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Abstract. The Crank-Nicolson scheme is widely used to solve numerically the
diffusion equation, because of its good stability properties. It is, however, ill-behaved
when large time-steps are used: the short wave-lengths may happen to be less
damped than the long ones. A detailed analysis of this flaw is performed and an
alternative scheme is proposed, which removes this difficulty while preserving all
other good properties (unconditional stability and second-order accuracy).

1 Introduction

The diffusion equation plays an important role in many branches of physics,
in fields as different as fluid and plasma dynamics, thermodynamics and
neutron transport. From the point of view of numerical analysis, diffusive
terms are often necessary when solving partial differential equations in order
to control the numerical noise at small wave-lengths. Indeed, although a fine
resolution is needed to reproduce accurately the larger scales, small scales
do not contain any significant physical information. If, however, such small
scales are not damped away by some diffusive mechanism, in the long run
they can corrupt the entire solution, even at long wave-lengths.

There is a vast literature of numerical methods for the diffusion equa-
tion, which we make no attempt to review even partially here (Marchuk
1982; Morton and Mayer 1994; Richtmyer and Morton 1967; Press et al.
1992: Crank 1975; Roache 1972), (Morton and Mayer 1994 provide a list of
fourteen finite-difference methods). According to the time-stepping technique
used, these schemes can be either explicit or implicit. Explicit schemes are
simpler and computationally faster, but often impose a very restrictive upper
bound on the maximum time-step, beyond which they are unstable. Implicit
schemes are often unconditionally stable, but require the inversion of a (tridi-
agonal, in one dimension) matrix, which is more time consuming, although
not prohibitive.

The scope of this communication is to point out a weakness of a class of
widely used implicit, finite-difference techniques, which seems to be gener-
ally overlooked. A prototype of such techniques is the Crank-Nicolson (CN)
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scheme (Crank and Nicolson 1947), possibly the most popular of all finite-
difference schemes for the diffusion equation. The problem with the CN
scheme is that it is extremely ill-behaved for large values of the time-step.
By the expression “ill-behaved” we mean that, although the results are of
course accurate (to second order) for small time-steps, taking large time-
steps radically changes the nature of the equation we are trying to solve. For
example, in the limit of very large time-steps, a monochromatic wave is no
longer damped (as it should be, according to a diffusion process), but travels
with constant phase velocity A\/(2At) (where A is the wave-length and At
the time-step). Another, more serious, shortcoming is that, when At exceeds
a certain value, short wave-lengths can be less strongly damped than some
long wave-lengths. Bearing in mind that diffusive terms are devised to get
rid of the small scale noise, this result can have disastrous consequences.

After recognizing the source of this incorrect behaviour, we propose a class
of schemes that does not suffer from this flaw, being “well-behaved” in the
limit of large time-steps. These schemes are still second order accurate and
unconditionally stable, and only involve the inversion of tridiagonal matrices
(just like the CN scheme), but require two matrix inversions rather than one.
Therefore, although they are computationally more expensive than CN by
a factor of two, they allow the use of an arbitrarily large time-step without
changing the diffusive nature of the equation.

From the previous discussion it is apparent that “good behaviour” is
a crucial property (albeit loosely defined) for many numerical schemes and
should be mentioned together with the more familiar notions of accuracy and
convergence. Accuracy means that the discrete model closely approximates
(in a quantitative sense) the original differential equation when the time-step
and grid size are sufficiently small. Good behaviour means that, far away from
this limit, the discrete model still preserves qualitatively the most relevant
features of the original equation. These notions will become clearer in the
following sections, where we work a concrete example.

The remaining material of this paper is organized as follows. In Sect. 2
we briefly review a few schemes for the diffusion equation, then identify the
problem with the CN technique and propose an alternative, well-behaved
scheme. Section 3 presents a more detailed stability analysis of both CN
and our technique, including a numerical example of how CN fails when our
scheme succeeds. Finally, in Sect. 4 we draw our conclusions and discuss more
extensively the concept of good behaviour of a numerical scheme.

2 Properties of Some Finite-Difference Schemes

Our objective is to solve numerically the diffusion equation

OF -
— 1
5 DF, (1)
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where D = —0 82 /8z? is the diffusion operator (o is the diffusion coefficient),
the discrete approximation of which to second order in the grid size is
(DF); = —0 (Fj-1 — 2Fj + Fj11)/Ax* + 0(Az®). (2)

We use this notation because, with suitable boundary conditions, Dis a
positive, hermitian operator (i.e. all of its eigenvalues are real and positive),
which, for all practical purposes can be treated as a real positive number.
Equation (1) can be solved formally from ¢, = nAt to t,41, yielding

Frtl = eﬁAtDF", (3)

where F™ = F(t,). Most numerical schemes can be formally represented as
an approximation to some order of the exponential appearing in (3). This
exponential is the evolution operator for our problem. Thus we have, re-
spectively for the explicit first-order, implicit first-order and Crank-Nicolson
schemes:

exp(—=At D) =1 — At D + 0(At?) (4a)

exp(—At D) = (1 + At D)™ + 0(A4t?) (4b)
APy = LAt D/2 s

exp(—At D) = 12 AtD/2 A1D)2 + O(At). (4c)

The explicit scheme (4a) is unstable for 0 At/Az? > 1/2, whereas the im-
plicit and the CN schemes (4b-c) are always stable. This can be checked
by verifying that the approximate evolution operators have all eigenvalues
smaller than unity in absolute value (heuristically, this is obvious by treating
D as a real positive number). However, the implicit first-order scheme is also
well-behaved since, for large time-steps, its evolution operator goes to zero
without changing sign, just like the exact exponential. On the contrary the
CN evolution operator approaches, for large time-steps, the negative of the
identity operator, thus giving rise to unphysical oscillations while suppressing
all damping. For instance a sinusoidal wave would, in this limit, simply change
sign at each time-step, which is the same as traveling with a phase velocity
equal to \/(2At). This is the paradox first mentioned in the introduction.

The CN scheme is often considered as an ideal choice for the diffusion
equation, since it displays some key good properties: (a) it is second order
accurate both in space and in time; (b) it is unconditionally stable: and (c) it
requires the inversion of a tridiagonal matrix, which can be performed exactly
in O(N) operations, N being the number of grid points (Morton and Mayer
1994; Crank 1975). However, as we have seen, when the time-step exceeds a
certain value (which will be specified in the next section), the CN scheme is
ill-behaved, and gives qualitatively incorrect results.

The problem discussed above does not seem to be mentioned explicitly in
the literature. Roache (1972) rather briefly suggests that “large At will cause
some Fourier modes to overshoot”. He then correctly recognizes that “the CN
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second-order method is less accurate than the first-order implicit method for
large enough At”. He wrongly generalizes this fact to suggest that, for large
time-steps, first-order schemes are more accurate than second-order schemes.
The results presented in the next paragraph prove that this is not generally
true. The authors of Numerical Recipes (Press et al. 1992) also acknowledge
that small scale structures are not damped for the CN scheme in the limit of
large time-steps, but do not give a detailed analysis of why it is so. They also
incorrectly suggest that the only possible solution is to turn to a first-order
implicit method.

We now show that it is possible to devise a scheme which, while preserving
most or all of the CN advantages, is also well-behaved for At — cc. The Padé
approximation to the exponential appearing in (3) is

exp(—~At D) = (1+ At D+ A2 D?/2)7! + O(A%). (5)

The scheme resulting from this approximation is still second order accurate
and unconditionally stable and also well-behaved, but, due to the term D2
requires the inversion of a non-tridiagonal matrix. This property may not be
crucial since in more than one dimension the matrix is more complicated even
for the CN scheme. However, the multi-dimensional diffusion equation can
always be reduced to a sequence of one-dimensional equations by the time
splitting technique (Yanenko 1971) and, therefore, tridiagonality can be an
important issue.
Let us write the formal solution corresponding to (5)

MFY = F, (6)

where M ! is given by the right hand-side of (5). Omne could split the matrix
M =M - Mz, where M1 » are linear in D (and therefore tridiagonal). The
solution is then obtained in two steps

M, F* = F" (7a)
MoF™ = F*. (7b)

Unfortunately M can only be factored by introducing complex coefficients
M = (1+ a; AtD)(1 + a_AtD), with ax = (1 £1)/2, which would unduly
complicate the scheme. We can try a more general approximation of the
evolution operator:

1+adtD
8
exp(~4t D) = (1+ B, AtDY(1 + B_AtD) ®

We call g(z) = (1 + az)/(1 + B+2)(1 + B-z) the response function. By ex-
panding both sides of (8) in a Taylor series, we obtain

1—-z24+2%2~-2°/6 =
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T+ (a— By —B)z+ (B2 + B2 +B48- —a(By +B-))22 = (9)
(B3 + 8% + 887 + 838 —a(B% + 52 + B:.8-)]2° + 0(zY),

where z = AtD. Matching the coefficients at first and second order we can
express 34+ as a function of «

_l4+axvae?-2a-1

B+ 5

(10)

The truncation error E(a) is the modulus of the coefficient of the third order
term in (9). After some algebra, it can be shown that E(a) = a/2 + 1/6.

We have thus obtained a family of numerical schemes parameterized by
the real number a. However, some conditions must be satisfied for the scheme
resulting from (8) to be meaningful. First of all it must have 31 > 0 so
that the response function g(z) remains finite. This condition implies a >
—1/2. Note that, for a = —1/2 (yielding 8- = 0,84 = 1/2), we recover the
Crank-Nicolson scheme. In order to have real coefficients the argument of
the square root in (10) must be non-negative, which requires @ < 1 — /2
or a > 1+ /2. Furthermore, if @ > 0, the response function is positive
and decreases monotonically for positive values of z. The special case a = 0
yields the Padé approximation (5), as can easily be checked. Finally, by taking
a = —1/3, we obtain E = 0 and the scheme is third order accurate in time.

According to our definition the numerical scheme is well-behaved if the
response function g(z) qualitatively preserves some of the relevant proper-
ties of the exact exponential for all values of z. What is meant by ‘relevant
properties’ depends on the problem under study: in our case it is crucial
that g(z) be positive and decreasing for z > 0 since this property guaran-
tees that smaller wave-lengths be more damped. If, in addition, we want all
coefficients to be real, we need a > 1 + /2. The minimum truncation error
compatible with this choice is obtained when taking the equality sign in the
previous expression. This case will be analyzed in detail in the remainder
of the article. Other choices are possible, however. For example, if reducing
the truncation error is important, the Padé approximation (o = 0) is more
convenient, although complex numbers must be used in that case.

With our choice (@ = 1+ /2) we obtain 8+ = 8 = 1+ 1/v2 and the
scheme can be written in a two-step form (each involving the inversion of the
same tridiagonal matrix)

(1+ BAtD)F* = (14 aAtD)F™ (11a)

(1+ BAtD)F™+! = F*, (11b)

This is the scheme that we propose in order to circumvent the bad properties
of the CN scheme. It is second-order accurate in space and time, uncondi-
tionally stable and well-behaved for large time-steps.



87

3 Stability Analysis and a Numerical Example

The CN scheme can be written explicitly as follows

—gpfjf + (1 +s)FrH - S =2

n 1T s
97 i+l 2Fj—1 + (1 - s)Fj +§F1ﬂ+1> (12)

where s = 0 At/ Ax?. Stability can be checked with the Von Neumann method
by taking F' = F"™exp(ikz;) = exp(i{j),{ = kAz. Substitution into (12)
yields
n-+1 _ _
F _ 1-—s(1—~cosf) e (13)
Fn 14 s(1 ~cosé)

where G(€) is the so-called amplification factor. The scheme is uncondition-
ally stable because |G| < 1 for every value of s and &. In the limit £ <1
(which simply means that we have enough points to describe every wave-
length) the amplification factor becomes

_1-sg%/2

G=1r)2

(14)

A fundamental property of G to guarantee the good behaviour of the
numerical scheme is that its modulus be monotonically decreasing with wave-
number: this implies that the damping increases with increasing wave-number.
However, from the plot of |G(£)| for a given (large) value of s (Fig.1), we
see that this is not true for the CN technique. Indeed, to the right of its zero
£= \/2_/5, |G(£)] increases with wave-number. Let us study the efficiency of
the scheme for different values of s. Obviously the well-behaved region is the
one for which 0 < £ < 1/2/s. If s < 1, then the zero of the function G(§)
will be much larger than unity: the restriction { < 1 then means that we
are exploiting only a small fraction of this region. When s =~ 1, the scheme
is well-behaved for all waves satisfying £ < 1. However, we have not gained
much with respect to the explicit scheme, the upper bound of which for sta-
bility is s < 1/2. When s > 1, 1/2/s < 1 and waves with £ > \/Q—/g are still
sufficiently sampled by the spatial grid, but, for these waves, the damping
decreases with wave-number, giving completely incorrect results. We must
therefore conclude that the interesting region s > 1 (ie. At > Az?/a),
which, if accessible, would free us from the restriction of explicit schemes, is
still forbidden for the CN method.

How serious the above restriction is in practice will of course be deter-
mined by the physical problem under consideration. When studying two-
dimensional fluid turbulence, for example, the time-step is generally deter-
mined by other terms in the equations, typically the convective terms, and
must obey At < Az/u, where u = O(1) is a typical velocity of the flow.
On the other hand, since the physical Reynolds number is generally much
larger than what can be afforded in the computation, the diffusion coeflicient
is chosen mainly for numerical reasons. In order for wave-lengths comparable
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Fig. 1. Modulus of the amplification factor G(¢) as a function of £ = kAx for
the exact solution (solid line), the Crank-Nicolson scheme (dotted line) and our
proposed scheme (dashed line). The curves are plotted for s = 200. For the CN
case, the curve has a zero at £ = (2/s)*/2.

to the grid size to be damped quickly, one must have o ~ uAz?/a, where
a = (1) is a macroscopic length scale. The stability parameter then becomes
s ~ Azfa < 1, which ensures stability even for explicit schemes. We con-
clude that, in two-dimensional turbulence, the use of a more costly implicit
scheme to treat the diffusive terms is hardly justifiable.

In other physical situations the restriction can be less severe. Let us con-
sider a purely diffusive process, in which we only want to isolate a few dom-
inant modes allowed by the boundary conditions, which are all long wave-
length modes. This imposes a less strict bound on At. Suppose that we want
to treat correctly all modes in the range ko < k < k1, where the fundamental
mode is kg = 27/L. The maximum mode present is kmar = 27/Az. It is
crucial to require that all modes larger than k; should be more damped than
k1 itself. The maximum k that satisfies this condition can be found by solving
the algebraic equation |G(¢;)| = |G(€maz)|, where we recall that § = kAz.
The result, expressed as an upper bound for the time-step, is

2 Az
g At < e T (15)

Thus, for this very particular case, At scales as Az instead of Az?, as for the
explicit scheme. However, for large values of k;, the above upper limit can
still be very stringent: in the next paragraph it will be shown that, with our
technique, all restrictions on the time-steps are lifted.

Turning to the scheme that we propose (11) we have
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Fig. 2. Plot of F(z) at different times {a) t = 0, (b) ¢ = 1.68, from a numerical
solution with the Crank-Nicolson scheme. The long wave-length is more strongly
damped than the short wave-length
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Fig.3. Plot of F(x) at t = 1.68, from a numerical solution with our proposed
scheme. The initial condition is the same as shown in Fig. 2a. Now the short
wave-length is rapidly damped
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—BsF;_1 +(1+28s)F; —8sF;, = —asF |+ (1+2as)F]' —asF},, (16a)
—BsFIH + (1+28s)FH — gsF = F (16b)

Using again the Von Neumann method to investigate stability we find that
the amplification factor is

1+ 2as(1 — cos)

G= [1+28s(1 —cos&))?’

17)

It can easily be verified that |G| < 1 for any value of £ and s, if & and 3 are
those of our choice (a = 1 + /2,8 = 1+ 1/v/2): this is sufficient to ensure
stability. The plot of |G(£)], in the case s 3> 1, is given in Fig. 1. Note that, in
contrast to the CN scheme, the amplification factor decreases monotonically
to zero. It is obvious that, even for very large values of s, the property that
short wave-lengths be more damped than long ones is preserved for the entire
spectrum. The scheme is thus, according to our definition, well-behaved.

We now illustrate the results obtained above with a numerical example.
We solve the diffusion equation (1), in a periodic domain of extension L = 27,
with diffusion coefficient 0 = 1. The initial condition is the sum of two waves
with very different wave-lengths:

F(z,t = 0) = A sin(k17) + A sin(kqz), (18)

with A4y = 1,4, = 0.5,k; = 1,ky = 50. For the numerical solution we
take N = 500, Az = 0.0126, so that kAz < 1 for both waves. Normally,
the second wave should decay much faster, leaving only the large scale per-
turbation. However, for the CN scheme, if we choose the time-step so that
|G(k1)| = |G{k2)|, then the two waves will decay with the same rate. For
a still larger time-step the first wave will decay faster than the second one,
yielding completely incorrect results. The upper bound for At - given by (15)
with k1, ks replacing k1, kmar — is in this case Aty = 0.04.

We present a numerical solution with At = 0.08, first using the standard
CN scheme. Fig. 2 shows F(z) at two different times: as expected, the large
scale wave decays faster. Using the scheme of (11),(16) completely eliminates
the problem, as is apparent from Fig.3, and the small wave-length is now
correctly damped faster. Fig. 4 shows the amplitude of the Fourier coeflicient
of each wave for the two cases. The damping of the first wave (y; = —ok?)
is reproduced accurately in both cases, since |y,|At < 1. However, the CN
scheme grossly underestimates the damping rate 7, of the second wave, as is
apparent from Fig. 2. Moreover, spurious oscillations appear, which are due
to the fact that G(£) is negative for the value of £ = kAz corresponding
to k2. Our scheme also underestimates 2, but automatically preserves the
crucial relation |y2| > |y1].
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Fig. 4. Time evolution of the Fourier coefficient of both waves for (a) the
Crank-Nicolson scheme and (b) our alternative scheme. The damping of the small
wave-number k; is well reproduced in both cases, but the large wave-number k> is
poorly treated by the Crank-Nicolson scheme

4 Conclusion

We have identified a flaw occurring in a class of finite-difference, implicit
schemes for the diffusion equation, the prototype of which is the Crank-
Nicolson scheme. Although the CN is stable for arbitrary values of the time-
step, in practice it gives poor results for At > Az?/o. In particular, short
wave-lengths may happen to be less damped than long ones. For problems
of fluid turbulence, the constraint on the size of the time-step is virtually as
severe as that of explicit schemes (At < Az?/g), although, for flows at high
Reynolds numbers, the convective terms impose a time-step which always
falls in the stability region. For purely diffusive problems, the constraint is
somewhat less severe (At scales as Az, instead of Ax?). The possibility of
using an even larger time-step is in any case ruled out.

The technique that we propose to overcome this restriction is based on
a Padé-like approximation of the exact evolution operator for the diffusion
equation. This allows us to construct a new scheme that preserves all the good
properties of CN, while avoiding the above shortcoming. For this scheme,
short wave-lengths are always more damped than long ones. The only price
to pay is that the computation time per time-step is roughly twice that of CN,
but now a much larger time-step can be used so that the total computation
time will in fact be much shorter. We note that our choice, expressed by (8),
is not the only one possible. The denominator on the right hand-side does
not need to be a perfect square, although this slightly simplifies the resulting
scheme since the same matrix is inverted twice.
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We have also tried to convey the idea that convergence and stability are
often not sufficient for a good numerical scheme. The scheme should also
preserve qualitatively some key properties of the original equation over all
the range of the discretization parameters: it should be “well-behaved”. For
the diffusion equation it should ensure that the damping rate increases with
wave-number for all values of At. Of course good behaviour strongly depends
upon the equation to be solved. Take for example the Schréodinger equation,
obtained by replacing D with iH in (1), where H = -0%/8z% + V() is
the Hamiltonian. The key property of this equation is that H is a unitary
operator, i.e. the integral of |[F(z)|? is conserved in time. It is easy to show
that the CN scheme provides the only discrete approximation to H which is
both unitary and second order accurate. Both schemes (5) and (11) introduce
some numerical damping that violates unitarity. The CN scheme is thus well-
behaved for the Schrédinger equation, although not for the diffusion equation.

This work was partially funded by the Commission of the European Com-
munities under contract ERBCHBICT941009.
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