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Abstract

®

CrossMark

Magnetic fusion devices operate at regimes characterized by extremely high temperatures and
low densities, for which the charged particles motion is well described by classical mechanics.
This is not true, however, for solid-state metallic objects: their density approaches 10%® m=,
so that the average interparticle distance is shorter than the de Broglie wavelength, which
characterizes the spread of the electron wave function. Under these conditions, the conduction
electrons behave as a true quantum plasma even at room temperature. Here, we shall illustrate
the impact of quantum phenomena on the electron dynamics in metallic objects of nanometric
size, particularly thin metallic films excited by short laser pulses. Further, we will discuss
more recent results on regimes that involve spin and relativistic effects.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Attempts at reproducing on Earth, in a controlled way, the
nuclear fusion reactions that fuel most stars, including the
Sun, have mainly followed two approaches—magnetic con-
finement fusion (MCF) and inertial confinement fusion (ICF).
Both approaches rely on a mixture (plasma) of electrons and
hydrogen ions (deuterium and tritium), which at very high
temperatures have a finite probability to fuse together to yield
heavier ions (helium), thereby releasing large amounts of
energy in the form of kinetic energy of the reaction products
(helium ions and neutrons).

At a fundamental level, these two competing approaches
differ primarily in the physical features of the plasmas. A
simple measure for a fusion reactor to reach ignition is pro-
vided by the Lawson criterion, which gives a minimum
required value for the ‘triple product’ of the plasma density
n, the plasma temperature 7, and the energy confinement
time 7z: nTrg > 3 x 10?! keV m™ s. Broadly speaking, MCF
plasmas correspond to low densities (7 ~ 10°° m™3) and long
confinement times (zp ~ 1 s), whereas ICF plasmas display
large densities (10°°~10°2 m=) and short confinement times
(g =~ 107'% 5). In both cases, the temperature needs to be
around 100 million degrees (T ~ 10 keV) in order for the
fusion reactions to occur. These densities should be compared
to that of atmospheric air, basically a perfect gas (10> m~>)

0741-3335/15/054004+8%$33.00 1

and solid metal objects (10°® m~3). Thus, MCF plasmas are
much more rarefied than ordinary gases, while ICF plasmas
are even denser than solids.

Can one expect any quantum mechanical phenomena to
take place in such plasmas? Certainly not for MCF. We know
that quantum features occur at high densities (short distances)
and low temperature. Since atmospheric air behaves as a
classical gas at room temperature, then a fortiori this should
remain so for the more rarefied and hotter plasmas occurring
in MCF. For ICF plasmas, the situation is more ambiguous, as
they are both denser and hotter than ordinary solid matter and
we know that electrons in solids behave quantum mechani-
cally at room temperature. As we shall see, ICF plasmas are
usually on the border between the classical and the quantum
regimes.

While quantum effects have no impact on the dynamics
of MCF plasmas, they do play an important role in deter-
mining the cross sections of the fusion reactions. For the
reactions to take place, the hydrogen ions need to overcome
the repulsive Coulomb barrier, which is about 300 keV.
However, quantum tunneling allows the classical barrier to
be overcome at somewhat lower energies, of the order of
100 keV. Then, for a plasma with temperature 7' ~ 10 keV,
there are enough particles in the Maxwellian tail with suf-
ficient energy to tunnel through the Coulomb barrier and
trigger a reaction. We will not consider this aspect here and

© 2015 IOP Publishing Ltd  Printed in the UK


mailto:Giovanni.Manfredi@ipcms.unistra.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/0741-3335/57/5/054004&domain=pdf&date_stamp=2015-04-15
publisher-id
doi
http://dx.doi.org/10.1088/0741-3335/57/5/054004

Plasma Phys. Control. Fusion 57 (2015) 054004

G Manfredi and J Hurst

rather concentrate on the influence of quantum effects on the
collective plasma motion.

This review will focus on the quantum electron dynamics
in solids, particularly metals, for which the conduction elec-
trons can be viewed as a mobile plasma neutralized by the
background ions. Quantum effects arise because of the
large density, which means that electrons are closely packed
together. These quantum features become even more apparent
for metallic objects of nanometric size (1 nm = 10~° m), such
as metallic nanoparticles, thin films, and nanorods, which
have stimulated a huge amount of scientific interest in the
last two decades [1], both for fundamental research and for
potential technological applications that range from physical
chemistry, to biology and medicine. For instance, ‘plasmonic
resonances’, ie, electronic oscillations near the plasma fre-
quency @, = Je’n/ mey, are routinely observed in metallic
nanoparticles and their properties (resonance width, damping,
dipole and quadrupole modes, ...) are studied experimentally
using ultrafast spectroscopy techniques. Indeed, as the plasma
period in metallic nanoparticles is of the order of one femto-
second (1071 s), the recent development of femto- and atto-
second laser sources has opened up a vast domain of research
that is still being explored [2, 3].

Finally, quantum plasma effects can be observed in astro-
physical systems—interior of giant planets, white dwarfs,
neutron stars and pulsars—due to the extreme conditions of
density, temperature, and magnetic fields that exist in such
environments [4].

Here, we will first review some of the basic aspects of
solid-state electron plasmas, with particular emphasis on
kinetic descriptions. These methods will help us illustrate
the impact of quantum phenomena on the electron dynamics
in metallic nano-objects, particularly thin metallic films
excited by ultrashort laser pulses. Secondly, we will present
new theoretical advances related to recent experiments [5]
on ferromagnetic thin films, where the magnetic degrees of
freedom of the electron (spin and orbital angular momentum)
can play an important part. Finally, we will briefly hint at
relativistic effects, which also have an impact on the spin
dynamics.

2. Basic concepts

The basic tenets of quantum plasma physics have been pre-
sented in previous reviews [6, 7] and will be briefly summa-
rized here.

A fermion gas at equilibrium obeys the Fermi—Dirac (FD)
distribution. At zero temperature, all energy levels are occu-
pied up to the Fermi energy

n? 2/3
Ep = % (371'2) n*? s (D

which is a function of the electron mass m and density n (7 is
the reduced Planck constant). One can also define the Fermi
temperature Tr = Ep/kg, where kg is the Boltzmann constant,
and the Fermi velocity vg = \/2Ep/m. A convenient param-
eter to quantify the degree of ‘quantumness’ of an electron

Table 1. Typical time, space, velocity, and energy scales for bulk
gold and ICF plasmas.

Solid gold ICF Units
n 5.9x%10% 1032 m™
T 300 103 K
Eg 5.53 785 eV
Tk 64200 9 x 100 K
AR 0.1 0.03 nm
d=n"' 0.25 0.022 nm
VE 1.4 x 10° 1.7 x 107 ms™!
z,m,P—l 0.46 0.01 fs
haw, 9.02 371 eV
g0 12.7 1.07 —
x 47 %1073 11 —

gas is the degeneracy parameter y = T/Tp: when y > 1 the
FD distribution tends to a Maxwell-Boltzmann one and the
gas behaves classically; in contrast, y < 1 describes the fully
quantum regime.

The degeneracy parameter can also be expressed in terms
of the thermal de Broglie wavelength Ag = A/ \/mkgT, which
is a measure of the spread of the electron wave function. One
can easily show that y ~(d/Ag)?, where d = n~'3 is the average
interparticle distance. Quite naturally then, quantum effects
become important when the electron wave functions overlap
significantly.

Two further important dimensionless quantities are the
coupling parameters g, which characterize the degree of col-
lisionality of the plasma. They can be expressed as the ratio of
the interaction (Coulomb) energy Eou = e%/(eod) to the typical
kinetic energy. In the classical regime, the latter is given by the
thermal energy, so that the coupling parameter is the usual one:

Eeu €23 1V
go=—m= ~| =1 - ©)
kBT 80kBT I’M.D

where we have introduced the Debye length Ap = /kgTeg/ en.
In the deep quantum regime, the typical kinetic energy is the
Fermi energy and the coupling parameter becomes:

23
) , (3)

where Ar = ve/w, is the Thomas-Fermi screening length,
the quantum analogue of the Debye length. A classical or
quantum plasma is collisionless (i.e. weakly coupled) when
the relevant coupling parameter is much less than unity. In
condensed matter physics, models that are valid when g < 1
are often referred to as mean-field models.

In order to fix the ideas, let us consider gold nanoparti-
cles, which are typical metallic nano-objects routinely used
in the experiments. The typical time, space, and energy scales
for gold are summarized in table 1. Note that these values
are meaningful at thermodynamic equilibrium and for bulk
macroscopic matter. First, we notice that the Fermi tempera-
ture is very high, therefore y < 1 even at room temperature:
electrons in solid metals are always degenerate and behave
quantum-mechanically. Second, the coupling parameter

_ Ecoul _ 2 e’m L
0= g G2y Wegn?  \nid
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8o 1is larger than unity, ie, electron correlations must play a
role. Collisionless (mean field) approaches may be fine to
understand qualitatively the electron dynamics, but in order
to obtain quantitative results more sophisticated models are
required. We also see that the typical time, space, and energy
scale are given respectively by the femtosecond, the nanom-
eter, and the electron-volt. Finally, as the Fermi velocity is
much less than the speed of light ¢ =3 x 108 m s™!, we do not
expect any relativistic effects, at least at equilibrium, although
strong electromagnetic pulses may accelerate the electrons
out of equilibrium to relativistic velocities.

For comparison, table 1 also shows the values for typical
ICF experiments. The most important difference is that ICF
plasmas are on the border of degeneracy (y ~ 10); in other
words, contrarily to MCF plasmas, they can display weak
quantum effects in their dynamics, although, because of their
high temperature, they are still very far from the fully degen-
erate regime (y < 1). We also see that ICF plasmas are closer
to the collisionless regime, as their coupling parameter is
close to unity (note that when y = 1, then g¢ = gp).

3. Plasmon resonances in nano-objects: Mie theory

In most current experiments, nano-objects are excited via
ultrashort laser pulses with a pulse duration that can go
down to a few hundred attoseconds. Femtosecond or longer
pulses have been almost routine for the last two decades. The
wavelength of the radiation usually lies in the visible range
(400-800 nm), although x-ray and infrared pulses are also
envisageable (although less easily produced). Thus, the laser
wavelength is much longer than the size of the nano-objects
and the electromagnetic fields can be viewed as spatially uni-
form inside the object (dipole approximation).

In this approximation, the laser electric field pulls the
conduction electrons away from the more massive ions, thus
initiating self-consistent oscillations of the electron gas. At
resonance, when the frequency of the external electric field
equals the natural frequency of the electron gas in the nano-
object, the absorption cross-section reaches a maximum.
Using purely classical arguments based on Maxwell’s equa-
tions and considering spherical nanoparticles, the resonant
frequency turns out to be the Mie frequency [8]:

Wp
OMie = —,
Mie 26€m + €p )

where ¢, is the dielectric constant of the environment where
the nanoparticle is embedded and ¢y, is the dielectric constant
of the bound electrons inside the particle (see figure 1, left
panel). Taking e, =¢,, = 1 for simplicity, yields wmie = @p/ J3.
The factor /3 comes from the spherical symmetry that we
assumed. For a planar film (figure 1, right panel), the resonant
frequency is simply: @wmie = @p.

An example of measured scattering spectrum for gold and
silver nanoparticles is shown in figure 2. For spherical gold
particles, the Mie frequency in energy units is Aoy = 5.2 eV
(see table 1), which differs significantly from the value on
figure 2, although the order of magnitude is correct. The

Electric field

|
LD L

|

Wpie = wp/\/§
Wpije = Wy

Figure 1. Schematic representation of the plasmon resonance for a
spherical nanoparticle (left panel) and a planar film (right panel).
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i
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Figure 2. Scattering spectra of gold and silver spherical
nanoparticles with diameter 60 nm (from [9]).

discrepancy come from various sources of damping, which
tend to red shift the resonant frequency, as in a damped oscil-
lator. The damping rate I" is given by the linewidth of the
resonance curve: in this case I = 0.4 eV, which is rather large
compared to the observed resonant frequency wes = 2.2 eV.
Nevertheless, a proper application of the Mie theory, including
the realistic dielectric constants and various forms of damping,
reproduces the correct value of the resonance frequency and
linewidth [9].

In metallic nano-objects, the main sources of damping are
electron—electron (e—e) and electron—phonon (e—ph) colli-
sions, as well as radiation damping. When 7' <« Ty, e—e col-
lisions are strongly suppressed, because almost all energy
levels below Ef are full and there are no available states for
the scattered electrons to occupy. This effect is known as Pauli
blocking [6, 10].

Phonons represent the vibrational eigenmodes of the ion
lattice. Although bulk ion motion is usually neglected because
of the large ion-to-electron mass ratio, random interactions
(‘collisions’) between the electrons and the vibrating ion lat-
tice do contribute to the electronic energy relaxation. e—ph
collisions can be crudely estimated using Drude’s classical
theory [10]. For gold at room temperature, the e—ph relaxa-
tion time is around I" e—_éh ~ 28 fs, which in energy units yields
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I'e —pn = 0.15 eV, and accounts for almost half of the damping
observed in figure 2.

Finally, radiation damping occurs because the oscillating
electrons behave as an electric dipole, thus emitting electro-
magnetic waves. The damping rate can be estimated by com-
puting the total power radiated by the dipole [11]. One obtains

2
I1aq . _© AW res N 1 AWres

~ N — 5
Wrs  2e0hc mc? 137 511keV )

where N is the the number of electrons in the nanoparticle. For
the 60 nm diameter particles of figure 2, one obtains approxi-
mately I,q = 0.46 eV, which is actually the dominant source
of damping in this case.

4. Kinetic models

The use of kinetic phase-space models for the electron
dynamics in metallic nano-objects was described in detail in
previous reviews of ours [6, 7]. An electron plasma constitutes
a many-particle system that in principle should be described
by the N-body Schrodinger equation. However, for more than
afew electrons, this task is computationally untractable, hence
the need of approximate models. In condensed-matter theory,
the ‘mother-of-all-approximations’ is given by the time-
dependent Hartree equations (TDHESs). This is the analogue
of the Vlasov—Poisson equations (VPEs) in plasma physics:
it retains the self-consistent electric field (mean field), but
neglects e—e correlations. Just like the VPEs, the TDHEs are
a good approximation when the coupling parameter is small.
This is well-established for most fusion plasmas (g¢ < 1),
but not so much for electrons in metals where go > 1. For this
reason, a battery of improvements on the Hartree equations has
been developed, which can be grouped in two categories:

* The Hartree—Fock equations retain a purely quantum
kind of e—e correlations, called exchange, which results
from the anti-symmetric character of the N-body wave
function for fermions;

* Density functional theory (DFT) can in principle accom-
modate all e—e correlations in the form of extra potentials
that depend on the electron density. In practice, such
potentials are only known approximately. Thus, DFT can
be view as a formal ‘exactification’ ! of the Hartree theory.

The TDHE:s read as a set of one-body Schrodinger equa-
tions coupled to Poisson’s equation for the electric potential
V(r,1):

0 2
ine Ay vy, a=1..N (6
ot 2m
e N
AV=;[ZpaI%IZ—ni(r)], ©)
a=1

where n,(r) is the ion density and p,, is the occupation prob-
ability for the state y,. The link between the quantum TDHEs

! This is the expression used by Walter Kohn, the founder of DFT, in his
1998 Nobel lecture [12].

and the classical VPEs can be made through the Wigner trans-
formation [13, 14]

N +o0

-y * s _5
f(r’v’t)_z2nhp“_fw“(r+2’t)w"(r 2’t) ®)

a=1
eimv.s/h ds

Using the Wigner transformation, the TDHE can be written
in the form of a phase-space evolution equation (Wigner
equation)

of em

—+v-Vf+

o UV G2

x [ [ ds avreime—sosin [V(r + %) - V(r - %) ] £V, D)
_o, ©)

where the electric potential obeys Poisson’s equation (7).

It can be shown that Wigner’s evolution equation (9) for-
mally reduces to the Vlasov equation when 72 — 0. The Wigner
formalism thus constitute a useful tool to compare directly the
classical and quantum dynamics for the same physical system.
We will do just that in the next section for the case of a thin
metallic film.

5. Electron dynamics in thin metal films

As an illustration, we present here some of the results that were
obtained by our group along a period of several years [15-17].
‘We model our metal film as a slab of thickness L in the x direc-
tion and much larger extension in the transverse plane (see
figure 1, right panel). The ions constitute an immobile back-
ground of uniform positive charge, with density ng inside the
slab and zero outside. In this configuration, the motion of an
electron in the transverse plane is decoupled from the motion
normal to the surface of the film and a one-dimensional (1D)
model along x can be adopted.

The electrons are initially prepared in a FD equilibrium at
finite temperature. They are subsequently excited by imposing
a constant velocity shift dv to the initial distribution. The elec-
tron dynamics is computed by solving numerically the Vlasov
or Wigner equations on a phase-space grid. In particular, we
have analyzed the time evolution of the thermal energy E,
and the center-of-mass kinetic energy E., (figure 3). During
an initial rapidly-oscillating phase, E., is almost entirely con-
verted into thermal energy through Landau damping. After
saturation, a slowly oscillating regime appears. The period T
of these oscillations is very close to the time of flight between
the film surfaces for electrons traveling at the Fermi velocity.
Thus, such oscillations correspond to bunches of electrons
bouncing back and forth on the film surfaces, as one could
verify by directly inspecting the phase space portraits [15].

However, the period of these oscillations is not quite the
same when we use the Vlasov or the Wigner approach, as can
be seen from figure 3. By repeating the simulations for dif-
ferent excitations, it turns out that the classical and quantum
results coincide for strong excitations, but diverge for small
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Figure 3. Evolution of the thermal and centre-of-mass energies in the Vlasov (left panel) and Wigner (right panel) cases, for a sodium film

of thickness L = 6 nm (from [19]).
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Figure 4. Period of the low-frequency oscillations of figure 3 as
a function of the perturbation. The horizontal line represents the
classical time of flight (from [19]).

ones (figure 4). Thus, we observe a clear transition between
a classical and a quantum regime occurring at a fairly well-
defined threshold. The threshold corresponds to an excitation
with energy equal to the plasmon energy %w,. These results
provide a practical example of a quantum-classical transition
in the electron dynamics that could, in principle, be observed
experimentally.

An important advantage of the Wigner formalism (com-
pared to the Schrodinger formalism of DFT) is that col-
lisional effects can more easily be added to the model, by
analogy with the classical Fokker—Planck (FP) equation. In
order to model e—ph collisions in our thin film dynamics, we
have added a FP term on the right-hand side of the Wigner
equation (9): (0f )epn =D Vif+yVi- (v G[f]), where y is
the nominal relaxation rate, D is a diffusion coefficient in
velocity space, and G[-] is a functional that depends on the
quantum statistics and on the dimensionality of the system
[17]. A judicious choice of G[-] yields that (0f/dt). _ pn = 0
when the electrons follow a FD distribution in 1D. This
approach enabled us to study the approach to equilibrium
after an external excitation, which had been neglected in the
preceding analysis. The results are shown in figure 5, where
we plot a cut of the Wigner function f against the velocity v,
at the midpoint of the film. Under the action of the FP term,
f tends to its FD equilibrium. During the evolution, the
Wigner function becomes everywhere positive, so that it can

t=1000 t=10000

0.8

=0,v)
=0,v)

f(x
f(x

Figure 5. Velocity distribution at the midpoint of the film, for two
different times measured in units of wp. The red line represents the
1D equilibrium FD distribution.

be interpreted as a true probability density in the phase space.
This process, whereby quantum correlations are lost to an
external environment (here, the phonon bath), constitutes the
essence of decoherence.

6. Spin and relativistic effects

6.1. Spin Vlasov equations

The electron carries not only an electric charge, but also a
spin. In recent years, there has been a surge of interest in the
spin dynamics in solid-state devices [1], as a possible means
to store and transport information (spintronics), as well as for
attempts at developing quantum computing devices [18].

In order to take into account the electron spin at a nonrela-
tivistic level, the Schrodinger wave function must be replaced
by a 2-spinor

(10)

T
V(1) = ("’“ " ”] .

wir, 1)
Then, the TDHEs are replaced by the mean-field Pauli

equations:

o,
o

ih

[L(—iflv+eA)2— eV]%%—yBG- BY,, (11)
2m

where ug = eft/2m is Bohr’s magneton, ¢ are the Pauli matrices,
and B =V x A. The term ug o-B represents the Zeeman effect.
The scalar and vector potentials V and A can be either external
or self-consistent.
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The Wigner function that corresponds to the spinor (10) is
a2 x 2 matrix:

(12)

™ T
f(r,v,t):(f f ]

flT fll
It is convenient to project F onto the Pauli basis [19], such

that: F = %ﬁ) + %f - 6, where

h=w@=rtagt f=tece a3
and tr denotes the trace. Now, fj is the analogue of the ordinary
phase-space distribution, while f (with components f;, i = x, y,
z) is related to the spin polarization in the direction i. In other
words, fj represents the probability to find an electron at one
point of the phase space at a given time, whereas f; represents
the probability to have a spin polarization probability in the
direction @i for that electron.

The evolution equations obeyed by the Wigner functions
(13) are rather complicated. In the limit 7 — 0, they reduce to
the following set of Vlasov equations [20]

oy e €
— +vVfy——(E+vXB)-V,fy—— Y VB - V,f. =0,
ot Jo m( )Wl ng g
(14)
of
i+v.Vﬁ—i[(E+VXB)’Vvﬁ_(fXB)i]
or m (15)
h
_”ngi.vvfo'zo,
2m

Both the electron charge and spin are subject to the Lorentz
force; in addition the spins precess around the magnetic field
(f x B term). Charges and spins are coupled via a term that
depends on the gradient of the magnetic field (last term in both
equations). Equations (14) and (15) constitute an intermediate
model where the electron motion is classical, while the spin is
treated as a fully quantum variable.

Some authors have used an alternative representation
based on a single scalar Wigner function (instead of a 2 x 2
matrix) evolving in an extend phase space: F (r,v,/s\), where
§ is a vector of unit length [21]. The two approach are math-
ematically equivalent, as one can go from the extended phase-
space distribution F to the matrix Wigner function F through
a simple linear transformation [20].

6.2. Stationary states

We consider a 1D slab geometry as in the preceding section,
with only variations in the x direction taken into account. The
external magnetic field B = B.e. is uniform and parallel to z.
We also suppose that the electrons can only be polarized along
z (collinear magnetism). Therefore, at equilibrium one has:
Jo=folx, VD), fz = f(x, [v]), and £, = f, = 0.

For the standard (spinless) Vlasov equation, the stationary
states are functions of the Hamiltonian H = mv?*/2 — eV. In
our case, it is natural to take a FD equilibrium: Fp(H) = ng
[ 1 +exp((H - ,u)/kBT)]‘l, where u is the chemical potential.

1,0 1 B e e e e e
0,8 1 i
X
©
£ 06- .
=
=~ 04 B
= + Fermi-Dirac ground state
024 —— Pauli paramagnetism |
0,0 i
T T T
0,0 0,5 1,0 1,5

H’BBIkBTF

Figure 6. Relative electron magnetization as a function of the
external magnetic field normalized to the Fermi energy, for a
Fermi—Dirac equilibrium at temperature 7' = 300 K. Symbols
represent the numerical results, while the red solid line is the
theoretical curve for Pauli paramagnetism.

When the spin is included, the Vlasov equations (14) and (15)
can be written as (braces denote Poisson’s brackets):

Z_‘];b — {HTT,fTT} +{Hll’fll} s
o (16)
a_; — {HTT’fTT} — {Hll,fll} s

where H'' = %vz +V+pupB, and HY = %vz +V — ppB..

We deduce that 11 at equilibrium must be a function of H'"
and f* a function of H''. Using the FD distribution, the sta-
tionary solutions are given by: f3t = Fp(H'") + Fp(HY)
and f$* = Fp (H'") — Fp (H"). Finally, the stationary state is
found by computing the electron density n = | fydv and solving
the resulting nonlinear Poisson equation to obtain the poten-
tial V. This is enough to specify the self-consistent FD equi-
libria for f; and f.

A uniform magnetic field has no impact on the electron
dynamics (as only the gradients of B enter equations (14) and
(15)), but affects the equilibrium, because it acts differently
on spin-up and spin-down electrons. In figure 6, we show

[f.axav

as a function of the external magnetic field. Clearly, the
magnetization is significantly different from zero only when
usB. ~ kgTg. For solid gold, this means B, ~ 10° T, which
is a huge magnetic field. This is consistent with the fact that
Pauli’s spin paramagnetism is very small at equilibrium [10,
22], since, for small temperatures, it is proportional to (TITy)>.

The above result sheds some light on a recent controversy
concerning spin fluid models, which are obtained by taking
velocity moments of kinetic equations such as (14) and (15).
For instance, the spin polarization is defined as S(r, 7) = [f @,
v, 1) dv and should be small when fis a FD equilibrium, as was
correctly recognized in [23, 24]. The problem with the fluid
models is that the FD distribution is somewhat forgotten in the
moment-taking procedure, so that it appears (incorrectly) that
the spin polarization S may take any values at equilibrium.
The authors of [23, 24] conclude that the problem lies with the
Hartree approximation, because it neglects the antisymmetric

numerical results for the total magnetization M =
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character of the N-body wave function. But this is too strong
a statement. As we have seen, one can still use the Hartree
approximation, provided that the equilibrium is a FD distribu-
tion. This is sufficient to yield the correct (and small) value of
the spin polarization.

We also point out that the Pauli spin polarization is small
because it involves only electrons with an energy close to the
Fermi energy. However, these are the very electrons that are
important for all dynamical phenomena (see, for instance, the
phase space portraits in [15]), whereas electrons situated well
below the Fermi level play virtually no role. Therefore, even
though only a fraction of the electron density is polarized, it
may still have a significant impact on the transport properties.

6.3. Relativistic effects

The electromagnetic field associated with a femtosecond
laser pulse can be strong enough to induce relativistic effects,
also contributing to the spin dynamics. For spin-1/2 particles,
relativistic DFT and mean-field models based on the Dirac—
Maxwell equations were developed in the past [25-27], but
they are in general rather complex to handle either analyti-
cally or numerically. More tractable models can be obtained
by expanding the Dirac Hamiltonian in powers of 1/c [28-30].
Second-order effects include the spin—orbit coupling and the
Darwin correction, which are crucial for the proper under-
standing of magneto-optical processes in nano-objects [1].
They also lead to extra polarization and magnetization terms in
the charge density and current [30]. Recent attempts at incor-
porating relativistic effects include a fluid model derived from
the Dirac equation [31], as well as various semi-relativistic
approaches, both fluid [32] and kinetic [33, 34]. Finally, for
spin-0 particles, a kinetic model based on the Klein—Gordon
equation and the corresponding Wigner function was also
derived in recent years [35].

7. Conclusions

Solid-state metallic objects display many features similar to
those observed in high-temperature plasmas, the most obvious
example being electron oscillations near the plasma frequency.
A fair amount of modeling can be performed using the semi-
classical approaches well known in the plasma physics com-
munity, ranging from kinetic equations of the Vlasov type
to fluid models. However, particularly for nanometer scale
objects, the electron density is so large that quantum effects
cannot be neglected, both in the particle statistics (Fermi—
Dirac, which can be incorporated into the semiclassical Vlasov
approach) and in the dynamics (leading to quantum evolution
equations such as the Hartree or DFT equations). Such high
densities also imply that the electron gas in a metal is not col-
lisionless and therefore e—e correlations should be taken into
account. This is a complex problem that is still being investi-
gated [36].

In addition, electrons possess not only an electric charge,
but also a spin, which interacts with magnetic fields, both
external and self-consistent. Phase-space models can be

adapted to accommodate the spin effects in a fully quantum
fashion, although this may be more subtle for hydrodynamic
models. Finally, for strong enough laser excitations, the elec-
trons can be so violently accelerated by the laser fields that
relativistic effects come into play, also contributing to the spin
dynamics.
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