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We propose a numerical scheme to solve the semiclassical Vlasov–Maxwell equations for
electrons with spin. The electron gas is described by a distribution function f (t, x, p, s)
that evolves in an extended 9-dimensional phase space (x, p, s), where s represents the
spin vector. Using suitable approximations and symmetries, the extended phase space can
be reduced to five dimensions: (x, px, s). It can be shown that the spin Vlasov–Maxwell
equations enjoy a Hamiltonian structure that motivates the use of the recently developed
geometric particle-in-cell (PIC) methods. Here, the geometric PIC approach is generalized
to the case of electrons with spin. Total energy conservation is very well satisfied, with
a relative error below 0.05 %. As a relevant example, we study the stimulated Raman
scattering of an electromagnetic wave interacting with an underdense plasma, where the
electrons are partially or fully spin polarized. It is shown that the Raman instability is very
effective in destroying the electron polarization.
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1. Introduction

The interaction of an electromagnetic pulse with the electronic spins in metallic or
magnetic nano-objects has been the object of intense investigations, both theoretical and
experimental, over the past few decades (Bigot & Vomir 2013). It is well known that
spin effects can play a decisive role in nanometric systems, most notably the Zeeman
effect (coupling the spin to an external magnetic field) and the spin–orbit interaction
(coupling the spin to the orbital motion of the electron). In particular, the ultrafast
loss of magnetization observed in ferromagnetic nano-objects (Beaurepaire et al. 1996;
Bigot, Vomir & Beaurepaire 2009; Bigot & Vomir 2013) has been linked to various
spin-dependent mechanisms, although its fundamental origin is still being debated.
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Metallic and magnetic nano-objects have many potential technological applications, which
include to biology and medicine where they can be used to absorb electromagnetic energy
and release it as heat to destroy cancer cells (hyperthermia) (Mehdaoui et al. 2013). In
plasma physics, polarized electron beams of high spin polarization can now be created
and precisely manipulated in the laboratory (Wu et al. 2019, 2020; Nie et al. 2021).
Recently, numerical simulations of spin-polarized electron beams interacting with strong
laser pulses were performed by Wen, Keitel & Bauke (2017); Wen, Tamburini & Keitel
(2019).

From a fundamental point of view, modelling the N-body dynamics of a system
of particles possessing both charge and spin represents an ambitious theoretical and
computational challenge. Several approaches have been proposed in recent decades to
tackle this difficult problem, which rely either on hydrodynamic equations (Moldabekov,
Bonitz & Ramazanov 2018) or on wave-function-based methods such as density functional
theory (DFT) (Krieger et al. 2015).

Here, we will consider a possible alternative that relies on the use of the phase
space models inspired from classical plasma physics, where the system is governed by
a probability distribution function that evolves according to a kinetic equation (Manfredi,
Hervieux & Hurst 2019). The quantum equivalent of the classical distribution function
can be obtained from Wigner’s phase space representation of quantum mechanics. In
this representation, which is completely equivalent to the more standard Schrödinger
or Heisenberg representations, the state of a quantum system can be represented by a
function f of the phase space variables. The Wigner function evolves according to an
integro-differential equation that reduces, in the classical limit, to the Vlasov equation.
The Wigner function can be used to compute averages as in the classical case, but should
not be considered as a proper probability distribution, because it can take negative values.

If one retains the spin degrees of freedom, the Wigner distribution function becomes a
2 × 2 matrix, whose elements represent the spin-up and spin-down components, as well as
entangled states (Arnold & Steinrück 1989). The corresponding semiclassical matrix spin
Vlasov equation, coupled to Maxwell’s equations, constitutes a viable mean-field model
where the electron orbital motion is treated classically, while the spin is a fully quantum
variable (Hurst et al. 2014; Hurst, Hervieux & Manfredi 2017). This approach was recently
used to study the generation of spin currents in ferromagnetic thin films (Hurst, Hervieux
& Manfredi 2018).

A different, but equivalent, approach consists in defining a scalar distribution function
that evolves in an extended phase space (x, p, s), where the spin is a further variable (in
addition to the position and the momentum) described by a vector on the unit-radius sphere
(Marklund, Zamanian & Brodin 2010; Zamanian, Marklund & Brodin 2010a; Zamanian
et al. 2010b; Asenjo et al. 2012). The geometric structure of this scalar spin Vlasov model
has been highlighted by Marklund & Morrison (2011).

Both approaches (extended phase space and matrix Wigner function) are
mathematically equivalent. From a computational point of view, the extended phase
space method is more easily simulated using particle-in-cell (PIC) methods, because
the corresponding distribution function is transported along classical trajectories in the
extended phase space. In contrast, the matrix Wigner function method is more naturally
amenable to grid-based Vlasov codes, because the corresponding distribution function
only depends on the six variables of the ordinary phase space.

In this work, we will develop and validate a PIC code for the self-consistent spin
Vlasov–Maxwell (spin-VM) equations in the extended phase space. The adopted model is
semiclassical, in the sense that the orbital electron motion is treated in a classical fashion,
while the spin dynamics is fully quantum. The electron spin intervenes in the dynamics via
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Geometric PIC method for the spin–Vlasov–Maxwell equations 3

the Zeeman effect and a precession term, which arise from the coupling of the spin with a
self-consistent or external magnetic field. These are the first non-relativistic corrections to
the spin-less dynamics.

Despite the plentiful theoretical developments, numerical works on the simulation of
spin effects in plasmas are relatively scarce. Cowley, Kulsrud & Valeo (1986) were perhaps
the first authors to perform computer simulations of polarized electrons in a plasma using
a semiclassical kinetic approach. More recently, Brodin, Holkundkar & Marklund (2013)
developed a PIC code accounting for the magnetic dipole force and the magnetization
currents associated with the electron spin. Their work does not follow the extended phase
space approach adopted here, but rather considers two separate spin-up and spin-down
populations for the electrons, which is less general (this is known as the collinear
approximation in condensed matter physics). In a similar context, Tonge, Dauger &
Decyk (2004) and Dauger, Decyk & Dawson (2005) have extended classical PIC methods
to the quantum regime (but without spin) using an approach based on Feynman path
integrals. Very recently, PIC simulation methods for particles with spin were developed
and validated by Li et al. (2021) for applications to laser–plasma interactions.

Further, to reduce the dimensionality of the problem, we consider a simplified model
widely used to study laser–plasma interactions (Ghizzo et al. 1990; Huot et al. 2003;
Li, Sun & Crouseilles 2020) and assume that all quantities depend spatially only on the
longitudinal co-ordinate x (the direction of propagation of the incident electromagnetic
wave). We also make the hypothesis that the electron distribution function can be written
in the form:

F(t, x, p, s) = δ(p⊥−eA⊥)f (t, x, px, s), (1.1)

where f (t, x, px, s) = ∫ F(t, x, p, s) dp⊥ and p = ( px, p⊥) = ( px, py, pz). Equation (1.1) is
equivalent to stating that the electrons are cold in the perpendicular plane. Note that this
ansatz is exact, in the sense that, if satisfied by the initial condition, it is preserved along
the time evolution of the Vlasov–Maxwell equations. By using this approximation, the
extended phase space is reduced from nine dimensions to five (one in space, one in velocity
and three for the spin).

The Poisson structure proposed by Marklund & Morrison (2011) lays the bases to
construct a geometric PIC method (Qin et al. 2015; Xiao et al. 2015; He et al. 2016;
Burby 2017; Kraus et al. 2017; Morrison 2017) for the spin-VM equations. The geometric
PIC method adopted here is based on a compatible finite-element approximation of
the electromagnetic fields, combined with a particle approximation of the distribution
function. Following Kraus et al. (2017), we have chosen spline spaces, which is a family of
compatible finite elements in the sense that this approach enables a natural derivation of
discrete versions of the differential operators. The so-obtained finite-dimensional system
of ordinary differential equations (ODEs) possesses a non-canonical Poisson structure.
Subsequently, one has to implement a time discretization for this large ODE system. This is
performed by decomposing the discrete Hamiltonian into several subsystems (Crouseilles,
Einkemmer & Faou 2015; He et al. 2015; Li et al. 2019) and using a time-splitting method.
It turns out that each of the subsystem can be solved exactly in time, which means that
their composition is still a Poisson map and high-order splitting schemes can thus be easily
constructed.

The resulting spin-PIC code is tested on a well-studied problem in the physics of
laser–plasma interactions, namely stimulated Raman scattering (SRS). The SRS describes
the decay of an incident electromagnetic (em) wave into a scattered em wave and a
plasma (Langmuir) wave, through a parametric instability. First, we benchmark our code
against analytical results and former simulations carried out in the spin-less regime.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377821000532
Downloaded from https://www.cambridge.org/core. IP address: 83.194.183.11, on 28 May 2021 at 11:35:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000532
https://www.cambridge.org/core


4 N. Crouseilles, P.-A. Hervieux, Y. Li, G. Manfredi and Y. Sun

Then we exploit the full spin Vlasov–Maxwell model to study the effect of the electron
spin polarization on the Raman instability.

The rest of the paper is organized as follows. In § 2, the spin Vlasov models are presented
together with their Poisson bracket formulation. In § 3, the geometric electromagnetic
PIC (GEMPIC) framework (Kraus et al. 2017) is recalled and extended to our spin
context. In § 4, the Hamiltonian time-splitting technique is described, and finally in
§ 5,several numerical simulations of the spin-dependent Raman scattering are presented
and discussed. Finally, we draw our conclusions in § 6.

2. Spin Vlasov–Maxwell equations
2.1. General formalism

Here, we recall the basics of the spin Vlasov–Maxwell system in the extended phase space
(Marklund et al. 2010; Zamanian et al. 2010a; Marklund & Morrison 2011; Manfredi et al.
2019), satisfied by the scalar electron distribution function:

f : (t, x, p, s) ∈ R+×R
3 × R

3 × R
3 �→ f (t, x, p, s) ∈ R, (2.1)

and the self-consistent electromagnetic fields (E, B) : (t, x) �→ (E, B)(t, x) ∈ R3 × R3.
The spin Vlasov–Maxwell equations read as

∂f
∂t

+ p
m

· ∇f +
[
q
(

E + p
m

× B
)

+ μe∇(s · B)
]

· ∂f
∂p

+ 2μe

�
(s × B) · ∂f

∂s
= 0,

ε0μ0
∂E
∂t

= ∇ × B − μ0J ,

∂B
∂t

= −∇ × E,

∇ · E = ρ − qn0

ε0
,

∇ · B = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.2)

In the original paper on the scalar spin Vlasov equation (Zamanian et al. 2010a), one
further term was present, which has the form of a modified quantum magnetic dipole term:

μe

[
∇
(

B · ∂

∂s

)]
· ∂f

∂p
. (2.3)

In subsequent works by the same authors, this term was often ignored because of the
semiclassical approximation made there (Brodin et al. 2008, 2011; Brodin & Stefan 2013).
This can be justified by assuming that variations of f in spin space are of moderate size (for
a more detailed discussion, see Zamanian et al. 2010a; Brodin et al. 2011). It should also
be pointed out that this modified quantum dipole term contains derivatives in both real and
spin space, thus making the PIC algorithm much more involved. For these reasons, such
an extra term is neglected in the present developments and will be left to future works on
this topic.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377821000532
Downloaded from https://www.cambridge.org/core. IP address: 83.194.183.11, on 28 May 2021 at 11:35:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000532
https://www.cambridge.org/core


Geometric PIC method for the spin–Vlasov–Maxwell equations 5

The coupling between the Vlasov and Maxwell equations is ensured by the current and
the density (J , ρ) : (t, x) �→ (J , ρ)(t, x) ∈ R3 × R+, defined respectively as

J = q
∫

R6

pf dp ds + μe∇ ×
∫

R6

sf dp ds, ρ = q
∫

R6

f dp ds. (2.4)

Here, q = −e is the electron charge, μe = q�/2m is the Bohr magneton, � is the Planck
constant, m is the electron mass, n0 is the fixed ion density, and ε0, μ0 denote the
permittivity and the permeability of vacuum (which satisfy ε0μ0 = c−2, with c being the
speed of light). We further note that, in this model, the spin vector s is dimensionless
and has fixed length, i.e. |s| = 1 or s ∈ S2. Hence, the effective phase space is actually
8-dimensional. However, to preserve the geometric structure that will be used in the
forthcoming sections, we will consider that s ∈ R3.

In the above Vlasov equation (2.2), the first three terms are the standard terms present in
the spin-less case, the next term [∇(s · B)] is the Zeeman effect and the last term (s × B)
represents the spin precession in the magnetic field. In (2.4), the second term in the current
represents the curl of the internal magnetization owing to the electron spin. Further details
can be found in the paper by Manfredi et al. (2019).

We shall use normalized units, denoted by a tilde and defined as follows:

t
1/ωp

= t̃,
x
λ

= x̃,
p

mc
= p̃,

f
n0/c3

= f̃ ,
E

ωpcm/|q| = Ẽ,
B

ωpm/|q| = B̃,

(2.5a–f )

where we introduce the electron plasma frequency, the plasma skin depth and the scaled
Planck constant:

ωp =
√

n0q2

mε0
, λ = c

ωp
, h = �ωp

2 mc2
. (2.6a–c)

The dimensionless version of (2.2) reads as

∂f
∂t

+ p · ∇f + [(E + p × B) + h ∇(s · B)] · ∂f
∂p

+ (s × B) · ∂f
∂s

= 0,

∂E
∂t

= ∇ × B −
∫

R6

pf dp ds + h ∇ ×
∫

R6

sf dp ds,

∂B
∂t

= −∇ × E,

∇ · E =
∫

R6

f dp ds − 1,

∇ · B = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

where we remove the tilde to simplify the notation. The above dimensionless version of
the spin Vlasov–Maxwell model will be used throughout this work.

It has been shown by Marklund & Morrison (2011) that (2.7) enjoys a non-canonical
Poisson structure that enables us to rewrite this complex system in a more compact
way. Let us denote M = {( f , E, B)|∇ · B = 0} as the infinite dimensional manifold.
The system (2.7) can be expressed using the Poisson bracket introduced by Marklund
& Morrison (2011). For two functionals (F ,G) acting on M, we consider the following
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Poisson bracket, which is the sum of the Vlasov–Maxwell bracket (Marsden & Weinstein
1982) and a bracket describing spin effects:

{F ,G} = {F ,G}VM + {F ,G}s, with

{F ,G}VM =
∫

R9

f
[
δF
δf

,
δG
δf

]
xp

dx dp ds

+
∫

R9

(
δF
δE

· ∂f
∂p

δG
δf

− δG
δE

· ∂f
∂p

δF
δf

)
dx dp ds

+
∫

R3

(
δF
δE

·
(
� × δG

δB

)
− δG

δE
·
(
� × δF

δB

))
dx

+
∫

R9

f B ·
(

∂

∂p
δF
δf

× ∂

∂p
δG
δf

)
dx dp ds,

{F ,G}s = 1
h

∫
R9

f s ·
(

∂

∂s
δF
δf

× ∂

∂s
δG
δf

)
dx dp ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

Here, [·, ·]xp denotes the Lie bracket for two functions of (x, p). It was proven by Marklund
& Morrison (2011) that the bracket (2.8) is indeed a Poisson bracket. With the Hamiltonian
functional defined as follows:

H( f , E, B) = 1
2

∫
R9

|p|2f dx dp ds + h
∫

R9

s · Bf dx dp ds + 1
2

∫
R3

(|E|2 + |B|2) dx,

(2.9)

the spin Vlasov–Maxwell system (2.7) can be written in a compact way, using Z :=
( f , E, B) ∈ M:

∂Z
∂t

= {Z,H}, (2.10)

where {·, ·} is given by (2.8). This system is supplemented with an initial condition Z(t =
0) = Z0.

2.2. Reduced spin Vlasov–Maxwell equations
Here, following Ghizzo et al. (1990), we derive a reduced spin Vlasov–Maxwell model
by considering the case of a plasma interacting with an electromagnetic wave propagating
in the longitudinal x direction and assuming that all fields depend spatially on x only.
Choosing the Coulomb gauge ∇ · A = 0, the vector potential A lies in the perpendicular
(transverse) plane, i.e. A = (0, Ay, Az) =(0, A⊥). Using E = −∇φ − ∂tA, we then obtain,
using the notations E = (Ex, Ey, Ez) = (Ex, E⊥):

E⊥ = −∂tA⊥ and Ex = −∂xφ. (2.11)

This prescription implies that the electric field is mainly electromagnetic in the transverse
plane and mainly electrostatic in the longitudinal direction.

We then consider a distribution function of the form: δ(p⊥ − A⊥)f (t, x, px, s), where p =
( px, py, pz) = ( px, p⊥) is the linear momentum and p − A is the canonical momentum.
The above assumption on the distribution function is tantamount to prescribing that the
plasma is cold in the transverse plane. After integration with respect to p⊥, the relevant
extended phase space is reduced to five dimensions (instead of nine dimensions for the
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general case). The longitudinal variable px will be simply denoted by p in the rest of this
paper.

The reduced spin Vlasov–Maxwell system satisfied by the electron distribution
function f (x, p, s, t) (x, p ∈ R and s ∈ R3), the electric field E(t, x) = (Ex, E⊥)(t, x) =
(Ex, Ey, Ez)(t, x) and the vector potential A(t, x) = (Ax, A⊥)(t, x) = (0, Ay, Az)(t, x) can
be written as

∂f
∂t

+ p
∂f
∂x

+
[

Ex − h sy
∂2Az

∂x2
+ h sz

∂2Ay

∂x2
− A⊥ · ∂A⊥

∂x

]
∂f
∂p

+ (s × B) · ∂f
∂s

= 0,

B = ∇ × A =
[

0,
∂Az

∂x
,−∂Ay

∂x

]T

,

∂Ex

∂t
= −

∫
R4

pf dp ds,

∂Ey

∂t
= −∂2Ay

∂x2
+ Ay

∫
R4

f dp ds + h
∫

R4

sz
∂f
∂x

dp ds,

∂Ez

∂t
= −∂2Az

∂x2
+ Az

∫
R4

f dp ds − h
∫

R4

sy
∂f
∂x

dp ds,

∂A⊥
∂t

= −E⊥,

∂Ex

∂x
=
∫

R4

f dp ds − 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.12)

This reduced spin Vlasov–Maxwell system also possesses a non-canonical Poisson
structure. For any two functionals F and G depending on the unknowns f , E and A⊥,
the Poisson bracket reads as

{F ,G} =
∫

R5

f
[
δF
δf

,
δG
δf

]
xp

dx dp ds +
∫

R5

(
δF
δEx

∂f
∂p

δG
δf

− δG
δEx

∂f
∂p

δF
δf

)
dx dp ds

+
∫

R

(
δG
δA⊥

· δF
δE⊥

− δF
δA⊥

· δG
δE⊥

)
dx + 1

h

∫
R5

f s ·
(

∂

∂s
δF
δf

× ∂

∂s
δG
δf

)
dx dp ds, (2.13)

whereas the Hamiltonian functional, composed of the sum of kinetic, electric, magnetic
and Zeeman (spin-dependent) energies, is defined by

H( f , E, A⊥) = 1
2

∫
R5

p2f dx dp ds + 1
2

∫
R5

|A⊥|2f dx dp ds︸ ︷︷ ︸
kinetic energy

+ 1
2

∫
R

|E|2 dx︸ ︷︷ ︸
electric energy

+ 1
2

∫
R

∣∣∣∣∂A⊥
∂x

∣∣∣∣2 dx︸ ︷︷ ︸
magnetic energy

+ h
∫

R5

(
sy

∂Az

∂x
−sz

∂Ay

∂x

)
f dx dp ds︸ ︷︷ ︸

Zeeman energy

. (2.14)

Thus, the reduced spin Vlasov–Maxwell system of (2.12) can be reformulated as

∂Z
∂t

= {Z,H}, (2.15)
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where Z = ( f , Ex, Ey, Ez, Ay, Az) denotes the unknowns of the system, {·, ·} is defined
by (2.13) and the Hamiltonian H is given by (2.14). In this work, periodic boundary
conditions will be considered in the x and s directions (x ∈ [0, L], L > 0, s ∈ R3),
and vanishing boundary condition in p ∈ R. An initial condition Z(t = 0) = Z0 =
( f0, E0, A⊥,0) supplements the system. The Poisson bracket (2.13) can be derived from
(2.8) using chain rules of functional derivatives based on a similar change of unknowns
proposed by Li et al. (2020).

3. GEMPIC formalism for the reduced spin Vlasov–Maxwell system

In the framework introduced by Kraus et al. (2017), the Vlasov–Maxwell equations
are discretized through a standard particle-in-cell ansatz for the distribution function and
compatible finite elements for the electromagnetic fields. Then, the semi-discretization is
obtained by inserting the ansatz into the Hamiltonian (2.14) and the Poisson bracket (2.13)
of the reduced spin Vlasov–Maxwell equations. In this section, we will apply and detail
the strategy for our spin Vlasov–Maxwell system (2.12).

Following Kraus et al. (2017), we consider the components of the electromagnetic
fields separately, and we consider Ex, By, Bz as 1-forms and Ey, Ez, Ay, Az as 0-forms.
The 0-forms and 1-forms are discretized in finite element spaces V0 ⊂ H1 and V1 ⊂ L2,
respectively (H1 denotes the Sobolev space). There exists a commuting diagram (see
(3.1)) for the involved functional spaces in one spatial dimension (with periodic boundary
conditions), between continuous spaces in the upper line and discrete subspaces in the
lower line. The projectors Π0 and Π1 must be constructed carefully to assure the diagram
is commuting (Kraus et al. 2017).

H1
d
dx ��

Π0
��

L2

Π1
��

V0

d
dx �� V1

(3.1)

The basis for each of the finite dimensional spaces V0, V1, with dim Vk = Nk (k=0, 1) is
denoted as {Λ0

j }j=1,...,N0 and {Λ1
j }j=1,...,N1 . The dual bases of V0 and V1 are {Σ0

j }j=1,...,N0 and
{Σ1

j }j=1,...,N1 , respectively, i.e.
∫

Σ k
i Λ

k
j dx = δi,j, k = 0, 1.

In this paper, we choose B-splines as the basis functions, and N0 = N1 = M. The spatial
domain [0, L] is discretized by a uniform grid:

xj = (j − 1)�x, �x = L/M, j = 1, . . . , M. (3.2)

The B-splines basis functions {Λ0
j }j=1,...,N0 and {Λ1

j }j=1,...,N1 for V0 =span{{Λ0
j }j=1,...,N0} and

V1 =span{{Λ1
j }j=1,...,N1} are given by

Λ0
j (x) = 1

6

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
2 − |x − xj+2|

�x

)3

, 1 ≤ |x − xj+2|
�x

≤ 2,

4 − 6
( |x − xj+2|

�x

)2

+ 3
( |x − xj+2|

�x

)3

, 0 ≤ |x − xj+2|
�x

≤ 1,

0, otherwise,

(3.3)
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and

Λ1
j (x) = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x − xj

�x

)2

, 0 ≤ x − xj

�x
≤ 1,

−2
(

x − xj

�x

)2

+ 6
(

x − xj

�x

)
− 3, 1 ≤ x − xj

�x
≤ 2,

(3 − x − xj

�x
)2, 2 ≤ x − xj

�x
≤ 3,

0, otherwise.

(3.4)

The important relation between Λ1 and Λ0

d
dx

Λ0
j (x) = 1

�x

(
Λ1

j (x) − Λ1
j+1(x)

)
(3.5)

can be reformulated as
d
dx

(Λ0
1, . . . , Λ

0
N0

)(x) = (Λ1
1, . . . , Λ

1
N1

)(x)C, (3.6)

where C is a matrix of size N1 × N0 = M × M, given by

C = 1
�x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 −1
−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0

0 0
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . . 0
0 0 0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.7)

Then, each element of the finite-dimensional spaces V0 and V1 can be expanded on their
respective basis functions. For the electric field components (Ex, Ey, Ez) ∈ L2 × H1 × H1,
these are approximated by (Ex,h, Ey,h, Ez,h) ∈ V1 × V0 × V0 according to the following
representation

Ex,h(t, x) =
N1∑
j=1

ex,j(t)Λ1
j (x), Ey,h(t, x) =

N0∑
j=1

ey,j(t)Λ0
j (x), Ez,h(t, x) =

N0∑
j=1

ez,j(t)Λ0
j (x),

(3.8)
whereas for the vector potential components (Ay, Az) ∈ H1 × H1, these are approximated
by (Ay,h, Az,h) ∈ V0 × V0 according to

Ay,h(t, x) =
N0∑
j=1

ay,j(t)Λ0
j (x), Az,h(t, x) =

N0∑
j=1

az,j(t)Λ0
j (x). (3.9)

Regarding the distribution function f (t, x, p, s), we use the following representation

f (t, x, p, s) ≈ fh(t, x, p, s) =
Np∑

a=1

ωaδ(x − xa(t))δ( p − pa(t))δ(s − sa(t)), (3.10)

where ωa, xa, pa and sa denote respectively the weight, the position, the momentum
(velocity) and the spin co-ordinates of the a-th particle.
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3.1. Derivation of the discrete Poisson bracket
Using the above approximation of the electromagnetic fields (3.8)–(3.9) and of the
distribution function (3.10), we shall construct a discrete geometric structure (discrete
Poisson bracket and discrete Hamiltonian) from which the equations of motion will be
derived. Specifically, discrete functional derivatives are derived based on the discrete
representation of the unknowns (3.8)–(3.9) (see Appendix A for more details), which are
inserted into the continuous Poisson bracket (2.13) to derive the discrete Poisson bracket.

We introduce some notations to make the expressions simpler. First, we introduce the
discrete time-dependent unknowns for the electromagnetic fields:

ex =(ex,1, . . . , ex,N1)
T ∈ R

N1, ey =(ey,1, . . . , ey,N0)
T ∈ R

N0, ez =(ez,1, . . . , ez,N0)
T ∈ R

N0,

ay = (ay,1, . . . , ay,N0)
T ∈ R

N0, az = (az,1, . . . , az,N0)
T ∈ R

N0,

}

(3.11)

and for the particles (position, velocity and spin):

X = (x1, . . . , xNp)
T ∈ R

Np, P = ( p1, . . . , pNp)
T ∈ R

Np,

Si = (s1,i, . . . , sa,i, . . . , sNp,i)
T ∈ R

Np, i ∈ {x, y, z},
S = (s1, s2, . . . , sa, . . . , sNp)

T ∈ R
3Np with sa = (sa,x, sa,y, sa,z) ∈ R

3.

⎫⎪⎪⎬
⎪⎪⎭ (3.12)

Moreover, we will need some matrix notations to take into account the fields–particles
coupling:

Λk(X ) =

⎛
⎜⎜⎜⎜⎝

Λk
1(x1) · · · Λk

Nk
(x1)

Λk
1(x2) · · · Λk

Nk
(x2)

...
. . .

...

Λk
1(xNp) · · · Λk

Nk
(xNp)

⎞
⎟⎟⎟⎟⎠ ∈ MNp,Nk(R), for k = 0, 1,

Mk =

⎛
⎜⎜⎜⎜⎝

∫
Λk

1(x)Λ
k
1(x) dx · · · ∫

Λk
1(x)Λ

k
Nk

(x) dx∫
Λk

2(x)Λ
k
1(x) dx · · · ∫

Λk
2(x)Λ

k
Nk

(x) dx
...

. . .
...∫

Λk
Nk

(x)Λk
1(x) dx · · · ∫

Λk
Nk

(x)Λk
Nk

(x) dx

⎞
⎟⎟⎟⎟⎠ ∈ MNk,Nk(R), for k = 0, 1,

Nk(xa) =

⎛
⎜⎜⎜⎜⎝

Λk
1(xa)Λ

k
1(xa) · · · Λk

1(xa)Λ
k
Nk

(xa)

Λk
2(xa)Λ

k
1(xa) · · · Λk

2(xa)Λ
k
Nk

(xa)

...
. . .

...

Λk
Nk

(xa)Λ
k
1(xa) · · · Λk

Nk
(xa)Λ

k
Nk

(xa)

⎞
⎟⎟⎟⎟⎠ ∈ MNk,Nk(R), for k = 0, 1,

Λk(xa) = (Λk
1(xa), . . . , Λ

k
Nk

(xa))
T ∈ R

Nk , for k = 0, 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)
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Finally, we introduce the weight matrix and some matrices related to the spin particles:

W = diag(ω1, . . . , ωNp) ∈ MNp,Np(R),

Sa = 1
ωa

⎛
⎝ 0 sa,z −sa,y

−sa,z 0 sa,x
sa,y −sa,x 0

⎞
⎠ ∈ M3,3(R),

S = diag(S1, . . . , SNp) ∈ M3Np,3Np(R).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.14)

Any functional F of a continuous representation of the approximated fields or
distribution function (fh, Ex,h, Ey,h, Ez,h, Ay,h, Az,h) is now considered as a new function F of
the discrete unknowns (particles unknowns X , P, S, and fields finite-element coefficients
ex, ey, ez, ay, az), i.e.:

F(u) := F(X , P, S, ex, ey, ez, ay, az) := F [ fh, Ex,h, Ey,h, Ez,h, Ay,h, Az,h]. (3.15)

This representation enables us to replace all functional derivatives in (2.13) with their
discrete counterparts (see Appendix A for more details). We then obtain the semi-discrete
Poisson bracket:

{F, G} (u) = {F, G} (X , P, S, ex, ey, ez, ay, az)

=
Np∑

a=1

1
ωa

(
∂F
∂xa

∂G
∂pa

− ∂G
∂xa

∂F
∂pa

)
+ 1
h

Np∑
a=1

(
Sa

∂F
∂sa

)
· ∂G

∂sa

+
Np∑

a=1

N1∑
i,j=1

(
∂F
∂ex,i

(M−1
1 )ijΛ

1
j (xa)

∂G
∂pa

)
−

Np∑
a=1

N1∑
i,j=1

(
∂G
∂ex,i

(M−1
1 )ijΛ

1
j (xa)

∂F
∂pa

)

+
(

∂G
∂ay

)T

M
−1
0

∂F
∂ey

+
(

∂G
∂az

)T

M
−1
0

∂F
∂ez

−
(

∂F
∂ay

)T

M
−1
0

∂G
∂ey

−
(

∂F
∂az

)T

M
−1
0

∂G
∂ez

. (3.16)

By rearranging the terms, we are able to obtain the following finite-dimensional Poisson
bracket:

{F, G} = (∇uF)T
J(u)∇uG, (3.17)

where u = (X , P, S, ex, ey, ez, ay, az)
T and the matrix J(u) is defined by

J(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 W−1 0 0 0 0 0 0
−W−1 0 0 Λ1(X )M−1

1 0 0 0 0
0 0 1

hS 0 0 0 0 0

0 −M
−1
1 Λ1(X )T 0 0 0 0 0 0

0 0 0 0 0 0 M
−1
0 0

0 0 0 0 0 0 0 M
−1
0

0 0 0 0 −M
−1
0 0 0 0

0 0 0 0 0 −M
−1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.18)
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The following Theorem states that the bracket defined by (3.17)–(3.18) is indeed a Poisson
bracket.

THEOREM 3.1. The above bracket (3.17)–(3.18) is a Poisson bracket.

Proof. See Appendix B. �

3.2. Discrete Hamiltonian and equations of motion
The discrete Hamiltonian is obtained by inserting the representation of the unknowns
(3.8), (3.9) and (3.10) into the Hamiltonian (2.14). With u = (X , P, S, ex, ey, ez, ay, az)

T,
we have

H(u) = 1
2

∫
p2

Np∑
a=1

ωaδ(x − xa)δ( p − pa)δ(s − sa) dx dp ds

+ 1
2

∫ Np∑
a=1

⎛
⎝
∣∣∣∣∣∣

N0∑
j=1

ay,jΛ
0
j (x)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣

N0∑
j=1

az,jΛ
0
j (x)

∣∣∣∣∣∣
2⎞⎠

× ωaδ(x − xa)δ( p − pa)δ(s − sa) dx dp ds

+ 1
2

∫ ∣∣∣∣∣∣
N1∑
j=1

ex,jΛ
1
j (x)

∣∣∣∣∣∣
2

dx + 1
2

∫ ⎛⎝
∣∣∣∣∣∣

N0∑
j=1

ey,jΛ
0
j (x)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣

N0∑
j=1

ez,jΛ
0
j (x)

∣∣∣∣∣∣
2⎞⎠ dx

+ 1
2

∫ ∣∣∣∣∣ d
dx

N0∑
a=1

ay,jΛ
0
j (x)

∣∣∣∣∣
2

dx + 1
2

∫ ∣∣∣∣∣ d
dx

N0∑
a=1

az,jΛ
0
j (x)

∣∣∣∣∣
2

dx

+ h
∫ Np∑

a=1

⎛
⎝sy

d
dx

N0∑
j=1

az,jΛ
0
j (x) − sz

d
dx

N0∑
j=1

ay,jΛ
0
j (x)

⎞
⎠

× ωaδ(x − xa)δ( p − pa)δ(s − sa) dx dp ds. (3.19)

Using the notations (3.11), (3.12) and (3.13) introduced in the preceding section, the above
formula can be written more compactly as

H(u) = 1
2

PT
WP + 1

2

Np∑
a=1

ωaaT
y N0(xa)ay + 1

2

Np∑
a=1

ωaaT
z N0(xa)az

+ 1
2

eT
x M1ex + 1

2
eT

y M0ey + 1
2

eT
z M0ez + 1

2
aT

y C
T
M1Cay + 1

2
aT

z C
T
M1Caz

+ h aT
z C

TΛ1(X )T
WSy − h aT

y C
TΛ1(X )T

WSz. (3.20)

From the discrete Poisson bracket (3.17)–(3.18) and the discrete Hamiltonian (3.20), the
equations of motion then read as

u̇ = {u, H} = J(u)∇uH, u(t = 0) = u0, (3.21)
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Specifically, we obtain the following equations of motion:

Ẋ = P, Ṗ = −W
−1 ∂H

∂X
+ Λ1(X )ex, Ṡ = 1

h
S

∂H
∂S

,

ėx = −M
−1
1 Λ1(X )T

WP,

ėy = −M
−1
0 C

TΛ1(X )T
WSz + M

−1
0

( Np∑
a=1

ωaN0(xa)ay + C
T
M1Cay

)
,

ėz = M
−1
0 C

TΛ1(X )T
WSy + M

−1
0

( Np∑
a=1

ωaN0(xa)az + C
T
M1Caz

)
,

ȧy = −ey, ȧz = −ez,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

where

∂H
∂xa

= wa

2
aT

y Lay + wa

2
aT

z Laz + h aT
z C

T ∂(Λ1(X ))T

∂xa
WSy − h aT

y C
T ∂(Λ1(X ))T

∂xa
WSz,

with L =
(

∂

∂xa
Λ0(xa)Λ

0(xa)
T + Λ0(xa)

∂

∂xa
Λ0(xa)

T

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.23)

and finally for ∂H
∂S (recalling S = (s1, s2, . . . , sa, . . . , sNp)

T ∈ R3Np ), we get for the spin
variables of the a-th particle,

∂H
∂sa,x

= 0,
∂H
∂sa,y

= h aT
z C

TΛ1(xa)ωa,
∂H
∂sa,z

= −h aT
y C

TΛ1(xa)ωa. (3.24a–c)

4. Hamiltonian splitting method

Once the semi-discretization is performed, the resulting Poisson system has to be
integrated in time. Here, a Hamiltonian splitting method (Crouseilles et al. 2015; Li et al.
2019) is adopted, in which the solution is obtained as compositions of exact solutions of
Hamiltonian subsystems. Hence, such resulting schemes are Poisson integrators in the
sense of Hairer, Lubich & Wanner (2002). Moreover, as we will see, each substep is
explicit in time, and can be used to derive higher-order methods, which takes into account
some specific commutator relations (Hairer et al. 2002; Casas et al. 2017). By splitting the
discrete Hamiltonian H given by (3.20) into the following four parts

H = Hp + HA + Hs + HE, (4.1)

where

Hp = 1
2

PT
WP,

HA = 1
2

Np∑
a=1

ωaaT
y N0(xa)ay + 1

2

Np∑
a=1

ωaaT
z N0(xa)az + 1

2
aT

y C
T
M1Cay + 1

2
aT

z C
T
M1Caz,

Hs = h aT
z C

TΛ1(X )T
WSy − h aT

y C
TΛ1(X )T

WSz,

HE = 1
2

eT
x M1ex + 1

2
eT

y M0ey + 1
2

eT
z M0ez,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
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we are led to solve the four corresponding Hamiltonian subsystems

u̇ = {u, Hp
}
, u̇ = {u, HA} , u̇ = {u, Hs} , u̇ = {u, HE} , (4.3a–c)

where u = (X , P, S, ex, ey, ez, ay, az)
T and the corresponding solution flows are denoted

by ϕ
[Hp]
t , ϕ

[HA]
t , ϕ

[Hs]
t and ϕ

[HE]
t . Then, numerical solutions of (3.21) can be obtained, for

instance, as a first-order Lie splitting or a second-order Strang splitting:

ϕ
[Hp]
t ◦ ϕ[HA]

t ◦ ϕ[Hs]
t ◦ ϕ[HE]

t , ϕ
[Hp]
t/2 ◦ ϕ

[HA]
t/2 ◦ ϕ

[Hs]
t/2 ◦ ϕ[HE]

t ◦ ϕ
[Hs]
t/2 ◦ ϕ

[HA]
t/2 ◦ ϕ

[Hp]
t/2 . (4.4a,b)

Let us also remark that higher-order splitting schemes can be easily constructed by a
suitable composition of the subflows ϕ

[H∗]
t (see Hairer et al. 2002; Casas et al. 2017). It

is worth mentioning that each subflow ϕ
[H∗]
t can be solved exactly, which will be detailed

in the following subsections.

4.1. Subsystem Hp

The subsystem corresponding to Hp = (1/2)PT
WP is u̇ = J(u)∇uHp, or specifically

Ẋ = P, Ṗ = 0, Ṡ = 0,

ėx = −M
−1
1 Λ1(X )T

WP, ėy = 0, ėz = 0,

ȧy = 0, ȧz = 0.

⎫⎪⎬
⎪⎭ (4.5)

For this subsystem, we only need to compute X , ex at time t

X (t) = X (0) + tP(0), M1ex(t) = M1ex(0) −
∫ t

0
Λ1(X (τ ))T

WP(0) dτ. (4.6)

REMARK 4.1. Multiplying CTM1 from the left with ėx = −M
−1
1 Λ1(X )TWP, we get

C
T
M1ėx(t) = −C

TΛ1(X )T
WP. (4.7)

As Λ1(X )C = ∂xΛ0(X ), we get CTM1ėx(t) = −∂xΛ0(X )TWP and using Ẋ = P, we have

C
T
M1ėx(t) = −dΛ0(X )T

dt
W1Np, (4.8)

with 1Np the vector of size Np composed of 1. Then, the discrete Poisson equation
CTM1ex(t) = −Λ0(X )TW1Np is always satisfied if it holds initially.

4.2. Subsystem HA

The subsystem corresponding to HA is

Ẋ = 0, Ṗ = −W
−1 ∂HA

∂X
, Ṡ = 0,

ėx = 0, ėy = M
−1
0

( Np∑
a=1

ωaN0(xa)ay + C
T
M1Cay

)
,

ėz = M
−1
0

( Np∑
a=1

ωaN0(xa)az + C
T
M1Caz

)
,

ȧy = 0, ȧz = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)
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Geometric PIC method for the spin–Vlasov–Maxwell equations 15

In this subsystem, X , S, ex, ay, az are unchanged. In the following, we will use the
identities defined in (3.13) and (3.23)

N0(xa) = Λ0(xa)Λ
0(xa)

T, L := ∂

∂xa
N0(xa) = ∂

∂xa
Λ0(xa)Λ

0(xa)
T + Λ0(xa)

∂

∂xa
Λ0(xa)

T.

(4.10)

Then, for each component of P = ( p1, . . . , pa, . . . , pNp), an explicit Euler integrator
becomes exact because ay(t) = ay(0) and az(t) = az(0),

pa(t) = pa(0) − t
1
ωa

(
1
2
ωaay(0)T ∂

∂xa
N0(xa)ay(0) + 1

2
ωaaz(0)T ∂

∂xa
N0(xa)az(0)

)
,

= pa(0) − t
(

1
2

ay(0)T ∂

∂xa
N0(xa)ay(0) + 1

2
az(0)T ∂

∂xa
N0(xa)az(0)

)
,

= pa(0) − t
2

ay(0)T
Lay(0) − t

2
az(0)T

Laz(0). (4.11)

For the transverse electric field, we get

M0ey(t) = M0ey(0) + t

( Np∑
a=1

ωaN0(xa)ay(0) + C
T
M1Cay(0)

)
,

M0ez(t) = M0ez(0) + t

( Np∑
a=1

ωaN0(xa)az(0) + C
T
M1Caz(0)

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.12)

REMARK 4.2. Formula (4.10) turns matrix–vector multiplications into vector–vector
multiplications, which will significantly reduce the computational cost.

4.3. Subsystem Hs

The subsystem of ODEs corresponding to Hs = h aT
z CTΛ1(X )TWSy − h aT

y CTΛ1(X )TWSz
is

Ẋ = 0, Ṗ = −W
−1 ∂Hs

∂X
, Ṡ = 1

h
S

∂Hs

∂S
,

ėx = 0, ėy = −hM−1
0 C

TΛ1(X )T
WSz, ėz = hM−1

0 C
TΛ1(X )T

WSy,

ȧy = 0, ȧz = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.13)

For this subsystem, we first solve Ṡ = (1/h)S(∂Hs/∂S). For the a-th particle, we have

ṡa =
⎛
⎝ṡa,x

ṡa,y
ṡa,z

⎞
⎠ =

⎛
⎝ 0 Ya Za

−Ya 0 0
−Za 0 0

⎞
⎠
⎛
⎝sa,x

sa,y
sa,z

⎞
⎠ =: r̂asa, (4.14)

where Ya = aT
y CTΛ1(xa), Za = aT

z CTΛ1(xa), Λ1(xa) = (Λ1
1(xa), . . . , Λ

1
N1

(xa))
T. Let us

define the vector ra = (0, Za,−Ya) ∈ R3, then the Rodrigues formula gives the following
explicit solution for (4.14)

sa(t) = exp(tr̂a)sa(0) =
⎛
⎝I + sin(t|ra|)

|ra| r̂a + 1
2

(
sin( t

2 |ra|)
|ra|
2

)2

r̂2
a

⎞
⎠ sa(0), (4.15)

where I is the 3 × 3 identity matrix.
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16 N. Crouseilles, P.-A. Hervieux, Y. Li, G. Manfredi and Y. Sun

Next, we integrate in time the equation on the transverse electric field to get (using
Ẋ = 0)

M0ey(t) = M0ey(0) − hCTΛ1(X )T
W

∫ t

0
Sz(τ ) dτ,

M0ez(t) = M0ez(0) + hCTΛ1(X )T
W

∫ t

0
Sy(τ ) dτ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.16)

where we recall Si(τ ) = (s1,i, . . . , sa,i, . . . , sNp,i)
T ∈ RNp, i ∈ {y, z}, see (3.12). We then

have to integrate in time the spin variable. This is done using (4.15)

∫ t

0
sa(τ )dτ =

∫ t

0
exp(τ r̂a)sa(0) dτ

=
(

tI − cos(t|ra|)
|ra|2 r̂a + 1

|ra|2 r̂a + 2
|ra|2

(
t
2

− sin(t|ra|)
2|ra|

)
r̂2

a

)
sa(0). (4.17)

Now we focus on the impulsion variable P. Using the fact that Ẋ = 0, ȧy = ȧz = 0, we
integrate in time each component of P to get

pa(t) = pa(0) − aT
z (0)CT ∂Λ1(xa)

∂xa

∫ t

0
sa,y(τ ) dτ + aT

y (0)CT ∂Λ1(xa)

∂xa

∫ t

0
sa,z(τ ) dτ. (4.18)

4.4. Subsystem HE

The subsystem corresponding to HE = (1/2)eT
x M1ex + (1/2)eT

y M0ey + (1/2)eT
z M0ez is

Ẋ = 0, Ṗ = Λ1(X )ex, Ṡ = 0,

ėx = 0, ėy = 0, ėz = 0,

ȧy = −ey, ȧz = −ez.

⎫⎪⎬
⎪⎭ (4.19)

Because Ẋ = 0, ėx = 0, the equation on P can be solved easily

P(t) = P(0) + tΛ1(X )ex(0). (4.20)

Similarly, the transverse vector potential can be computed exactly in time:

ay(t) = ay(0) − tey(0), az(t) = az(0) − tez(0). (4.21a,b)

5. Numerical simulations of stimulated Raman scattering with polarized electrons

This part is devoted to numerical simulations of a laser–plasma model using the
geometric PIC method detailed in the preceding sections. Laser–plasma interactions play
a decisive role in many areas of plasma physics, most notably inertial fusion and plasma
accelerators. Recently, the interaction of an intense laser pulse with a polarized electron
beam was studied numerically using PIC methods (Wen et al. 2017, 2019). In these
works, different models were developed based either on classical considerations or on
the semiclassical limit of the Dirac Hamiltonian in the Foldy–Wouthuysen representation.
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Geometric PIC method for the spin–Vlasov–Maxwell equations 17

FIGURE 1. Schematic view of the geometry of the laser–plasma interaction during stimulated
Raman scattering.

The emission of radiation from the electrons was taken into account via the
Landau–Lifshitz force.

One of the most topical problems in laser–plasma interactions is the efficient
acceleration of charged particles (electrons) by large-amplitude longitudinal plasma
waves. An efficient way to create such large-amplitude plasma waves involves the SRS
mechanism (Forslund, Kindel & Lindman 1975), which can be viewed as a parametric
instability. During SRS, an incident electromagnetic wave decays into a scattered
electromagnetic wave and a Langmuir (plasma) wave, which is responsible for the electron
acceleration (see figure 1). Our purpose is to investigate the effect of the electron spin on
the SRS instability.

As the full system is rather complex, we will proceed step by step. First, we consider
the SRS problem without spin, which was studied in several past works using a
grid-based (Eulerian) Vlasov code (Ghizzo et al. 1990; Huot et al. 2003; Li et al.
2020). As Eulerian codes are particularly stable and accurate over the entire phase
space, we will use them as a benchmark for our PIC simulations. The benchmark
will be carried out in the spin-less case, for which an Eulerian code is available.
Second, we consider the spin Vlasov–Maxwell model studied in § 2.2, but remove the
effect of the plasma on the propagation of the electromagnetic wave. This amounts
to assuming that the wave propagates freely (as in a vacuum) and interacts with the
plasma, but the plasma does not impact the propagation of the wave. In contrast, the
longitudinal nonlinearity owing to Poisson’s equation is maintained. In this case, an
approximate solution of the spin dynamics can be obtained analytically, which enables us
to validate the numerical simulations. Finally, we simulate the complete spin-dependent
model (2.12) and study the influence of the various physical parameters: amplitude of
the electromagnetic wave, temperature, initial electron polarization and scaled Planck
constant.

5.1. SRS without spin
We consider the model put forward by Ghizzo et al. (1990), Huot et al. (2003) and Li et al.
(2020), which corresponds to our (2.12) where the spin dependence has been removed.
The distribution function f (t, x, p) and the electromagnetic fields (Ex, E⊥, A⊥)(t, x) obey
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18 N. Crouseilles, P.-A. Hervieux, Y. Li, G. Manfredi and Y. Sun

the equations

∂f
∂t

+ p
∂f
∂x

+
[

Ex − A⊥ · ∂A⊥
∂x

]
∂f
∂p

= 0,

∂Ex

∂t
= −

∫
R

pf dp,

∂Ey

∂t
= −∂2Ay

∂x2
+ Ay

∫
R

f dp,

∂Ez

∂t
= −∂2Az

∂x2
+ Az

∫
R

f dp,

∂Ay

∂t
= −Ey,

∂Az

∂t
= −Ez.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

As an initial condition for f , we use a perturbed Maxwellian

f (t = 0, x, p) = (1 + α cos(kex))
1√

2πvth

exp
(

− p2

2v2
th

)
, x ∈ [0, L], p ∈ R, (5.2)

so that the initial longitudinal electric field is Ex(t = 0, x) = (α/ke) sin(kex). Here, α and
ke are the amplitude and the wave number of the perturbation, respectively, and vth is the
electron thermal speed. For the transverse fields, we consider an electromagnetic wave
with circular polarization:

Ey(t = 0, x) = E0 cos(k0x), Ez(t = 0, x) = E0 sin(k0x),

Ay(t = 0, x) = −E0

ω0
sin(k0x), Az(t = 0, x) = E0

ω0
cos(k0x),

⎫⎬
⎭ (5.3)

where k0 is the wave number and E0 is the amplitude of the transverse electric field. We
use periodic boundary conditions with spatial period L = 4π/ke. The circular polarization
is chosen because it is likely to have maximum impact on the electron spin, which will be
considered in the next two subsections.

In the SRS instability, the incident electromagnetic wave (ω0, k0) drives two waves
inside the plasma: a scattered electromagnetic wave (ωs, ks) and an electron plasma wave
(ωe, ke), where ω and k denote respectively the frequency and wave number of each
wave. These waves are matched according to the conditions (conservation of energy and
momentum):

ω0 = ωs + ωe, and k0 = ks + ke, (5.4a,b)

with ω2
0,s = 1 + k2

0,s and ω2
e = 1 + 3v2

thk2
e .

A schematic view of this configuration is shown in figure 1.
Following Ghizzo et al. (1990), we take the following values for the physical parameters

of the plasma and the wave (recall that frequencies are normalized to ωp, velocities to c,
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Geometric PIC method for the spin–Vlasov–Maxwell equations 19

(a) (b)

FIGURE 2. SRS simulations without spin. Time evolution of the amplitude of the longitudinal
electric field norm ‖Ex(t)‖ on a semi-loge scale. We compare the results of the Eulerian grid
code (black curves) and the PIC code (red curves) for two values of the initial amplitude of
the electromagnetic wave. We investigate (a) E0 = Eref = 0.325 (observed slope in the linear
regime: γ ≈ 0.03) and (b) E0 = 2Eref = 0.65 (γ ≈ 0.06).

wave numbers to ωp/c and electric fields to ωpmc/e):

α = 0.02, ke = 1.22, k0 = 2ke, vth = 0.17. (5.5a–d)

Using the matching conditions (5.4a,b), this yields:

ks = ke, ω0 = 2.63, ωs = 1.562, ωe = 1.061. (5.6a–d)

As a reference value, we take for the amplitude of the incident wave Eref = 0.325. The
actual values used in the simulations will be in the range 0.25Eref ≤ E0 ≤ 2Eref. In all
cases, the quiver velocity vosc = E0/ω0 is smaller than unity, which ensures that the present
non-relativistic approximation is valid.

To check the accuracy of our PIC code in the spin-less regime, we also developed
a grid-based Eulerian code (see Li et al. (2020) for more details). For the PIC code,
the numerical parameters are Nx = 512, Npart = 5 × 105,�t = 0.01, whereas for the grid
code, we take Nx = 128, Nv = 128,�t = 0.01. Both codes preserve the total energy with
a relative error less than 0.05 %.

In figure 2, we plot the time evolutions of the longitudinal electric field norm

‖Ex(t)‖ =
(

1
2

∫ L

0
E2

x dx
)1/2

(5.7)

(on a semi-loge scale) for two values of the incident wave amplitude (E0 = 0.325 and
E0 = 0.65). The initial conditions are the same for both codes, but the PIC code displays
a higher level of initial fluctuations (noise) that is inherent to the numerical method. This
is also why we had to take a somewhat high initial perturbation (α = 0.02), so that it
is significantly larger than the noise level. We can observe a relatively good agreement
between these two numerical methods in the linear phase. The observed growth rate (γ ≈
0.03 for E0 = 0.325 and γ ≈ 0.06 for E0 = 0.65) is proportional to the amplitude E0 and
close to the value expected from the linear theory (γ ≈ 0.04, see Ghizzo et al. 1990).
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5.2. Spin-dependent model without wave self-consistency
In this part, we study the propagation of a circularly polarized wave into a plasma which
does not retroact on the wave. Hence, the electromagnetic wave propagates as if it was in
a vacuum. In this case, there is no SRS instability.

With the notations of § 2.2, the model we consider here reads as

Ż = {Z, H̃}, (5.8)

where Z = ( f , Ex, Ey, Ez, Ay, Az), {·, ·} is the bracket defined in (2.13) and H̃ is the
Hamiltonian defined as

H̃( f , E, A⊥) = 1
2

∫
R5

p2f dx dp ds + 1
2

∫
R

(
|E|2 +

∣∣∣∣∂A⊥
∂x

∣∣∣∣2
)

dx

+ h
∫

R5

(
sy

∂Az

∂x
− sz

∂Ay

∂x

)
f dx dp ds, (5.9)

which means that the term A⊥ · ∂A⊥/∂x∂f /∂p disappears from the Vlasov equation in
(2.12), and the terms Ay

∫
R4 f dp ds, Az

∫
R4 f dp ds disappear from the Maxwell equations

in (2.12). In this case, the electromagnetic wave is not coupled to the plasma and can
be determined exactly by solving the corresponding Maxwell equations for Ey and Ez.
In contrast, the longitudinal nonlinearity is kept in the model, hence Ex is a solution of
Poisson’s equation. The resulting reduced system preserves the geometric structure of the
full system.

The initial condition on the distribution function is as follows (see Appendix D):

f (t = 0, x, p, s) = 1
4π

(1 + ηsz)(1 + α cos(kex))
exp
(

− p2

2v2
th

)
√

2πvth

,

x ∈
[

0,
4π

ke

]
, p ∈ R, s ∈ S

2, (5.10)

i.e. it is the product of the initial spin-less distribution function (5.2) times a
spin-dependent part. Hence, the spin variables are initially uncorrelated with the positions
and velocities of the particles. The spin-dependent part should be fully quantum
mechanical, and is therefore obtained from the 2 × 2 density matrix for spin-1/2 fermions,
with the additional assumption that the spin must be directed either parallel or antiparallel
to the z axis (Manfredi et al. 2019) (collinear approximation). More details are given in
Appendix D. The variable η represents the degree of polarization of the electron gas:
η = 0 for an unpolarized gas and η = 1 for a fully polarized gas. Here, we use η = 0.5
and h = 0.00022. This value of the scaled Planck constant corresponds to a dense electron
gas of density n0 = 1031 m−3 and temperature kBT = 100 eV. All other parameters take
the same values as in the spin-less case treated in § 5.1.

Neglecting the spatial dependence of the magnetic fields, an approximate closed
equation for the dynamics of the macroscopic spin S(t) = ∫ sf dx dp ds ∈ R3 can be
obtained by integrating the Vlasov equation (2.12) in (x, p, s). We get the following ODE
system:

Ṡ = S × B, (5.11)

with B = (0,−∂xAz, ∂xAy)
T. Considering a circularly polarized electromagnetic wave, the

magnetic field is (still neglecting spatial effects) B(t) = (0, B0 sin(ω0t),−B0 sin(ω0t), with
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B0 = E0k0/ω0. In the regime B0/ω0 
 1 (i.e. when the Larmor precession frequency
eB0/m is much smaller than the laser frequency), it can be shown that the spin Sz(t)
oscillates with a frequency ωspin = B2

0/(2ω0) (see Appendix C for details).
Here, this solution will be compared with the evolution of S(t) obtained from the

numerical solution of the spin Vlasov–Maxwell equations. As the retroaction terms were
removed from the Vlasov equation, there is no SRS instability. Then, the magnetic field of
the incident wave remains approximately constant in amplitude, thus justifying the use of
(5.11) as a valid approximation.

We use the same physical parameters as in § 5.1 and define the reference magnetic field
of the incident wave as

Bref = Erefk0

ω0
= 0.123k0, so that

B2
ref

2ω0
= 0.017. (5.12)

We have that Bref/ω0 = 0.123k0/ω0 ≈ 0.11. We will use values up to B0 = 2Bref so that
the condition B0/ω0 
 1 is always satisfied, albeit marginally.

In figure 3, we plot the time evolution of the z component of the macroscopic spin vector
Sz(t) = ∫ szf dx dp ds and its frequency spectrum (the frequencies are expressed in units of
2π/T , where T is the final simulation time) for three different values of E0 (and hence B0):
E0 = 0.5Eref, E0 = Eref and E0 = 2Eref. Here, Sz displays a damped oscillatory behaviour
with a spectrum that is well-localized around a single frequency. This dominant frequency
is close to the theoretical value ωspin = B2

0/(2ω0), which yields ωspin = 0.0043, 0.018 and
0.068 for the three cases considered here. In particular, the quadratic scaling between ωspin
and B0 is well respected.

The observed damping is likely to arise from phase mixing in the phase space and its
rate also increases rapidly with E0. The effect of the temperature on the damping will be
studied in more details in the next subsection.

5.3. Full spin-dependent model
In this section, we consider the full spin Vlasov–Maxwell model (2.12) and study the
influence of several physical parameters on the spin dynamics. In particular, we will
analyse the effect of the incident wave amplitude, the electronic temperature, the initial
spin polarization and the scaled Planck constant. The remaining physical parameters are
those of § 5.1.

We will consider two types of initial conditions for the distribution function. The first
(labelled ‘Wigner’) is the one already used in the preceding subsection, see (5.10), and
corresponds to a quantum density matrix for an ensemble of spins directed parallel to
the z axis. The second initial condition (labelled ‘Dirac’) corresponds to an ensemble of
classical spins all having directions along the z axis; it does not correspond to any quantum
state and is used here only to illustrate more clearly the loss of spin polarization in the
electron gas.

5.3.1. Wigner initial condition
The initial condition is the Maxwell–Boltzmann distribution of (5.10), whose derivation

is detailed in Appendix D. The physical parameters are the same as in our reference case
described in § 5.1. The electromagnetic fields are initialized as in (5.3). The numerical
parameters are as follows: �t = 0.04, Np = 2 × 104, Nx = 128.

Laser field amplitude. In figure 4, we study the influence of the incident wave amplitude
E0, using h = 0.00022. The two columns in the figure refer to two values of E0: Eref on
the left and 2Eref on the right. Conservation of the total energy is good for the PIC code
standards, with an error on the relative energy |Etot(t) − Etot(0)|/Etot(0) of approximately
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. Spin-dependent model without wave self-consistency for three values of the incident
wave amplitude: E0 = 0.5Eref (a,b), E0 = Eref (c,d) and E0 = 2Eref (e, f ). (a,c,e) Time history
of Sz(t) (time is in units of ω−1

p ). (b,d, f ) Corresponding frequency spectrum in units of ωp. The
expected values of the spin precession frequencies are (from a,b to e, f ) ωspin = 0.0043, 0.018
and 0.068.

3 × 10−4. This good conservation property arises from the fact that our algorithm is a fully
discrete structure-preserving method.

The instability rate, measured from the growth of the longitudinal electric field
amplitude ‖Ex(t)‖, is very similar to that observed in the spin-less simulations, namely
γ = 0.03 (E0 = Eref) and γ = 0.06 (E0 = 2Eref).

The instability has a strong impact on the spin dynamics. In particular, the z component
of the macroscopic spin Sz(t) = ∫ szf dx dp ds is damped much more efficiently in the
large-amplitude case (right column), where the instability develops faster and saturates at
a higher level. The frequency spectrum of Sz(t) displays in both cases a well-defined peak.
There is a factor of approximately 5.5 between the spin precession frequencies observed for
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

FIGURE 4. Full spin-dependent model. We illustrate the influence of the amplitude E0 of the
incident wave for (a,c,e,g,i) E0 = Eref and (b,d, f,h,j) E0 = 2Eref. (a,b) Time history of the the
relative total energy |Etot(t) − Etot(0)|/Etot(0) (on a semi-loge scale). (c,d) Time history of the
longitudinal electric field norm ‖Ex‖ (on a semi-loge scale); the red straight lines have slopes
0.03 (c) and 0.06 (d). (e, f ) Magnetic energy (1/2)

∫ |B|2dx. (g,h) Time history of the spin
component Sz(t). (i, j) Frequency spectrum of Sz.
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(a) (b)

(c) (d)

FIGURE 5. Full spin-dependent model. Influence of the electron temperature using two values
of the thermal speed: vth = 0.17 (a,c) and vth = 0.51 (b,d). For both cases, the field amplitude
is E0 = Eref. Here, (a,b) show the time history of the longitudinal electric field norm (on a
semi-loge scale) and (c,d) show the time history of the spin component Sz(t). The inset in (a)
displays a zoom of the longitudinal electric field evolution in the time range ωpt ∈ [0, 200],
which shows the development of the linear instability.

E0 = Eref and E0 = 2Eref. This is slightly larger that the quadratic scaling with E0 predicted
by our simple model ωspin = B2

0/(2ω0) (see § 5.2 and Appendix C for further details).
However, one must recall that this expression was derived under the assumption of an
incident wave of constant amplitude E0. Here, in contrast, the amplitude is modulated in
time, which then affects the quadratic scaling.

Thermal effects. Next, we study the influence of the temperature by considering two
values of the thermal speed: vth = 0.17 (as in the previous results of figure 3) and vth =
0.51, while the field amplitude is fixed to E0 = Eref and h = 0.00022. The wave number
ke also changes, as it is dependent on the temperature (ke = 1.22 and ke = 1.46, for the
low-temperature and high-temperature cases, respectively), but the matching conditions
of (5.4a,b) are still satisfied with k0 = 2ke and ω2

0 = 1 + k2
0.

The simulation results are shown in figure 5. In the high-temperature case, the instability
is clearly suppressed, nevertheless, the spin is damped much faster than in the ‘cold’ case.
Furthermore, we checked that when no laser pulse is present at all (i.e. E0 = 0, not shown
here), no loss of the polarization is observed.

This is an intriguing result. First, it reveals that the laser pulse is mandatory to induce
some loss of polarization. When the laser wave amplitude E0 is sufficiently high and
the plasma is sufficiently cold, the SRS instability is triggered, and this induces a loss
of spin polarization in the electron gas. This loss of polarization is faster for larger
wave amplitudes (figure 4). For warmer plasmas, the SRS instability is suppressed,
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(a) (b)

(c) (d)

FIGURE 6. Full spin-dependent model. Influence of h on Sz(t): (a) h = 0.00022; (b) h = 0.05;
(c) h = 0.1; (d) h = 0.2. For all cases, the initial spin polarization is η = 0.5.

but depolarization still occurs owing to temperature effects (figure 5). Nevertheless, the
presence of the electromagnetic wave is still necessary to observe this ‘thermal’ loss of
polarization.

Such depolarization mechanisms are akin to the ultrafast demagnetization observed in
metallic nanostructures irradiated with femtosecond laser pulses (Beaurepaire et al. 1996;
Bigot et al. 2009; Bigot & Vomir 2013).

Scaled Planck constant and initial polarization. In figure 6, the time history of
Sz(t) is displayed for η = 0.5 and different values of the scaled Planck constant: h =
0.00022, 0.05, 0.1 and 0.2. The influence of h on the spin dynamics is rather modest
and becomes appreciable only for values that are approaching unity. The main observable
effect is an increase of the oscillation period with the scaled Planck constant.

Figure 7 shows the influence of the initial electron polarization (η = 0.2, 0.5 and 1) for
two different values of the scaled Planck constant, h = 0.00022 and h = 0.2. The initial
value of the macroscopic spin Sz is given by Sz(t = 0) = L〈sz〉 = Lη/3 ≈ 3.42η, see also
Appendix D. Hence, to compare results with different values of η, we plot the quantity
Sz(t)/η. At low h, the effect of η is weak. In contrast, for large h, a larger initial polarization
is associated with a stronger damping of the macroscopic spin.

Spin dynamics. To investigate the microscopic spin dynamics in more detail, we have
divided the interval of values taken by the spin component sz ∈ [−1,+1] into 200 bins
each with a size of 0.01. We call N(sz) the number of particles having the spin component
sz in an interval around sz, and Np is the total number of particles. In figure 8(a–k), we show
the histograms of N(sz)/Np as a function of sz at different times. The electron distribution
at t = 0 is linear in sz, as shown in (5.10) and in Appendix D. In this case, the electron gas
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(a) (b)

FIGURE 7. Full spin dependent model. Influence of the initial polarization η for two values of
the scaled Planck constant h. We plot the ratio Sz(t)/η, which is initially independent of η, for (a)
h = 0.00022, η = 0.2, 0.5, and 1; (b) h = 0.2, η = 0.2, 0.5, and 1.

is initially fully polarized along the positive z direction so that the distribution goes from
N(sz)/Np = 0 for sz = −1 to N(sz)/Np = 1 for sz = 1.

For instance, one can see that at ωpt = 200 (figure 8c), the spin direction has completely
reversed, which indicates that the global spin now points along the negative z direction. In
contrast, at ωpt = 1500 (figure 8i), the distribution is flat, which indicates that the global
spin is close to zero. The slope of the spin distribution decreases progressively with time,
thus revealing some amount of damping. This behaviour is confirmed by the time history
of the global spin component Sz(t), shown in figure 8(l).

5.3.2. Dirac initial condition
We consider the following initial condition for the distribution function:

f0(x, p, s) = (1 + α cos(kex))
1√

2πvth

exp
(

− p2

2v2
th

)
δ(s − (0, 0, 1)T),

x ∈
[

0,
4π

ke

]
, p ∈ R, s ∈ S

2, (5.13)

which corresponds to an ensemble of classical spins which are all directed along the
positive z axis. This distribution does not have a clear quantum mechanical meaning, as it
does not correspond to any actual Wigner function or density matrix. However, it is useful
to perform some numerical simulations with this initial condition, as it enables us to better
highlight the dynamics of the spin of the particles on the unit sphere.

The parameters of the electromagnetic fields are the same as those in § 5.1, with E0 =
Eref and h = 0.00022. In figures 9 and 10, we show the spins s of the electrons at different
instants t, together with the time history of the global spin components Sy(t) and Sz(t), for
two values of the thermal speed vth = 0.17 (figure 9) and vth = 0.51 (figure 10). At t = 0,
the spin variables of all particles are localized at the north pole of the sphere, as indicated
by the single red dot in the initial condition.

First, we remark that the spin vector of each particle remains on the unit sphere: |sa(t)| =
1,∀a = 1, . . . , Np and ∀t > 0. This is of course the case for the continuous model, but it
is worth emphasizing that our numerical scheme is capable of capturing this important
geometric property exactly.

At later times, the spin distribution broadens and explores most of the surface of the
sphere. For vth = 0.17, the distribution moves around the surface of the sphere but remains
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

FIGURE 8. Full spin-dependent model. Histograms of sz at different times, for a case with h = 0.00022, vth = 0.17, η = 1. From (a–k): ωpt =
0, 100, 200, 300, 400, 500, 600, 1000, 1500, 3000 and 4000. Here, N(sz) is the number of particles having the z spin component in an interval around
sz and Np is the total number of particles. The frame (l) shows the time history of the global spin component Sz(t). The red dots correspond to the
times of the different histograms displayed in (a–k).
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k)

FIGURE 9. Full spin-dependent model with Dirac initial condition and vth = 0.17. Panels (a–i):
distribution of the spins on the unit sphere at times ωpt = 0, 100, 200, 300, 400, 500, 600, 1000
and 1500. Panels ( j,k) show the time history of Sy(t) and Sz(t), the red dots correspond to the
times of the different snapshots displayed in (a–i).

rather localized on it. This is in line with the evolution of the global spin components
Sy,z(t) (figure 9j–k), which oscillate with little damping. For vth = 0.51, the distribution
covers the surface of the sphere more uniformly, although the motion is not completely
ergodic, and some ring-shaped structures are still visible at times ωpt � 1000. This is also
consistent with the corresponding evolution of the spin components Sy,z(t) (figure 10j–k),
which are more heavily damped than in the low-temperature case.

6. Conclusion

Spin effects in plasmas have been studied extensively during the last two decades
(for a recent review, see (Manfredi et al. 2019)). From an experimental point of view,
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k)

FIGURE 10. Full spin-dependent model with Dirac initial condition and vth = 0.51. Panels
(a–i): distribution of the spins on the unit sphere, at times ωpt = 0, 100, 200, 300, 400, 500,
600, 1000, and 1500. Panels ( j,k) show the time history of Sy(t) and Sz(t), the red dots correspond
to the times of the different snapshots displayed in (a–i).

polarized electron beams can now be created and precisely manipulated in the laboratory
(Wu et al. 2019, 2020; Nie et al. 2021). Most theoretical works report on various
analytical developments aimed at including ever more sophisticated effects, such as
relativistic corrections or spin–orbit coupling. However, few efforts have been devoted
to the development of numerical methods that are suitable for simulating spin-polarized
plasmas in realistic situations. The main objective of the present study was to implement an
accurate numerical code for plasmas where the spin of the electrons plays a non-negligible
role.
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Just like for ordinary plasmas, numerical methods for spin-polarized plasmas also
come from two main families: Eulerian (grid-based) and Lagrangian (particle-based).
This distinction is even more pertinent for spin plasmas. Indeed, the relevant quantum
evolution equations can be formulated in terms of a Wigner distribution function, which
characterizes a quantum state in the classical phase space. The Wigner function for a
particle with spin can be written either as a 2 × 2 matrix in the ordinary phase space (x, p)
or, equivalently, as a scalar function in an extended phase space (x, p, s) where the spin
s is now an independent variable. Naturally, Eulerian methods are better adapted to the
matrix form of the Wigner distribution function, whereas PIC methods are more suitable
for the extended phase space representation (Manfredi et al. 2019).

In the semiclassical limit, the Wigner equation becomes a Vlasov-like equation that
incorporates spin effects. In this approximation, the electron motion is described by
classical trajectories, while the spin is treated as a fully quantum variable.

Here, we have developed a geometric PIC method for the spin Vlasov–Maxwell
system, based on a non-canonical Hamiltonian structure (Marklund & Morrison 2011)
that preserves some of the main properties of the continuous equation (Kraus et al. 2017).
This approach is coupled to a Hamiltonian splitting for the time discretization, which
ensures long-time robustness, very good total energy conservation and exact preservation
of certain invariants (Poisson constraint or |sa| = 1).

The PIC code has been tested on a standard laser–plasma problem, namely the
stimulated Raman scattering of an electromagnetic wave interacting with an underdense
plasma. In this case, the electrons of the plasma are spin-polarized, with different degrees
of polarization. We have studied the influence of several physical parameters (temperature,
electromagnetic field amplitude, quantum effects, . . .) on the Raman instability. The
main result is that an initially polarized electron gas can lose its polarization through a
combination of thermal effects and the Raman instability. These results may be interesting
for current and future laser–plasma experiments that make use of polarized electron
beams (Wu et al. 2020; Nie et al. 2021), and also in condensed matter physics for the
understanding of the ultrafast demagnetization observed in magnetic materials irradiated
with femtosecond laser pulses (Bigot & Vomir 2013).
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Appendix A. Computation of the functional derivatives

Here we give some details on the discrete functional derivatives. We also refer to the
work of Kraus et al. (2017) for a more general context. The main point is to consider
any functional F of the semi-discretized unknown Ex,h, Ey,h, . . . as a function F of the
coefficients ex, ey, . . .. Thus, as Ex,h(t) =∑N1

i=1 ex,i(t)Λ1
i (x), any functional F [Ex,h] will be

considered as a function F(ex). We then have the discrete functional derivatives by using
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the calculations in Kraus et al. (2017),

δF [Ex,h]
δEx

=
N1∑
i=1

∂F(ex)

∂ex,i
Σ1

i (x) =
N1∑

i,j=1

∂F(ex)

∂ex,i
(M−1

1 )ijΛ
1
j (x). (A1)

Similarly, for the other fields, we have

δF [Ey,h]
δEy

=
N0∑
i=1

∂F(ey)

∂ey,i
Σ0

i (x) =
N0∑

i,j=1

∂F(ey)

∂ey,i
(M−1

0 )ijΛ
0
j (x),

δF [Ez,h]
δEz

=
N0∑
i=1

∂F(ez)

∂ez,i
Σ0

i (x) =
N0∑

i,j=1

∂F(ez)

∂ez,i
(M−1

0 )ijΛ
0
j (x),

δF [Ay,h]
δAy

=
N0∑
i=1

∂F(ay)

∂ay,i
Σ0

i (x) =
N0∑

i,j=1

∂F(ay)

∂ay,i
(M−1

0 )ijΛ
0
j (x),

δF [Az,h]
δAz

=
N0∑
i=1

∂F(az)

∂az,i
Σ0

i (x) =
N0∑

i,j=1

∂F(az)

∂az,i
(M−1

0 )ijΛ
0
j (x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

Regarding the distribution function f , we assume a particle-like distribution function for
Np particles,

fh(x, p, s, t) =
Np∑

a=1

ωaδ(x − xa(t))δ( p − pa(t))δ(s − sa(t)). (A3)

Additionally, a functional of the distribution function F [ f ] can be considered as a function
of the particle phase space trajectories F(X , P, S). From Kraus et al. (2017), we have

∂F
∂xa

= ωa
∂

∂x
δF
δf

∣∣∣∣(xa,pa,sa),
∂F
∂pa

= ωa
∂

∂p
δF
δf

∣∣∣∣
(xa,pa,sa)

,
∂F
∂sa

= ωa
∂

∂sa

δF
δf

∣∣∣∣
(xa,pa,sa)

.

(A4a–c)

Appendix B. Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1. Because the matrix (3.18) is clearly
skew symmetric, we only need to verify the Jacobi identity (the dependence on u of J will
be omitted for clarity)

∑
�

(
∂Jij

∂u�

J�k + ∂Jjk

∂u�

J�i + ∂Jki

∂u�

J�j

)
= 0, for all i, j, k. (B1)

As the Poisson matrix J = J(u) depends only on X and S, we only need to sum � over
1 ≤ � ≤ Np and 2Np + 1 ≤ � ≤ 5Np. There are two cases we need to consider.

(i) Two of i, j, k ∈ Z lie in [Np + 1, 2Np], and the other one lies in [5Np + 1, 5Np +
N1]. We take the case that Np + 1 ≤ i, j ≤ 2Np and 5Np + 1 ≤ k ≤ 5Np + N1
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as an example. In this case, (B1) becomes

Np∑
�=1

(
∂Jjk

∂u�

J�i + ∂Jki

∂u�

J�j

)
= 0. (B2)

As Jjk in the above depends only on xj−Np , Jki depends only on xi−Np , so the left-hand
side of the above identity becomes

∂Jjk

∂uj−Np

J(j−Np)i +
∂Jki

∂ui−Np

J(i−Np)j. (B3)

When i �= j, J(j−Np)i = 0 and J(i−Np)j = 0, then the quantity (B3) is zero. When i = j,
we have J(j−Np)i = J(i−Np)j and ∂Jjk/∂uj−Np = −(∂Jki/∂ui−Np), then the quantity (B3)
is also zero which ends the proof.

(ii) When 2Np + 1 ≤ i, j, k ≤ 5Np, we only need to sum � over 2Np + 1 ≤ � ≤ 5Np. In
this case, (B1) is easy to verify.

Appendix C. Derivation of the spin precession frequency

We consider the following ODE system:

Ṡ(t) = S(t) × B(t, x), s(t = 0) = (0, 1, 0), (C1)

with B(t, x) = (0, B0 sin(ω0t),−B0 cos(ω0t)) (which corresponds to a circularly polarized
incident wave). With the normalization t̄ = B0t and ε = B0/ω0, which is assumed to be
small, we obtain the following system:

Ṡx(t̄) = −Sy(t̄) cos(t̄/ε) − Sz(t̄) sin(t̄/ε),

Ṡy(t̄) = Sx(t̄) cos(t̄/ε),

Ṡz(t̄) = Sx(t̄) sin(t̄/ε).

⎫⎪⎪⎬
⎪⎪⎭ (C2)

The system can then be rewritten as u̇ = F(t̄/ε, u), where u = S and F(·, u) is
2π-periodic. Introducing the augmented unknown U(t̄, τ = t̄/ε) = u(t), the system is
recast into

∂tU + 1
ε
∂τ U = F(τ, U). (C3)

We can perform a decomposition of this PDE: U(t̄, τ ) = U0(t̄) + U1(t̄, τ ), where U0(t̄) =
ΠU(t̄, ·), the operator Π being the average on [0, 2π]. Inserting the decomposition into
(C3) leads to

∂tU0 = ΠF(·, U0 + U1),

∂tU1 + 1
ε
∂τ U1 = (I − Π)F(·, U0 + εU1).

⎫⎬
⎭ (C4)

The asymptotic limit ε → 0 is obtained by inserting the approximation obtained from the
second equation U1 = ε∂−1

τ (I − Π)F(·, U0) + O(ε2) into the first equation. It becomes

∂tU0 = ΠF(·, U0 + ε∂−1
τ (I − Π)F(·, U0)) + O(ε2). (C5)
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First, we compute U1

U1 = ε∂−1
τ (I − Π)F(·, U0) + O(ε2)

= ε(I − Π)

∫ τ

0
F(s, U0) ds + O(ε2) = ε

⎛
⎝−U0,y sin τ + U0,z cos τ

U0,x sin τ
−U0,x cos τ

⎞
⎠+ O(ε2). (C6)

Then, (C5) becomes

∂t

⎛
⎝U0,x

U0,y
U0,z

⎞
⎠ = Π

⎛
⎝−(U0,y + εU0,x sin τ) cos τ − (U0,z − εU0,x cos τ) sin τ

(U0,x + ε(−U0,y sin τ + U0,z cos τ)) cos τ

(U0,x + ε(−U0,y sin τ + U0,z cos τ)) sin τ

⎞
⎠

=
⎛
⎝ 0

ε/2 U0,z
−ε/2 U0,y

⎞
⎠ (C7)

The first component does not depend on time and the asymptotic model for the two last
components u(t) = (U0,y(t), U0,z(t))T then read, in the original time variable t = t̄/B0

u̇(t) = εB0

2
Ju, (C8)

with J as the symplectic matrix. The solution then reads (using ε = B0/ω0)

u(t) = exp
(

B2
0

2ω0
tJ
)

u(0) =
(

cos(B2
0/(2ω0)t) sin(B2

0/(2ω0)t)

− sin(B2
0/(2ω0)t) cos(B2

0/(2ω0)t)

)
u(0), (C9)

whose frequency is ω = B2
0

2ω0
.

Appendix D. Spin-dependent initial condition

The spin Vlasov model adopted here is a semiclassical approximation whereby the
mechanical motion (position and momentum) is treated classically, while the spin degrees
of freedom are fully quantum variables. Hence, the spin-dependent part of the initial
distribution function should be determined using the rules of quantum mechanics for
spin-1/2 fermions. We will do this by making use of Wigner functions (representation
of quantum mechanics in the classical phase space). The derivation closely follows that of
Manfredi et al. (2019).

For spin-1/2 particles, the relevant Wigner function F is a 2 × 2 matrix:

F =
(

f ↑↑ f ↑↓

f ↓↑ f ↓↓

)
(D1)

where the symbols ↑,↓ denote respectively the spin-up and spin-down components. It is
convenient to project the matrix F onto the Pauli basis set

F = 1
2σ0F0 + 1

2 F · σ , (D2)

where σ = (σx, σy, σz) is the vector of the 2 × 2 Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (D3a–c)
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σ0 is the 2 × 2 identity matrix, and

F0 = Tr {F} = f ↑↑ + f ↓↓, F = Tr (Fσ ) . (D4)

The scalar distribution function in the extended phase space f (x, p, s) is related to the
matrix Wigner function through (Marklund et al. 2010; Manfredi et al. 2019):

f (x, p, s) = 1
4π

2∑
α,β=1

(1 + s · σ αβ)Fβα(x, p) (D5)

In the so-called collinear approximation, the spin is directed either parallel or
antiparallel to the z axis, so that only the diagonal terms in (D1) survive. Using (D4),
we get: F0 = f ↑↑ + f ↓↓, Fz = f ↑↑ − f ↓↓ and Fx = Fy = 0. Using these expressions, it is
easy to show that

f (x, p, s) = 1
4π

(F0 + szFz). (D6)

For a Maxwell–Boltzmann equilibrium, F0 is a standard Maxwellian distribution, and one
can prove that Fz(p) = ηF0(p), where η ∈ [0, 1] is a number that characterizes the degree
of polarization of the electron gas (Manfredi et al. 2019). Hence, one can write:

f (x, p, s) = 1
4π

(1 + ηsz)F0(p). (D7)

We also note that, using the distribution (D7), the average values of the spin components
are:

〈sx〉 = 〈sy〉 = 0, 〈sz〉 = η/3. (D8a,b)

The global spin components used in the main text are then: Si(t) = L〈si〉, with i = (x, y, z),
where L is the length of the periodic computational box.
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