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1.  Introduction

An outstanding issue in the operation of large tokamak devices 
such as ITER lies in the high power load deposited on plasma 
facing components. Violent outbursts of particles and energy 
in the tokamak edge region—the so-called edge-localized 
modes (ELMs)—are notably a major concern: the resulting 
particle and energy fluxes on the plasma-facing components 
lead to a decrease of their lifetime, as well as an increase of 
the sputtering yield and emission of high-Z impurities into the 
plasma [1, 2].

As far as modeling is concerned, the birth and growth of 
the ELMs are treated using magnetohydrodynamic (MHD) 
models with realistic magnetic field geometry [3–5]. Once 
the ELM-driven plasma pulse has crossed the magnetic sep-
aratrix, it travels mainly parallel to the magnetic field lines 
and ends up hitting the divertor plate. Such parallel transport 

generally occurs over too short time scales (a few hundred 
microseconds) to ensure the validity of fluid closures (for a 
detailed comparison between fluid and kinetic results, see 
[6]). As fully three-dimensional (3D3V) kinetic models with 
realistic geometry are too complex and numerically costly, 
several authors have developed more tractable 1D models 
where only the parallel transport is considered, whereas the 
transverse dynamics is neglected [7–12]. Such models usu-
ally solve the Vlasov kinetic equation along a magnetic field 
line that connects the divertor plates, although more recently a 
gyrokinetic approach was also proposed [13].

The simplest kinetic description of parallel transport is the 
so-called free-streaming model developed by Fundamenski 
and Pitts [7], for which both the parallel electrostatic field 
and all collisional processes are neglected. Although some-
what crude, this model has the advantage of providing explicit 
solutions for the particle and energy fluxes on the walls, which 
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reproduce with rather good accuracy some of the main fea-
tures of an ELM signal, most notably its rapid rise ( µ∼  200 s) 
followed by a much slower decay (up to 3 ms). It has also been 
shown to be consistent with the low electron temperatures 
measured at the divertor target of the JET tokamak [14, 15]. 
Simply put, the free-streaming model describes the evol
ution of the ion population from a thermal distribution with 
no drift to a cold beam directly towards the wall. However, it 
completely neglects the energy transfer from the electron to 
the ion population through the self-consistent electric field, 
leading to an underestimation of the peak fluxes on the wall. 
A large part of this energy transfer occurs during the initial 
quasi-neutral expansion of the ELM plasma, well before any 
significant fluxes have reached the divertor plate. Thus, a good 
approximation for the fluxes on the wall can be obtained by 
using a modified free-streaming model [12] where the initial 
ion temperature is replaced by +T Te0 i0, (or, equivalently, by 
replacing the ion thermal speed with the sound speed cS0), 
i.e. by assuming that all the electron energy is transferred to 
the ions long before a significant fraction of the plasma has 
reached the wall. This assumption is supported by the relative 
scaling between the quasi-neutral expansion time /τ σ=σ c0 S0 
(where σ0 is the typical parallel extension of the ELM fila-
ment) and the transit time towards the target plate /τ = L cL S0, 
where L is the distance between the midplane and the plate. It 
was later shown [11] that as long as / /σ τ τ≡ = σ

�L L L0  is large 
enough (typically above 5) the modified free-streaming model 
shows excellent agreement with the results of Vlasov–Poisson 
simulations. Consistently, the sheath forming at the target 
plate was shown to have a negligible impact, due to the low 
fraction of electron thermal energy that remains available to 
form the sheath.

In the above 1D1V models (either Vlasov–Poisson or free-
streaming), the parallel and perpendicular dynamics were 
completely decoupled for both particle species. The perpend
icular velocity distributions were assumed to be Maxwellian 
with constant temperature. The purpose of the present work is 
to ascertain whether the collision-driven relaxation between 
the parallel and perpendicular temperatures [16–18] of each 
species during the ELM propagation can modify the shape of 
the distribution function and consequently the fluxes reaching 
the wall.

Recently, numerical simulations of a 1D3V Vlasov–Poisson 
model including the effect of Coulomb collisions were per-
formed with the particle-in-cell (PIC) code BIT1 [11]. It 
was shown that the transfer of electron thermal energy from 
the perpendicular plane to the parallel direction could indeed 
impact significantly the energy fluxes of both species. In order 
to examine these effects more closely, without bearing the cost 
of a full 1D3V simulation, we propose to extend the 1D1V 
Vlasov–Poisson model of [10] to include a fluid equation for 
the evolution of the perpendicular temperature for both spe-
cies. Such perpendicular temperature is coupled to the parallel 
transport through a collision operator that models the temper
ature isotropisation process (i.e. the process through which 
the parallel and perpendicular temperatures of each particle 
species equilibrate). The resulting model can be viewed as a 

hybrid approach where the (fast) parallel transport is modeled 
kinetically with a Vlasov equation while the (slower) perpend
icular processes are described by a fluid equation  for the 
corresponding perpendicular temperature. Hybrid models were 
used in the past in plasma physics [19], but this is, to the best of 
our knowledge, their first application to the physics of ELMs.

The description of the model, its numerical implementa-
tion, and the simulation parameters are addressed in section 2. 
In section  3 we show and illustrate the results of numerical 
simulations of this model in the case of an instantaneous ELM 
source. The effect of finite pulse duration is examined in  
section 4, while the general energy transfer dynamics is ana-
lysed in section 5. A general discussion is presented in section 6.

2.  Parallel transport model with perpendicular 
temperature

2.1.  Physical model

The model used in the present work is an extension of the one 
developed in [10] and later exploited in [11, 12]. A static and 
spatially uniform magnetic field B is oriented along the x axis. 
The charged particles (or rather, their guiding centres) travel 
along the magnetic field lines, but not across them. Thus, 
we can adopt a one-dimensional geometry along the parallel 
direction. No spatial dependence exists in the transverse coor-
dinates (y, z), so that the probability distribution functions fs 
for each particle species s evolve in the 1D3V phase space 
( )x v, . The relevant Vlasov equation in such a phase space is:

∂ + ∂ + + × ⋅ ∇ = +C S( ) ( )f v f
q

m
f fE v B ,t s x x s

s

s
s s s sv� (1)

where qs and ms are the charge and mass, φ=−∇( ) ( )t x t xE , ,  
is the electric field, and φ the electric potential. The right-hand 
side of equation (1) contains collisional and source terms to be 
discussed below.

For each particle species s the velocity distribution func-
tion is assumed to be the product of a parallel distribution 

( )g t x v, ,s x  and a perpendicular isotropic Maxwellian with no 
drifts:

π
= −

⊥

⊥

⊥
( ) ( )

( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟f t x g t x v

m

T t x

m v

T t x
v, , , ,

2 ,
exp

2 ,
,s s x

s

s

s

s,

2

,
� (2)

where ⊥T  is the perpendicular temperature, which depends on 
both x and t, in contrast to [10] where it was assumed to be 
constant. With these assumptions, the magnetic term in the 
Vlasov equation (1) disappears and the electric term reduces 
to its parallel component Ex xφ=−∂ . Thus we have

f v f
q

m
t x f f, .t s x x s

s

s
x v s s s sxφ∂ + ∂ − ∂ ∂ = +C S( ) ( )� (3)

This approximation allows us to focus on the perpendicular 
temperature effects, at the expense of perpendicular fields 
and drifts, which are neglected here and would require a 
computationally much more complex 2D model. Finally, the 
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electrostatic potential is determined self-consistently from 
Poisson’s equation

∑φ∂ =−
ε

q n
1

.xx
s

s s
0

� (4)

For the collisions, we use a Bhatnagar–Gross–Krook 
(BGK) collision operator [20]

( ) ( )ν= −C f f f ,s s s sMs� (5)

π
= −

−
− ⊥( )/⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟f n

m

T

m v u

T

m v

T2
exp

2
exp

2
,s

s

s

s x xs

s

s

s
Ms

3 2 2 2

� (6)

where νs is the like-particle relaxation rate (the electron–ion 
relaxation rate is neglected, as explained in section 2.2). The 
effect of the BGK term is to drive fs towards the isotropic 

Maxwellian ( )f t x v, ,Ms . The density ∫ ∫= =n f g vvd ds s s x
3 ,  

mean velocity / /∫ ∫= =u f v n g v v nvd dxs s x s s x x s
3 , and total 

temperature ( ) /( )∫= −T m f nv u vd 3s s s s s
2 3  are computed self-

consistently from the distribution function fs. Note that only 

drifts in the parallel direction are allowed, i.e. =⊥u 0s, .
The source term Ss represents the growth of the ELM 

event. In all results presented hereafter, it is taken as a sepa-
rable function of time, space, and velocity coordinates

( ) ( ) ( ) ( ) ( )= ⊥S t x s t N x G v Hv v, ,s s x s� (7)

where

σ
= −( )

⎛

⎝
⎜

⎞

⎠
⎟N x n

x
exp

2
,0

2

0
2� (8)
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In all the following, we assume no temperature aniso
tropy for the growing ELM, i.e. ∥ = ≡ =⊥T T T const.0 0 0 . The 
source temperature is also assumed to be the same for both 
ions and electrons, so that the corresponding sound speed 
is =c v2S0 th,i 0, where vth,i 0 is the ion thermal speed. The 
parameter σ0 determines the extension of the ELM pulse. For 
the time envelope of the source s(t), we will first (section 3) con-
sider a Dirac pulse ( ) ( )δ=s t t , which is equivalent to simply 
setting the initial distribution equal to ( ) ( ) ( )⊥N x G v H vs x s  and 
removing the source. Subsequently (section 4) we will study 
the effect of a time-distributed source with

σ
= −

−( ) ( )⎡

⎣
⎢

⎤

⎦
⎥s t Ct

t t
exp

2
,

t

2 0
2

2� (11)

where C is chosen so that ( )∫ =
∞

s t td 1
0

. The above temporal 

profile is chosen to model an ELM pulse with a finite duration  

(roughly, σt) that peaks around a certain time (roughly, t0). 
The t2 factor is introduced so that the ELM pulse starts at 
zero amplitude. This is the same profile that was used in 
[10], to which we compare the present results. Further, we 
performed additional simulations (not shown in this paper) 
using a different profile (step function constant for t  <  t0 
and vanishing for t  >  t0) and the results were qualitatively  
similar.

Substituting the Ansatz of equation  (2) into equation  (3) 
and integrating over ⊥v  we obtain the evolution equation for 
the parallel distribution gs:

( ) ( ) ( ) ( )φ ν∂ + ∂ − ∂ ∂ = − +g v g
q

m
g g g s t N x G v ,t s x x s

s

s
x v s s s s xMsx

� (12)
where

⎛
⎝
⎜

⎞
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⎠
⎟g t x v f n

m

T

m v u

T
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2
exp

2
.x s

s

s
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s
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2
1 2 2

∫ π
= = −

−
⊥( ) ( )/�

(13)

Taking the second order moment in ⊥v  of equation (3), we 
obtain the evolution equation for ⊥T s,

( )
( ) ( )( )

( )∥
ν

∂ + ∂ = − +
−

⊥ ⊥ ⊥
⊥ ⊥T u T T T

s t N x T T

n t x3 ,
,t s xs x s

s
s s

s

s
, , , ,

0 ,

� (14)

where ( ) /∥ ∫= −T m g v u v nds s s x xs x s,
2 . To derive equation  (14) 

we have used the fact that ( )∥= + ⊥T T T2s s s
1

3 , ,  and the con-

tinuity equation  ( ) ( ) ( )∂ +∂ =n n u s t N xt s x s xs . The coupling 
between the parallel and perpendicular dynamics occurs in 
equation (12) through the total temperature in the parallel BGK 
operator, and in equation  (14) through the quantities n u,s xs, 
and ∥T s, , which are moments of the parallel velocity distribu-
tion function gs. Naturally, setting ν = 0s  we recover the col
lisionless model of [10], where the parallel and perpendicular 
motions are completely decoupled. The new terms represent 
the temperature isotropisation (first term on the right-hand 
side of equation (14)) and the transport of ⊥T s,  induced by the 
parallel fluid velocity uxs (second term on the left-hand side of 
equation (14)).

2.2.  Implementation

The resulting hybrid model is constituted of equations (12)–(14). 
The corresponding numerical code can be viewed as an exten-
sion of the 1D1V kinetic code VESPA [10], which solves the 
Vlasov–Poisson system on a fixed phase-space grid using a 
finite-volume scheme [21]. The specificity of the VESPA code 
is that it is asymptotic-preserving in the small dimensionless 
parameter /λ λ= LD , where λD is the Debye length. In suitable 
dimensionless units, the Poisson equation (4) can be written as

λ φ∂ = −− n n ,xx e i
2� (15)

and becomes singular when →λ 0. In the simulations, this 
fact requires that the grid spacing and the time step be smaller 
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than, respectively, the Debye length and the inverse plasma 
frequency—a rather constraining condition. The asymptotic-
preserving technique reformulates Poisson’s equation  in a 
way that is not singular, and thus lifts the above constraints on 
the numerical resolution [10]. Here, we take λ = −10 3, which is 
still larger than the realistic value for tokamaks, λ≈ −10 5–10−6. 
However, as was shown in [10] all the qualitative features of 
the ELM propagation are already recovered for the value of λ 
used in this work.

The additional transport equation  (14) for the perpend
icular temperature is solved with an upwind finite-volume 
method [22] improved by using high-resolution corrections. 
Even though this scheme is formally first-order accurate 
in space and time, in practice it works much better than 
the second-order Lax–Wendroff method, since a minmod 
limiter is used to avoid spurious spatial oscillations. The 
time step is variable in order to guarantee that the Courant–
Friedrichs–Lewy (CFL) condition | |∆ <∆u t xx  is always 
satisfied.

Equations (12)–(14) are solved on an interval x L L,∈ −[ ], 
where =±x L represent the locations of the target plates. 

We take λ=L 1000 D, where /( )λ = ε T n eD 0 0 0
2  is computed 

with the source parameters. For each species the velocity 
space grid spans the range v v6 , 6s sth, th,−[ ]. The resolution is 
Nx  =  2000 and Nv  =  1000 points in position and velocity 
space respectively. The time step varies between one-half 
and four times the inverse plasma frequency. As to the 
boundary conditions, the plates are supposed to be perfectly 
absorbing surfaces (i.e. the incoming flux is zero) and are 
kept at constant electric potential L 0φ ± =( ) . The plasma 
source is centered at x  =  0, with a characteristic width 
σ = L0.10 . We will consider hydrogen ions with Z  =  1  
(so that =− =q q ei e ) and =m m1836i e.

We will be primarily interested in the particles and energy 
fluxes on the target plates. At the right target (x  =  L), these are 
defined respectively as

j t v f t L v g t L v vv v, , d , , d ,s x s x s x x
3∫ ∫= =( ) ( ) ( )� (16)

Q t m v v v f t L Q t Q tv v
1

2
, , d ,s s x x s s s

2 2 3
, ,∫= + = +⊥ ⊥( ) ( ) ( ) ( ) ( )∥

� (17)

where =⊥ ⊥Q j Ts s s, ,  and ( )∥ ∫=Q m v g t L v v, , ds s x s x x,
1

2
3 . At the 

left target (x  =  −L), because of the symmetry, js and Qs are 
still defined by the above equations but with opposite sign.

As our main objective is to assess the impact of the par-
allel-perpendicular coupling on the fluxes reaching the target 
plates, we perform parametric scans in the collision rate νs. 
The values of the collision rates used in the simulations are 
estimated from the isotropisation rates for the relevant ELM 
parameters [18]. Following such estimations, the ion and elec-
tron collision rates are not set independently but adjusted so 
that / /ν ν = m me i i e . As a consequence, noting /τ = L vs sth,  the 
transit time for each species3, the product ν τs s is the same for 
both species and is simply noted ντ. This quantity will be used 
to quantify the amount of collisionality in each numerical 
simulation.

For a typical plasma with pedestal parameters 
 = =T T 1.5 keVe i ,  = = × −n n 5 10 me i

19 3 and L  =  30 m, 
we obtain a value ντ≈ 0.15 by following the approach of 
[18]4. It must be noted that, with these parameters, one has 

/λ ≈ −L 10D
6, whereas the value used in our simulations is 

1000 times larger. In practice, this amounts to employing a 
much shorter connection length L while increasing the col
lision rates νe,i to keep the dimensionless product ντ constant. 
In the forthcoming simulations, the latter will vary in the 
range ⩽ ⩽ντ0 0.2.

The scaling /ν ν= m me i i e  has a strong impact on 
the overall dynamics of the collisionless plasma expan-
sion following the ELM event, which is governed by the 
ion transit time / τ=L vth,i i. For the range of ντ values con-
sidered here and for the relevant ELM timescale τ∼tELM i,  

Figure 1.  Temporal evolution of the ion particle fluxes at the right wall (x  =  L), for different collisionalities: (a) numerical results; (b) 
modified ( →v cth,i 0 S0) free-streaming model with first order ion–ion collisional corrections (see the appendix). (a) H+ , (b) H+ free-streaming.

3 Strictly speaking, the transit time is /τ = L cL S0, defined with the sound, 
instead of thermal, speed. However, for the ions, these quantities only differ 
by a factor of 2 when =T Te i.
4 Equation (26) in [18] gives the temperature relaxation rate for same-species 
particles; we used Λ =ln 15 for the Coulomb logarithm.
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we have that ν ν τ ντ∼ =ti ELM i i  is indeed small, so that the 
ion collision operator has only a perturbative effect. However, 

/ν ν τ ντ∼ =t m me ELM e i i e  is not necessarily small, implying 
a potentially significant impact of the BGK collision term on 
the electron dynamics. We also note that, still using the esti-
mates of [18], the electron–ion temperature relaxation rate 
scales as / ( / )ν ν ν∼ ∼m m m mei e i i e i e, which justifies the fact 
that it is neglected in the present model. In summary, we have 
for the various collision processes, in order of importance:

	 •	   /  ν ντ∼t m mELM ei e i ,

	 •	  ν ντ∼tELM i ,

	 •	   /  ν ντ∼t m mELM e i e ,

with the scaling ν ν ν� �ei i e.
When applicable, the simulation results will be compared 

to the free-streaming model [11, 12]. Using a perturbative 
approach, we extended this analytical model to include 
first-order corrections arising from the ion–ion collision 
operator (the procedure is briefly sketched in the appendix). 
In contrast, in the full Vlasov simulations both the direct 
effect of the ion–ion collisions and the indirect effect of the 
electron–electron collisions (mediated by the electric field) 
contribute to modify the ion fluxes on the walls.

3.  Simulation results with impulse source

In this section, we report on simulation results for the case 
of an impulse response ( ) ( )δ=s t t , i.e. the limit case for 
which the ELM plasma is created instantaneously. This sit-
uation lends itself well to comparisons with the modified 
free-streaming model with first-order collisional corrections 
described in the appendix.

Figure 2.  Ion parallel (a) and perpendicular (b) temperatures at x  =  0, for different collisionalities. (a) H+ . (b) H+ .

Figure 3.  Electron parallel (a) and perpendicular (b) temperatures at x  =  0. (a) e−. (b) e−.

Figure 4.  Electron temperature anisotropy ∥−⊥T T,e ,e normalized to 
the total temperature.

Plasma Phys. Control. Fusion 58 (2016) 085004
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3.1.  Particle fluxes at the target plate

After the ELM plasma is created at the centre of the computa-
tional box (x  =  0), it starts expanding along the parallel direc-
tion until it reaches the divertor plates. The typical temporal 
profile of the particle flux at the wall features a steep growth 
phase followed by a much slower decay. This behaviour is cap-
tured quite well by the modified free-streaming model (with 
cS replacing vth,i) [11]. Here, we want to assess the impact of 
isotropising collisions on this behaviour.

The ion particle flux ∫=j g v vdi x xi  is shown in figure 1(a) 

for different values of the collisionality, quantified by the 
parameter ντ. Although the general shape of the curve is 
the same, the peak exhibits a slight increase (up to 9% for 
ντ = 0.2) with growing collisionality. The time at which the 
peak occurs decreases with growing ντ with a reduction of 
about 4% at most.

Figure 1(b) shows the ion particle flux predicted by the 
modified free-streaming model. The agreement is excel-
lent in the collisionless case ντ = 0. However, the collisions 
seem to have virtually no effect on the ion particle flux, which 
increases by less than 1% with increasing ντ (see inset). This 
is an interesting finding because it confirms that the direct 
impact of ion–ion collisions (the only type included in the 

collisional free-streaming model) on the ion flux is actually 
negligible. Thus, most of the increase observed in the Vlasov 
simulations (figure 1(a)) is due to the indirect effect of elec-
tron–electron collisions. The electron particle flux (not shown 
here) is slightly higher than the ion one and exhibits the same 
dependency on ντ.

Let us now try to understand this behaviour in more detail. 
Due to the shortness of the ion transit time in the Debye sheath 
that may form in front of the wall, the ion particle flux can be 
considered as nearly constant inside the sheath. As a conse-
quence, the observed variation of the ion particle flux with ντ 
must be related to energy transfer in the bulk plasma during the 
initial quasi-neutral expansion, before it reaches the wall. For 
this reason, it is relevant to look at the plasma temperatures 
at the centre of the domain (x  =  0), shown in figures 2 and 3.

As can be expected from the smallness of ν τi i, the ion 
temperatures (figure 2) are only mildly affected by the col
lisions in the time range occurring before the maximum flux is 
received on the plates, i.e. � τt 0.5 i. For the electrons the situa-
tion is quite different (figure 3). Starting from an isotropic dis-
tribution ∥ = ⊥T T,e ,e, the electron parallel temperature initially 
drops due to the quasi-neutral plasma expansion. In the col
lisionless case, due to the adiabaticity of the expansion (most 
of the electrons are trapped in a slowly expanding potential 

Figure 5.  Temporal evolution of the ion (a) and electron (b) parallel energy fluxes at the right wall x  =  L. (a) H+ . (b) e−.

Figure 6.  (a) Electric potential profile near the wall at τ=t 0.58 i. (b) Electron parallel velocity distribution function at the target plate x  =  L 
at τ=t 0.56 i. All distributions are normalised to the peak value of the distribution for the ντ = 0 case.
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well) and quasi-neutrality, the electron parallel temperature 
follows the ions’. Using the free-streaming temperature evol

ution [11], one obtains ( ) [ ( / )]∥ τ∼ + σ
−T t t1 2 1, so that the parallel 

temperature decays over a time /τ σ τ=σ �c0 S0 i. Around such 
timescale τs the electron temperature anisotropy is maximum 
(figure 4). For later times, electron–electron collisions start 
playing a role, transferring energy from the perpendicular 
to the parallel motion, so that the temperature anisotropy 

decreases again. The net effect is a slowing down of the elec-
tron parallel temperature decay (figure 3(a)) compared to the 
collisionless case. Thus, the evolution of the electron parallel 
temperature is governed by the competition between adiabatic 
cooling (due to the parallel expansion) and collisional heating 
(due to exchanges with the perpendicular temperature bath).

Part of the energy that goes from ⊥T ,e to ∥T ,e contributes 
to accelerating the electrons in the parallel direction. This, 

Figure 7.  Temporal evolution of the perpendicular energy fluxes (left frames) and perpendicular temperatures (right frames) at the right 
plate x  =  L, for ions (top) and electrons (bottom). (a) H+ , (b) H+ , (c) e−, (d) e−.

Figure 8.  Ion (a) and electron (b) total energy fluxes ∥⊥+Qwall  at the right plate x  =  L. (a) H+ , (b) e−.
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because of quasi-neutrality, accelerates in turn the ions and 
contributes to the increased ion particle flux observed in 
figure 1. In summary, the enhanced ion particle flux is due 
to: (i) a (collisional) energy transfer from ⊥T ,e to ∥T ,e, fol-
lowed by (ii) a (collisionless) transfer to the ions through 
the self-consistent electric field. The limited efficiency of 
this process is mainly due to the fact that the initial distri-
bution is isotropic, and becomes anisotropic only after the 
initial adiabatic expansion in the parallel direction.

3.2.  Energy fluxes at the target plate

In magnetic fusion devices, the energy flux sustained by the 
divertor plates is a crucial parameter and a thorough under-
standing of it is of vital importance for tokamak operation. 
Here, we investigate how the parallel and perpendicular heat 
fluxes are affected by isotropising collisions.

Let us first focus on the parallel energy flux 

Q v f v vds
m

x s, 2
3 3s ∫= ( )∥ . For the ions, the free-streaming model 

predicts a negligible impact of ion–ion collisions on the flux 
(appendix). However, a rather strong dependency on ντ is 
observed in the numerical simulations (figure 5(a)), with a 
relative variation of the peak flux up to 50% for ντ = 0.2 com-
pared to the collisionless case. This is much larger than the 

variation observed for the ion particle flux (see figure 1(a)). 
Thus, the mechanism evoked for the particle flux (energy 
transfer from the perpendicular to the parallel ion motion, 
followed by a transfer to the ions through the electric field) 
cannot explain the entire variation observed in figure  5(a). 
Remember that such transfers occur during the initial adi-
abatic quasi-neutral expansion: the sheath has no influence 
on them, because the particle fluxes are conserved inside the 
sheath. This is not true, however, for the energy fluxes, so 
part of the observed flux increase may come from accelera-
tion in the sheath. Using a stationary sheath approximation, 
the energy flux through the sheath increases of a quantity 

∥ φ∆ = |∆ |Q Zej , where ∥φ∆ ∼e T ,e is the potential drop in 
the sheath. In figure 6(a) we show the potential profile near 
the wall at τ=t 0.58 i. The sheath potential drop ranges from 
nearly zero in the collisionless case to about 0.25 T0 for 

ντ = 0.2. Using Q jcmSE
2 S

2i≈∥  as an estimate of the flux at the 
sheath entrance (SE), the relative variation in the sheath can 

be estimated as / /∥ ∥ φ∆ = ∆Q Q e TSE
0. In our case, this would 

yield an increase in the ion heat flux of about 25% compared to 
the collisionless case for ντ = 0.2, which is roughly consistent 
with figure 5(a). In summary, electron–electron isotropising 
collisions delay the cooling of the parallel electron temper
ature by feeding energy from the perpendicular distribution. 

Figure 9.  Evolution of the temperatures for the ions (top frames) and the electrons (bottom frames) at the center of the domain (x  =  0)  
for a time-distributed source. Left frames: parallel temperatures; right frames: perpendicular temperatures. For clarity, the profile of s(t)  
(in arbitrary units) is shown on each plot. (a) H+ , (b) H+ , (c) e−, (d) e−.
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Due to this increased parallel electron temperature a non-
negligible sheath potential may persist at the time when the 
fluxes reach the wall, leading to an increased ion parallel 
energy flux.

Now let us examine the electron parallel energy flux 
(figure 5(b)). In the collisionless case, it is typically two 
orders of magnitude lower than the ion flux. The introduc-
tion of collisions induces a tenfold increase of the electron 
parallel energy flux, up to one tenth of the ion value. The 
large difference between the collisionless and collisional 
cases can be understood by looking at the electron velocity 
distribution function at the wall around the time when the 
fluxes are maximal (figure 6(b)). While the electron density 
at the wall decreases with ντ due to the increase of the sheath 
potential drop, a significant difference can be observed in 
the structure of the distribution. The velocity distribution is 
depleted in the collisionless case for v  >  0.3 vthe0, whereas 
a significant high-energy tail remains when collisions are 
present. This can be readily explained by the fact that, in the 
collisionless case, the higher energy electrons have already 
been lost to the wall in the very early stages of the expan-
sion, well before the time corresponding to the peak plasma 
fluxes at the wall. In contrast, in the collisional cases, the 
electron parallel velocity tail is kept alive by the collisional 
transfer from the perpendicular to the parallel motion.

The peak electron parallel energy flux (figure 5(b)) increases 
quickly at small values of ντ, then saturates at a constant level 
around ντ≈ 0.1. This saturation has probably different causes. 
In part, it is due to the reduced efficiency of the perpendicular-
to-parallel energy transfer for large ντ, because the two temper
atures equilibrate at an earlier time, so that the net transfer is 
limited. Another reason may be the formation of the Debye 
sheath (see figure 6(a)), which prevents the less energetic elec-
trons from reaching the wall. The faster electrons, which can 
overcome the sheath potential, reach the plate well before the 
main plasma peak and thus do not contribute to figure 5(b).

The perpendicular energy flux =⊥ ⊥Q j Ts s,  shows little vari-
ation with collisionality for the ions (figure 7(a)). Indeed the 
(small) increase in ji observed previously is mitigated by the 
(also small) decrease of ⊥T  (figure 7(b)). The situation is dif-
ferent for the electrons, for which a significant transfer from ⊥T  
to ∥T  has occurred (figure 7(d)) resulting in a reduced flux with 
growing ντ (figure 7(c)). The wiggles visible on figure 7(d) 
are numerical fluctuations arising because the region near the 
wall is initially empty of plasma.

Adding up the parallel and perpendicular energy fluxes 
for each species (figure 8), we obtain a net increase with col
lisionality of the total energy deposition (time integral of the 
energy flux) for the ions. The electron total energy flux, about 
five times lower than the ions’, increases for very small values 

Figure 10.  Ion fluxes at the target plate for a time-distributed source: (a) particle flux; (b) parallel energy flux; (c) perpendicular energy 
flux; (d) total energy flux. (a) H+ , (b) H+ , (c) H+ , (d) H+ .
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of ντ, then decreases again for larger collisional rates. The 
former behaviour is due to the rapid increase of the parallel 
flux with collisionality, while the subsequent decrease is gov-
erned by the perpendicular flux.

These results are in good agreement with those obtained 
with the 1D3V PIC code BIT1, as shown in figure 18 of [11], 
which show an increase of the ion energy flux and a decrease 
of the corresponding electron flux in the collisional case. In 
[11] the authors also provide an estimate (based on the values 
of ν τe i) of the impact of isotropising collisions for an ITER 
scenario. Although the effect of collisions may well be smaller 
than what was observed in our simulations, it is nevertheless 
expected not to be negligible.

4.  Simulation results with time-distributed source

We will now examine whether the previous observations 
persist when the plasma is injected at a finite rate using 
the source envelope s(t) given by equation  (11), with 
parameters τ=t 1.40 i, /σ τ= =t 2 0.7t 0 i, which peaks at 

t 1 2 1.7m t iσ τ= + ≈( ) . The duration of the source σt is about  
ten times longer than the characteristic timescale for the par-
allel expansion of the ELM burst /τ σ=σ c0 S, so that the plasma 
state in the injection zone (around x  =  0) may significantly 

evolve during the injection. Therefore, seen from the perspec-
tive of the target plates, the plasma contained in this central 
region acts as an effective source, which may have different 
properties compared to the nominal parameters of the external 
source as specified above. In this respect, the ion and electron 

Figure 11.  Electron fluxes at the target plate for a time-distributed source: (a) particle flux; (b) parallel energy flux; (c) perpendicular 
energy flux; (d) total energy flux. (a) e−, (b) e−, (c) e−, (d) e−.

Figure 12.  Electric potential profile near the wall at τ≈t 2.8 i for a 
time-distributed source.
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temperatures at the centre of the domain are a good indicator 
of the plasma state there.

Let us first consider the ion parallel temperature (figure 9(a)).  
The competition between plasma injection and the par-
allel expansion/cooling results in a lower effective bulk 
temperature (in the range 0.3–0.6T0) during the injection 
time � τ< t0 3 i. The variation of ∥T i,  between the various 
ντ values remains negligible and ⊥T i,  is essentially con-
stant (figure 9(b)), confirming the low impact of ion–ion 
collisions in that case. The electron parallel temperature 
(figure 9(c)) is lower than the ion one (because ener-
getic electrons can escape fast compared to the injection 
rate) and far more sensitive to collisional isotropisation, 
resulting in a decrease in ⊥T ,e of up to 20% during the injec-
tion time (figure 9(d)). Note that the rapid change of ∥T ,e in 
the very early injection stage is not physically significant 
and stems from the fact that the domain is initially empty 
of plasma, so that fluctuations dominate the calculation 
of ∥T ,e.

Considering now the fluxes at the target plate (figures 10 
and 11), the introduction of a finite injection rate obviously 
leads to a spreading in time of the particle and energy depo-
sition and consequently to reduced peak flows compared to 
the impulse response, the total energy and particle content 
being the same. The slower dynamics leaves more time for 
collisions to have an effect, so that the relative impact of the 
electron temperature isotropisation is similar in nature but 
enhanced in value compared to the case of impulse response. 
Also, the strong difference for the electron parallel energy 
flux between the collisionless and collisional case observed 
for the impulse response (figure 5(b)) is much reduced in the 
case of a time-distributed source (figure 11(b)). All in all, as 
in the the case of an impulse source, the total power load on 
the target plates is (moderately) increased by the effect of 
isotropising collisions

Finally, we show in figure  12 the potential profile in the 
vicinity of the target plate, around the time when the fluxes on 
the walls are maximum. As in the case of an impulse source, the 
sheath is much more prominent when collisions are included.

5.  Energy transfer dynamics

As an illustration of the global energy transfer dynamics, we 
show in figure 13 the evolution of the parallel and perpend
icular kinetic energies for each species, integrated over the 
whole simulation box, for both kinds of sources. We compare 
the collisionless case (dashed lines) with the most collisional 
one, ντ = 0.2 (continuous lines).

Let us first concentrate on the collisionless impulse 
response (figure 13(a), dashed lines), which is easier to inter-
pret. On very short time scales ( /σ v0 th,e), the more mobile 
electrons escape from the injection region, leaving behind 
a positive charge and therefore a strong electric field. This 
electric field subsequently accelerates the ions and slows 
down the remaining electrons: this is reflected in the increase 
of the ion and decrease of the electron parallel energies. 
During this phase the plasma undergoes an adiabatic quasi-
neutral expansion. At a time of the order of the transit time 

/ /τ τ= =L c 2L S0 i  both species begin to reach the target 
plates and leave the domain. This is signalled by the plateaus 
in the perpendicular energies, which start decaying at around 
τ0.25 i. The parallel energies also drop after that time.

When one considers the effect of isotropising collisions on 
this scenario, one notices several effects (figure 13(a), solid lines):

	 (i)	The electron parallel energy decays less rapidly. This is 
because of the collisional transfer from the perpendicular 
to the parallel temperature described in section 3.1.

	(ii)	Concomitantly, the ion parallel energy increases more 
than in the collisionless case, because the extra electron 
parallel energy is partly converted into ion parallel energy 
through the electric field. See again section 3.1.

	(iii)	The ion perpendicular energy is little affected by the col
lisions and starts decreasing only when the ions reach the 
target plate.

	(iv)	The electron perpendicular energy decays much faster than 
the corresponding ion energy (because ν ν�e i) through 
heat exchange with the electron parallel temperature bath, 
which is much colder because of the adiabatic expansion.

Figure 13.  Temporal evolution of the parallel and perpendicular kinetic energies for ions and electrons, expressed as a percentage of the 

total injected energy per species ( ) ( )∫ ∫=E N x x s t td din T
th0

3

2
0 : (a) impulse source; (b) time-distributed source. In each case we compare the 

collisionless case (dashed lines) with the ντ = 0.2 collisional case (solid lines).
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The chronology of the various transfers is no more readily 
visible in the case of the time-distributed source, because the 
competing effects of plasma injection, collisional or electro-
static energy transfers, and wall losses, all occur simultane-
ously. Nevertheless, we still observe a strong decrease of the 
electron perpendicular energy, together with an increase of 
both ion and electron parallel energies.

6.  Conclusions

In this paper, we extended a previously developed model [10] 
for parallel transport in the scrape-off layer following an ELM 
event. The earlier model ignored the perpendicular dynamics 
and assumed that the perpendicular velocity distribution is a 
Maxwellian with constant temperature. Here, we relaxed the 
latter hypothesis and let the perpendicular temperature evolve 
self-consistently in time, although the distribution is still sup-
posed to be Maxwellian. The resulting model is governed, 
for each particle species, by a kinetic Vlasov equation in the 
parallel direction coupled to a fluid equation for the perpend
icular temperature. In this work, we reported on the first 
results obtained with this model.

The most important result was to confirm that, while ion–
ion collisions have an almost negligible effect, the impact of 
the electron–electron collisions can be quite significant on 
the various fluxes, both for electrons and ions. The dominant 
effect stems from the electron–electron temperature isotropi-
sation, which transfers electron thermal perpendicular energy 
to the parallel motion. Part of this energy goes into heating 
the electrons in the parallel direction; another part is trans-
ferred to the ions through acceleration by the self-consistent 
electric field. This transfer occurs during the initial quasi-neu-
tral plasma expansion (where it is analogous to inducing an 
increased effective sound speed) and also in the Debye sheath, 
whose depth and width increase with collisionality. The net 
result is an increase of the peak values of the ion particle and 
energy fluxes at the target plate, while the total electron energy 
flux decreases. All in all, the peak power load increases of 
about 30%, as can be seen from figures 8, 10(d) and 11(d). The 
balance between the ionic and the electronic energy fluxes is 
also changed compared to the collisionless case. Indeed, while 
the ion flux increases through the energy transfer mechanisms 
described above, the electron flux first increases at low col
lisionality (thanks to the perpendicular to parallel transfer in 
the quasi-neutral expansion) but then saturates at higher col
lisionality. Thus, the relative importance of the electrons in the 
energy fluxes is reduced by the collisions.

In summary, we constructed a hybrid model (kinetic in the 
parallel direction and fluid in the perpendicular plane) that can 
treat the parallel transport in the scrape-off layer, including the 
effect of temperature anisotropy, in the framework of a 1D1V 
phase space. The model reproduces, at a much lower compu-
tational cost, some of the results obtained with a 1D3V PIC 
code [11] and thus constitutes a useful tool to study energy 
deposition on the divertor plates following an ELM event.

Several further improvements on the present model can 
be envisioned. First, a more sophisticated collision operator 

(e.g. Fokker–Planck or Lenard–Balescu) could be used in 
place of the BGK term employed here. Electron-ion collisions, 
which were neglected here, may also be included. Second, 
perpendicular drifts should also be taken into account. This 
would lead to a complete set of fluid equations  (continuity, 
momentum, and energy) for the perpendicular dynamics, 
instead of the single temperature equation used so far. In this 
context, perpendicular diffusion may also be added through 
appropriate transport coefficients. Finally, neutral particle 
dynamics near the divertor could also be included in an exten-
sion of the present model.
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Appendix.  Free-streaming model with first-order 
collisional corrections

The model presented herein extends the free-streaming model 
of [7, 11, 12]. Taking advantage of the relative smallness of 
the collisional rates for the ion dynamics, we develop a per-
turbative analysis of the field-free collisional ion dynamics. In 
the particular case of a Gaussian spatial envelope and impulse 
time source, first order corrections to the ion moments can be 
obtained for a negligible numerical cost.

For brevity we will sketch the principle of the analysis in 
a quite general way, but present detailed calculations only 
for the case of an impulse source ( ) ( )δ=s t t  and the enve-
lopes N(x) and G(v) used throughout this paper (equations 
(8)–(9)). In that particular case, closed analytical forms can be 
obtained easily for the collisionless free-streaming model and 
simple expressions can be given for the first order collisional 
corrections.

The starting point of the analysis is the integral form of the 
hybrid model for ( )⊥g T,
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where ( )= ′X X t t x, ,u u  is a solution of / ( )=′ ′X t u t Xd d ,u x u  and 
Xu(t, t, x)  =  x is a characteristic curve of the perpendicular 
temperature equation. Considering times such that ν �t 1, 
all quantities in the system (A.1)–(A.2) can be expanded in a 
Hilbert series in ν≡ε t. For instance, for the distribution func-
tion we have: = + +…εg g g0 1 . This procedure yields an infi-
nite system of equations where each order is coupled with the 
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previous ones. Note that the superscripts ‘0’, ‘1’, etc refer to 
the orders of the Hilbert expansion, whereas the subscript ‘0’ 
refers to the properties of the ELM source.

Now we consider the impulse response, i.e. ( ) ( )δ=s t t . Up 
to the first order, such expansion yields the system

∫
= −

=− + + −′ ′ ′

( ) ( ) ( )

( ) ( ) ( ( ) )

g t x v N x vt G v

tg t x v tg t x v g t x v t t v t
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Thanks to the fact that both N(x) and G(v) are both Gaussian 
functions and to the linearity in (x, v) of the characteristics, 
the free-streaming solution g0 can be written as a drifting 
Maxwellian
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All parallel velocity moments of g0 can be readily com-
puted from those quantities. At this order, both the distribution 
function and its parallel moments can be obtained in the case 
of an arbitrary source by mere convolution of the source with 
the impulse response. Due to the spatially uniform initial con-
dition for ⊥T , we have at the lowest order the constant solution: 

( ) =⊥ ⊥T t x T,0
0. Thus the total temperature required to build 

the isotropic Maxwellian term at the next order has the simple 

form ( ) [ ( )]∥= +⊥T t T T t20 1

3 0
0 . Using the explicit forms of the 

zeroth order moments and thanks to their particularly simple 

form for ( ) ( )δ=s t t , the integrand ( ( ) )+ −′ ′g t x v t t v, ,M
0  can 

also be recast as a drifting Maxwellian
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With the above expressions, the parallel velocity moments of 
the integrand in equation (A.3) can be expressed. First-order 
corrections to the parallel velocity moments (particularly the 

collisional correction to the parallel temperature ∥T1) are then 
obtained by numerical time integration.

For the perpendicular temperature, expanding equa-
tion (A.2) to first order in νt and neglecting the transport term 
due to the absence of any spatial dependence of the temper
atures at zeroth order, we obtain:
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In summary, we have developed an analytical approach 
that extends the original free-streaming model [7] to include 
first-order collisional corrections. For the range of ντ values 
considered here, these first-order effects can be summarized 
as follows:

	 •	A slight increase in the peak values of the particle (up to 
1%) and energy (up to 4–5%) ion fluxes on the wall;

	 •	A reduction of the perpendicular temperature (less than 
3% at the time when the wall fluxes are maximal) and 
an increase of the parallel temperature. At the time when 
the wall fluxes are maximum, the parallel temperature is 
already quite low, and consequently the relative increase 
in parallel temperature is large (around 50%) although the 
absolute energy transfer is small compared to the initial 
energy.

Note that these values significantly underestimate the varia-
tions obtained with the full model, where the main factor 
is the energy transfer between electrons and ions via the 
self-consistent electric field, which is neglected in the free-
streaming model. 
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