons. In a kinetic model such as the one
considered later on in this paper, the relationship between

the mean ion flow velocity and the sheath stability is not
as direct as the simple Bohm criterion.

2. A second point is the fact that the bound of equation (4)
and the critical angle do not depend explicitly on the flow
at the CS entrance, and are thus valid in the CS in both
the sonic and supersonic regimes. This is in contrast with
the result presented in appendix A of [10] which relies
on the erroneous use in a supersonic case of the potential
drop in the CS that had been established for a sonic case
(equation (33) in [10], used in conjunction with equa-
tion (A3) of the same paper).

3. As was noted in [10], in a model accounting for the finite
electron Larmor radius, the angular dependency of the
electron current would be more complex than the simple
sin a behaviour considered here.

lll. Kinetic model and numerical parameters

In the kinetic model considered here, the dynamics of the
ions is described by the evolution of the phase-space distri-
bution function f (¢, x, vy, v, ;) obeying the collisional Vlasov
equation

Of + vdf, + (%E +wav X ez) Nof = Gl (6)
where w. = ZieBo/m; is the ion cyclotron frequency.
In all results presented hereafter the collision operator,
whenever present, is a Bathnagar-Krook—Gross (BGK)
linear relaxation operator [15], which drives the distribu-
tion function to an isotropic Maxwellian distribution, i.e.

G(f) = fyi(ffffw) where v; is the ion relaxation rate
M m; 312 mp?

and f = nio(ﬁ) exp[—z—Tm]. At the wall (x = 0), an
absorbing boundary condition is assumed in x for the incoming
part of the distribution function, i.e. f(,0,v, vy, ) = 0 for
vy > 0. On the plasma side (x = L), the incoming particle
distribution is prescribed by f(f,L,vx, vy, 12) = f;n (Vo> Wy V2)
for vy < 0. In the collisional simulations f}" is simply a
Maxwellian with bulk plasma parameters (the same that is
used for the BGK operator). In the collisionless simulations,
it is a field-aligned drifting distribution with parallel velocity
that satisfies the Chodura criterion at the CS entrance (see
section IV.A).

The electrostatic field E = —0,¢ e, is computed from the
electrostatic potential by solving the Poisson equation

6)2“(1) + i(Zil’li —ne) =0 (7
€0
with a Dirichlet boundary condition ¢ = 0 at x = L and a Von
Neumann condition E, = /¢y at the wall. The wall charge
surface o is computed by integrating in time the outgoing net
electric current:

t
o=—e f S Zyjiy (¢ x = 0)dr',

s=ie
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Figure 2. (a) Prescribed ion distribution functions at x = L averaged over (1, ), for a few values of the incidence angle « (the distributions
are normalized to the peak value of the o = 90° case); (b) total potential drop in the CS and DS as a function of «a.

with j, = f wf,d. The full electron kinetic dynamics is not
resolved, but instead a Boltzmann law is assumed for the elec-
tron density ne = npereXp [e(¢p — @)/ (T20)] The reference
quantities are defined at x = L by ¢,y = 0 and ng = ni(L).
The outgoing electron flux at the wall is computed by assuming
a half-Maxwellian distribution and is given by

])vc‘; = sma,) % et exp [e(¢ — ¢rer)/Teol . (8)
2mme

The latter relation does not take into account finite electron
Larmor radius effects, as it is assumed that j,, = sin aj,.

All numerical simulations were performed using the
Eulerian code described in [13]. The numerical scheme is
based on a split-operator technique for the time-stepping
algorithm, with interpolations performed with a positive
flux conservative (PFC) scheme [16]. In all cases, starting
from a uniform Maxwellian plasma, the system is left to
relax towards a stationary state. A first set of simulations
were run in a collisionless regime (v; = 0) over a spatial
domain limited to the CS+4DS region, covering a few ion
Larmor radii. A second set of simulations were run in a col-
lisional regime where the full transition from an isotropic
Maxwellian plasma to the wall is considered, including the
collisional presheath. In both cases, parametric scans with
a € {2°3°,4°,5°,10°, 15°,30°,45°,60°,90°} were performed.

IV. Collisionless plasma-wall transition

The parameters of the first set of simulations were set in order
to match as closely as possible those of the fluid model used
in [10]. The simulation box length is between L ~ 120 \p and
L= 800\p, depending on the strength of the magnetic field
(in Stangeby’s quasi-neutral model, since the Debye length
vanishes, the CS entrance is located at x — oc). Parametric
scans in the incidence angle o were performed for hydrogen
(m; = my) and deuterium (m; = 2my). The magnetic field
intensity is such that wg = 0.05w,;, i.e. p; = 20Ap. For all
simulations, we assumed equal temperatures T;o = T,y. For
brevity, the local value of any quantity X expressed at the wall

(x = 0) and at the magnetic presheath entrance (x = L) will be
tagged respectively as X" and XSE.

IVA. Boundary conditions

At the plasma boundary, i.e. the CS entrance, the incoming
ion flux should be supersonic (Chodura criterion) and aligned
with the magnetic field direction. To this end, we prescribe the
following distribution function at x = L:

&)
in _ il v?
fi = KH (=) exp| —— |, ©)
Vthi Vini
where H is the Heaviside function, vy = +/Tio/m;,
ni 1-8 1 ; .
K=-"0%27 F(ﬁ%), with I' the Euler gamma function.

TVihi .
The average parallel velocity corresponding to f" is

) = —vimiv2 1"(*”%2)/1“(*”%1). In the results presented in
this section the 3 exponent was set equal to 2, leading to an
average flow (v) = —1.6vyy;, i.e. slightly supersonic. Smaller
values of the parallel velocity may run the risk of destabilizing
the transition. The above distribution is compatible with fluid
models that assume a sonic or slightly supersonic flow at the
entrance of the CS. In addition, it is also compatible with the
velocity distribution obtained self-consistently from a kinetic
model that incorporates weak collisions, as we shall show in
section VI.

In figure 2(a) the v, dependency of the incoming distribu-
tion function is shown for a few values of . The case aw = 90°
corresponds to vy = vj. One should note that the parallel
velocity distribution is not a Maxwellian, and that its effec-
tive ‘temperature’ T%“” = P|‘|'|‘| /n =~ 0.45T; is smaller than Tj.
In a magnetic-field-aligned basis such as (b,e; x b,e,), the
kinetic pressure tensor is diagonal but anisotropic. In the (x,
y, z) basis, it is not even diagonal anymore and the various
components of the pressure tensor vary with «. For instance,
the xx component of the pressure tensor, for § = 2, is equal to

P~ njoTio(1 — 0.55sin” ).
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Figure 3. Spatial profiles of the charge density (a) and the electric potential (b), for a collisionless case with deuterium ions.
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Figure 4. Spatial profiles of the electrostatic field (a) and the ion density (b), for a collisionless case with deuterium ions.

In a collisionless model, the total potential drop from the CS
entrance to the wall is independent on the angle . However,
for very small angles, numerical errors (due to the presence of
a small but non-zero electric field near x = L) slightly break
this invariance. This entails a small variation with o of the
total potential drop, as seen in figure 2(b). However, this small
error does not affect the main physical conclusions that can be
drawn from the forthcoming numerical simulations.

IV.B. Effect of the angle of incidence

We will now consider the parametric dependency of the
CS-DS transition with the magnetic field incidence angle «.
Figure 3(a) shows that the space charge density near the wall
decreases rapidly with decreasing «. Although the charge
density does not strictly vanish (nor changes sign), the strong
limitation of the space charge density is a clear signature that
the DS progressively disappears at small incidence angles. In
addition, the spatial profile of the electric potential (figure 3(b))
evolves from a two-scale profile at large a—typical of the
CS-DS transition—to a smooth evolution at low a. As a con-
sequence, although the peak of the electric field decreases
strongly as the DS vanishes (figure 4(a)), its extension reaches
much further into the plasma, several ion Larmor radii from

L7
1.0
0.8
£0.6
=
0.4 o
a=3.0 .
0.2 A
0 0 ; : a=10.0° — @=90.0"
"0 20 40 60 80 100 120
Ayt
(b)

the wall. As discussed in [10], this is of significant importance
for the estimation of the prompt redeposition of sputtered
impurity ions: indeed, while the overall electric field intensity
decreases with «, it will affect sputtered neutrals ionized far-
ther from the wall and increase prompt redeposition.

The ion (and thus plasma) density drop is also spread out
and reaches lower values with decreasing « (figure 4(b)). This
depletion of the plasma density near the wall (for regions such
that x < p;) entails a lower ionization rate for sputtered neu-
trals, thus lowering prompt redeposition.

Let us now consider the ion mean flow perpendicular to
the wall (figure 5). Due to both the anisotropic nature of the
kinetic pressure tensor and the non-uniformity of the ‘tem-
peratures’ (see section V for a discussion of the fluid closure),
we refrain here from normalizing the flow to the usual sound
speed ¢ = /(Tio + Too0)/m; ~ 1.4vy;, which is strictly valid
only in the case of an isothermal closure for the P,, com-
ponent of the kinetic pressure tensor. In our case, the sound

speed can be roughly estimated (from fin) as ranging from

1.2vg, to 1.4vy,; when « ranges from 90° to 2°, and is very close
to 1.4vy,; for the lowest range (v < 15°) of angles considered.
Figure 5 clearly shows that the peak (absolute) value of
the ion mean velocity decreases with decreasing « and is
limited to subsonic values for low angles of incidence, below
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Figure 5. Spatial profiles of the average ion flow velocity
perpendicular to the wall, for a collisionless case with deuterium
ions.

approximately 5°. Together with the disappearance of the
space charge in front of the wall (figure 3(a)), these results
confirm Stangeby’s conclusion that no DS forms below a cer-
tain angle of incidence. The limitation of both the ion density
and the average velocity with decreasing « are clearly vis-
ible when examining directly the v, velocity profile of the ion
distribution function (averaged over v, and v;), as shown in
figure 6.

We will now examine more closely the behaviour with
« of a few important quantities measured at the wall. The x
component of the electrostatic field at the wall is shown in
figure 7 as a function of sin c. As expected from the above
observations, it is an increasing function of «.. For the smallest
angles a € {2°,3°,4°,5°,10°} (inset of figure 7), the evolution
is roughly linear in sin «, but the overall behaviour for the full
range of angles is less obvious.

The space charge density at the wall clearly exhibits a
linear dependency in sin « (figure 8(a)). This fact allows us to
obtain a semi-empirical fit for the ion perpendicular velocity
at the wall. Indeed, taking equation (2) at the wall with an

electron current ij,_, = — sin a(vne/~27)nY we obtain
Vihe sin «v _ Vihe sin o
27 1+ p"en)  2m 1+ ksina’

where « is a fitting parameter. To obtain equation (10), we
have assumed that p% occsina (see figure 8(a)) and that

() |= (10)

nY is independent of a. An interesting fact here is that the
coefficient x can be computed in the normal incidence case
(o = 90°), which does not require a full 1D3V model but only
a far simpler 1D1V simulation. Once « has been determined,
the ion perpendicular flow for any incidence angle can be
computed using equation (10). Some examples of this semi-
empirical fit are shown in figure 8(b), for both hydrogen and
deuterium ions.

IV.C. Effect of the magnetic field amplitude at fixed angle
(a=2)

In the simulations considered so far, the scaling
pi = 20Ap > Ap (or weilwp; = 0.05 < 1) was valid. In that

regime, decreasing the magnetic field intensity By will essen-
tially result in a rescaling of the CS, whose thickness increases
with growing p;. This is clear from figure 9, for instance in
the case we; = 0.01w,; (p; = 100Ap), where the velocity pro-
file stretches out to several hundred Debye lengths. At the
same time, the charge separation near the wall decreases
with decreasing magnetic field, and almost disappears for
wei = 0.01wy,; (figure 10). This is because, the CS being larger,
the whole potential drop can more easily occur within the
CS, with hardly any need for a non-neutral DS. Thus, in the
large p,/Ap regime, the disappearance of the DS predicted by
Stangeby is even more apparent.

In contrast, increasing By, and thus decreasing p;, results in
a progressive breaking of the above scaling (see [17] for a dis-
cussion of the scales entering the transition). For the case of low
incidence angles, the consequences are twofold. On the one
hand, we observe a stronger limitation of the ion flux perpen-
dicular to the wall, as can be seen from figure 9. On the other
hand, the charge separation near the wall tends to increase with
By (figure 10). These observations can be explained as follows.
With increasing By, the CS extension becomes of the same
order as that of the DS, so that the two sheaths overlap. Since
the total potential drop remains constant, the overall width
of the transition zone becomes too narrow to allow a quasi-
neutral transition. Consequently, the almost quasi-neutral tran-
sition previously observed for low magnetic fields at grazing
incidence (curve corresponding to wi/wy,; = 0.05 in figure 10)
disappears, and the formation of a sheath is again required to
ensure a smooth plasma-wall transition. This effect may be
interpreted as the appearance of a ‘new’ type of non-neutral
sheath, whose thickness is of the order of the ion Larmor
radius, when the scaling p; ~ Ap is satisfied.

IV.D. Non-floating (biased) wall

So far, we have considered stationary states for which the wall
potential was left floating. We will now examine the effect
of biasing the wall to a fixed potential ¢Ei/as below (i.e. more
negative than) the floating value gbgoat. Strictly speaking, the
behaviour of the system in this case is not governed anymore
by the ambipolarity condition at the wall, which was at the
basis of the bounds obtained in section II. However, the ambi-
polarity condition can be reintroduced using the fact that the
ion current density is the same in both situations, because it is
fixed by the boundary condition at the CS entrance.

Still considering the electrons as perfectly magnetized up
to the wall, we have

(Vx>ﬂ ¢/, float
<Vx>bias = o
1§ bias

e bias

. w (11)
= (V) Sin & e foa
¢ Ne,bias + pbias/e ng,/bias ,

leading to the modified bound

e(¢ﬂoat — (bbias) (12)
Teo .

(el = sin o (" |exp[
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Figure 6. Ion velocity distribution function in v, for several positions (indicated on top of each curve, in units of Ap) and three values of a:
(a) @ = 3° (b) @ = 30°, and (c) a = 90°. For each value of «, all distributions are normalized to their peak value at the entrance of the CS

(x = 117.3\p).

Unsurprisingly, the bound on the ion flow velocity becomes
less and less restrictive as the wall potential is set to lower
values. For a given target velocity, the corresponding critical
angle decreases accordingly. Starting from a floating case,
with a given (small) angle o for which the DS has nearly
vanished, we can expect it to reappear as ¢,;,, is decreased.
Considering for instance the deuterium case with o = 2°, for
which eq%voat ~ —2.5T,o, several biased-wall simulations were
performed with different values of gbgi/as. An increase of the
charge density near the wall is indeed observed (figure 11(a)),
resulting in the growth of the electric field (not shown here) and
the ion flow velocity perpendicular to the wall (figure 11(b)).
We also analysed the case of a wall biased at a potential
above (i.e. less negative than) the floating value, a situation rele-
vant to tokamak divertors where the divertor tiles may be biased
positively with respect to the floating potential. The results are
depicted in figure 12. For grazing incidence (o = 2°), a small
bias above the floating potential is sufficient to remove com-
pletely the charge separation near the wall or even to reverse
its sign. At the same time, the ion velocity at the DS entrance
drops well below the sound speed. The conclusion here is that,
for grazing incidence, a small bias above the floating potential
can remove any remnants of the DS, so that the transition to the
wall is truly charge-neutral and subsonic. For almost normal
incidence, the necessary bias would have been much larger.
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Figure 7. Electric field magnitude at the wall as a function of the
incidence angle, for a collisionless case with hydrogen or deuterium
ions. The inset is a zoom at small angles.

V. Comparison between the fluid model and kinetic
simulations

The results of Stangeby [10] were obtained using simple fluid
model that had been proposed earlier by Chodura [2] and
Riemann [7], and further developed in [8]. Although its pre-
dictions are basically correct, most notably the disappearance
of the DS for low incidence angles, it would be interesting to
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is obtained from the simulation data for o = 90°.
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Figure 9. Ion flow velocity perpendicular to the wall for various
amplitudes of the magnetic field By and o = 2°. Collisionless
simulations with deuterium ions.

test its limitations by comparing the fluid results to those of
our kinetic code.

Taking the velocity moments of equation (6) up to first
order yields the following fluid system in the stationary state

Oh(njuy) = —vi(ni — nio) (13a)
8 P, i n;
U Oty = — —= — iax¢ — Wylt; — Vi_loux (13b)
min; m; nj
0.P, i
uxaxuy = {_ Xy} + Wy, — Vi@uy (13c¢)
min; ni
8xPx i
U Oclt; = {_ Z} + Wylly — Willy — Viﬂuz’ (13d)
nmin; i

where u = (i), k = X, ¥, 2, wy = Wi sin a, wy = we; cos a, and
nj is the bulk density. In the Chodura—Riemann—Stangeby
(CRS) model for the collisionless magnetic presheath, we
have v; =0 and two assumptions are made: (i) the non-
diagonal components of the kinetic pressure tensor (terms
in braces in equations (13)(c)—(d)) are neglected and (ii) the
xx component of the pressure tensor is assumed to follow an
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Figure 10. Charge density profile for various amplitudes of the
magnetic field By and aw = 2°. Collisionless simulations with
deuterium ions.

isothermal closure P, = Tpnj, with constant 7). Combined
with the quasi-neutrality relation and the Boltzmann law for
the electron density, the system of equations (13)(a)—(d) can
be integrated easily [2, 10]. In [10], the system is integrated in
x starting from the CS exit. In our case, as the kinetic simula-
tion encompasses both the CS and the DS, defining the CS exit
would require setting a somewhat arbitrary threshold on the
charge separation. Thus, in order to compare our simulation
results with the CRS fluid model, we integrate the fluid equa-
tions starting from the CS entrance at x = L. In order to com-
pare with the kinetic results, the constant temperature T of
the fluid model is set equal to the value of Ty, = P,,/n obtained
from the ion distribution £ at the CS entrance, given in equa-
tion (9)'. For clarity, as our notation differs from that used in
[10], the explicit form of the CRS fluid equations is given in
appendix A.

In figure 13 we compare the average velocity (v, ) extracted
from the simulation data with u, computed from the fluid
model for a few values of o. While the agreement is quite
good for o = 3°and 5°, discrepancies appear for larger angles.

"'In our case, we have Ty = Tjp(1 — 0.55 sin® o), where Tjp = Ty is the param-
eter appearing in equation (9).
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Figure 11. Collisionless case for D", o = 2°, and w; = 0.05w),; with prescribed wall potential ¢" below the floating value qum ~ —2.5T.
(a) Charge density profiles; (b) ion flow velocity perpendicular to the wall.
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Figure 12. Collisionless case for D, a = 2°, and w;; = 0.05w,,; with prescribed wall potential ¢V above the floating value QSLVM ~ —2.5T,.
(a) Charge density profiles; (b) Ion flow velocity perpendicular to the wall.

It is important to note that those discrepancies arise before
charge separation becomes significant, i.e. when the plasma
can still be reasonably considered as quasi-neutral (x > 10p).
Proceeding to the same comparison for the y and z components
of the average velocity (figures 14(a) and (b)), we observe
quite similar discrepancies on u, but far larger and system-
atic ones for u, on nearly the whole domain. Thus, as far as
only the u, profiles are concerned (and consequently also the
potential profiles), the predictions of the fluid model in the CS
can be considered as rather good for the lowest range of inci-
dence angles. The somewhat large and systematic discrepan-
cies observed for the other velocity components would require
closer scrutiny. They probably arise from the violation of both
assumptions made in the fluid model.

To refine our comparison, we computed, from the kinetic
simulations, the various terms entering the y and z components
of the momentum balance equations (13)(c)—(d). The compar-
ison indicates that the contribution of the non-diagonal terms
of the pressure tensor is not negligible. Focusing in particular
on the equation for uy, figure 15 shows that the term containing
P,y is comparable to the other terms, even in the CS. In con-
trast, the term P,, (not shown here) is indeed negligible. We

T
— a=3.0°
— «a=50°
— «a=10.0°

i
20 40 60 80 100 120

-1
TAp

Figure 13. Ion mean flow perpendicular to the wall from the
collisionless kinetic simulations (continuous lines) and the CRS
model (dashed lines), for various values of «, and deuterium ions.
Note that the CRS model, being quasi-neutral, is not meaningful in
the DS.

emphasize the fact that the non-diagonal nature of the pres-
sure tensor is not an artifact due to the choice of coordinates,
which could be eliminated by using a field-aligned basis:
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Figure 15. Various terms of the momentum balance equation along
y (equation (13)(c)) computed from the collisionless kinetic
simulations, for « = 3° and deuterium ions.

although the distribution at the CS entrance is indeed sepa-
rable in (v, v|), this separability is lost during the transition.

Let us now consider the validity of the isothermal closure
for the P,, component of the pressure tensor. In the normal
incidence case, for which only the DS exists, the temperature
T, (i.e. the variance along v,) decreases as the ion popula-
tion is accelerated towards the wall by the electric field. This
well-known ‘acceleration cooling’ [18, 19] persists in the
magnetized case. More importantly, as the electric field pro-
file is spread out with decreasing «, Ty, has a non-negligible
variation over both the DS and CS. This is clearly visible in
figure 16 showing the evolution of T, relative to its value at
the CS entrance (we recall here that TSXSE depends on «, see
section IV.A). As a consequence, though the isothermal clo-
sure may be considered a reasonable approximation (outside
the DS) for the large-to-intermediate angle range, it becomes
clearly invalid in a large part of the transition layer for smaller
angles of incidence.

Having established that the isothermal closure does not
fit the actual behavior of the distribution for low «, one
may hope to fit a slightly more general polytropic closure
d(InP,,) = ~d(Inn). A typical constant polytropic coefficient
7 can be obtained by linear regression for each value of «

10

100 120

Figure 16. Spatial variation of the temperature 7, normalized to
its value at the CS entrance TSXSE, for collisionless simulations with
deuterium ions.

(figure 17). We observe a large variation with «, as can be
expected when going from the two-scale behaviour at large
a to the smoother transition at low « (see figure 16). For
a = 90°, the CS disappears altogether and the quasi-neutral
fluid model cannot be meaningfully compared to the kinetic
results. Alternatively, one could compute a local polytropic
coefficient y(x) = d(In P)/d(Inn) [20], but this yields very
large variations over the domain and with «, and is prone to
numerical instability in the low-gradient zones.

We also tried to use the computed exponent 7 to improve
the match between the kinetic and the fluid models (using, in
the latter, a polytropic equation of state, P, o ny), but this does
not seem to work well for u, (figure 18). The profiles of the
mean velocities along y and z are not improved either, which is
not surprising as their discrepancy with the kinetic data comes
primarily from the assumption of isotropic pressure. The main
conclusion here is that it is not possible to match the kinetic
simulation data with a simple polytropic closure.

All in all, the comparison between the simulation results
and the predictions of the fluid model leads us to conclude
that: (i) a rather good agreement is obtained for the u, pro-
file (and consequently for the potential profile) for the lowest
values of «, but (ii) a worse agreement is observed for the
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Figure 18. Ion mean velocity profile (1) for the kinetic simulation,
the fluid CRS isothermal model (y = 1), and the fluid polytropic
model (y = 1.74). Deuterium ions with incidence angle o = 3°.

other components of the mean velocity, due to the violation of
some of the assumptions of the fluid model.

VI. Collisional simulations

In the preceding collisionless simulations, the field-aligned
ion flow velocity at the CS entrance was imposed through an
ad hoc boundary condition. In order to ensure that such results
are not specific to the collisionless regime, we performed a
series of collisional simulations. In this case, the simula-
tion domain is much larger (typically 2 x 10*\p) in order to
encompass the full transition from the the plasma bulk to the
wall. The ion velocity distribution in the bulk is an isotropic
Maxwellian with temperature T;y = T,. Then, the distribution
function at the CS entrance is no longer imposed as a boundary
condition, but rather arises self-consistently in the collisional
presheath located upstream the DS. A thorough character-
ization of the transition, using the same kinetic model, was
performed by Devaux et al [21]. Here, we will focus on the
question whether collisions modify the results obtained in the
collisionless regime for grazing incidence.

1
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a=30.0° x~130),
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a=90.0° z~12\, ||

-1
Uy Vthi

Figure 19. Ion velocity distribution functions at the CS entrance,
for various angles of incidence, v; = 5 X 1074\/111)\51 and deuterium
ions. The position of the CS entrance is indicated in the inset. In
order to facilitate the comparison, each distribution function is
normalized in such a way that it has the same maximum as the
prescribed collisionless distribution of same incidence angle
(figure 2(a)).

As in the collisionless simulations, parametric scans
in o were performed for the same range of angles for
wei = 0.05w,;, with three values of the collision frequency
v e{5x10741073,5 x 10’3}vth)\51. For this range of
parameters the transition is characterized by the scaling
Ap K p; K Ampp, Where Apg, = van/v;. This is the interme-
diate By regime described in [17, 21, 22], for which the col-
lisional presheath, Chodura sheath, and Debye sheath are well
separated.

As a preliminary benchmark, we use the collisional simula-
tions to check the validity of the boundary condition that we
prescribed at the entrance of the CS in the collisionless runs
(equation (9)). For this, we need a criterion to define the CS
entrance. In the collisional presheath, the mean ion velocity
is aligned with the magnetic field: the CS entrance corre-
sponds to the location where this alignment breaks down.
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Figure 20. Charge density profiles near the wall for two collisional simulations with deuterium ions. The collision frequencies are

vi=15x 10"%u/Ap (a) and v; = 5 x 10 3w/ Ap (b).
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Figure 21. Charge density on the wall as a function of the
incidence angle «, for three values of the collision frequency v;.
Deuterium ions.

As a quantitative criterion, we took a deviation of 0.25° with
respect to the angle of incidence a.. The computed distribution
functions are shown in figure 19 and look very much like the pre-
scribed distributions used in the collisionless runs (figure 2(a)).

We can now verify the robustness of Stangeby’s result in
the collisional regime. First and foremost, we still observe a
decrease of the charge density near the wall for decreasing
angles of incidence (figure 20), with similar consequences
on the electric field and potential profiles near the wall (not
shown). The principal effect analysed in this work is thus not
destroyed by the presence of collisions.

Second, the nearly linear dependency of the wall charge
density with sina (which was observed in the collision-
less case, see figure 8(a) is slightly perturbed by the colli-
sion terms as shown in figure 21 (note that here the charge
density is normalized to the value ny in the bulk plasma,
whereas in the preceding sections the normalization value
ng referred to the density at the CS entrance). A marginal
sign inversion of p near the wall can even be observed in the
(a=2%v;=5x% 10’3vth/\51) case. Despite this perturbation,
the ion perpendicular flow as a function of o may still be
roughly fitted by the same semi-empirical law as in the col-
lisionless case (figure 22).
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Figure 22. JTon flow velocity on the wall as a function of

the incidence angle a, for a collisional case with frequency

v = 5 x 10~ *yu/Ap. The numerical coefficient k = 7.31 of the
semi-empirical law equation (10) is computed by exact interpolation
from the case o = 90°. Deuterium ions.

Last, let us extend the analysis of the various terms entering
the fluid momentum balance in equations (13)(b)—(d). Setting
aside the additional impact of the friction terms specific to
our collision model, we still observe a non-negligible impact
of the non-diagonal term of the pressure tensor P,, in the
fluid momentum balance along the y axis (figure 23). As was
the case for the collisionless regime, the P,, cross-term (not
shown here) is indeed small outside the space-charge region
near the wall.

VIl. Conclusions and pending issues

The main focus of this paper was on the observation, made by
Stangeby [10], that the Debye sheath should disappear when
the plasma is immersed in a magnetic field with grazing angle
of incidence with respect to the wall. Stangeby’s result was
deduced from a simple 1D fluid model with Boltzmann elec-
trons and isothermal closure for the ions. Thus, it was worth
to check whether the result holds under less stringent condi-
tions on the ion model, namely using a kinetic rather than fluid
approach.



Plasma Phys. Control. Fusion 58 (2016) 025008

D Coulette and G Manfredi

2'01e_‘2 J T T

L5 77777777 77777 - dr;ry;(mini) |
s LOf P i — yu,n/n
i 0.5pk-- —————— ————— - —u,d,u, .
<
S A
— —0.5 ]

-1.0 ‘ s

) I R S
0 20 40 60 801

-1
TAp

00 120 140
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Our calculations showed clearly that the main result holds:
the charge separation progressively disappears for smaller and
smaller angles of incidence, and the ion flow velocity perpen-
dicular to the wall is limited to subsonic speeds. Though no
critical angle arises due to the lack of singularity at the DS
entrance in the kinetic model, the overall behaviour is con-
sistent with the predictions of [10]. We also confirmed the
increased spreading, with decreasing «, of the electric field
and plasma density over distances of several Larmor radii
from the wall. These features appear in both collisionless and
collisional simulations, and may thus be considered as robust,
provided the scaling Acon > p; > Ap is satisfied.

Asnoted by Stangeby [10], the spreading of the electric field
and plasma density further from the wall (compared to what is
usually expected from simpler models) has important conse-
quences on the recycling of sputtered particles in a tokamak
edge. It should be taken into account, whenever possible, in
the computational codes that deal with plasma edge recycling.

Further, by comparing the kinetic and fluid profiles, we
found that, although a rather good quantitative agreement on
the ion flow velocity perpendicular to the wall can be obtained
for small angles, the assumptions of a scalar pressure tensor
and isothermal closure in the fluid model are clearly violated.
These findings point at the limitation of the fluid models usu-
ally employed to study this type of scenarios.

Finally, in all simulations apart from the most collisional
ones, we observed a rather robust linear scaling of the charge
density at the wall with sin .. As a consequence, the value of
the ion mean flow velocity perpendicular to the wall obeys
the simple semi-empirical law: (1)l = vpe//27 sina/(1 +  sin @),
where « is a coefficient that can be determined from a single
simulation at normal incidence.

All the previous considerations are correct as far as the
various simplifying assumptions made both in the fluid and
kinetic models are satisfied. The first concerns the electrons,
which were assumed to be perfectly magnetized up to the wall
and to follow a Boltzmann law. For very small angles of inci-
dence (a < 1°), these assumptions cease to be valid and the
electron dynamics should be treated with a fully kinetic model.

13

A second assumption lies in the reduction of the system to
one dimension in space. For divertor targets, the determination
of the CS and DS structure near the inter-tile gaps would require
at the very least a two-dimensional model in space, encompassing
the full incidence plane of the magnetic field (i.e. the plane
(x, y) in our geometry, see figure 1) in order to properly deter-
mine both the structure of the electric field and the particle flows
in those regions. Of course, an extra spatial dimension would
increase dramatically the complexity of the present kinetic code.
Nevertheless, it is an important feature that needs to be addressed
for quantitative comparisons with tokamak measurements.
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Appendix A. Collisionless fluid model

The following relations are established from the fluid system
(13) in the collisionless case (v; = 0) using a diagonal pres-
sure tensor (P, = P, = 0) and an isothermal closure P = n Tj,.
Exact neutrality n; = n. and a Boltzmann law for electrons are
assumed. The integration of the system follows the same pat-
tern as in [2, 10], the only difference being in the fact that no
assumptions were made on the value of the boundary condi-
tions (i.e. they are a priori unrelated to cy).

Starting from a reference point xo with fluid velocities
(ux0 <0, uy0, uz0), the position x; <xo where u, reaches the
value u,; is obtained through the integral expression:

CZ
» u(l — u—;)du

Wei €08 a(x] — xo) = — fu - (A1)

“wo o [Dw)]2

with

2
D)= U+ ¢ ln( u ) —u? = uy(w)?, (A.2)
Uxo

(1 1

uy(1) = Uy — tan o [(u — Uyo) + cs(— — —)], (A.3)

u Ux0

and U% = uio + u_%o + uf,o, cf = (To + T.p)/m;. The above rela-
tions are obviously valid only as long as D(u) does not vanish
in the integration range. Here, the c; factor arises solely from
the isothermal closure for the ions, and does not depend on the
boundary conditions.

From a numerical point of view, the velocity profile u,(x)

is reconstructed as follows: a uniform discrete velocity

grid (uy,,n=0...N) is generated between ug = uSSE

and
uN:max(—|usmg|,—ubound), where wugne is the singular
velocity cancelling D(u) and upoung 1S the velocity bound
obtained from equation (4). Starting from [ug,u;] equa-

tion (A.1) is integrated over each pair [u,, u,+1]. The end result
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is a sequence [xy, ..., xy] of positions matching the velocities
[uo, ..., uy]. The u, profile is obtained directly using equa-
tion (A.3). The velocity u, is recovered from u, using

Uyd Uy cf.
uy=——"—|1-—1 (A.4)
Wi COS uy
and the electrostatic potential
e u
T—O(éf)(ux) — ¢p) = ln(uio)- (A.5)
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