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Abstract. 
evolution of any quantum wavepacket is entirely 
determined by the laws of classical mechanics. Here, the 
properties of this class are investigated both from the 
viewpoint of the Ehrenfest theorem (which provides the 
evolution of the average position and momentum), and 
the Wigner representation (which expresses quantum 
mechanics in a phase space formalism). Finally, these 
results are extended to the case of a charged particle in a 
uniform magnetic field. 

For a special class ofpotentials,'the dynamical 

1. Infroduction 

After sixty years since the first consistent formulation 
of the principles of quantum mechanics (QM), a con- 
siderable amount of disagreement still exists on the 
very foundation of the theory. It should he noted that 
no other physical theory has ever undergone such a 
never-ending debate about its theoretical interpre- 
tation (apart, perhaps, from statistical mechanics: it is 
probably not a coincidence that a great many of the 
puzzling features of QM arise from its intrinsic statisti- 
cal nature). 

On the other hand, there is a virtually universal 
agreement on the practical use of the rules of QM. 
Indeed, the mathematical machinery of the theory 
plus the so-called Copenhagen interpretation, have 
proved to be two extremely good tools in the descrip- 
tion of the microscopic world. 

It is out of the scope of this article to consider the 
possible alternatives to the Copenhagen interpre- 
tation: readers who are interested in the philosopbical 
implications of QM can refer to a recent review by 
Omnks (1992). 

Here, we shall concentrate on a particular aspect of 
the debate, namely the conditions under which the 
evolution of a quantum system follows exactly the 
laws of classical dynamics. Moreover, we shall deal 
with some mathematical connections between dif- 
ferent representations. It is our feeling that progress 
on the foundations of QM will also come from these 
'technical' manipulations. 

ReSumb Pour une classe paniculi6re de potentiela, 
l'evolutian de taut paquet d'onde est entierement 
dkte-nke par les lois de la mhnique classique. On a 
h d i k  les propritt& de cette classe B I'aide du thbr6me 
d'Ehrenfest (donnant l'ivolution de la position et du 
moment moyens) et de la reprkentation de Wigner (qui 
exprime la mhnique quantique en terme d'une 
distribution de prababilit6s dans I'espace des phases). Ces 
rkultats sont ensuite ktendus au cas d'une particule 
chargk dans un champs magnktique uniforme. 

The paper will be structured as follows. We shall 
restate the well known Ehrenfest theorem, and show 
how, for a special class of Hamiltonians, it reduces to 
the Newtonian equations of motion. An analogous 
result will be proved to hold also for classical statisti- 
cal mechanics (section 2). In section 3, we shall 
introduce the Wigner representation, which allows us 
to express QM in a phase space formalism: the 
previously obtained results will then be analysed from 
this point of view. Finally, in sections 4 and 1 the 
family of Hamiltonians inducing a classical behavior 
will he enlarged to include the case of a charged 
particle in a uniform magnetic field. 

2. Ehrenfest's theorem 

The dynamical evolution of a quantum state is given 
by the time-dependent Schrddinger equation: 

A remarkably simple analogy between quantum and 
classical evolution laws comes from the Ehrenfest 
theorem, which is undoubtely the oldest result in this 
domain. It is also the most widely known, and it 
appears in almost all textbooks on elementary QM 
(Messiah 1961, Schiff 1965, with the remarkable 
exception of Landau and Lifscbitz 1969). The theo- 
rem reads as: 
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where the symbol (.) denotes mean values as usually 
defined in QM. As a matter of fact, equation (2) are 
void of meaning in this form, since, in order to cal- 
culate the mean value of a V/ax, we need knowledge of 
the entire wavefunction. 

Nevertheless, there is a special case for which the 
system (2) becomes self-contained, namely when the 
following condition is fulfilled: (-)=-I av av 

ax ax (3) 

Clearly, equation (3) holds only when aV/ax is a 
linear function of x ,  so that V must he a quadratic 
polynomial in x, possibly time-dependent: 

V(x, t )  = a(1) + b(t)x + c(t)X2. (4) 
Obviously, three physically relevant cases are the free 
particle, the uniform field and the harmonic oscil- 
lator. Moreover, this result is readily extended to 
higher dimensions. 

When the relation (4) is fulfilled, the Ehrenfest 
theorem allows a dramatic simplification of the quan- 
tum dynamical laws. As a matter of fact, we have 
passed from the Schrdinger equation (a partial dif- 
ferential equation in one spatial dimension plus the 
time), to a system of ordinary differential equations. 
We shall say that we have reduced the difficulty of our 
problem from dimension = 1 (Schrcdinger), to 
dimension = zero (Ehrenfest). 

In the next section, we shall derive from the 
Schrcdinger equation a representation of QM which is 
based on a distribution function in the phase space 
(x,p).  According to our definitions, such a representa- 
tion has a dimension equal to two. These concepts will 
Drovide an interesting insight into the relationshio 

reads, both in the classical and quantum cases, as: 

which is identical to the eauations of motion in New- 
tonian dynamics. 

The fact that the Ehrenfest relations can be derived 
both from QM and classical statistical mechanics 
should not, however, convey the idea that they 
express some ‘profound’ truth about physical 
phenomena. On the contrary, their physical meaning 
is, to a large extent, quite limited, and they can be at 
most considered as a formal property common io any 
statistical description of phenomena. 

3. The Wigner picture of OM 

As we have seen, the description of phenomena pro- 
vided by classical statistical mechanics is based on the 
concept of phase space. The probability distribution 
f(x.p.1) obeys the Liouville equation ( S ) ,  and the 
average of any dynamical variable A(x ,p )  is cal- 
culated as in equation (6). In QM, owing to the uncer- 
tainty principle, the very concept of phase space loses 
its meaning. In spite of this, in 1932 Wigner proposed 
a version of QM in which each quantum state is 
represented by a quasi-probability distribution in 
phase space that we shall hereafter designate as 
W(x,p,t). If a ‘good’ definition of V is taken, the 
mean value of any dynamical variable can be cal- 
culated just as in the classical fashion, by making use 
of equation (6). wherefis replaced by W. The ‘good‘ 
definition for W(x,p I) is the following: 

between quanrum, cla&cal&d srarisrical mechani;. ~ ( x , p ,  1 )  = &, jexp( ?)Y*( x + 7, 5 r )  The Ehrenfcsr theorem is well known in the frame 
of QM. It might he interesting to show that the same 
result can be derived from the principles of classical 
statistical mechanics. The latter is based on the 
Liouville equation, which gives the evolution law for 
the probability distribution in the phase space 
f(x,p,C 

Let us multiply (5) first by x and integrate over x and 
p. then byp and integrate again. A little algebra shows 
that we obtain once again the system (Z), where the 
mean value of a dynamical variable A(x,p)  is now 
defined by the following relation: 

< A )  = I A ( ~ . P ) / ( ~ , P , ~  dxdp (6) 

Once again, the system is not self-contained, except 
for the special family of quadratic potentials. In this 
latter case, the quantum mechanical and the classical 
descriptions for the mean values are strictly identical. 
If we introduce the force E =  -aV/ax, the system 

x Y ( x  - ?, 5 t )  d5 

Moreover, W(x,p, t )  satisfies an equation that has 
some analogy with the Liouville equation (5 ) :  

aw -+ --=-l[dAdp’expi-(p-p’) paw i A 
at m ax z ~ h  h 

This is known as the Wigner or quantum Liou6lle 
equation, and it is directly derived from the SchrB- 
dinger equation through the definition (8). 

Indeed, it would seem that the evolution equation 
(9)plus the two definitions (6) and (8) provide a frame 
in which QM can be treated on the same grounds as 
classical statistical mechanics. As a matter of fact, a 
few points need to he clarified. 

(i) The Wigner functions, although it is always real, 
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assumes negative values in nearly all cases, and 
consequently it cannot be interpreted as a classical 
joint probability distribution of x and p .  

(ii) If, and only if, $(x) is a Gaussian wavepacket, 
the Wigner function is non-negative for every x andp. 
Yet, even if a non-negative initial condition is chosen 
for equation (9), W ( x , p , f )  will take unavoidably 
negative values after a certain time. 

(iu) In order to represent a quantum pure state, the 
Wigner function must correspond to a wavefunction 
$ through the formula (8). Nevertheless, in the treat- 
ment of statistical mixtures, we are often interested in 
functions W(x,p)  that do not derive from any $ (it 
can be shown that a mixture is represented by the sum 
of Wigner functions of pure states). In this sense, one 
can state that the Wigner equation goes beyond the 
strict frame of the Schrodinger picture. 

(iv) Since some terms of a dynamical variable 
A(x,p)  may not commute, it is necessary to establish 
a well determined, non-ambiguous correspondence 
rule between classical variables and quantum oper- 
ators (Weyl's rule). 

However, if one pays sufficient attention to the four 
points mentioned above, the Wigner function can be 
used operationally as a classical probability distri- 
bution to calculate mean values as in equation (6). In 
particular, by integrating W(x,p)  over p.  we recover 
the usual quantum probability distribution for the 
position: 

and, integrating over x ,  we find the probability 
distribution for the momentum 

where 'p is the Fourier transform of $. 
The derivation of all the preceding formulae (8)- 

(IO), as well as extended physical discussions, can be 
found in a review by Taatarskii (1983), and in the first 
chapters of Balescu (1975). 

For the present purposes, we note that if the poten- 
tial V(x, r) is a quadratic polynomial in x as in (4), 
then the Wigner equation (9) becomes identical to the 
Liouville equation (9, as can be proved by directly 
substituting equation (4) in equation (9). 

Therefore, for the class of potentials described by 
the relation (4), the evolution of any wavepacket can 
be treated in terms of classical statistical physics. On 
the other hand, all quantum features of the system are 
contained in its initial condition. In other words, for 
the particular case of a quadratic potential, we can 
construct a classical statistical ensemble that is 
equivalent to our quantum system. Notice however 
that the 'probability density' on such an ensemble can 
take negative values, and does not have therefore an 
immediate physical interpretation. The correspond- 
ence between a single quantum oscillator and an 
ensemble of classical oscillators was pointed out by 

Pippard (1983), by direct construction of the statisti- 
cal ensemble: the Wigner approach is however more 
perspicuous insomuch as it immediately provides the 
probability density and its evolution equation. 

The links between the different representations of 
QM that we mentioned in the previous section are now 
clear. On the one hand, when the potential is a 
quadratic polynomial, the Schrodinger equation can 
be reduced to a set of ODE (dimension = zero) for the 
centre of mass of the wavepacket, which thus follows 
Newtonian dynamics. On the other hand, it can be 
extended to a phase space formalism (dim = Z), 
which, under the same conditions, obeys the Liouville 
equation of classical statistical mechanics. 

4. Particle in a uniform magnetic field 

In this section we will generalize the preceeding results 
to the case of a charged particle moving in a uniform 
magnetic field. Although the proof is quite straight- 
forward, this result is rarely mentioned in the 
literature on the Wigner equation (see, for example 
Canivell and Seglar (1978): they show that the non- 
negativity of a Wigner function is conserved if the 
Hamiltonian is quadratic (which includes the case of 
the uniform magnetic field): such a property will be a 
straightfonvard consequence of our results). 

The magnetic field B is taken to be uniform and 
directed along the z axis: the motion is then bidimen- 
sional in the ( x , ~ )  plane. A suitable choice of the 
vector potential A is the following (Landau and Lif- 
schitz 1969, section 111): 

The canonical momentum p is defined, as usual, by 

A , =  -By  Ay = 0. (11) 

p = mu + eA (12) 

(e and m are respectively the charge and the mass of 
the particle); the resulting Hamiltonian is 

where w = eB/m is the cyclotron frequency. 
If our phase space is spanned by the four canonical 

variables x ,  p r ,  y, pv. the Liouville equation for 
~ ( x , P , , Y , P , )  reads as: 

From (13) the Schrodinger equation is clearly: 

In two dimensions, the Wigner function is defined as 
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follows 

x Y * ( x + p + p  e " )  
x expi(<p, + vpY) d&. (16) 

In equation (16) and in the following ones, we have 
taken, for simplicity, h = m = I .  

It is a matter of straightforward algebra, by means 
of the definition ( I Q ,  to express each term of (14) 
through $ and $*. This results in: 

magnetic field B(r), and that they reduce to a closed 
system of ODE (identical to the classical equations 
of motion) when the magnetic field is uniform 
(Zimmermann 1989). Again, these relations can be 
derived both from the Liouville and the Schrodinger 
equation. 

Let us begin with the classical case. We write the 
Liouville equation in the more usual form, in which 
/(r, U, 1) is a function of the position r and the velocity 
U, and the magnetic field is described by B rather than 
by the vector potential: 

.. .. ... .. 

We multiply (18) first by r a n d  integrate on r a n d  U, 
then hy U and integrate again. After some integrations 

aw I 

The relations (19) are the analogue for a magnetic 
field of the Ehrenfest relations (2). 

The second of equations (19) can be written as: 

x G(5, rl) decb 

W ,  rl) = exp [i(5px + ~ P J .  
where 

In relations (17) $ is always understood to he 
evaluated at the point ( x  - @,y - q/2) ,  whereas $* 
is evaluated at ( x  + t / 2 , y  + q/2).  With the help of 
equation (15) and its complex conjugate it is easy to 
show that W(x,p. r )  obeys the Liouville equation (14). 
We have therefore proved that the motion of a 
charged particle in a uniform magnetic field can he 
expressed in terms of classical statistical mechanics, 
just as in the free particle, uniform force and harmonic 
oscillator cases. 

In fact, nposreriori, this result is not too surprising, 
because the Hamiltonian (13) isstill a quadratic form 
in x, y, px and p., although the proof is not trivial 
because of the rmxed term yp,.  

5. Ehrenfest's theorem for a magnetic field 

It might be interesting to show that the Ehrenfest's 
relations still hold for a charged particle moving in.a 

where we have defined the current density: 

J(r, r) = e [/(r,v, r)u dv. 

Equation (20) shows that the 'centre of mass' of the 
distribution (denoted by ( r )  and (U)) moves under 
the action of a force which is the sum of all elementary 
Lorenz forces acting on each element of current J dr. 

When the magnetic field is uniform, it can be taken 
out of the integral in the second of equations (19), 
which become a closed system of ODE: 

d(u) e do = <.) -=-(ff) x B .  (21) dt '. d/ m 
We now tum to the quantum mechanical case. The 
Heisenberg equations for the operators of position 
and velocity are given in Schiff (1985, section 24), for 
the case of a particle in a magnetic field B(r). They 
read 

(U x B - B x U). (22) dv I e d r  
dt dt 2 m  

- = _- - = U  

Note that the two last terms are identical classically, 
but differ in QM, since ff and B do not commute. In 
equation (22) r, Band A are multiplication operators, 
while 

1 
m m 

D = -  ( p  - CA) = -( - ihV - eA) 

From equation (22) we can easily write the Ehrenfest 
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relations for the mean values. Explicitly we have: ponents of the velocity are (see equation (12)): 
d 1 1 eB 
- ( r )  = (U) = - ( wiY*VY - eAIYI') dr df m I  - '  

d e 
dr 2 

<vx> = ,(<pX) - e ( A > )  =;YO = W O  

( s y )  = ; ( ( p J  - e(A,)) = 0. (26) 

where we have made use of equations (1 1) and (25). 
A classical particle with initial position (xc, y o )  and 

initial velocity given by (Z), immersed in a uniform 
magnetic field parallel to the z axis, will rotate with 
constant angular velocity w around the point (xo, 0), 
describing a circle of radius R = IyJ. 

According to the previous theorem, the 'centre of 
mass' of the quantum wavepacket must describe the 
same circle as the classical particle. The wavefunction 
will he deformed during the evolution, but it must 

1 m-(U) = - ( v  x B -  B x v )  

= P j ~ * [ ( - i h v - e ~ )  x B 
2m 

- B x (- ihV - eA)]Y dr 

= - 2 J I Y f A  m x B d r  

-gJY*[v x (BY) +VY x B ]  dr. 

(23) 
come hack exactly to its initial condition after one 
period = 2rr/0' 

In the numerical simulation we have chosen xo = 0, 
so that the particle turns around the origin. The other 
parameters are: 

We define, as usual, the current density (see Landau 
and Lifschitz 1969, Section 114, and also Feynman et 

197~ ,  Section 21, for a deeper insight into the 
meaning of the current in the presence of a magnetic 
field): 

ihe e' 
f = - -(Y*V'f'- YVY:) - -[%'['A 2m m 

Using the previous definition, the second of equations 
(23) becomes: 

which is formally identical to the classical formula 

Once again, when B is uniform, the equations (23) 
for the mean values become a closed system of ODE, 
identical to equation (21). 

In summary, in this section we have extended the 
Ehrenfest relations to the case of a magnetic field. The 
results are in accordance with what had been found in 
the previous paragraphs. Moreover, they can be easily 
generalized to the most general case of a timedepen- 
dent electromagnetic field. 

4. A numerical simulation 

In order to get a visual picture of the motion of a 
charged particle in a uniform magnetic field, we have 
solved numerically the bidimensional Schrodinger 
equation (15). The initial condition is a localized 
Gaussian wavepacket: 

(20). 

h = m = I  yo = 20 

0 = 0.lx ( T = 2 0 )  

ox = 2 U? = 2. 
Figure I gives the time evolution of the density 
[V(x,y)[' at time intervals At  = 2. Each picture is 
formed by five isodensity contour levels. Indeed, we 
recover the classical motion, and the packet comes 
back to the initial condition after one period. 

ngure 1. Evolution with lime of a wavepacket in a 
uniform magnetic field. Each picture represents the 
spatial density, at time intervals d At = 2. 

. .  

It should he noted that (25) represents a wavepacket -30 - 
for which the mean value of the corponicd momentum ' -30 -15 0 15 30 
p is zero. Yet the mean values of the x and y com- x 
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6. Conclusion 

Thousands of papers have been written on the 
ultimate Structure OfQM, its relation to classical phys- 
ics, a possible statistical interpretation, the meaning 
of phase space, etc. The reader can legitimately ask 
the reasons for this new one. Let us attempt its 
justification. 

Most of the existing literature deals with stationary 
states, and focuses on the eigenvalues and eigenfunc- 
tions-usually to interpret spectroscopic data. It is 
indeed in this domain that the standard theory of QM 
has proved to work extremely well. A much more 
limited number of papers focuses on time-dependent 
situations, and among them very few mention the 
Wigner function and Wigner equation. Due to the fact 
that it introduces negative probabilities (and also, 
perhaps, because of a too strict application of the 
Copenhagen school ideas), many authors are reluc- 
tant to consider it other than a curious mathematical 
object, possessing very little physical meaning, if any. 

In our opinion, two reasons render the Wigner 
representation particularly interesting. 

First, when dealing with pure states, it is strictly 
equivalent to the Schredinger representation, pro- 
vided the initial condition can be derived from a 
wavefunction through the formula (8). For a wider 
class of initial conditions, the Wigner equation pro- 
vides the evolution of a statistical mixture. In fact, the 
possibility to treat both pure and mixed states via the 
same evolution equation seems to us an appealing 
property of the Wigner representation. 

Secondly, the mathematical properties of the 
Wigner function make it an ideal tool to investigate 
theclassical limit ofQM. Instead ofworryingabout the 
negative probabilities it introduces, an interesting 
challenge would be to interpret their meaning by a 
suitable generalization of the traditional probability 
theory. Our present goals were however more modest 
and, as we said before, more technical, concentrating 
on the links between the different representations. 
They are resumed on the scheme. We distinguish three 
types of representations, and require each of them to 
be self-contained. 

At the lowest (simplest) level of dimension zero, we 
have an ODE describing either the deterministic 
motion of a classical particle or the motion of the 
centre of mass of the wavepacket for the quadratic 
Hamiltonians (free particle, uniform force, harmonic 
oscillator and uniform magnetic field). 

At the next level (dimension one) we get the 
Schr6dinger equation, fundamental in QM, which 
resumes, by the aid ofjust one coordinate, our infor- 
mation on both position and momentum. It has no 
classical counterpart. 

The Ehrenfest relations are a step toward the lower 
level, but in the general case they are void of meaning, 
since to apply them one needs the knowledge of the 
wavefunction. On the other hand, these formal rela- 

statistical approach has to be used either to describe 
many panicles or our ignorance about the initial state 
of one particle. 

At the highest level (phase space. dimension two). 
we find the Liouville equation for classical systems 
and the Wigner equation for quantum-mechanical 
ones (both pure states and mixtures) When the 
Hamiltonian is a quadratic form, these twoequations 
coincide, and all the difference between classical and 
quantum physics is contained in the initial condition 
(arbitrary in the former case, but not in the latter). 

Consequently, the class of quadratic Hamiltonians 
displays two interesting properties. First. i t  allows us 
10 construct a self-contained ODE for the centre of the 
wavepacket. which behaves as a classical particle. On 
the other hand, the details of the uavefunction can be 
obtained by considering a classical phase space 
problem, in which the probabilit) densit), although 
mvolvine neeauve values. is invariant alone rheclassi- 
cal trajeitories. 

- 
(In the scheme. the double boxes stand for the most 

fundamental equations. A full line means implication 
in general, whereas a broken line means that the 
implication is valid only for the special class of 
quadratic Hamiltonians). 

QUANNM cus.vcAL 

Phase Space 
(dim - 2) 

cnnnguntiion 
"pa- 

(dim - 1) 

amtd ODE 
(dim - 0)  
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