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Long-Time Behavior of Nonlinear Landau Damping
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The evolution of an initial perturbation in a collisionless, Maxwellian plasma is studied numerically.
Accurate long-time simulations (up to 1600 inverse electron plasma frequencies) show that the
electric field does not decay to zero, in disagreement with recent analytical results [M.B. Isichenko,
Phys. Rev. Lett78, 2369 (1997)]. Instead, after some initial damping, the field amplitude starts to
oscillate around an approximately constant value, and the phase-space distribution develops a vortex
structure which survives throughout the simulation. [S0031-9007(97)04171-9]

PACS numbers: 52.35.Mw, 52.35.Sb, 52.65.-y

In 1946, Landau discovered that small perturbations irto verify the validity of this result. We present the results
a uniform, Maxwellian, electrostatic plasma are exponenef some accurate numerical computations for very long
tially damped, even when no dissipative terms are presetimes, up to 1600 inverse electron plasma frequencies.
[1]. Since then, linear Landau damping has been exter®ur conclusion is that Isichenko’s result is not general:
sively confirmed in both experiments [2] and computerThere exist initial conditions for which the electric field
simulations [3], and has become a standard topic in mostoes not decay to zero (algebraically or otherwise), but
plasma physics textbooks (e.g., [4,5]). Besides, it hasather settles to a finite value.
been shown to play an important role in many applica- Our mathematical model is the one-dimensional
tions, such as plasma heating in fusion devices [5] an&¥/lasov-Poisson system,

laser-plasma interactions [6]. of f of
Landau’'s treatment of the problem is rigorous, but 7 + va + E(x,1) 5 =0,
strictly linear, meaning that the initial perturbation is sup- " (1)
posed to be infinitesimally small. For a finite perturba- 9IE _ f fdv — 1
tion, only approximate analytical solutions are available dx —oo ’

[7]. O'Neil's theory, for example, predicts amplitude os- where f(x, v, t) is the electron distribution function and
cillations for the electric field, which have indeed beenkE(x, ) the electric field. In Eqg. (1), and in the rest of the
observed in experiments [8] and simulations, includingarticle, time is normalized to the inverse electron plasma
those presented in our paper. However, O’'Neil's treat-frequencyw;el, space is normalized to the Debye length
ment ceases to be valid for large times. Early numericakp, and velocity is normalized to the electron thermal
results [9], on the other hand, are not accurate enough speedVy, = Apw,.. lons are taken to be motionless,
allow us to draw conclusions on the long-time limit. and their only role is to provide a uniform, neutralizing
Until recently, it was generally believed [4] that non- background. Furthermore, periodic boundary conditions
linear plasma waves undergo a few amplitude oscillaare assumed iR, L being the box length. Oscillations are
tions and eventually approach a Bernstein-Greene-Kruskaixcited by initializing a single Fourier mode, namely, the
(BGK) steady state [10]. More recent simulation resultsfundamental modex = 277 /L: f(x,v,0) = fo(v) (1 +
[11] seem to support this conjecture, although the eviw coskx), where fo(v) = 27)~2exp(—v?/2) is the
dence is not conclusive. Two papers have recently chakquilibrium Maxwellian. This problem has only two
lenged this belief, claiming that the wave amplitude will dimensionless parameters, namely, the strength of the
eventually decay to zero. Brodin [12], starting from thenonlinearity « and the perturbation wave numbknp,.
Vlasov-Poisson system, develops a reduced model, whichhese can be more usefully expressed as two time scales:
is then solved numerically. Although some overall decaythe Landau damping ratg (which depends on the wave
is indeed shown for about two trapping oscillations, thesewumber) and the bounce time= o ~'/2. Linear Landau
results are still inconclusive as far as the long-time limitdamping is valid as long as< 7; for longer times the
is concerned. problem is inherently nonlinear, irrespective of the initial
In another paper, Isichenko [13] presents a genergberturbation amplitude and wave number. However, the
theory predicting that Landau damping will continue actual long-time asymptotics need not be the same for
indefinitely, although for large times the electric field different values of the two dimensionless parameters. It
decay is algebraiqE « t~!) rather than exponential. is Isichenko’s conjecture that the asymptotic behavior
Isichenko’s algebraic decay is presented as an exad =« ¢! is universal for all values ofr andkAp.
asymptotic result, valid for general initial perturbations. We now turn to the numerical study of the Vlasov-
The purpose of our paper is to provide numerical evidenc®oisson system. The simulation of nonlinear Landau
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damping is a difficult numerical problem since different 0.025

time scales are present, and the physical effect is small RunI (a)
. . . 0.020¢f

and must be separated from numerical noise. It is

therefore important to perform a series of checks to rule 0.015

IE,

out spurious numerical artifacts. The code used for our
simulation is an Eulerian code [14], which solves the 0.010
Vlasov equation on a uniform mesh in phase space. Itis

. h . - 0.005
second order accurate in space, velocity, and time. This
code has been used extensively over the past two decades 0.000
[3,6,11,15], and has been found to be very accurate in 0 400 800 1200 1600
describing coherent phase-space structures. t

We report results for a moderately nonlinear problem
with parameterse = 0.05 and k = 0.4, corresponding
to y = 0.0661 and r = 4.47. The real part of the 0.020 } Run I (b)
frequency, from Landau’s theory, i® = 1.285. The
relevant numerical parameters are the time siepthe
number of points inc andv (respectivelyN andM), and
the cutoff velocityv,x (i.e., the distribution function is
set to zero forw > |vnax|). The time step must be small
enough to describe the largest frequency in the problem,
which is the Landau frequency given above, therefore
we takeAr = 0.1. This is a rather conservative choice:
Values as high as 0.25 were used in the literature [15], still
retaining good accuracy. The cutoff velocityig., = 6:

IE,|

This is considerably larger than the phase velocity of the 0.020 } Run III (e¢) ]
Wave vphae = @/k = 3.21. The choice of the number

of points is more subtle. Since the electric field remains — 0.015

small, the particle motion is close to free streaming, H

thus developing a fine structure in velocity space. For 0.010 “

truly free streaming particleeZ = 0) the exact solution 0.005 [l ‘ :

of the Vlasov equation isfi(v,1) = fo(v)explikvi). ' oot Al I i
If the mesh spacing in velocity space iSv, there 0.000 :

is a recurrence occurring alg = 27 /(kAv). This 0 400 800 1200 1600
recurrence effect can be easily detected when simulating t

linear Landau damping, as it appears as a sharp spike FIG. 1. Evolution of the amplitude of the electric
the electric field afz. Unfortunately, when nonlinearities field for the fundamental modet = 27/L. (a) Runl:
are important, the recurrence cannot be recognized sg: 512, M =4000; (b) runll: N =512, M = 8000;

. . C) run lll: N = 1024, M = 4000.
easily, and one should only rely on the numerical result
obtained up to a time much smaller thdi. In the
computations presented here, we de= 4000 andM =  until r = 25. The measured real part of the frequency,
8000, yielding T = 5230 in the less favorable case, averaging between = 0 and ¢ = 200, is w = 1.263,
which is much larger than the total time of the runslightly smaller than the Landau frequency. After the
(t = 1600). The number of spatial pointdl is more linear stage, trapping oscillations are observed, while the
difficult to estimate. Since resonant particles oscillate ilfTmaximum amplitude decreases at each oscillation. How-
the potential well, the microstructure in velocity spaceever, afterr = 900, no further decrease is observed, and
will generate a microstructure ix, requiring a high the electric field goes on oscillating around an approxi-
resolution. This is also suggested by the semianalyticahately constant value. The trapping oscillations are in-

results of Brodin [12]. In our simulations, we take=  deed predicted by O'Neil’s theory [7], which applies when

512 andN = 1024, which appears to be accurate enoughyr <« 1. In our case, the initial value of the latter pa-

for this case. rameter isyr = 0.296; at saturatior(r = 900), the elec-
Three simulations were run with the same time stegric field is roughlyE = 0.007, which givesr = 11.9 and

At = 0.1, but different meshes. Run N = 512, M = vyt = 0.79.

4000; run Il: N = 512, M = 8000; run lll: N = 1024, The main result of Fig. 1 is that the field does not

M = 4000. Figure 1 shows the evolution of the funda- decrease indefinitely, but finally settles to a constant
mental mode of the electric fielfE, ()| for the three value. Comparing the results obtained with different
runs. Linear Landau damping is recovered accuratelyneshes shows that no qualitative difference is observed
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FIG. 2. Relative numerical entrop§,.(z) for run | (dotted
line); run Il (solid line); run Il (dashed line).
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by increasing the resolution. Quantitatively, there areFlG. 3. Phase-space shaded plot of the distribution function
indeed small differences between the three runs, which! the resonant regiotwpn,,. = 3.21) (run ). Darker regions
- . - orrespond to regions of higher density. Regions where

is inevitable since smaller and smaller scale structureg g are black.

are created by the essentially free-streaming nature of

the dynamics. However, there is no indication that,

by increasing the resolution, a further decay wouldThe phase portrait is shown in Fig. 3—note that a similar
be observed. Besides, other numerical tests have bestructure can be found at the corresponding negative
performed at even lower resolution, again showing thevelocity. These structures are present up to the end of
same qualitative behavior, provided the resolution isour simulation, and there is no indication that they should
not too low. Reducing the time step does not changée eventually damped away. It appears therefore that a
the picture either. This is in agreement with all thefinite number of particles can be trapped for arbitrarily
previous experience with the Eulerian Vlasov code usedbng times. The average velocity distribution strongly
for our study [11]: Once the microstructure reaches theleviates from the initial Maxwellian in the region around
mesh size, it is smoothed away by numerical diffusionv,,s. (Fig. 4). However, it never settles to a plateau—
(essentially due to the interpolation technique used imather, its slope changes periodically. This effect results
the code), and is therefore lost. However, larger scalem the low frequency amplitude oscillations observed in
appear to be virtually unaffected by the small scalethe electric field (Fig. 1) even after saturatign= 900).
diffusivity. This effect can be quantified by means Before comparing our simulation results with
of a numerical “entropy,” defined in the usual way Isichenko’s theory [13], it must be noted that Isichenkao’s
S(t) = — [fInfdxdv. Obviously, S() is a constant proof requires the presence of at least two waves in
for the exact Vlasov-Poisson system, Egs. (1). Howevetthe perturbation, while in our case only one mode was
it increases monotonically for the discrete numericalinitially excited. However, since the problem is fully
model (this is a property of the scheme, and can b@onlinear, higher order modes are quickly generated
proven rigorously). The evolution of the entropy is shownby wave coupling. In the case considered above, for
in Fig. 2 for the three rungwhat is actually plotted

is the relative entropyS.; = [S(z) — S(0)]/S(0)}. As

expected, the growth is slower for the higher resolution t = 1600

case, although eventually the three runs saturate at the 100 ' ' ' ' *

same level. This is an indication that, although the -1

microstructure is lost more quickly for a coarser mesh, 10 "¢ E

larger scales are treated with good accuracy in all three « 10 Rl ]

runs. Moreover, the total increase in entropy is extremely o0

small, less than 1%. Other entropylike functionals can S 10731 ]

be used, such as,(r) = — [ f? dx dv, which give

essentially the same result. 10_4 L 2
In phase space, the distribution function develops a -5

vortex structure roughly at the phase velocity of the 10 : ' ‘

wave vpnse = /k = 3.21, which was already observed -6 4 -2 0 2 4 6

in previous simulations [11,15]. Such vortex structures A

have also been shown to arise spontaneously from gG. 4. Logarithmic plot of the velocity distribution averaged
perturbed, unstable equilibrium (“bump-on-tail”) [16]. overx at the end of the simulation (run 1).
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example, the second harmonic of the electric field rapidly 0.025 ' '

reaches a value of abo#itx 1074, i.e., roughly 20 times

smaller than the fundamental mode. For an even closer 0.020¢ 3
comparison, we have run another case in whialo — 0.015H 3
modes are initially excited, with wave numbeérs= 0.2 X E
and k = 0.4, and the same amplitude = 0.05. The ~ 0.010HL 3
amplitude of thek = 0.4 mode (Fig. 5) behaves in a I

way similar to the previous case, and finally settles to 0.005

a slightly smaller value with no further decay. The

k = 0.2 mode (not shown here) is almost unaffected by 0.000 :

linear Landau damping, and remains at an approximately 0 1000 2000 3000
constant amplitude throughout the entire run. We are t

therefore confident that our main result is not affected byFIG. 5. Evolution of the amplitude of the electric field for the
the presence of a second wave. second harmoni¢ = 47 /L = 0.4

The results that we have reported are partially consis-
tent with those obtained by Brodin [12]. However, Brodin exists a critical(y 7)., = 0.5, such that for values larger
follows the evolution for only about two trapping oscilla- than the critical one, the electric field amplitude is
tions, during which the peak of the oscillating amplitudedamped monotonically. These results were obtained at
decreases by a factor of 2. This is much too short a timéow resolution, and for very short times (less than
to draw conclusions about the asymptotic behavior. In out00 w;el), so that no conclusion about the long-time
simulations, the electric field decays for about five trappindimit can be drawn. Simulations in this regime are also
oscillations, before settling to a constant amplitude. particularly delicate, since the field rapidly becomes very
Our results also do not contradict the stability analysissmall. Further studies using our numerical code may help
of BGK solutions performed with a similar Eulerian code to clarify this important point.
[15]. In that paper, it is shown that BGK states with | am grateful to Richard Dendy for bringing some of
more than one vortex (“hole”) are unstable, and evolvehe recent literature to my attention, and to Marc Feix and
towards a one-vortex structure. However, BGK solutiond_uke Drury for several useful discussions. This work was
with only one hole appear to be stable. The structure thapartially supported by the Irish Fusion Association.
we obtain at the end of our simulation can be viewed as a
traveling BGK wave, and is equally stable.
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