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Plasmonic breathing modes in C60 molecules: A quantum hydrodynamic approach
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We propose and illustrate a quantum hydrodynamic (QHD) model for the description of plasmonic oscillations
in the C60 molecule. Although simpler than competing approaches such as time-dependent density-functional
theory (TDDFT), the model contains the key ingredients to characterize plasmonic modes, namely the Hartree,
exchange, and correlation potentials, as well as nonlocal, nonlinear, and quantum effects to the lowest order.
A variational technique is used to solve analytically the QHD model for the case of breathing (monopolar)
plasmonic oscillations, revealing a bulk mode near the plasmon frequency. Numerical simulations of both the
QHD equations and a TDDFT model confirm the existence of this mode and highlight a second collective mode at
lower energy. Such monopolar modes may be measured experimentally using electron energy-loss spectroscopy.
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I. INTRODUCTION

Recent years have witnessed a remarkable surge of inter-
est in the electronic properties of nanomaterials, particularly
when excited by ultrafast (femtosecond or shorter) pulses
of electromagnetic radiation [1,2]. Nanoplasmonics may be
defined as the study of the interactions of electromagnetic
waves with the free electrons in a small object of nano-
metric dimensions, together with the collective phenomena
that accompany such interactions [3,4]. All sorts of nano-
objects have been studied in the context of nanoplasmonics,
including spherical and nonspherical nanoparticles, thin films,
rods, and disks, as well as various assemblies of such objects
(dimers, trimers, arrays, chains). Hollow nano-objects deserve
a special mention, as they will be the main topic of the present
work. They include metallic nanoshells, as well as fullerene
molecules [5] such as C60 and C240, or even nested fullerenes
[6].

In metallic or metal-like nanomaterials, the valence elec-
trons respond quickly to the external excitation, and begin
to oscillate collectively at a well-defined resonant frequency.
A typical example of such response is the localized surface
plasmon (LSP) mode in a metallic nanoparticle [7–9]. The
mode is excited by an ultrafast laser pulse, usually in the
visible range. The electric field of the laser drives the electrons
away from their original steady state. The Coulomb force
exerted by the ion lattice tends to bring the electrons back
to equilibrium, but due to their inertia they overshoot it and
begin to collectively oscillate at the so-called Mie frequency.

The LSP mode is by construction a dipole mode, because
the electromagnetic wavelength is much larger than the di-
ameter of the nanoparticle. Higher-order modes (quadrupole,
octupole, etc.) were investigated in the recent past both
theoretically [10] and experimentally, by resorting to clever
configurations in the optical experiments [11]. The plasmonic
monopole (or breathing) mode is more difficult to excite due
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to its spherical symmetry. It is also harder to measure as it does
not emit any electromagnetic radiation—it is a dark mode
[12,13]. Nevertheless, monopole modes have been observed
in silver nanodisks using electron energy-loss spectroscopy
(EELS) [14] or, more recently, optical spectroscopy [11].
EELS was also recently applied to collective plasmon exci-
tations in C60 molecules [15,16].

C60 fullerene is a large molecule that displays some metal-
lic properties due to the presence of delocalized electrons.
Indeed, its 120 very tightly bound 1s electrons are often
represented by means of a simplified jellium model, and
only the dynamics of the remaining 240 delocalized valence
electrons is treated self-consistently. Compared to other nano-
objects with similar geometry, such as the metallic nanoshells
mentioned above, C60 is very small (diameter ≈0.7 nm),
hence it displays strong quantum and nonlocal features. For
this reason, it may constitute an ideal arena to investigate typ-
ical quantum nanoplasmonic effects, which should be more
prominent than in larger metallic nano-objects. In particular,
the C60 giant plasmonic oscillations observed at relatively
high energy (20–40 eV) in the optical spectrum make it
an attractive candidate for possible exciting applications, as
well as for the fundamental understanding of the underlying
physical effects.

Despite the fact that the C60 molecule is a very small
nano-object, its ab initio description is a complex com-
putational task. Past theoretical and computational studies
have used a variety of methods, ranging from Hartree-Fock
(HF) [17,18] to the random-phase approximation (RPA) [19],
density-functional theory (DFT) [20–24], and a Thomas-
Fermi approach [25]. However, these approaches remain com-
putationally costly, particularly when studying the dynamical
properties beyond the linear response.

Quantum hydrodynamic (QHD) models [26–31] offer a
useful and simpler alternative to ab initio calculations for large
N -body systems. In such models, the electron dynamics is de-
scribed by a small number of macroscopic fluidlike equations
(continuity, Euler, energy conservation) that include quantum
effects via the Bohm potential. The QHD approach can easily
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incorporate nonlocal and nonlinear effects, structured jellium
profiles, as well as effects beyond the mean-field approxi-
mation (exchange and correlations) along the same lines as
time-dependent DFT (TDDFT). Indeed, QHD methods may
be viewed as a particular class of time-dependent orbital-free
DFT. All in all, QHD models, although sufficiently simple to
run on a standard desktop computer, contain enough physics
to study the full electron response well beyond the classical
Mie theory. Recent applications of QHD relevant to nanoplas-
monics include surface plasmon modes in thin metal films
[32], metallic nanoparticles [33], and semiconductor quantum
wells [34,35].

Here, we present some applications of QHD to plasmonic
breathing modes in C60 molecules. After illustrating the basic
QHD equations in Sec. II, we develop a variational method
that allows us to reduce the macroscopic electron dynamics
to a single effective ordinary differential equation (Sec. III),
which is then used to evaluate the linear and nonlinear dy-
namics of the plasmonic breathing modes. Finally, in Sec. IV
the results are compared to numerical simulations of the full
QHD equations and to linear-response theory using a TDDFT
approach.

II. QHD MODELING OF C60

In this section, we provide a short derivation of the QHD
equations for the particular case of C60; more details can be
found in our earlier works [26,27].

As mentioned in the Introduction, we adopt a jellium
model that takes into account the 120 1s localized electrons.
The remaining 240 valence electrons can be represented by
the time-dependent Kohn-Sham equations (atomic units are
used throughout this work):

i
∂ψl

∂t
=

(
−1

2
�r − VH + l(l + 1)

2r2
+ VX,C + Vps

)
ψl, (1)

where we assumed radial symmetry from the start, so that
�r = r−2∂rr

2∂r stands for the radial part of the Laplacian.
The various terms represent respectively the Hartree potential
VH , the centrifugal potential Vl (l is the azimuthal quantum
number), exchange and correlations VX,C , and a pseudopoten-
tial Vps commonly employed in the DFT literature in order to
recover the correct ionization potential for C60. The Hartree
potential is a solution of the Poisson equation,

�rVH = 4π

(∑
l

pl|ψl|2 − ni

)
, (2)

where the pl are the occupation numbers and ni (r ) is the ion
jellium density.

We have chosen the wave-function normalization in such a
way that

N =
∑

l

pl

∫ ∞

0
4πr2|ψl|2dr =

∫ ∞

0
4πr2nidr, (3)

where N = ∑
l pl = 240 is the total number of valence elec-

trons. Note that the sum extends over both σ and π electrons,
which are characterized by different radial quantum numbers
(nr = 0 for the former and nr = 1 for the latter). The C60

ground-state configuration, obtained from a full DFT calcu-
lation, is summarized in Appendix A.

To obtain the QHD equations, first we make a Madelung
transformation on the radial wave function,

ψl (r, t ) = Al exp(iSl ), (4)

where the real amplitudes Al and phase Sl are related to the
density nl and velocity ul of each wave function through

nl (r, t ) = |ψl|2 = A2
l , (5)

ul (r, t ) = ∂rSl. (6)

Substituting Eq. (4) into Eq. (1) and separating the real and
imaginary parts, we get

∂nl

∂t
+ ∂

∂r
(nlul ) + 2

r
nlul = 0, (7)

∂ul

∂t
+ ul

∂ul

∂r
= ∂VH

∂r
+ 1

2

∂

∂r

(
�r

√
nl√

nl

)
− ∂

∂r

[
l(l + 1)

2r2

]
− ∂VX,C

∂r
− ∂Vps

∂r
. (8)

Now multiplying Eqs. (7) and (8) by pl and summing over l,
we get the following set of fluid equations:

∂n

∂t
+ ∂

∂r
(nu) + 2

r
nu = 0, (9)

∂u

∂t
+ u

∂u

∂r
= ∂VH

∂r
+ 1

2

∂

∂r

(
�r

√
n√

n

)
− 1

n

∂P

∂r

− 2

r

P

n
− ∂VL

∂r
− ∂VX,C

∂r
− ∂Vps

∂r
, (10)

where

n(r, t ) =
∑

l

plnl, (11)

u(r, t ) ≡ 〈ul〉 =
∑

l

pl

nl

n
ul, (12)

P = n

[∑
l pl nl (ul )2

n
−

(∑
l pl nl ul

n

)2
]

= n
[〈
u2

l

〉 − 〈ul〉2
]
, (13)

VL = 〈L2〉
2r2

= 1

N

∑
l pl l(l + 1)

2r2
(14)

are, respectively, the fluid electron density, the mean electron
velocity, the electron pressure, and the average centrifugal
potential. Using the values of the occupation numbers given
in Appendix A, one obtains 〈L2〉 ≈ 37.5 in atomic units. In
terms of the fluid variables, Poisson’s equation for the Hartree
potential reads as

�rVH = 4π (n − ni ). (15)

To this point, the derivation of the QHD equations is exact,
except for the second term on the right-hand side of Eq. (10)
(the so-called Bohm potential), which describes quantum
effect to lowest order. To obtain this term, we had to assume
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that 〈
�r

√
nl√

nl

〉
≈ �r

√
n√

n
,

which is approximately correct as long as spatial gradients
are not too large [26,27]. It can be recognized that the Bohm
potential corresponds to the von Weizsäcker correction to the
electron kinetic energy.

We still have to specify the electron pressure and the
exchange-correlation potential. For the time being, we neglect
correlations, i.e., VC = 0, and use the local-density approxi-
mation (LDA) for the exchange potential:

VX[n] = − (3π2)1/3

π
n1/3. (16)

We further consider that the system’s temperature is always
much lower than the Fermi temperature of C60, so that the
pressure can be approximated by that of a fully degenerate
electron gas:

P = 1
5 (3π2)2/3n5/3. (17)

As in most earlier studies [36,37], the pseudopotential is
taken to be constant inside the ionic jellium, with Vps = −0.7,
and zero elsewhere. A more sophisticated structured pseu-
dopotential was suggested recently [38], which is computed
as the difference between the total potential obtained from
an ab initio calculation and the one obtained from a pure
jellium model. Such improved pseudopotential produces a
more accurate ground-state electron density and energy levels,
but requires a prior ab initio calculation to be implemented.
This and other structured pseudopotentials could be easily
incorporated in the QHD model described here, and would
presumably also improve the accuracy of the QHD calcula-
tions.

A final consideration is in order here concerning the pres-
sure and angular momentum terms in Eqs. (9) and (10), be-
cause some cancellations take place. If we consider a classical
spherically symmetric system in a generic potential V (r ), the
radial component of the Euler equation of motion reads as

∂u

∂t
+ u

∂u

∂r
= −∂V

∂r
− 1

n

∂Prr

∂r
− 2

r

Prr − Pt

n
, (18)

where Prr is the radial part of the pressure and Pt ≡ Pϑϑ =
Pφφ is the tangential component, which in a spherically sym-
metric system is identical for both angular coordinates ϑ and
φ. Now, the tangential component of the pressure is related to
the average angular momentum through

〈L2〉 = m2r2
〈
v2

t

〉 = 2r2Pt/n, (19)

where we used the relation 〈v2
t 〉 = 2Pt/(mn). Using the above

expression, one can readily show that −∂rVL = 2Pt/(nr ): in
other words, the term containing the tangential part of the
pressure in the classical equation (18) is the same as the
angular momentum term given by Eq. (14). Now, if we assume
that the pressure is completely isotropic, i.e., Prr = Pt ≡ P ,
then the angular momentum term exactly cancels the term
2P/(nr ) in Eq. (10). This isotropy assumption is consistent
with the study of spherically symmetric monopole modes as
envisaged here (although not necessarily with higher-order

dipole and multipole modes) and will be adopted throughout
the present work.

III. VARIATIONAL APPROACH
FOR THE QHD EQUATIONS

It can be shown [33] that the set of fluid equations (9)
and (10) together with Poisson’s equation (15) can be exactly
represented by a Lagrangian density L(n, θ, VH ), where the
function θ is related to the mean electron velocity, u = ∂θ/∂r .
The expression for this Lagrangian density is the following:

L = n

[
1

2

(
∂θ

∂r

)2

+ ∂θ

∂t

]
+ 1

8n

(
∂n

∂r

)2

+ 3

10
(3π2)2/3n5/3 − 3

4π
(3π2)1/3n4/3 + nVps

− (n − ni )VH − 1

8π

(
∂VH

∂r

)2

. (20)

By taking the Euler-Lagrange equations with respect to the
fields n, θ , and VH , one recovers exactly the the fluid equa-
tions (9) and (10) as well as Poisson’s equation (15).

The idea here is to guess a “reasonable” profile for the
electron density, insert it into Eq. (B2), and integrate over
all space. Following recent numerical calculations of the C60

ground state [21,25], a good approximation of the electron
density is the following:

n(r, t ) = A

σ (t )3

[
r

σ (t )

]k

exp

[
− r2

2σ (t )2

]
, (21)

where σ (t ) is a time-dependent variable representing the size
of the electron cloud, k is any positive even integer, and A is a
normalization constant. Using the normalization condition of
Eq. (3) we obtain

A = N 2−k/2

4
√

2 π�
(

k+3
2

) ,

where � is the Euler gamma function. We found that a good
match between the ansatz of Eq. (21) and DFT calculations
was obtained with k = 14.

The ion density is given by the following expression:

ni (r ) = neq[H(r − R1) − H(r − R2)]. (22)

Here, H(r − R1) and H(r − R2) are Heaviside step functions,
R1 = R − �/2 and R2 = R + �/2 are the inner and outer
radii of the ionic jellium, where R = 6.69 is the average radius
and � = 2.84 is the width of the ion density, neq = N/V ≈
0.15 is the homogeneous positive charge density, and V =
4π (R3

2 − R3
1 )/3 is the volume of the spherical shell occupied

by the ions [21]. A summary of the above parameters can be
found in Table I.

We now need to express the other variables (θ and VH )
in terms of the electron density n. The mean velocity u can be
obtained exactly from the continuity equation as u = (σ̇ /σ ) r ,
where the dot denotes differentiation with respect to time.
From the relationship between θ and the mean velocity u =
∂θ/∂r , we obtain θ = (σ̇ /2σ ) r2.

For the Hartree potential, one needs to solve the Poisson
equation with a source given by the electron density defined
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TABLE I. Ground-state width σ0 and linear-response frequency
� obtained from the QHD variational approach. Other relevant
parameters are also summarized here.

σ0 1.72 a0

� 1.24 a.u. ≈ 33.81 eV
ωp = √

4πn0 1.36 a.u. ≈ 37.1 eV
ωp/

√
3 = √

4πn0/3 0.787 a.u. ≈ 21.4 eV
rs 1.173a0

R 6.69a0

� 2.84a0

R1 5.27a0

R2 8.11a0

V 1621a3
0

neq = N/V 0.15a−3
0

in Eq. (21). This is done by separating the Hartree potential in
two terms that pertain respectively to the ions and the elec-
trons VH = Vi + Ve. Extensive details of these calculations
are provided in the Appendix B.

Finally, the Lagrangian function is obtained by integrating
L over the whole space:

L(σ, σ̇ ) = 1

N

∫
L dr = 4π

N

∫ ∞

0
L r2dr, (23)

which yields, after much algebra (see Appendix B),

L(σ, σ̇ ) = −17σ̇ 2

2
+ Ũ (σ ), (24)

where the potential Ũ (σ ) is given by the following function:

Ũ (σ ) = α1

σ 2
+ α2N

2/3

σ 2
− α3N

1/3

σ
+ α4N

σ
+ R1

2 027 025
exp

(
− R2

1

2σ 2

)[
−

√
2

π
V0

F1(R1, σ )

σ 15

+ 2
√

2π n0
K1(R1, R2, σ )

σ 11

]
− R2

2 027 025
exp

(
− R2

2

2σ 2

)[
−

√
2

π
V0

F2(R2, σ )

σ 15
+ 2

√
2π n0

K2(R1, R2, σ )

σ 11

]
+ erf

(
R1√
2σ

)[
V0 − 2πn0

3
K3(R1, R2, σ )

]
− erf

(
R2√
2σ

)[
V0 − 2πn0

3
K4(R1, R2, σ )

]
, (25)

for which F1(R1, σ ), F2(R2, σ ), K1(R1, R2, σ ),
K2(R1, R2, σ ), K3(R1, R2, σ ), and K4(R1, R2, σ ) are
given in Appendix B, α1 ≈ 0.258, α2 ≈ 0.045, α3 ≈ 0.091,
α4 ≈ 0.114, and erf denotes the error function.

The equation of motion of the system can be obtained from
the Euler-Lagrange equation ∂L/∂σ −d/dt (∂L/∂σ̇ )=0,
which yields

σ̈ = −∂U

∂σ
, (26)

where U (σ ) = Ũ (σ )/17. Despite the complicated form of
U (σ ), the equation of motion for the width σ of the electron
cloud is rather simple, and resembles that of a fictitious
particle evolving in an external potential. In the remaining
part of this section, we will use Eq. (26) to deduce some
ground-state and linear-response properties of the system.

A. Ground state

The profile of the potential U (σ ) is shown in Fig. 1. It
displays a single minimum located at σ0 ≈ 1.719. Injecting
this value into Eq. (21) we obtain the ground-state electron
density of the system, which is plotted in Fig. 2. For com-
parison, we also plot the density profile obtained from the
numerical solution of the full QHD equations, as well as
the density computed using a standard DFT code [39]. All
parameters are the same for the three curves shown in Fig. 2.
This result shows that the parametrization given by Eq. (21) is
a rather satisfactory one and may be used in different contexts
to represent in a simple way the ground-state electron density
of C60. The corresponding effective potentials Veff = VH +
VX + Vps for these three different approaches are plotted in
Fig. 3, also showing good agreement between them. The
various components of the effective potential, obtained from
a numerical solution of the full QHD equations, are shown in
Fig. 4.

B. Linear and nonlinear response

The linear response of the system can be computed analyt-
ically from our Lagrangian model. The frequency of linear
oscillations around the minimum of the potential U (σ ) is
given by

� =
√

|U ′′(σ0)|,
where the apex denotes differentiation with respect to σ . One
obtains that � ≈ 33.8 eV, which should be compared to the
plasmon frequency ωp ≈ 37.1 eV. For such a small system
as C60, it is not surprising that the computed frequency is
redshifted with respect to ωp, just like the localized surface
plasmon frequency in a metallic nanoparticle [40]. The prin-
cipal source of this redshift lies in the large spillout of the

0 5 10 15 20 25 30

-54

-27

0

27

54

U
 (

) (
eV

)

 (a.u.)

FIG. 1. Profile of the effective potential U (σ ) as a function of σ .
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0 2 4 6 8 10 12 14
0.00

0.05

0.10

0.15
D

en
si

ty
 (a

.u
.)

r (a.u.)

 ni

 n (QHD analytical)
 n (QHD numerical)
 n (DFT calculation)

FIG. 2. Ground-state electron-density profiles obtained with dif-
ferent methods: QHD analytical (variational approach; blue solid
line), QHD numerical (red dash-dot line), and DFT (green dotted
line). The black dashed curve represents the ion density.

electron density with respect to the ion density, as is apparent
in Fig. 2. The parameters of the ground state and linear
response are summarized in Table I.

The linear response was checked against numerical sim-
ulations of Eq. (26), by starting from an initial width σ (t =
0) = σ0 + δ, where δ is a small perturbation. In the linear
regime (δ 	 σ0), the oscillation frequency is independent of
δ and close to the analytical value obtained above (see Fig. 5).
However, one of the interesting features of the variational
approach is that it is not limited to the linear regime, and
allows us to investigate the dependence of the frequency with
the excitation strength even for relatively large values of δ.
Figure 6 shows some values of � obtained from the numerical
solution of Eq. (26), for different values of δ. The frequency
starts to deviate from the linear result for δ ≈ 0.1, which is
roughly 5% of the ground state width σ0. Nonlinear effects
appear to again redshift the frequency. For a strong excita-
tion (δ = 0.5), the frequency spectrum |σ (ω)| is displayed

0 2 4 6 8 10 12 14

-50

-40

-30

-20

-10

0

V e
ff
 (e

V)

r (a.u.)

 QHD analytical
 QHD numerical
 DFT calculation

FIG. 3. Effective (total) potentials corresponding to the three
electron densities shown in Fig. 2 (same color and line style codes).

0 2 4 6 8 10 12 14
-50

-40

-30

-20

-10

0

V
 (e

V)

r (a.u.)

  Veff

  VH

  VX

  Vps

FIG. 4. Various potential terms obtained from the numerical
solution of the QHD equations for the ground state: Hartree potential
(green dotted line); exchange (blue dashed line); pseudopotential
(dash-dot magenta line). Veff (solid red line) is the sum of all these
terms.

in Fig. 7, showing a principal peak just below 30 eV (in
accordance with Fig. 6) along with a few higher harmonics.

C. Extrinsic angular momentum

In all the above results, we always assumed that the
pressure tensor is isotropic, which implies that the tangential
part of the pressure cancels the centrifugal potential, as was
discussed in Sec. II. However, the external excitation of the
monopole mode (either optical or using EELS) may also
impart a global angular momentum Lext to the C60 molecule
[41]. Here, we briefly investigate the relevance of this effect.

This extrinsic angular momentum is modeled by a centrifu-
gal potential Vext = L2

ext/(2r2). The corresponding term in the
Lagrangian density can be computed using the ansatz of the

0 2 4 6 8 10 12 14
1.60

1.65

1.70

1.75

1.80

1.85

 (a
.u

.)

t (a.u.)

 = 0
 = 0.005
 = 0.05
 = 0.1

FIG. 5. Breathing oscillations of the width σ (t ) around its equi-
librium value σ0 for different values of the excitation δ = 0 (solid
black line), δ = 0.005 (green dash-dot line), δ = 0.05 (blue dotted
line), and δ = 0.1 (red dashed line). The amplitude of the oscillations
is proportional to the value of δ.
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0.0 0.2 0.4 0.6 0.8 1.0
25

30

35

40
 (e

V)

 (a.u.)

FIG. 6. Observed oscillation frequency � for different values of
the excitation δ.

electron density, Eq. (21), to obtain

UL(σ ) = 4π

N

∫ ∞

0
nVext r

2 dr = L2
ext

30 σ 2
, (27)

which should be added to the potential U (σ ) appearing in
Eq. (26).

The results for the ground-state width and linear frequency
are summarized in Table II. As expected, σ0 increases slightly
with increasing angular momentum. However, there is no
significant change in the linear frequency � compared to the
case Lext = 0, even when the extrinsic angular momentum
much exceeds the intrinsic value 〈L2〉 = 37.5 mentioned in
Sec. II.

IV. NUMERICAL SIMULATIONS

A. QHD model

In this section, we perform numerical simulations of the
monopole mode by directly solving the full nonlinear QHD
equations (9), (10), and (15), with spherical symmetry. The

20 40 60 80 100 120 140 160

10-4

10-3

10-2

10-1

A
m

pl
itu

de
 (a

.u
.)

Frequency (eV)

FIG. 7. Frequency spectrum of the signal σ (t ) in a strongly
nonlinear regime, δ = 0.5.

TABLE II. Values of the ground-state width σ0 and linear-
response frequency � for different values of the extrinsic angular
momentum Lext.

L2
ext (a.u.) σ0 (a.u.) � (eV)

0 1.719 33.81
2.5 1.720 33.79
5 1.721 33.76
7.5 1.722 33.74
10 1.724 33.72
30 1.734 33.53
50 1.744 33.34
100 1.768 32.81
200 1.817 31.57

numerical method relies on the property that these equations
(for n and u) can be rewritten in the form of an ancillary
nonlinear Schrödinger equation for a pseudowave function
defined as � ≡ √

neiθ , with u = ∂rθ :

i
∂�

∂t
= −1

2
�r� + W�, (28)

where W = −VH + VX,C + Vps + ∫ n P (n′ )
n′ dn′. The above

Schrödinger equation is then solved numerically using a stan-
dard finite-difference Crank-Nicolson scheme, together with
Poisson’s equation to obtain the Hartree potential VH (r ). The
computational box is r ∈ [0, Rmax], with Rmax = 80 � R and
boundary conditions �(Rmax) = VH (Rmax) = 0 and � ′(0) =
V ′

H (0) = 0, where the apex here stands for differentiation with
respect to r .

First, we would like to verify the results obtained in the
preceding sections on the linear response. For this, we need
to compute the ground state of the system. This can be done
by solving Eq. (28) in the “imaginary time” τ = it . This
substitution transforms the above Schrödinger equation into
a diffusionlike equation, which naturally relaxes to a steady-
state solution that can be identified as the ground state of our
system [32]. This method is used here to obtain the ground-
state profiles of the electron density and the various potentials
shown in Sec. III.

Next, the ground state must be slightly perturbed to induce
some dynamical processes. As a possible excitation, we use
an instantaneous Coulomb potential applied at t = 0:

Vext(r, t ) = z

r
δ(t ), (29)

where δ is the Dirac delta function and the fictitious charge z

quantifies the magnitude of the perturbation.
In order to study the system response to such excitation, we

analyze the time evolution of the average radius of the electron
cloud:

〈r〉 = 1

N

∫ ∞

0
r n(r, t ) 4πr2dr. (30)

The result of two simulations for two values of the excitation
amplitude z are shown in Figs. 8 and 9, both in the time and
frequency domains. At very low amplitude (z = 10−3, Fig. 8),
we measure a monopole frequency � ≈ 33.2 eV, very close
to the semianalytical result obtained in Sec. III. This is the
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FIG. 8. Evolution of the average radius of the electron cloud
〈r〉(t ) and corresponding frequency spectrum obtained from a direct
solution of the dynamical QHD equations. The perturbation is an
instantaneous Coulomb potential, as in Eq. (29), with z = 0.001.

expected breathing mode, at a frequency close to the plasmon
frequency, slightly redshifted because of the spillout and other
quantum effects.

We can actually show that this redshift is mainly due to the
spillout effect by resorting to a simple argument. It is expected
that the spillout-corrected frequency reads as

�2 = ω2
p

(
1 − Nout

N

)
= ω2

p

Nin

N
, (31)

where Nout and Nin are respectively the number of elec-
trons outside and inside the ionic jellium, e.g., Nin =∫ R2

R1
ngs 4π2r2 dr . Using this simple prescription and the

ground-state density ngs obtained from the QHD code, we
obtain � ≈ 33.5 eV, in very good agreement with both the
variational semianalytical result and the QHD simulations.
This reinforces our suspicion that the main correction to the
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FIG. 9. Same as Fig. 8, with z = 0.1.

classical Mie frequency comes from the nonlocal spillout
effect.

More surprisingly, a second mode appears at larger exci-
tations (but still in the linear-response domain) and becomes
dominant for z = 0.1 (Fig. 9). Its frequency is roughly 19 eV,
which is intriguingly close to the surface plasmon frequency
of a spherical nanoparticle ωp/

√
3, further redshifted as in

Eq. (31) because of the spillout.
We interpret these two modes with the following argu-

ments. For small values of z, the exciting force Fext = −V ′
ext

varies little across the electron density profile. This excitation
thus simply shifts the electron cloud radially, and the latter
starts to oscillate in a “dipolelike” way around its equilibrium.
This is the standard plasmonic breathing mode at a frequency
close to ωp. We also recall that this mode was obtained
through the classical Mie theory for a spherical shell with
internal and external radii R1 and R2, assuming a flat electron
density inside the shell and thus neglecting the spillout effect
[42,43]. The Mie theory predicts the following frequencies for
excitations of angular momentum l:

�2
± = ω2

p

2

(
1 ± 1

2l + 1

√
1 + 4l(l + 1)η2l+1

)
, (32)

where η = R1/R2. There are therefore two frequencies for
each multipolar mode of angular momentum l, except for the
monopole case (l = 0), for which only �+ = ωp is meaning-
ful, whereas �− = 0. For such a spherical dipolelike mode,
the induced charged density is localized around the inner
and outer radii of the shell, which is compatible with an
excitation that does not vary much within the electron cloud,
in accordance with our case at low z.

In contrast, for larger perturbations, the gradient of the
external force Fext becomes noticeable and induces another
monopolar mode that cannot be accounted for by the Mie
theory. This effect is enhanced by the large spillout present
in the case of C60, for which the electron density is far
from the homogeneous profile that is assumed in the standard
Mie theory. The fact that this extra monopolar mode has a
frequency close to 19 eV is not yet explained and may be
due to the specific profile of the electron density in the C60

molecule.
In order to check the above hypotheses on the origin of

the 19 eV mode, we repeated the analysis using a different
perturbation, more similar to the one generally assumed to
obtain the result of Eq. (32). To do so, after computing the
ground state, we shift radially the ion background jellium by
a very small amount ε 	 R, and then let the electron gas
evolve self-consistently. This type of perturbation is indeed
localized at the ionic jellium boundaries. The results are
shown in Figs. 10 and 11 for ε = 5 × 10−4 and ε = 5 × 10−3

respectively, which induce center-of-mass oscillations of the
same order of magnitude as the Coulomb-type excitation
described earlier. The verdict is rather clear: in this case,
the monopolar plasmon mode at 33 eV is always largely
dominant, in accordance with the standard spillout-corrected
Mie theory (a small peak around 19 eV is nevertheless visible
in the higher excitation case).

Finally, we performed a simulation for the so-called free
response of the system, for which the effective (total) potential
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FIG. 10. Evolution of the average radius of the electron cloud
〈r〉(t ) and corresponding frequency spectrum obtained from a direct
solution of the dynamical QHD equations. The perturbation is a small
shift of the ion background of a distance ε = 5 × 10−4.

is kept fixed and equal to that of the ground state. Doing
so effectively cuts all the electron-electron interactions, so
that the response is reduced to the single-particle excitations,
and collective self-consistent modes are suppressed. The spec-
trum, obtained for a Coulomb-like perturbation with z = 0.1,
is shown in Fig. 12. As expected, the two modes at 19 and
33 eV, observed in the fully self-consistent simulations of
Figs. 8 and 9, do not appear in the free-response spectrum.
This result constitutes further confirmation that these are
indeed collective many-electron modes.

The above set of simulations lead us to conclude that
(i) when the excitation is a spatially homogeneous kick and
localized at the system’s boundaries, the response is the one
predicted by the spillout-corrected Mie theory for the same
configuration; (ii) when the excitation is spatially modulated
through the electron density, a second peak appears at lower
energy.
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FIG. 11. Same as Fig. 10 with ε = 5 × 10−3.
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FIG. 12. Free response spectrum obtained with the QHD model,
for a Coulomb-like perturbation with z = 0.1.

B. TDDFT calculations

In order to better understand the nature of the observed
monopolar modes, we also performed some simulations based
on a TDDFT (Kohn-Sham) approach in the linear-response
regime [39]. These simulations use the same jellium model,
pseudopotential, and exchange-correlation functionals as the
corresponding QHD runs (see also Appendix A for more
details).

The spatial form of the external potential δV is chosen to be
a pure multipole mode. In order to excite only the spherically
symmetric modes l = 0 (but not the dipole or other multipolar
modes), one must take δV ∝ r2 Y00(r/r ), where Y00 ∼ const
is the l = m = 0 spherical harmonic. This corresponds to a
physical situation where the momentum transfer vanishes,
which is precisely the regime investigated with the QHD
approach. Other types of excitations, not explored here, may
also be of interest. For instance, a plane-wave field may be
used to model electron energy loss scattering as was done in
some recent works [44].

The imaginary part of the monopolar polarizability α is
represented in Fig. 13, for both the correlated (RPA) and the
free response. In the correlated case, there is a very broad
peak extending from 35 to 45 eV, which we can attribute to
the plasmonic monopolar mode. The broadness and blueshift
with respect to the plasmon frequency may be attributed to
the fact that, at these high energies, the coupling with the
continuous part of the spectrum is rather significant (the
ionization potential is about 7.5 eV). A similar broadening
was also observed for the corresponding surface plasmon
dipolar mode [21]. A second peak appears near 19 eV, which
is reminiscent of the peak we observed at the same energy in
the QHD simulations. These two peaks are absent from the
free response spectrum, clearly suggesting that they represent
collective modes. Other peaks, presumably due to single-
particle excitations, are common to the two spectra.

In order to better understand the character of these two
peaks, we plot the real part of the monopolar polarizability
(Fig. 14), zoomed in on the relevant energy scales. For collec-
tive modes, one would expect that the real part goes through
zero at resonance. This is definitely the case for the lower
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FIG. 13. Imaginary part of the monopolar polarizability α as a
function of the excitation energy, for the correlated response (RPA,
red curve) and for the free response (black curve).

energy mode, for which Re α changes sign very abruptly
near 19 eV. For the higher energy peak, some smoother sign
reversal is observed near 41 eV, which allows us to locate
more precisely the resonant frequency. Taking into account
the blueshift mentioned above, this is not too far from the
33.8 eV predicted by the QHD theory.

All in all, both the QHD and TDDFT approaches predict
the existence of two collective monopolar modes, a sharper
one at lower energy (19 eV) and a much broader one in the
range 30–40 eV. We also mention that two similar monopolar
volume modes were observed in atomistic ab initio TDDFT
simulations of EELS in fullerenes [44]. The measured fre-
quencies were around 24 and 42 eV (with rather extended
peaks), which is in broad agreement with our results. As the
authors point out, the low-frequency mode has a quantum
origin that may be attributed to the electron spillout—this is
a further sign that the QHD method is capable to deal with
those subtle effects. From Fig. 5 in Schüler et al. [44], it is
clear that the volume plasmon contribution to the spectrum
increases for decreasing scattering angles (i.e., for decreasing

momentum transfer q), at least down to θ = 3◦. For smaller
momentum transfers, the volume plasmon contribution ap-
pears to decrease again, as can be deduced from Figs. 1(a)
and 4 of the same work.

The above-mentioned simulations [see Figs. 5(a)–5(c) in
Schüler et al. [44]] are in good agreement with the earlier
experimental results of Bolognesi et al. [15], which measured
collective excitations in the EELS spectra of C60 molecules.
The monopolar volume mode was not detectable in the ex-
periments [15], presumably because it remains somewhat
small compared to the surface modes, even at relatively low
momentum transfer.

V. CONCLUSIONS

The C60 molecule has been the object of intense investiga-
tions since its experimental discovery in 1985. Conceptually,
it lies at the border between large molecular systems and
small nano-objects, and shares with the latter many dynamical
properties. In particular, it exhibits typical plasmon collective
resonances, which have been studied in depth for the case of
a dipolar excitation.

In the present work, our purpose was twofold. First, we
provided an illustration of how quantum hydrodynamic meth-
ods can be successfully applied to many-electron systems like
C60, for which a detailed ab initio description would consti-
tute a far more complex computational problem. The QHD
approach provides a rather good approximation of the ground-
state profiles, both for the electron density and the effective
potential. The QHD equations can be further reduced, through
an appropriate ansatz, to a simple macroscopic equation de-
scribing the evolution of the width of the electron density. This
equation provides analytically the linear-response frequency
of the system, and can be easily solved numerically to explore
the nonlinear regime.

Our second purpose was to characterize plasmonic breath-
ing modes (monopolar electronic modes with l = 0) for the
C60 molecule, which have been much less studied than the
corresponding dipolar modes (l = 1). Although more difficult
to excite and detect experimentally, monopolar modes can
nowadays be driven using electron energy-loss spectroscopy
(EELS).
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FIG. 14. Two zooms of the real part of the monopolar polarizability α, in the ranges 15–25 eV (left panel) and 35–45 eV (right panel).
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We used the three approaches described above tackle this
problem: (i) the analytical QHD variational method, (ii) the di-
rect numerical solution of the full QHD equations, and (iii) an
ab initio TDDFT approach. The analytical approach revealed
one collective resonance at 33 eV, near the bulk plasmon
frequency but redshifted mainly because of the spillout effect.
This is the standard monopole resonance predicted by Mie
theory, corresponding to a perturbed density localized at the
inner and outer radii of the system. The numerical QHD and
TDDFT approaches pointed at a second collective resonance
at lower energy (19 eV). We speculated that this second
resonance corresponds to bulk modulations of the electron
density. The theoretical characterization of these collective
resonances may hopefully pave the way to their experimental
observation.
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APPENDIX A: GROUND-STATE CONFIGURATION OF C60

As described in full details in our earlier work [39], the
ionic background of C60 was treated in the spherical jellium
approximation following the model developed by Bauer et al.
[45], where the charge of the real ionic cores is replaced by
a constant positive background uniformly distributed over a
spherical shell. This model [45] is very similar to the one
developed earlier by Puska and Nieminen [36], but contains
a few additional parameters that can be adjusted in order to
mimic first-principle calculations.

Moreover, in order to ensure two important features result-
ing from quantum chemical calculations [46]—namely that
(i) the two highest occupied molecular orbitals (HOMOs)
are of 1h and 1g character and (ii) the HOMO level is
approximately half filled—we have employed the procedure

TABLE III. Quantum ground-state structure of the C60 molecule
as used in the derivation of the QHD model. The columns represent,
from left to right, the occupation numbers pl = 2(2l + 1), azimuthal
quantum number l, radial quantum number nr (nr = 0 for σ electrons
and nr = 1 for π electrons), and energy E.

pl l nr E (hartree)

2 0 0 −1.39
6 1 0 −1.37
10 2 0 −1.32
14 3 0 −1.25
18 4 0 −1.16
22 5 0 −1.05
26 6 0 −0.914
30 7 0 −0.763
2 0 1 −0.639
6 1 1 −0.611
34 8 0 −0.594
10 2 1 −0.557
14 3 1 −0.481
18 9 0 −0.409
18 4 1 −0.387
10 5 1 −0.276

developed by Madjet et al. [21]. This procedure leads to a
partial filling of the spherical orbitals. The obtained quan-
tum numbers, occupation numbers, and energies are listed in
Table III. In the past, this model was successfully employed
for the modeling of various physical processes requiring the
knowledge of the electronic properties of C60 [47,48].

APPENDIX B: DETAILED CALCULATIONS
FOR THE VARIATIONAL APPROACH

The fluid set of equations can be exactly represented by
a Lagrangian density L(n, θ, VH ), where the function θ is re-
lated to the mean velocity through u = ∂θ/∂r . The expression
for the Lagrangian density is the following:

L = n

[
1

2

(
∂θ

∂r

)2

+ ∂θ

∂t

]
+ 1

8n

(
∂n

∂r

)2

+ 3

10
(3π2)2/3n5/3 − 3

4π
(3π2)1/3n4/3 + nVps − (n − ni )VH − 1

8π

(
∂VH

∂r

)2

. (B1)

By taking the Euler-Lagrange equations with respect to the fields n, θ , and VH , one recovers exactly the fluid set of equations.
Now, the Lagrangian function can be defined as

L(σ, σ̇ ) = 1

N

∫
L dr = 4π

N

∫
L r2dr. (B2)

Substituting Eq. (B1) into Eq. (B2) and using the definition of Vps, we get

L(σ, σ̇ ) = 4π

N

[ I1︷ ︸︸ ︷
1

2

∫ ∞

0
n

(
∂θ

∂r

)2

r2dr +

I2︷ ︸︸ ︷∫ ∞

0
n
∂θ

∂t
r2dr +

I3︷ ︸︸ ︷
1

8

∫ ∞

0

1

n

(
∂n

∂r

)2

r2dr +

I4︷ ︸︸ ︷
3

10
(3π2)2/3

∫ ∞

0
n5/3r2dr

−

I5︷ ︸︸ ︷
3

4π
(3π2)1/3

∫ ∞

0
n4/3r2dr −

I6︷ ︸︸ ︷
V0

∫ R2

R1

nr2 dr −

I7︷ ︸︸ ︷∫ ∞

0

{
(n − ni )VH + 1

8π

(
∂VH

∂r

)2
}

r2 dr

]
. (B3)
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Using the expressions of n and θ provided in the main text, the first six integrals can be calculated as follows:

I1 = 4π

N

1

2

∫ ∞

0
n

(
∂θ

∂r

)2

r2dr = 17σ̇ 2

2
,

I2 = 4π

N

∫ ∞

0
n
∂θ

∂t
r2dr = 4π

N

1

2

(
σ̈

σ
− σ̇ 2

σ 2

) ∫ ∞

0
n r4 dr = 17

2
(σ̈ σ − σ̇ 2) = 17

2

[
d

dt
(σ̇ σ ) − 2σ̇ 2

]
= −17σ̇ 2,

I3 = 4π

N

1

8

∫ ∞

0

1

n

(
∂n

∂r

)2

r2dr = 4π

8 N

∫ ∞

0
n

(
k

r
− r

σ 2

)2

r2dr = α1

σ 2
,

I4 = 4π

N

3

10
(3π2)2/3

∫ ∞

0
n5/3r2dr = α2N

2/3

σ 2
,

I5 = −4π

N

3

4π
(3π2)1/3

∫ ∞

0
n4/3r2dr = −

(
3

2

)5/6 9

32π4/3
�

(
17

6

)
N1/3

σ
= −α3N

1/3

σ
,

I6 = −4πV0

N

∫ R2

R1

nr2 dr = V0

σ 15

[
−R1 exp

(
− R2

1

2σ 2

)
F1(R1, σ ) + R2 exp

(
− R2

2

2σ 2

)
F2(R2, σ )

]
+V0

[
erf

(
R1√
2σ

)
− erf

(
R2√
2σ

)]
,

where α1 ≈ 0.258, α2 ≈ 0.045, α3 ≈ 0.091, and the functions F1 and F2 are defined by

F1(R1, σ ) = R14
1 + 15R12

1 σ 2 + 195R10
1 σ 4 + 2145R8

1 σ 6 + 19 305R6
1 σ 8

+ 135 135R4
1 σ 10 + 675 675R2

1 σ 12 + 2 027 025σ 14, (B4)

F2(R2, σ ) = R14
2 + 15R12

2 σ 2 + 195R10
2 σ 4 + 2145R8

2 σ 6 + 19 305R6
2 σ 8

+ 135 135R4
2 σ 10 + 375 375R2

2 σ 12 + 2 027 025σ 14. (B5)

To perform the last integral, we use Poisson’s equation and write I7 in the following way:

I7 = − 1

N

∫ {
(n − ni )VH + 1

8π

(
∂VH

∂r

)2
}

dr = − 1

4πN

∫
∇r · (VH∇rVH )dr + 1

8πN

∫ (
∂VH

∂r

)2

dr.

The first (divergence) term disappears upon integration over space for reasonable boundary conditions, so that only the second
integral is required. For evaluating the second integral, we decompose the Hartree potential as VH = Vi + Ve, where Vi,e are the
contributions due to the ions and the electrons respectively, which satisfy the equations

�rVi = −4πni, (B6)

�rVe = 4πn. (B7)

Thus the integral can be rewritten as

I7 = 1

8πN

∫ (
∂VH

∂r

)2

dr = 1

8πN

[∫ (
∂Vi

∂r

)2

dr +
∫ (

∂Ve

∂r

)2

dr + 2
∫ (

∂Vi

∂r

)(
∂Ve

∂r

)
dr

]
. (B8)

By injecting the definitions of n(r, t ) and ni (r ) into Eqs. (B6) and (B7) and integrating once, we compute the gradients ∂Vi/∂r

and ∂Ve/∂r as

∂Ve

∂r
= 4π A

σ 15

1

r2

[
−r exp

(
− r2

2σ 2

)
G(r, σ ) + 2 027 025

√
π

2
σ 15 erf

(
r√
2σ

)]
, (B9)

∂Vi

∂r
= 4πn0

3

1

r2

[ − (
r3 − R3

1

)
H(r − R1) + (

r3 − R3
2

)
H(r − R2)

]
, (B10)

where

G(r, σ ) = r14 + 15 r12 σ 2 + 195 r10 σ 4 + 2145 r8 σ 6 + 19 305 r6 σ 8 + 135 135 r4 σ 10 + 675 675 r2 σ 12 + 2 027 025 σ 14.
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Now, the first integral of Eq. (B8) does not contribute to the equations of motion because it does not depend on the dynamical
variable σ . Let us evaluate the other two integrals separately by using Eqs. (B9) and (B10), to get

1

8πN

∫ (
∂Ve

∂r

)2

dr = 1

2N

∫ ∞

0

(
∂Ve

∂r

)2

r2 dr = α4N

σ
, (B11)

and

2

8πN

∫ (
∂Vi

∂r

)(
∂Ve

∂r

)
dr = 1

N

∫ ∞

0

(
∂Vi

∂r

)(
∂Ve

∂r

)
r2 dr

= 2
√

2π n0

2 027 025 σ11

[
R1 exp

(
− R2

1

2σ 2

)
K1(R1, R2, σ ) − R2 exp

(
− R2

2

2σ 2

)
K2(R1, R2, σ )

]
− 2πn0

3

[
erf

(
R1√
2σ

)
K3(R1, R2, σ ) − erf

(
R2√
2σ

)
K4(R1, R2, σ )

]
, (B12)

where α4 ≈ 0.114, and the functions

K1(R1, R2, σ ) = 2R12
1 σ 2 + 80R10

1 σ 2 + 1810R8
1 σ 4 + 28 020R6

1 σ 6 + 305 130R4
1 σ 8

+ 2 231 880R2
1 σ 10 + 675 675(16 − R1 + R2) σ 12, (B13)

K2(R1, R2, σ ) = 2R12
2 σ 2 + 80R10

2 σ 2 + 1810R8
2 σ 4 + 28 020R6

2 σ 6 + 305 130R4
2 σ 8

+ 2 231 880R2
2 σ 10 + 675 675(16 − R1 + R2) σ 12, (B14)

K3(R1, R2, σ ) = R2
1 (−2 + R1 − R2) + (16 − R1 + R2)σ 2, (B15)

K4(R1, R2, σ ) = R2
2 (−2 + R1 − R2) + (16 − R1 + R2)σ 2. (B16)

Therefore the last integral becomes

I7 = α4N

σ
+ 2

√
2π n0

2 027 025 σ11

[
R1 exp

(
− R2

1

2σ 2

)
K1(R1, R2, σ ) − R2 exp

(
− R2

2

2σ 2

)
K2(R1, R2, σ )

]
− 2πn0

3

[
erf

(
R1√
2σ

)
K3(R1, R2, σ ) − erf

(
R2√
2σ

)
K4(R1, R2, σ )

]
. (B17)

Combining allthe integrals, we can write the Lagrangian

L(σ, σ̇ ) = −17σ̇ 2

2
+ U (σ ), (B18)

where

U (σ ) = α1

σ 2
+ α2N

2/3

σ 2
− α3N

1/3

σ
+ α4N

σ
+ R1

2 027 025
exp

(
− R2

1

2σ 2

)[
−

√
2

π
V0

F1(R1, σ )

σ 15

+ 2
√

2π n0
K1(R1, R2, σ )

σ 11

]
− R2

2 027 025
exp

(
− R2

2

2σ 2

)[
−

√
2

π
V0

F2(R2, σ )

σ 15
+ 2

√
2π n0

K2(R1, R2, σ )

σ 11

]
+ erf

(
R1√
2σ

)[
V0 − 2πn0

3
K3(R1, R2, σ )

]
− erf

(
R2√
2σ

)[
V0 − 2πn0

3
K4(R1, R2, σ )

]
. (B19)
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