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Abstract

®

CrossMark

We develop a hybrid model to describe the parallel transport in a tokamak scrape-off layer
following an edge-localized mode (ELM) event. The parallel dynamics is treated with a
kinetic Vlasov—Poisson model, while the evolution of the perpendicular temperature 7 is
governed by a fluid equation. The coupling is ensured by isotropising collisions. The model

generalises an earlier approach where 7| was constant in space and time (Manfredi ef al 2011
Plasma Phys. Control. Fusion 53 015012). Numerical results show that the main effect comes
from electron—electron collisions, which limit the decrease of the parallel electron temperature
and increase the potential drop in the Debye sheath in front of the surface. Ion—ion collisions
have an almost negligible impact. The net effect is an increased peak power load on the target

plates.

Keywords: Vlasov—Poisson, edge localized modes, parallel transport, scrape off layer,

tokamaks

(Some figures may appear in colour only in the online journal)

1. Introduction

An outstanding issue in the operation of large tokamak devices
such as ITER lies in the high power load deposited on plasma
facing components. Violent outbursts of particles and energy
in the tokamak edge region—the so-called edge-localized
modes (ELMs)—are notably a major concern: the resulting
particle and energy fluxes on the plasma-facing components
lead to a decrease of their lifetime, as well as an increase of
the sputtering yield and emission of high-Z impurities into the
plasma [1, 2].

As far as modeling is concerned, the birth and growth of
the ELMs are treated using magnetohydrodynamic (MHD)
models with realistic magnetic field geometry [3-5]. Once
the ELM-driven plasma pulse has crossed the magnetic sep-
aratrix, it travels mainly parallel to the magnetic field lines
and ends up hitting the divertor plate. Such parallel transport

0741-3335/16/085004+14$33.00

generally occurs over too short time scales (a few hundred
microseconds) to ensure the validity of fluid closures (for a
detailed comparison between fluid and kinetic results, see
[6]). As fully three-dimensional (3D3V) kinetic models with
realistic geometry are too complex and numerically costly,
several authors have developed more tractable 1D models
where only the parallel transport is considered, whereas the
transverse dynamics is neglected [7—12]. Such models usu-
ally solve the Vlasov kinetic equation along a magnetic field
line that connects the divertor plates, although more recently a
gyrokinetic approach was also proposed [13].

The simplest kinetic description of parallel transport is the
so-called free-streaming model developed by Fundamenski
and Pitts [7], for which both the parallel electrostatic field
and all collisional processes are neglected. Although some-
what crude, this model has the advantage of providing explicit
solutions for the particle and energy fluxes on the walls, which

© 2016 IOP Publishing Ltd  Printed in the UK
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reproduce with rather good accuracy some of the main fea-
tures of an ELM signal, most notably its rapid rise (~200 us)
followed by a much slower decay (up to 3 ms). It has also been
shown to be consistent with the low electron temperatures
measured at the divertor target of the JET tokamak [14, 15].
Simply put, the free-streaming model describes the evol-
ution of the ion population from a thermal distribution with
no drift to a cold beam directly towards the wall. However, it
completely neglects the energy transfer from the electron to
the ion population through the self-consistent electric field,
leading to an underestimation of the peak fluxes on the wall.
A large part of this energy transfer occurs during the initial
quasi-neutral expansion of the ELM plasma, well before any
significant fluxes have reached the divertor plate. Thus, a good
approximation for the fluxes on the wall can be obtained by
using a modified free-streaming model [12] where the initial
ion temperature is replaced by Ty + Tjo, (or, equivalently, by
replacing the ion thermal speed with the sound speed cgy),
i.e. by assuming that all the electron energy is transferred to
the ions long before a significant fraction of the plasma has
reached the wall. This assumption is supported by the relative
scaling between the quasi-neutral expansion time 7, = gp/cso
(where oy is the typical parallel extension of the ELM fila-
ment) and the transit time towards the target plate 7, = L/cso,
where L is the distance between the midplane and the plate. It
was later shown [11] that as long as L* = L/oy = 7./7, is large
enough (typically above 5) the modified free-streaming model
shows excellent agreement with the results of Vlasov—Poisson
simulations. Consistently, the sheath forming at the target
plate was shown to have a negligible impact, due to the low
fraction of electron thermal energy that remains available to
form the sheath.

In the above 1D1V models (either Vlasov—Poisson or free-
streaming), the parallel and perpendicular dynamics were
completely decoupled for both particle species. The perpend-
icular velocity distributions were assumed to be Maxwellian
with constant temperature. The purpose of the present work is
to ascertain whether the collision-driven relaxation between
the parallel and perpendicular temperatures [16—18] of each
species during the ELM propagation can modify the shape of
the distribution function and consequently the fluxes reaching
the wall.

Recently, numerical simulations of a D3V Vlasov—Poisson
model including the effect of Coulomb collisions were per-
formed with the particle-in-cell (PIC) code BIT1 [11]. It
was shown that the transfer of electron thermal energy from
the perpendicular plane to the parallel direction could indeed
impact significantly the energy fluxes of both species. In order
to examine these effects more closely, without bearing the cost
of a full 1D3V simulation, we propose to extend the 1D1V
Vlasov—Poisson model of [10] to include a fluid equation for
the evolution of the perpendicular temperature for both spe-
cies. Such perpendicular temperature is coupled to the parallel
transport through a collision operator that models the temper-
ature isotropisation process (i.e. the process through which
the parallel and perpendicular temperatures of each particle
species equilibrate). The resulting model can be viewed as a

hybrid approach where the (fast) parallel transport is modeled
kinetically with a Vlasov equation while the (slower) perpend-
icular processes are described by a fluid equation for the
corresponding perpendicular temperature. Hybrid models were
used in the past in plasma physics [19], but this is, to the best of
our knowledge, their first application to the physics of ELMs.
The description of the model, its numerical implementa-
tion, and the simulation parameters are addressed in section 2.
In section 3 we show and illustrate the results of numerical
simulations of this model in the case of an instantaneous ELM
source. The effect of finite pulse duration is examined in
section 4, while the general energy transfer dynamics is ana-
lysed in section 5. A general discussion is presented in section 6.

2. Parallel transport model with perpendicular
temperature

2.1. Physical model

The model used in the present work is an extension of the one
developed in [10] and later exploited in [11, 12]. A static and
spatially uniform magnetic field B is oriented along the x axis.
The charged particles (or rather, their guiding centres) travel
along the magnetic field lines, but not across them. Thus,
we can adopt a one-dimensional geometry along the parallel
direction. No spatial dependence exists in the transverse coor-
dinates (y, z), so that the probability distribution functions f;
for each particle species s evolve in the 1D3V phase space
(x, v). The relevant Vlasov equation in such a phase space is:

Of.+ 10+ (B + v x B) - Ve f. = C( £) + S, "
n

where g, and my are the charge and mass, E(z,x) = —V¢(¢, x)
is the electric field, and ¢ the electric potential. The right-hand
side of equation (1) contains collisional and source terms to be
discussed below.

For each particle species s the velocity distribution func-
tion is assumed to be the product of a parallel distribution
&(t,x,v,) and a perpendicular isotropic Maxwellian with no
drifts:

2
mgV7

my 3
) eXp[ 27, ,(1.%) ) @

Lt x,v)=g(t, x,v)

where T is the perpendicular temperature, which depends on
both x and ¢, in contrast to [10] where it was assumed to be
constant. With these assumptions, the magnetic term in the
Vlasov equation (1) disappears and the electric term reduces
to its parallel component E, = —0y¢. Thus we have

Oty + Df, = 0,000,200, f, = CF,) + S 3)

This approximation allows us to focus on the perpendicular
temperature effects, at the expense of perpendicular fields
and drifts, which are neglected here and would require a
computationally much more complex 2D model. Finally, the
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electrostatic potential is determined self-consistently from
Poisson’s equation

1
Oup=——2_ gy 4)
€0

s

For the collisions, we use a Bhatnagar—-Gross—Krook
(BGK) collision operator [20]

Cs(f:v) = VS(st _f:v)’ (5)

m, 32 my(Vy — s )? mgv>
=n s e _ s\ W ™ M e VL ,
I e )p[ o )
(6)

where 15 is the like-particle relaxation rate (the electron—ion
relaxation rate is neglected, as explained in section 2.2). The
effect of the BGK term is to drive f; towards the isotropic
Maxwellian fy, (1, x,v). The density n, = [f,dv = [gdw,

mean velocity i, = f findving = f gwdvi/ng, and total

temperature T, = m1, f £.(v —uy)>d*v/(3n,) are computed self-
consistently from the distribution function f;. Note that only

drifts in the parallel direction are allowed, i.e. w; ; = 0.

The source term Sy represents the growth of the ELM
event. In all results presented hereafter, it is taken as a sepa-
rable function of time, space, and velocity coordinates

Si(t, x,v) = sOON(x)G,(v ) Hy(v)) (7
where
x2
Nx)= -,

(x) =ngpexp 202 (8)

Gn) = |5 ex _mv; 9

SN 2nTo P 2T ) ©)

H(V )_ nig _ msvi 10

S 27TTL() p ZTL() ’ ( )

In all the following, we assume no temperature aniso-
tropy for the growing ELM, i.e. Tjo = T\ o= Tp = const.. The
source temperature is also assumed to be the same for both
ions and electrons, so that the corresponding sound speed
is cgo = V2 Vin,io» Where vy jo is the ion thermal speed. The
parameter op determines the extension of the ELM pulse. For
the time envelope of the source s(7), we will first (section 3) con-
sider a Dirac pulse s(t) = 6(¢), which is equivalent to simply
setting the initial distribution equal to N(x)G;(v)H(v,) and
removing the source. Subsequently (section 4) we will study
the effect of a time-distributed source with

2
s(t) = cﬂexp[— (1= 20) ]

20;

(11)

where C is chosen so that fo > s(t)dt = 1. The above temporal

profile is chosen to model an ELM pulse with a finite duration

(roughly, o;) that peaks around a certain time (roughly, 7).
The #* factor is introduced so that the ELM pulse starts at
zero amplitude. This is the same profile that was used in
[10], to which we compare the present results. Further, we
performed additional simulations (not shown in this paper)
using a different profile (step function constant for t <ty
and vanishing for ¢ > #p) and the results were qualitatively
similar.

Substituting the Ansatz of equation (2) into equation (3)
and integrating over v, we obtain the evolution equation for
the parallel distribution g;:

D18, + vi0rg, — -0,00,.8, = 1h(8ys — &) + SON®Gy(vy),

S
(12)
where

my )" m(Vy — thys)?

(13)

Taking the second order moment in v, of equation (3), we
obtain the evolution equation for 7|

SON@)(TLo—T1s)
n(t, x)

atTl,s + uxsaxTL,s - %(ﬂl,s - Tl,s) +
(14)

where Tj ; = m; f g — Uys)*dv/ng. To derive equation (14)
we have used the fact that 7; = %(7[|,s + 2T, ;) and the con-
tinuity equation O, + Oy(nsitys) = s(£)N(x). The coupling
between the parallel and perpendicular dynamics occurs in
equation (12) through the total temperature in the parallel BGK
operator, and in equation (14) through the quantities ny, s,
and 7; 5, which are moments of the parallel velocity distribu-
tion function g,. Naturally, setting ; = 0 we recover the col-
lisionless model of [10], where the parallel and perpendicular
motions are completely decoupled. The new terms represent
the temperature isotropisation (first term on the right-hand
side of equation (14)) and the transport of 7| ; induced by the
parallel fluid velocity u, (second term on the left-hand side of
equation (14)).

2.2. Implementation

The resulting hybrid model is constituted of equations (12)—(14).
The corresponding numerical code can be viewed as an exten-
sion of the 1D1V kinetic code VESPA [10], which solves the
Vlasov—Poisson system on a fixed phase-space grid using a
finite-volume scheme [21]. The specificity of the VESPA code
is that it is asymptotic-preserving in the small dimensionless
parameter A = Ap/L, where Ap is the Debye length. In suitable
dimensionless units, the Poisson equation (4) can be written as

)\_28)():¢ = N, — N, (15)

and becomes singular when A — 0. In the simulations, this
fact requires that the grid spacing and the time step be smaller
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Figure 1. Temporal evolution of the ion particle fluxes at the right wall (x = L), for different collisionalities: (a) numerical results; (b)
modified (v ;0 — cso) free-streaming model with first order ion—ion collisional corrections (see the appendix). (a) H', (b) H' free-streaming.

than, respectively, the Debye length and the inverse plasma
frequency—a rather constraining condition. The asymptotic-
preserving technique reformulates Poisson’s equation in a
way that is not singular, and thus lifts the above constraints on
the numerical resolution [10]. Here, we take A = 1073, which is
still larger than the realistic value for tokamaks, A ~ 1075-107°.
However, as was shown in [10] all the qualitative features of
the ELM propagation are already recovered for the value of A
used in this work.

The additional transport equation (14) for the perpend-
icular temperature is solved with an upwind finite-volume
method [22] improved by using high-resolution corrections.
Even though this scheme is formally first-order accurate
in space and time, in practice it works much better than
the second-order Lax—Wendroff method, since a minmod
limiter is used to avoid spurious spatial oscillations. The
time step is variable in order to guarantee that the Courant—
Friedrichs—Lewy (CFL) condition |u,|At< Ax is always
satisfied.

Equations (12)—(14) are solved on an interval x € [—L, L],
where x = +£L represent the locations of the target plates.

We take L = 1000\p, where Ap = / €0Tp/(nge?) is computed
with the source parameters. For each species the velocity
space grid spans the range [—6vy, 5, 6vin s]. The resolution is
N, = 2000 and N, = 1000 points in position and velocity
space respectively. The time step varies between one-half
and four times the inverse plasma frequency. As to the
boundary conditions, the plates are supposed to be perfectly
absorbing surfaces (i.e. the incoming flux is zero) and are
kept at constant electric potential ¢(+L) =0. The plasma
source is centered at x = 0, with a characteristic width
op = 0.1L. We will consider hydrogen ions with Z =1
(so that g;= —¢g, = e) and m; = 1836m..

We will be primarily interested in the particles and energy
fluxes on the target plates. At the right target (x = L), these are
defined respectively as

= f W f.(t, Lv)dv = f ne(t.Lv)dve,  (16)

1
0= [ S+ VA LVEY = 01.0) + Q1)

(7)
where Q| ;= j T\, and Q”,S:f%msvigy(t, L,v.)dv,. At the
left target (x = —L), because of the symmetry, j; and Q; are
still defined by the above equations but with opposite sign.

As our main objective is to assess the impact of the par-
allel-perpendicular coupling on the fluxes reaching the target
plates, we perform parametric scans in the collision rate ;.
The values of the collision rates used in the simulations are
estimated from the isotropisation rates for the relevant ELM
parameters [18]. Following such estimations, the ion and elec-
tron collision rates are not set independently but adjusted so
that 1./v; = /mi/me. As a consequence, noting 7; = L/vg, s the
transit time for each species®, the product 147 is the same for
both species and is simply noted v7. This quantity will be used
to quantify the amount of collisionality in each numerical
simulation.

For a typical plasma with pedestal parameters
T.=T,=15%keV, ne=nj=5x10"m=3 and L =30 m,
we obtain a value v7=0.15 by following the approach of
[18]* It must be noted that, with these parameters, one has
Ap/L 2 1079, whereas the value used in our simulations is
1000 times larger. In practice, this amounts to employing a
much shorter connection length L while increasing the col-
lision rates 1, j to keep the dimensionless product 7 constant.
In the forthcoming simulations, the latter will vary in the
range 0 <7< 0.2

The scaling 1, = vj\ymij/m. has a strong impact on
the overall dynamics of the collisionless plasma expan-
sion following the ELM event, which is governed by the
ion transit time L/vy,; = 7. For the range of v7 values con-
sidered here and for the relevant ELM timescale g~ 7,

3 Strictly speaking, the transit time is 77, = L/csp, defined with the sound,
instead of thermal, speed. However, for the ions, these quantities only differ
by a factor of J2 whenT, = T.

4Equation (26) in [18] gives the temperature relaxation rate for same-species
particles; we used In A = 15 for the Coulomb logarithm.
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Figure 2. Ion parallel (a) and perpendicular (b) temperatures at x = 0, for different collisionalities. (a) H*. (b) H*.
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Figure 3. Electron parallel (a) and perpendicular (b) temperatures at x = 0. (a) e”. (b) ™.

we have that vitgrm ~ v;7; = v7 is indeed small, so that the
ion collision operator has only a perturbative effect. However,
VelgLM ~ VeTi = +/mi/m vT is not necessarily small, implying
a potentially significant impact of the BGK collision term on
the electron dynamics. We also note that, still using the esti-
mates of [18], the electron—ion temperature relaxation rate
scales as vj ~ /me/m; vi ~ (mc/m;)v., which justifies the fact
that it is neglected in the present model. In summary, we have
for the various collision processes, in order of importance:

® IELM Vei ~ /Melmi VT,

® fgLMm Vi~ VT,
® [ELM Ve~ N mi/me VT,

with the scaling v < v K V.

When applicable, the simulation results will be compared
to the free-streaming model [11, 12]. Using a perturbative
approach, we extended this analytical model to include
first-order corrections arising from the ion—ion collision
operator (the procedure is briefly sketched in the appendix).
In contrast, in the full Vlasov simulations both the direct
effect of the ion—ion collisions and the indirect effect of the
electron—electron collisions (mediated by the electric field)
contribute to modify the ion fluxes on the walls.

16 T T T T
1.4 1 : :
1.2
1.0
0.8
0.6}
0.4
0.2 : : :
0.0 ! ! !

(TE_L - T(‘ Il )/nm‘

t/7;

Figure 4. Electron temperature anisotropy 7' . — 7} . normalized to
the total temperature.

3. Simulation results with impulse source

In this section, we report on simulation results for the case
of an impulse response s(z) = 6(¢), i.e. the limit case for
which the ELM plasma is created instantaneously. This sit-
uation lends itself well to comparisons with the modified
free-streaming model with first-order collisional corrections
described in the appendix.
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Figure 6. (a) Electric potential profile near the wall at = 0.587. (b) Electron parallel velocity distribution function at the target plate x = L
att = 0.567. All distributions are normalised to the peak value of the distribution for the v = 0 case.

3.1. Particle fluxes at the target plate

After the ELM plasma is created at the centre of the computa-
tional box (x = 0), it starts expanding along the parallel direc-
tion until it reaches the divertor plates. The typical temporal
profile of the particle flux at the wall features a steep growth
phase followed by a much slower decay. This behaviour is cap-
tured quite well by the modified free-streaming model (with
cs replacing vy, ;) [11]. Here, we want to assess the impact of
isotropising collisions on this behaviour.

The ion particle flux j; = f gvdvy is shown in figure 1(a)
for different values of the collisionality, quantified by the
parameter v7. Although the general shape of the curve is
the same, the peak exhibits a slight increase (up to 9% for
vt = 0.2) with growing collisionality. The time at which the
peak occurs decreases with growing v7 with a reduction of
about 4% at most.

Figure 1(b) shows the ion particle flux predicted by the
modified free-streaming model. The agreement is excel-
lent in the collisionless case v = 0. However, the collisions
seem to have virtually no effect on the ion particle flux, which
increases by less than 1% with increasing v7 (see inset). This
is an interesting finding because it confirms that the direct
impact of ion—ion collisions (the only type included in the

collisional free-streaming model) on the ion flux is actually
negligible. Thus, most of the increase observed in the Vlasov
simulations (figure 1(a)) is due to the indirect effect of elec-
tron—electron collisions. The electron particle flux (not shown
here) is slightly higher than the ion one and exhibits the same
dependency on vr.

Let us now try to understand this behaviour in more detail.
Due to the shortness of the ion transit time in the Debye sheath
that may form in front of the wall, the ion particle flux can be
considered as nearly constant inside the sheath. As a conse-
quence, the observed variation of the ion particle flux with 7
must be related to energy transfer in the bulk plasma during the
initial quasi-neutral expansion, before it reaches the wall. For
this reason, it is relevant to look at the plasma temperatures
at the centre of the domain (x = 0), shown in figures 2 and 3.

As can be expected from the smallness of v;7, the ion
temperatures (figure 2) are only mildly affected by the col-
lisions in the time range occurring before the maximum flux is
received on the plates, i.e. r < 0.57. For the electrons the situa-
tion is quite different (figure 3). Starting from an isotropic dis-
tribution 7jj . = T ., the electron parallel temperature initially
drops due to the quasi-neutral plasma expansion. In the col-
lisionless case, due to the adiabaticity of the expansion (most
of the electrons are trapped in a slowly expanding potential
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well) and quasi-neutrality, the electron parallel temperature
follows the ions’. Using the free-streaming temperature evol-
ution [11], one obtains 7j(t) ~ [1 + (t/T?,)]‘l, so that the parallel
temperature decays over a time 7, = 0y/csp < 7. Around such
timescale 7; the electron temperature anisotropy is maximum
(figure 4). For later times, electron—electron collisions start
playing a role, transferring energy from the perpendicular
to the parallel motion, so that the temperature anisotropy

decreases again. The net effect is a slowing down of the elec-
tron parallel temperature decay (figure 3(a)) compared to the
collisionless case. Thus, the evolution of the electron parallel
temperature is governed by the competition between adiabatic
cooling (due to the parallel expansion) and collisional heating
(due to exchanges with the perpendicular temperature bath).
Part of the energy that goes from T . to 7} contributes
to accelerating the electrons in the parallel direction. This,
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because of quasi-neutrality, accelerates in turn the ions and
contributes to the increased ion particle flux observed in
figure 1. In summary, the enhanced ion particle flux is due
to: (i) a (collisional) energy transfer from 7' . to 7., fol-
lowed by (ii) a (collisionless) transfer to the ions through
the self-consistent electric field. The limited efficiency of
this process is mainly due to the fact that the initial distri-
bution is isotropic, and becomes anisotropic only after the
initial adiabatic expansion in the parallel direction.

3.2. Energy fluxes at the target plate

In magnetic fusion devices, the energy flux sustained by the
divertor plates is a crucial parameter and a thorough under-
standing of it is of vital importance for tokamak operation.
Here, we investigate how the parallel and perpendicular heat
fluxes are affected by isotropising collisions.
Let us first focus on the parallel

Ols= '"7 f vi £.(v)dv. For the ions, the free-streaming model

energy flux

predicts a negligible impact of ion—ion collisions on the flux
(appendix). However, a rather strong dependency on vr is
observed in the numerical simulations (figure 5(a)), with a
relative variation of the peak flux up to 50% for v = 0.2 com-
pared to the collisionless case. This is much larger than the

variation observed for the ion particle flux (see figure 1(a)).
Thus, the mechanism evoked for the particle flux (energy
transfer from the perpendicular to the parallel ion motion,
followed by a transfer to the ions through the electric field)
cannot explain the entire variation observed in figure 5(a).
Remember that such transfers occur during the initial adi-
abatic quasi-neutral expansion: the sheath has no influence
on them, because the particle fluxes are conserved inside the
sheath. This is not true, however, for the energy fluxes, so
part of the observed flux increase may come from accelera-
tion in the sheath. Using a stationary sheath approximation,
the energy flux through the sheath increases of a quantity
AQ) = Zej|A¢|, where eA¢p~ T is the potential drop in
the sheath. In figure 6(a) we show the potential profile near
the wall at r = 0.587. The sheath potential drop ranges from
nearly zero in the collisionless case to about 0.25 T, for
vt = 0.2. Using QI?E = % jcg as an estimate of the flux at the
sheath entrance (SE), the relative variation in the sheath can
be estimated as AQ”/QEE = eA¢/Ty. In our case, this would
yield an increase in the ion heat flux of about 25% compared to
the collisionless case for vT = 0.2, which is roughly consistent
with figure 5(a). In summary, electron—electron isotropising
collisions delay the cooling of the parallel electron temper-
ature by feeding energy from the perpendicular distribution.
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Figure 10. Ion fluxes at the target plate for a time-distributed source: (a) particle flux; (b) parallel energy flux; (c) perpendicular energy
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Due to this increased parallel electron temperature a non-
negligible sheath potential may persist at the time when the
fluxes reach the wall, leading to an increased ion parallel
energy flux.

Now let us examine the electron parallel energy flux
(figure 5(b)). In the collisionless case, it is typically two
orders of magnitude lower than the ion flux. The introduc-
tion of collisions induces a tenfold increase of the electron
parallel energy flux, up to one tenth of the ion value. The
large difference between the collisionless and collisional
cases can be understood by looking at the electron velocity
distribution function at the wall around the time when the
fluxes are maximal (figure 6(b)). While the electron density
at the wall decreases with v7 due to the increase of the sheath
potential drop, a significant difference can be observed in
the structure of the distribution. The velocity distribution is
depleted in the collisionless case for v > 0.3 v, whereas
a significant high-energy tail remains when collisions are
present. This can be readily explained by the fact that, in the
collisionless case, the higher energy electrons have already
been lost to the wall in the very early stages of the expan-
sion, well before the time corresponding to the peak plasma
fluxes at the wall. In contrast, in the collisional cases, the
electron parallel velocity tail is kept alive by the collisional
transfer from the perpendicular to the parallel motion.

The peak electron parallel energy flux (figure 5(b)) increases
quickly at small values of v, then saturates at a constant level
around v7 & 0.1. This saturation has probably different causes.
In part, it is due to the reduced efficiency of the perpendicular-
to-parallel energy transfer for large v, because the two temper-
atures equilibrate at an earlier time, so that the net transfer is
limited. Another reason may be the formation of the Debye
sheath (see figure 6(a)), which prevents the less energetic elec-
trons from reaching the wall. The faster electrons, which can
overcome the sheath potential, reach the plate well before the
main plasma peak and thus do not contribute to figure 5(b).

The perpendicular energy flux Q, ; = j, 7| shows little vari-
ation with collisionality for the ions (figure 7(a)). Indeed the
(small) increase in j; observed previously is mitigated by the
(also small) decrease of T (figure 7(b)). The situation is dif-
ferent for the electrons, for which a significant transfer from 7
to 7j has occurred (figure 7(d)) resulting in a reduced flux with
growing vt (figure 7(c)). The wiggles visible on figure 7(d)
are numerical fluctuations arising because the region near the
wall is initially empty of plasma.

Adding up the parallel and perpendicular energy fluxes
for each species (figure 8), we obtain a net increase with col-
lisionality of the total energy deposition (time integral of the
energy flux) for the ions. The electron total energy flux, about
five times lower than the ions’, increases for very small values
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of v7, then decreases again for larger collisional rates. The
former behaviour is due to the rapid increase of the parallel
flux with collisionality, while the subsequent decrease is gov-
erned by the perpendicular flux.

These results are in good agreement with those obtained
with the 1D3V PIC code BIT1, as shown in figure 18 of [11],
which show an increase of the ion energy flux and a decrease
of the corresponding electron flux in the collisional case. In
[11] the authors also provide an estimate (based on the values
of 1,7) of the impact of isotropising collisions for an ITER
scenario. Although the effect of collisions may well be smaller
than what was observed in our simulations, it is nevertheless
expected not to be negligible.

4. Simulation results with time-distributed source

We will now examine whether the previous observations
persist when the plasma is injected at a finite rate using
the source envelope s(f) given by equation (11), with
parameters fy= 1.47, o, = tp/2 = 0.75, which peaks at
tm=0i(1 + ~/2) ~ 1.77. The duration of the source g, is about
ten times longer than the characteristic timescale for the par-
allel expansion of the ELM burst 7, = ogyp/cs, so that the plasma
state in the injection zone (around x = 0) may significantly
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Figure 12. Electric potential profile near the wall at # ~ 2.87; for a
time-distributed source.

evolve during the injection. Therefore, seen from the perspec-
tive of the target plates, the plasma contained in this central
region acts as an effective source, which may have different
properties compared to the nominal parameters of the external
source as specified above. In this respect, the ion and electron
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total injected energy per species Ey,y = =R f N(x)dx f s(t)dz: (a) impulse source; (b) time-distributed source. In each case we compare the
collisionless case (dashed lines) with the v = 0.2 collisional case (solid lines).

temperatures at the centre of the domain are a good indicator
of the plasma state there.

Letus first consider the ion parallel temperature (figure 9(a)).
The competition between plasma injection and the par-
allel expansion/cooling results in a lower effective bulk
temperature (in the range 0.3-0.67) during the injection
time 0 << 37. The variation of 7j; between the various
vt values remains negligible and 7| ; is essentially con-
stant (figure 9(b)), confirming the low impact of ion—ion
collisions in that case. The electron parallel temperature
(figure 9(c)) is lower than the ion one (because ener-
getic electrons can escape fast compared to the injection
rate) and far more sensitive to collisional isotropisation,
resulting in a decrease in T . of up to 20% during the injec-
tion time (figure 9(d)). Note that the rapid change of 7} . in
the very early injection stage is not physically significant
and stems from the fact that the domain is initially empty
of plasma, so that fluctuations dominate the calculation
of Tje.

Considering now the fluxes at the target plate (figures 10
and 11), the introduction of a finite injection rate obviously
leads to a spreading in time of the particle and energy depo-
sition and consequently to reduced peak flows compared to
the impulse response, the total energy and particle content
being the same. The slower dynamics leaves more time for
collisions to have an effect, so that the relative impact of the
electron temperature isotropisation is similar in nature but
enhanced in value compared to the case of impulse response.
Also, the strong difference for the electron parallel energy
flux between the collisionless and collisional case observed
for the impulse response (figure 5(b)) is much reduced in the
case of a time-distributed source (figure 11(b)). All in all, as
in the the case of an impulse source, the total power load on
the target plates is (moderately) increased by the effect of
isotropising collisions

Finally, we show in figure 12 the potential profile in the
vicinity of the target plate, around the time when the fluxes on
the walls are maximum. As in the case of an impulse source, the
sheath is much more prominent when collisions are included.

5. Energy transfer dynamics

As an illustration of the global energy transfer dynamics, we
show in figure 13 the evolution of the parallel and perpend-
icular kinetic energies for each species, integrated over the
whole simulation box, for both kinds of sources. We compare
the collisionless case (dashed lines) with the most collisional
one, v7 = 0.2 (continuous lines).

Let us first concentrate on the collisionless impulse
response (figure 13(a), dashed lines), which is easier to inter-
pret. On very short time scales (0p/vip,e), the more mobile
electrons escape from the injection region, leaving behind
a positive charge and therefore a strong electric field. This
electric field subsequently accelerates the ions and slows
down the remaining electrons: this is reflected in the increase
of the ion and decrease of the electron parallel energies.
During this phase the plasma undergoes an adiabatic quasi-
neutral expansion. At a time of the order of the transit time
7. = Llcgy = 7'1/\/5 both species begin to reach the target
plates and leave the domain. This is signalled by the plateaus
in the perpendicular energies, which start decaying at around
0.257. The parallel energies also drop after that time.

When one considers the effect of isotropising collisions on
this scenario, one notices several effects (figure 13(a), solid lines):

(i) The electron parallel energy decays less rapidly. This is
because of the collisional transfer from the perpendicular
to the parallel temperature described in section 3.1.

(ii) Concomitantly, the ion parallel energy increases more
than in the collisionless case, because the extra electron
parallel energy is partly converted into ion parallel energy
through the electric field. See again section 3.1.

(iii) The ion perpendicular energy is little affected by the col-
lisions and starts decreasing only when the ions reach the
target plate.

(iv) The electron perpendicular energy decays much faster than
the corresponding ion energy (because 1, > v;) through
heat exchange with the electron parallel temperature bath,
which is much colder because of the adiabatic expansion.
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The chronology of the various transfers is no more readily
visible in the case of the time-distributed source, because the
competing effects of plasma injection, collisional or electro-
static energy transfers, and wall losses, all occur simultane-
ously. Nevertheless, we still observe a strong decrease of the
electron perpendicular energy, together with an increase of
both ion and electron parallel energies.

6. Conclusions

In this paper, we extended a previously developed model [10]
for parallel transport in the scrape-off layer following an ELM
event. The earlier model ignored the perpendicular dynamics
and assumed that the perpendicular velocity distribution is a
Maxwellian with constant temperature. Here, we relaxed the
latter hypothesis and let the perpendicular temperature evolve
self-consistently in time, although the distribution is still sup-
posed to be Maxwellian. The resulting model is governed,
for each particle species, by a kinetic Vlasov equation in the
parallel direction coupled to a fluid equation for the perpend-
icular temperature. In this work, we reported on the first
results obtained with this model.

The most important result was to confirm that, while ion—
ion collisions have an almost negligible effect, the impact of
the electron—electron collisions can be quite significant on
the various fluxes, both for electrons and ions. The dominant
effect stems from the electron—electron temperature isotropi-
sation, which transfers electron thermal perpendicular energy
to the parallel motion. Part of this energy goes into heating
the electrons in the parallel direction; another part is trans-
ferred to the ions through acceleration by the self-consistent
electric field. This transfer occurs during the initial quasi-neu-
tral plasma expansion (where it is analogous to inducing an
increased effective sound speed) and also in the Debye sheath,
whose depth and width increase with collisionality. The net
result is an increase of the peak values of the ion particle and
energy fluxes at the target plate, while the total electron energy
flux decreases. All in all, the peak power load increases of
about 30%, as can be seen from figures 8, 10(d) and 11(d). The
balance between the ionic and the electronic energy fluxes is
also changed compared to the collisionless case. Indeed, while
the ion flux increases through the energy transfer mechanisms
described above, the electron flux first increases at low col-
lisionality (thanks to the perpendicular to parallel transfer in
the quasi-neutral expansion) but then saturates at higher col-
lisionality. Thus, the relative importance of the electrons in the
energy fluxes is reduced by the collisions.

In summary, we constructed a hybrid model (kinetic in the
parallel direction and fluid in the perpendicular plane) that can
treat the parallel transport in the scrape-off layer, including the
effect of temperature anisotropy, in the framework of a ID1V
phase space. The model reproduces, at a much lower compu-
tational cost, some of the results obtained with a 1D3V PIC
code [11] and thus constitutes a useful tool to study energy
deposition on the divertor plates following an ELM event.

Several further improvements on the present model can
be envisioned. First, a more sophisticated collision operator
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(e.g. Fokker—Planck or Lenard-Balescu) could be used in
place of the BGK term employed here. Electron-ion collisions,
which were neglected here, may also be included. Second,
perpendicular drifts should also be taken into account. This
would lead to a complete set of fluid equations (continuity,
momentum, and energy) for the perpendicular dynamics,
instead of the single temperature equation used so far. In this
context, perpendicular diffusion may also be added through
appropriate transport coefficients. Finally, neutral particle
dynamics near the divertor could also be included in an exten-
sion of the present model.
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Appendix. Free-streaming model with first-order
collisional corrections

The model presented herein extends the free-streaming model
of [7, 11, 12]. Taking advantage of the relative smallness of
the collisional rates for the ion dynamics, we develop a per-
turbative analysis of the field-free collisional ion dynamics. In
the particular case of a Gaussian spatial envelope and impulse
time source, first order corrections to the ion moments can be
obtained for a negligible numerical cost.

For brevity we will sketch the principle of the analysis in
a quite general way, but present detailed calculations only
for the case of an impulse source s(¢) = §(¢) and the enve-
lopes N(x) and G(v) used throughout this paper (equations
(8)—(9)). In that particular case, closed analytical forms can be
obtained easily for the collisionless free-streaming model and
simple expressions can be given for the first order collisional
corrections.

The starting point of the analysis is the integral form of the
hybrid model for (g, 7 )

glt,x,v)= j; e’ Ds(t )N (x + v(t' — 1))G(v)dt’

t
+ l/f; e/ Dgu (! x +v(t' — 1), v)dt’ (A.1)
72 VA RG]
TL(I,X) = Tloe 3+ g 0 e 3 Yﬂ(t/,Xu)dt/
Loui—1) o _ /
+f eTs(t IN(X,)(TLo TJ_(t9Xu))dt/
0 n(t',X,) (A.2)

where X, = X,(#, t, x) is a solution of dX,,/dt’ = u,(#', X,,) and
X, (t, t, x) = x is a characteristic curve of the perpendicular
temperature equation. Considering times such that vr <1,
all quantities in the system (A.1)—(A.2) can be expanded in a
Hilbert series in € = vt. For instance, for the distribution func-
tion we have: g = g% + eg' + .... This procedure yields an infi-
nite system of equations where each order is coupled with the
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previous ones. Note that the superscripts ‘0’, ‘1°, etc refer to
the orders of the Hilbert expansion, whereas the subscript ‘0’
refers to the properties of the ELM source.

Now we consider the impulse response, i.e. s(¢) = 6(¢). Up
to the first order, such expansion yields the system

go(t, x,V)=Nx—vt)G(v),

t
1\t x,v) = —1g°(t,x, v) + f &t x + (e’ — 1), v)dr’.
0 (A.3)

Thanks to the fact that both N(x) and G(v) are both Gaussian

functions and to the linearity in (x, v) of the characteristics,

the free-streaming solution g can be written as a drifting
_ mi(v — u®(t, x))

Maxwellian
0o exp[— 202@] exp[ 0 ]
o) 27T

with o3(t) = ogll + (t/%)°], 7 = olvmio, Tj(t) = Tjoll +
(/)21 and W, 0) = vinao -

All parallel velocity moments of g° can be readily com-
puted from those quantities. At this order, both the distribution
function and its parallel moments can be obtained in the case
of an arbitrary source by mere convolution of the source with
the impulse response. Due to the spatially uniform initial con-
dition for 7', we have at the lowest order the constant solution:
TOL(t,x) = T\ . Thus the total temperature required to build
the isotropic Maxwellian term at the next order has the simple

form T°(t) = 5 2710+ T})(1)]. Using the explicit forms of the
zeroth order moments and thanks to their particularly simple
form for s(¢) = 6(¢), the integrand g&(t’,x—k v(t' —1),v) can
also be recast as a drifting Maxwellian

mi(v — um(t', t, x))]

x2

g%, x,v) = (Ad4)

] exp [_ 2T, 1)

27 Tu(t, 1)

X2
EXP| ~ 2o )

Noou(t', 1)

et x+v(t' —1),v) =

(A.5)
with
Tu(t'.1) = o 2 AG
(";’)20_57°<t’)+ AT (A.6)
ke oXt") Tio 721 +1'2)
Tt
oam(t', 1) = oWt ———, AT
w(t', 1) 2 )TM(t’,t) (A7)
, Vin,io X Ty(t', £, x) I, t—t t T
t,t,x) =— _t .
Had(f £,) crg(t’) T(t" [(1+(t’/7’a)2 Ty T Tjo

(A.8)

With the above expressions, the parallel velocity moments of
the integrand in equation (A.3) can be expressed. First-order
corrections to the parallel velocity moments (particularly the
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collisional correction to the parallel temperature T|1|) are then
obtained by numerical time integration.

For the perpendicular temperature, expanding equa-
tion (A.2) to first order in v¢ and neglecting the transport term
due to the absence of any spatial dependence of the temper-
atures at zeroth order, we obtain:

L)— tTO],
_

t t1 1
T = 270 +f —T9%Ndt = —| T T, arctan
1 3 L 0 3 ||() 3 o -
(A9)

so that

t)‘

To

4 v
T.(t) =T o(1 — %) + Tuo% arctan( (A.10)

In summary, we have developed an analytical approach
that extends the original free-streaming model [7] to include
first-order collisional corrections. For the range of v7 values
considered here, these first-order effects can be summarized
as follows:

e A slight increase in the peak values of the particle (up to
1%) and energy (up to 4-5%) ion fluxes on the wall;

e A reduction of the perpendicular temperature (less than
3% at the time when the wall fluxes are maximal) and
an increase of the parallel temperature. At the time when
the wall fluxes are maximum, the parallel temperature is
already quite low, and consequently the relative increase
in parallel temperature is large (around 50%) although the
absolute energy transfer is small compared to the initial
energy.

Note that these values significantly underestimate the varia-
tions obtained with the full model, where the main factor
is the energy transfer between electrons and ions via the
self-consistent electric field, which is neglected in the free-
streaming model.
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