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Abstract

®

CrossMark

We propose to use oscillating spin currents with slowly varying frequency (chirp) to
manipulate and control the magnetization dynamics in a nanomagnet. By recasting the
Landau-Lifshitz—Slonczewski equation in a quantum-like two-level formalism, we show
that a chirped spin current polarized in the direction normal to the anisotropy axis can
induce a stable precession of the magnetic moment at any angle (up to 90°) with respect to
the anisotropy axis. The drive current can be modest (10° A cm~2 or lower) provided the
chirp rate is sufficiently slow. The induced precession is stable against thermal noise, even
for small nano-objects at room temperature. Complete reversal of the magnetization can be
achieved by adding a small external magnetic field antiparallel to the easy axis. Alternatively,
a combination of chirped ac and dc currents with different polarization directions can also be

used to trigger the reversal.

Keywords: magnetization dynamics, spin torque transfer, spin-torque nano-oscillators,

autoresonance

(Some figures may appear in colour only in the online journal)

1. Introduction

Many technological applications of magnetic nano-objects
(nanomagnets) require to accurately control their magnetiza-
tion dynamics [1-5]. This can be achieved in several ways,
including static or oscillating magnetic fields, thermal effects,
and spin-torque transfer (STT). The latter technique consists
in injecting a spin-polarized current into a nanomagnet; the
electron spins transfer some of their angular momentum to
the magnetic material by applying a torque on its magnetic
moment and thus inducing the switch. This technique was
first proposed theoretically by Slonczewski [6] and Berger
[7] and later realized experimentally and further developed
by many others [8—11]. In the last decade, STT has given
rise to new technological developments such as STT-based
random-access memory [12] and spin-torque nano-oscillators
(STNOs) [13]. Still more recent investigations in this field
have been focussing on spin-Hall effects [14].

Achieving optimal switching of the magnetization is a com-
promise between Joule heating of the sample and reversal time.

1361-6463/17/415002+9$33.00

Although dc currents are the most widespread method to achieve
fast switching [15, 16], recent theoretical and experimental work
has shown that an ac current tuned at the resonant precession fre-
quency could be even more efficient [17-19]. Various combina-
tions of ac and dc currents and microwave magnetic fields were
implemented to improve the efficiency of the switching [20-23].
A spin current excitation can also be used to induce persistent
precession of the magnetic moment, thus enabling magnetic
nanostructures to behave as tunable radiofrequency oscillators
[24,25]. Analyzing the tunability and stability of such devices in
the presence of intrinsic effects (damping, magnetic anisotropy,
thermal fluctuations) is therefore of utmost importance.

In this work, we will demonstrate that an oscillating spin
current with slowly variable frequency (chirp) is a very effi-
cient tool for manipulating the magnetization dynamics in a
magnetic material. We will focus on two important effects: (i)
the fast switching of the magnetic moment and (ii) the precise
control of its precession frequency.

A classical nonlinear oscillator can be excited and con-
trolled by a chirped oscillating force using a well-known

© 2017 IOP Publishing Ltd  Printed in the UK
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effect called autoresonance, which has been exploited for very
diverse applications ranging from plasma [26] and atomic [27]
physics to semiconductor nanostructures [28]. Autoresonant
excitation occurs when a nonlinear oscillator starting in equi-
librium is driven by a force F(z) = € cos[ [ w,(¢)ds], with a
time-dependent frequency wy(f) that slowly passes through
the linear frequency wp of the oscillator. It can be shown
that, for the driving amplitude € above a certain threshold ey,
(scaling as ey, ~ a®/4, where o = dwg/dt is the chirp rate),
the oscillator frequency ‘locks’ to the driving frequency con-
tinuously, so that the resonance condition is preserved for a
long time. In that case, the amplitude of the oscillations grows
without saturation, until of course some other effects kick in.

In two earlier studies [29, 30], we made use of the autores-
onance mechanism to control the magnetization switching of
a magnetic nanoparticle using a chirped microwave field. This
technique was shown to reduce the static switching field and
to work well even in the presence of damping, thermal noise,
and dipolar interactions. Here we show that chirped spin cur-
rents can be used efficiently to induce the stable precession of
the magnetization at a given frequency or to trigger its com-
plete reversal on a nanosecond timescale.

2. Model and autoresonant excitation

In the macrospin approximation, the magnetization dynamics
is governed by the Landau—Lifshitz—Slonczewski (LLS) equa-
tion [6, 7]:

m =Ty + I+ Tsr, (1)

where a dot denotes time differentiation, m = M/ is the
normalized magnetic moment of magnitude p,, and I'yp,
TG, and I'st are the torques induced by the effective magnetic
field, the Gilbert damping and the polarized spin current,
respectively:

T'iL = —ypom x He, 2)
T = —yuoAm x (m x Hef), (3)
Tst = —ym x (m x L), 4)

where v = 1.76 x 10" rad T~'s™!is the gyromagnetic ratio,
and I, = Ise, is the spin current polarized in the direction
e,, expressed in the units of a magnetic field (T). Here, we
neglected the field-like torque term (which is generally small
with respect to the spin torque I'st) as well as the angular
dependence of the spin torque term, which is also usually
small.

The effective field is the sum of an external field and
the anisotropy field, Her = Hy + Hy,. In the present work,
we will assume a uniaxial anisotropy along e, so that
H, = %mzez, where K is the anisotropy constant and V
the volume. We neglect for the moment the external magnetic
field (Hy = 0), which will be considered later in section 4.1.

Equation (1) can be rewritten as: m = H x m, where

H = v [Heir + A(m x Hegr)] — 71, x m. 5)

We shall adopt an approach due to Feynman [31], which
exploits the analogy between the magnetization dynamics and
a two-level quantum-like system and was used earlier to study
the autoresonant control of the magnetization dynamics [30].
The LLS equation is equivalent to a system of two coupled
equations for the complex quantities A; and A,:

. K
1A; = 70141 + KA, (6)
. K N

1A, = —70A2 + KA 7

where kg = H., k = %(ITIX — iH,), and m is related to A;,
through the expressions:

nmy, = AlAz —I-ATAz,
my =i (AjA; — ATAz),
2 2
m; = |Ai]" — |Aa|". ®)

In this formalism, the switching corresponds to a popu-
lation transfer from, say, level 1 to level 2. Note that
|A1)? + |A2|* = |m| = 1, so that the total population (i.e. the
total magnetic moment) is conserved.

If we write A, = Bl,ze"‘p“, where B), are real functions
and B? + B3 = 1, we obtain:

m, = 2B1B; cos A,
my = —2B1B; sin Ay,
m, = B> — B3, )

which shows that, in the Feynman representation, the system
is fully described by the real amplitudes B;, and the phase
difference Ay = ¢y — 1.

In order to illustrate the autoresonant technique, we
first consider the simple case where damping is neglected
(A=0) and the frequency varies linearly with time,
wy(t) = wy — at. Other effects—including damping, thermal
noise, and an external magnetic field—will be added in sec-
tions 3 and 4.

We focus on the case of an ac spin current of constant ampl-
itude, polarized orthogonally to the axis of easy magnetization,
ie. vI; = J o (t)ey, with J (1) = 2e cos g and wy(t) = @4(1)
is the chirped driving frequency. In this case, it follows from
equation (5) that H-= (wem, —J my)e, +J m.e,, where
w, = 2yKV/us is the resonant precession frequency. The
autoresonance mechanism requires that the time-dependent
drive frequency crosses the resonant frequency from above,
so we set the initial driving frequency wp > w-.

We seek solutions to equations (6) and (7) under the ini-
tial conditions A} = 1 and A, = 0, i.e. m = e,. Using equa-
tions (9), we obtain:

B) = (B} — B3)B; cos ¢hg cos Ay (10)

By = —¢(B} — B3)B cos ¢4 cos Ap (11)
. € .

Ay = w.(B} — B3) + B.5, oS g sin Ap. (12)
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We then define ¢ = Ay — g — /2, and use the rotating
wave approximation (neglecting the high frequencies) to
derive the equations for the coupled variables B, and ¢:

By = (¢/2)(1 — 2B3)B; sin ¢ (13)

¢ = w, — wyg — 2w,B% + /(2B B,) cos ¢, (14)

where we recall that B; = /1 — B3. Focussing on the weakly

nonlinear regime (B; ~ 1 and B, < 1), we obtain:

By = (¢/2)sin ¢ (15)

¢ = w, — wg — 2wB% + (¢/2B,) cos ¢. (16)

The above equations are typical of systems that can be driven
into autoresonance [30]. Previous work [32] showed that the
system is captured into autoresonance when the excitation
amplitude € exceeds a certain threshold

£>en = 0.82(2w,) 24, (17)

When the above condition is satisfied, the chirped spin cur-
rent stays locked with the precession oscillations, and drives
the magnetic moment away from the anisotropy axis even in
the nonlinear regime. These theoretical results are in agree-
ment with numerical simulations of the full LLS equation,
carried out for a nanomagnet with volume V = 2 x 10~%* m?
(20 nm x 20 nm X 5 nm), anisotropy constant K = 2.2 x 10°
J m~3, and magnetic moment g, = 3.35x 10718 J 7!
(see figure 1). For these parameters, the resonant frequency
is w,/2m = 7.36 GHz. In this and all subsequent numerical
results, the chirped current was applied for the entire dura-
tion of the simulation. The numerical solutions were obtained
using a standard second-order predictor-corrector method
(Heun’s scheme).

Note that, according to equation (13), the time derivative of
B, vanishes when B; = B,. Thus, when m, = 0, it is impos-
sible to further populate the level B,. This implies that one
cannot fully reverse the magnetization (i.e. reach m, = —1)
using such spin current. The largest precession angle attain-
able with this technique is # = 90° (where 6 is the angle
between the magnetic moment and the z axis) as can be seen
from figure 1. In the absence of damping and thermal noise,
the magnetic moment will precess indefinitely perpendicular
to the anisotropy axis e;.

However, we will show in section 4.1 that, by adding a
small (= 10 mT) external magnetic field antiparallel to the
anisotropy axis, it is possible to fully reverse the magneti-
zation using the autoresonant technique described above. A
second reversal technique, based on the combination of two
spin currents, parallel and perpendicular to e,, will be illus-
trated in section 4.2.

3. Autoresonant control of the precession

‘We now show that the autoresonant technique can be used to
bring the magnetic moment to rotate around the anisotropy
axis at a certain target angle and precession frequency. This

0.8¢

Isl"‘ (mT)

- M W s o

0.6¢

0.4f

1 2 3
(a2m)®* (10" HZ*?)

0.2f

0 5 10 15 20
t(ns)

0 5 10 15 20
t(ns)

Figure 1. Magnetization dynamics for a system subjected to a
polarized spin current with amplitude € = 3¢y, initial frequency
wo/2m = 20 GHz, and linear chirp rate o = 2 GHz ns . Top
panel: evolution of m,. The inset shows the threshold amplitude
I, against o?/*. The blue dots are numerical results obtained by
solving the full LLS equation, while the red line represents the
theoretical formula equation (17). Bottom panel: evolution of m,
and m,.

is an important feature that allows to convert an electric cur-
rent into high-frequency magnetic rotation, with potential
applications to nanoscale devices such as STNOs. In par-
ticular, we want to study the stability of the forced precession
regime using a spin current, including the effect of the Gilbert
damping term I'g and thermal fluctuations.

To this end, we enforce a fixed precession angle by chirping
the excitation frequency exponentially, from the initial value
wo towards the asymptotic value wy:

Wqg = Pag = wr + (wo — Wf)eit/‘r.

However, we emphasize that the particular form of the func-
tion wy(#) is not important—the autoresonant mechanism
works in any case as long as the frequency variation is suf-
ficiently slow. The required slowness is determined by equa-

tion (17), which can be recast as
ot < 1.22 (2w,)?e = 0.86 yIsw,/?, (18)

where we recall that o = dw,/dt is the chirp rate and
Is = 2¢/~y. Thus, the slowness of the chirp is related to both
the precession frequency and the current intensity.

3.1. Gilbert damping and stability properties

We proceed from equations (13)—(14), where we add a small
dissipative term (Mw,/e < 1). Assuming that, for wy < w,
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Figure 2. Time evolution of m, for a polarized chirped spin current
with initial frequency wy/2m = 10 GHz. The final frequencies and
currents are: wy/2m = 4 GHz, Is = 6.3 mT (black and blue curves)
and wy/2m = 0.2 GHz, Is = 11.3 mT (red curve). The chirp time
is 7 = 2.5 ns for the 0.2 GHz case. For the 4 GHz cases, we used
7 = 2.5 ns (black curve) and 7 = 7.5 ns (blue curve).

(i.e. after crossing the linear resonance), the system is suffi-
ciently excited so that B, is finite and €/(B;B,) < 1, we can
neglect the cos ¢ term in equation (14). Then we get:

X = —eF(x)sin ¢ — 22w,G(x) (19)

b=A—-2wx, A>0 (20)

where x =B, A=w, —wy, F(x)=(1-2x)y/x(1 —x)
and G(x) = (1 — 2x)x(1 — x). The steady state of this system

is x0=A/Quw,), ¢o= %% where Fy = F(xy) and

Go = G(xp). We now discuss the stability of this steady state
with respect to small perturbations, by writing x = x + dxe'’
and ¢ = ¢ + d¢e”’. Equations (19) and (20) lead to the
characteristic equation % — 2i w,fyr + 2ew,Fy = 0, where
fo= Gy — F\(Go/Fo) = (1 — 2x0)?/2 (the prime denotes
differentiation with respect to x), yielding two characteristic
frequencies

vi = Dwfo & iy/2ew,Fo + Qo) @1)

As the last term in the square root is small and f; is positive,
both roots ¥4+ have a positive imaginary part, which guaran-
tees stability. Thus, the autoresonant regime is always stable,
despite the fact that the damping tends to bring the magnetic
moment back to the anisotropy axis.

We have checked numerically, by solving the full LLS
equation, that stable precession of the magnetic moment can
indeed be forced for any angle in the range [0, 7/2] using
the autoresonance technique. Some examples are shown in
figure 2, for final frequencies wy/2m =4 GHz and 0.2 GHz,
which correspond respectively to angles 8 = 57° and 88°
between the magnetic moment m and the anisotropy axis e,.
In the same figure, we also show the effect of the chirp time 7.
The latter can be used to control precisely the magnetization
dynamics, so that the magnetic moment reaches its final pre-
cession orbit with the desired speed. For instance, in figure 2,
two cases are shown for wy/2m = 4 GHz with the asymptotic
precession being achieved in either ~20 ns or 80 ns.

The small oscillations visible in figure 2 are due to oscilla-
tions of the frequency mismatch ¢ in equations (19) and (20).
The frequency vp;s of these oscillations can be calculated by

1 20,
N 0.7 % 50 100
E t(ns)
0.5
0.3 ‘
0 50 100
t(ns)
1 20
N 0.7 % 50 100
E t(ns)
0.5
0.3
0 50 100
t(ns)

Figure 3. Evolution of m_ for a system excited with a chirped ac
magnetic field, for an unstable case with w® /27 = 4 GHz (top
frame) and a stable case with w]?o /27 = 4.5 GHz (bottom frame).
The inset show the temporal profile of the drive frequency wy(z).
The results were obtained through numerical simulations of the full
Landau-Lifshitz—Gilbert equation.

neglecting dissipation in equation (19) and differentiating equa-
tion (20), which yields: 12, = 2ew,F(x) = w,7ls sin(260) /4,
and the corresponding oscillation period Tyis = 27 /¥mis. For
two of the cases shown in of figure 2, we obtain: (i) § = 88°,
Is = 11.3 mT, 7,5 = 4.96 ns (red curve), and (ii) 6 = 57°,
Is = 6.3 mT, 7, = 1.84 ns (black curve). From the simula-
tions, one can extract the periods: 7,5 = 2.5 ns (0 = 88°) and
Tmis = 1.88ns (0 = 57°). The latter value is in very good agree-
ment with the theory, while the former is less precise, although
the trend is correct. This may be due to the fact that the theor-
etical period is proportional to sin(26), and thus more sensitive
to the variations of @ around 90° than for smaller angles.

In contrast, when the magnetization dynamics is excited
with a chirped oscillating magnetic field (usually in the
microwave range [29]), a similar analysis yields instability for
0 > 45°. Numerical simulations of the full Landau-Lifshitz—
Gilbert equation, similar to those we performed in an earlier
work [29], confirm this result, as can be seen from figure 3. It
is observed that the stability threshold is around 6°° ~ 50°,
slightly larger than the theoretical value.

An important advantage of the autoresonant drive is that
the ac current can be arbitrarily small provided the chirp rate
is slow enough, as is apparent from the threshold condition
equation (18). For instance, for the nano-magnets considered
in the preceding section, a current density of 3 mT in magn-
etic field units corresponds® to roughly 7 x 10 A cm™2,

3 The conversion is: j[A m™2] = j[T] x (2eusd)/(Vh), where d is the thick-
ness of the magnetic layer.
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Figure 4. Finite temperature effects (7 = 300 K): time evolution
of m, for a polarized chirped spin current with initial frequency
wp/2m = 10 GHz and final frequency wy = 4 GHz, for three values
of the spin current: Is = 6.3 mT (red curve, theoretical threshold at
T =0), Is = 7 mT (black), and Is = 8 mT (blue).

which is a standard value for STNOs [33]. For this current, the
threshold chirp time a~'/? is of the order of 0.5 ns (the actual
time to reach the asymptotic precession angle will be a mul-
tiple of this time), as can be deduced from the inset of figure 1.
But since the threshold current decreases almost linearly with
decreasing «, using a slower chirp can reduce the required
current by a significant factor. For instance, decreasing v by a
factor of 10, cuts the threshold current by a factor 103/4 ~ 5.6,
while it increases the time to induce the precession by a factor
10'/2 ~ 3.2. Since the energy is proportional to the current,
the autoresonant procedure can be helpful to reduce the
energy required to achieve complete magnetization switching.
Of course, there is a trade-off to be made between the rapidity
of the overall process and the intensity of the required current
(or energy), but it is clear that competitively low currents can
be achieved if one accepts to lengthen the time to induce the
precession.

3.2. Thermal effects

In the results reported above, temperature effects were
neglected. However, previous theoretical [29, 34] and exper-
imental [35] studies showed that the autoresonant mechanism
is rather robust against thermal noise. In order to check that
the same conclusion holds in the present case, we introduced
thermal fluctuations in our model. As is usually done [29],
thermal fluctuations at temperature 7 are represented as a
random magnetic field f)(t) with zero mean and autocorrela-
tion function given by:
2 kg T

(bi(1)b;(1")) = (ESOI

where i,j denote the cartesian components (x,y, z), d;; is the
Kronecker symbol (meaning that the spatial components of
the random field are uncorrelated), and (¢ — ¢') is the Dirac
delta function, implying that the autocorrelation time of b
is much shorter than the response time of the system. The
temperature is thus proportional to the autocorrelation func-
tion of the fluctuating field.

6o (r—1"), (22)

In figure 4, we plot results at room temperature
(T =300 K) for a 25 nm-diameter nanoparticle (blocking
temperature ~5000 K) with damping A =0.01 and
wy/2m = 4 GHz. There is no external magnetic field. The
three curves correspond to different values of the oscillating
spin current amplitude. The amplitude Is = 6.3 mT is just
above the autoresonant threshold in the absence of thermal
fluctuations and can thus control the precession in a stable
way, as was done in figure 2 (black curve). However, this is
no longer true at finite temperature (figure 4), where thermal
noise drives the magnetic moment back to the z axis. In order
to induce a stable precession, the current needs to be increased
slightly, up to 8 mT or higher.

The above phenomenon is consistent with what was
observed in the past for finite-temperature systems that are
excited autoresonantly [29, 34, 35]. In particular, the ability
to hold the precession for increasing driving amplitude /g
(figure 4) can be explained as follows. The autoresonant
system is formally equivalent to a quasiparticle trapped in an
effective potential well of height V, proportional to Is [34].
The noise drives the quasiparticle out of the well, on a time
scale proportional to exp(Vy/kgT) if the quasiparticle is ini-
tially deeply trapped in the well [36]. Therefore, increasing
Is (and thus Vj) amounts to reducing the effect of the thermal
noise, in accordance with figure 4. In addition, thermal fluc-
tuations also modify the threshold phenomenon. At zero
temperature, there exists a sharp threshold for the excitation
amplitude /s above which the system is always captured into
the autoresonant regime. In the present work the existence
of such a threshold, which depends on the chirp rate a, was
confirmed in figure 1 (see inset). At finite temperature, the
threshold is no longer sharp, but instead displays a certain
width that is proportional to the square root of the temper-
ature [29]. All these effects were observed in our numerical
simulations in full agreement with the general autoresonance
theory.

The above results show that the autoresonant technique is
very stable against thermal fluctuations. Such stability proper-
ties are of great importance in real STT devices [37], where
phase fluctuations due to the presence of thermal noise can
have a disruptive effect. Here, we showed thermal fluctuations
do not disrupt the autoresonant drive of the precession, pro-
vided the spin current is increased slightly above the nominal
(zero-temperature) threshold. In addition, the autoresonant
excitation is not sensitive to the precise temporal profile of the
chirped current frequency, the only requirement being that the
frequency varies slowly in time.

We also note that many simulations of STNOs were per-
formed at zero [38] or very small [39] temperature, or they
involved large nano-objects [40] (diameter > 100 nm) for
which the blocking temperature is very high and therefore
the effect of thermal noise is minor even at 7 = 300 K. The
present autoresonant technique has proven to preserve the sta-
bility of the oscillations even for much smaller nano-objects
(25nm) at room temperature. It may therefore be more advan-
tageous for such ultrasmall nano-oscillators.
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3.3. Phase locking

The standard way to induce a precession at a given frequency
is to use a dc spin current, which counteracts the Gilbert
damping term, thus preventing the magnetic moment to relax
back to easy axis [38, 39, 41, 42]. Although a dc current
may be easier to implement, our approach has some specific
advantages. First, it is possible (by modulating the frequency
variation) to control precisely the trajectory of the magnetic
moment towards the desired precession angle. Second, the
method is rather stable against damping and thermal fluctua-
tions, as was shown in the preceding paragraphs.

Now, we show that the autoresonant technique is also
useful to induce phase locking between the external signal and
the response of the STNO. Usually, phase locking (or injec-
tion locking) is achieved by combining an external dc current
with an ac drive signal [43]. When the ac drive is close enough
to the natural frequency of the STNO, then the latter starts
oscillating in phase at the same frequency of the drive. For a
given dc current, phase locking is achieved only for a narrow
range of drive frequencies.

Using our approach, it was possible to phase-lock the drive
(chirped ac current) to the STNO precession response, without
any external dc currents and for a wide range of precession fre-
quencies. Indeed, the autoresonant technique was originally
devised exactly for such a purpose: to bring a system to oscil-
late at a specified nonlinear frequency by slowly sweeping
the frequency of the drive. This should work for any target
frequency, provided the threshold condition, equation (17), is
satisfied. Importantly, the threshold condition also tells us that
the driving ac current can have a very small amplitude, pro-
vided the frequency variation rate is slow enough.

To demonstrate phase locking between the drive and the
STNO precession, we plot in figure 5 (top) the difference
between the drive frequency w,() and the instantaneous pre-
cession frequency w, (#). As expected for an autoresonant
process, the two frequencies remain close together for all
times after the system has been captured in autoresonance.
The bottom panel of figure 5 shows the phase difference
between the drive and the precession, which remains remark-
ably constant after about 8 ns. Importantly, the phase locking
appears to be robust against thermal fluctuations, as these
simulations were performed for the case corresponding to
room temperature conditions. Such robustness and flexibility
should make the proposed technique competitive with respect
to other approaches.

4. Magnetization reversal

As a further application, we propose two procedures to com-
pletely switch the magnetic moment from parallel to antipar-
allel to the anisotropy axis e,. The first procedure is based on
an external static magnetic field antiparallel to the anisotropy
axis, combined with the autoresonant spin current described
in the preceding sections. The second method relies on the
combination of two types of spin currents (ac and dc) polar-
ized in different directions.

1
o
=< 05
3
=
£ 0
3
|
§-0.5
-1 :
0 5 10 15 20
t(ns)
10
o)
o
=
o 5
[0}
n
®©
<
o
0 n n n n
0 5 10 15 20
t(ns)

Figure 5. Phase locking at room temperature 7 = 300 K and

Is = 8 mT. Top panel: instantaneous frequency difference between
the drive frequency wy(t) and the precession frequency wy,, ().
Bottom panel: instantaneous phase difference.

4.1. External magnetic field

The presence of an external magnetic field Hy = Hye, affects
the magnetization dynamics in two ways, through the torques
'L and I'. As to I'yp, its primary effect is to move the peak
of the energy barrier (the point where the instantaneous pre-
cession frequency vanishes) away from 6 = 90° (i.e. m, = 0),
towards values 6 < 90° (m, > 0) for an external field anti-
parallel to e;, and § > 90° (m, < 0) for a field parallel to e,
(figure 6). As to I'g, the part of the Gilbert torque that is due
to the external field can be written:

g = —yupdm x (m x Hy) = —yuoAHo(m,m — e.).

Therefore, the z component of the magnetic moment evolves

under the action of T'g" as follows:

i, = yuoAHo(1 — m?) + ... (23)

Of course, many other terms (notably the spin current) also
affect the evolution of m.. From the above expression, we see
that the effect of I'g" is to drive the magnetic moment towards
m, = —1 when Hy < 0 and towards m, = 1 when Hy > 0.

However, according to equation (13), the autoresonant con-
dition is always lost at § = 90° (when B; = B,, or m;, = 0),
irrespective of the external field. Thus, we have two possible
scenarios, depending on the orientation of the external field
(see figure 6):

1. If Hyp <0 (antiparallel) the peak of the energy bar-
rier is situated at a position 1 > m} > 0. Starting from
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Figure 6. Schematic view of the energy barrier as a function of m,
for two cases with external field parallel (Hy > 0) or antiparallel
(Hyp < 0) to the z axis. m} denotes the peak of the barrier in either
case. The point m, = 0 cannot be crossed through autoresonant
excitation. The magnetic moment starts at m, = +1 and evolves
right to left.

m, = 1, the autoresonant excitation induces precession
with decreasing m, and can bring the magnetic moment
to overcome the energy barrier. Subsequently, the
autoresonant phase locking is lost and the external-field
Gilbert torque TG drives the magnetic moment towards
m, = —1.

2. If Hy > 0 (parallel) the peak of the energy barrier is
situated at a position m} < 0. The autoresonant excita-
tion can never bring the magnetic moment to cross the
m, = 0 plane and thus it can never overcome the barrier.
In this case, T'g" brings the magnetic moment back to to
its initial value m, = 1 [see equation (23)].

In figure 7, we present some numerical results that confirm
the above scenarios. We consider an external field of inten-
sity Hy = £50 mT, oriented either parallel or antiparallel to
the anisotropy axis z. Other parameters are identical to those
corresponding to the red curve on figure 2. When the magn-
etic field is antiparallel to e,, the magnetic moment first starts
precessing at increasing azimuthal angle until it crosses the
barrier, which is located around 8 = 79° (m; = 0.19, visible
on figure 7 as the point where the autoresonant phase locking
is lost). Subsequently, the magnetic moment relaxes towards
m, = —1 under the action of the external-field torque. In con-
trast, when Hj is parallel to e,, the magnetic moment goes
back to its original position m, = +1, in agreement with the
second scenario of our analysis.

For Hy < 0 we were able to reverse the magnetic moment,
in contrast to the case with no external field, for which the
plane m, = 0 could not be crossed. Thus, adding a small
antiparallel magnetic field seems to be a good strategy to
obtain complete reversal of the magnetization on a nano-
second timescale using the proposed autoresonant technique.
Note however that the switching is triggered by the chirped
AC current and not by the static field, which is far too small
to induce alone the magnetization reversal. For instance, com-
plete reversal can be achieved for Hy = —10 mT, for which
the energy barrier is situated at 8 = 88° (not shown here). The
role of the magnetic field is just to break the symmetry that
places the maximum of the energy barrier at § = 90° in the
absence of an external field.

1
—BO= -50 mT
0.5 —By=50mT
g 0
-0.5
-1
0 30 60

t(ns)

Figure 7. Evolution of the m, component of the magnetic moment
for a case with external magnetic field parallel (p10Ho = 50 mT, red
curve) or antiparallel (ptoHoy = —50 mT, blue curve) to the z axis.
The driving spin current is Is = 11.3 mT for the parallel case and
Is = 40 mT for the antiparallel case.

4.2. Parallel spin current

The procedure is again based on the autoresonance technique
and requires fwo spin currents polarized in the parallel and
perpendicular directions with respect to e,. Let us first con-
sider a purely parallel spin current: vI; = —J) (t)e.. The effec-
tive field is then given by (we neglect damping for simplicity):

H = wm.e, —Jj(mye, —m.e).

Using the two-level formalism described above, one can
derive a closed-form solution for the real amplitude B;:

B = 2

" B0) + B0)er @9

where I'(r) = fot J)dz. Thus, for sufficiently large times, one
obtains that B, — 1, i.e. complete reversal of the magnetiza-
tion by means of a dc spin current collinear with the aniso-
tropy axis. From equation (24), it appears that the magnetic
moment must be tilted away from the anisotropy axis at the
initial time, i.e. B2(0) # 0, in order for the reversal pro-
cess to work. This suggests a way to combine two types
of ac and dc spin currents in order to shorten the reversal
time. Starting with a magnetic moment oriented along e,,
a chirped current polarized along e, first tilts the moment
of a certain angle with respect to the anisotropy axis (this
is the technique described earlier in this work); next, a dc
current polarized along e, completes the reversal according
to equation (24).

Numerical simulations confirm this scenario (figure 8).
Here, we show three cases where the J, and J| currents
are applied either separately or together: J; alone can tilt
the magnetic moment only up to 90° (m, = 0); J; alone
(3 mT in this case, with an initial tilt of 1°) can reverse the
magnetization completely in about 15 ns; finally, when both
currents are combined, the switching time is reduced to
8 ns. In the combined case, we used an ac spin current of
magnitude 6 mT, although the theoretical threshold ampl-
itude is close to 9 mT. This shows that the simultaneous use
of the two types of excitations leads to a reduction of both
the switching time and the autoresonance threshold for the
J1 component.
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Figure 8. Time evolution of m, for different types of spin currents:
dc spin current of intensity /s = 3 mT parallel to the anisotropy
axis e, (red curve); ac chirped spin current perpendicular to e, with
Is =9mT, a =2 GHz ns”, and wo /27 = 20 GHz (blue curve);
and the combination of both parallel and perpendicular currents
(black curve). All cases include Gilbert damping A = 0.01, but no
thermal fluctuations.

5. Conclusion

In this work we explored the potential use of chirped spin cur-
rents to manipulate and control the magnetization dynamics.
Such chirped currents could be produced by means of com-
mercially available arbitrary waveforms generators, which
can now reach the desired frequency range®.

We have shown that a chirped spin current polarized in the
direction normal to the anisotropy axis can capture the magn-
etic moment into autoresonance and drive its precession to a
stable angle (up to 90° with respect to the anisotropy axis) on
a nanosecond timescale. The precession time (time it takes
to bring the magnetization to precess at a certain angle) can
also be finely controlled. Finally, thermal noise does not alter
the basic features of this scenario, and only requires a slightly
larger spin current. Thus, the autoresonant approach is par-
ticularly flexible and robust (it only requires that the spin-
current frequency varies slowly, irrespective of the specific
form of this variation), and should be capable of controlling
with high finesse the magnetization oscillations even in very
small nano-objects.

In addition, we showed that, by adding a small static magn-
etic field antiparallel to the anisotropy axis, it is possible to
fully reverse the magnetization using a chirped spin current
polarized in the direction perpendicular to the anisotropy axis.
A second method to switch the magnetization relies on the
combination of different types of spin currents. Different sce-
narios that combine chirped microwave fields with ac or dc
spin currents could also be envisaged [21, 23] in the future.
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