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Abstract

The production of a Bose—Einstein condensate made of positronium may be feasible in the near
future. Below the condensation temperature, the positronium collision process is modified by the
presence of the condensate. This makes the theoretical description of the positronium kinetics at
low temperature challenging. Based on the quasi-particle Bogoliubov theory, we describe the
many-body particle—particle collision in a simple manner. We find that, in a good approximation,
the full positronium—positronium interaction can be described by an effective scattering length.

Our results are general and apply to different species of bosons. The correction to the bare
scattering length is expressed in terms of a single dimensionless parameter that completely

characterizes the condensate.
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1. Introduction

Positronium (Ps) is the hydrogenlike bound state formed by
an electron and a positron. The positronium ground state
consists of two sublevels, the singlet state (para-Ps, p-Ps) and
the triplet state (ortho-Ps, o-Ps), separated by a hyperfine
energy gap. The particle—antiparticle structure results in the
decay of the positronium via annihilation into either two or
three y-ray photons. Three -ray photons are produced by the
positronium triplet spin state (lifetime in vacuum 142 ns) and
two ~-ray photons by the singlet spin state (lifetime in
vacuum 125 ps). Positronium has been the subject of several
experimental and theoretical investigations. It finds applica-
tions of great interest in various fields such as QED [1],
astrophysics [2], the characterization of porous materials
[3, 4], surface composition and bulk structures [5, 6].

One of the major challenges of today’s positronium
physics concerns the production of a dense gas of positronium
at low temperature. Numerous experiments depend on the
availability of a large amount of cold positronium, including
gravitational measurements on antihydrogen [7, 8] and the
production of the molecular positronium (Ps;) [9].

0953-4075/16,/084002+-10$33.00

In this paper, we focus on one of the most intriguing
possibilities offered by the manipulation of dense posi-
tronium, namely the production of a Bose-Einstein con-
densate. The phenomenon of Bose—Einstein condensation
denotes the phase transition of a boson gas where, below the
critical temperature 7., a macroscopic number of bosons
occupy the same quantum state: the zero momentum state for
free gas or the lowest bound state for confined systems [10].
The possibility to create a Bose—Einstein condensate made of
positronium has been firstly addressed in [11]. In order to
establish the feasibility of such a condensate, the process of
condensate formation should be better understood. Our study
helps to clarify the nature of the two body interactions during
the process of the formation of the condensate. Our results
indicate that due to the renormalized many-body interaction,
the collisions cross section of low energy bosons increases.
This result has a direct connection with the velocity at which
the condensate is formed. Recently, the production of a 2D
condensate was also investigated [12]. It could be produced
by implanting pulses of dense polarized positrons on the
surface of a quartz crystal. Such a 2D condensate would have

© 2016 IOP Publishing Ltd  Printed in the UK
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properties very similar to the cold 2D polariton gas realized
by Kasprzak et al [13].

The technical progress made in recent years in the pro-
duction, storage and manipulation of an increasing number of
positrons, suggests that the creation of a Bose—FEinstein con-
densate of positronium atoms may be realistically possible in
the near future [14]. Several aspects connected to the Bose—
Einstein condensation process of positronium are today under
investigation. One central issue is to establish the time that is
necessary to complete the condensation process. The study of
the influence of the nonlinear two-body scattering interaction
on the speed at which the condensate is formed has not been
addressed before. For this reason, in the present work, we
investigate the kinetic processes that are at the microscopic
origin of the formation of the Bose—Einstein condensate.

Due to the light mass of the positronium, the condensa-
tion temperature is several orders of magnitude greater than
the critical temperature of the atoms usually employed in the
condensation experiments. As an example, the confinement of
10~*Psnm > in nanometric cavities would lead to the Bose—
Einstein condensation process at temperature of 30 K.

Positronium is formed in many gases and aggregates of
fine grains when an electron in an atomic or molecular orbital
is captured by a positron. A simple way to produce neutral
positronium is to implant positrons into insulators, or scatter
high energy positrons from metal surfaces. The incident
positron beam interacts strongly with the solid and can easily
capture an electron from the material and form the atom of
positronium. The lifetime of an o-Ps formed in this way, is
sufficiently long for it to experience many collisions with gas
molecules and grain surfaces before its radiative decay. The
initial positronium kinetic energy quickly decreases via
inelastic and elastic collisions [15, 16]. Various theoretical
and experimental studies revealed that the energy transfer
from positronium to porous materials is quite efficient
[3, 4, 17-20]. The implanted o-Ps reaches thermal equili-
brium before to the annihilation time [21]. The thermalization
time can change with the materials. In particular, in porous
materials it becomes sensitive to the geometrical distribution
of the cavities inside the solid [22]. Typical values of the
thermalization time vary in the interval of 1-10 ns.

In recent years, porous silica materials have attracted
much attention concerning the production of a dense posi-
tronium gas. The main reasons are that positronium therma-
lizes quickly in porous silica and, as a consequence of a low
pick-off decay rate, o-Ps has a high survival time before
annihilation, comparable with the Ps lifetime in vacuum.

In order to achieve an optimized production of posi-
tronium, new porus silica materials have been recently tested
[19, 23] and new experimental techniques have been con-
sidered [24]. Moreover, a subject of active investigation
concerns the acceleration of the positronium thermalization
by the injection of remoderator gases like Ar [25, 26] or Xe
[27, 28] at high pressure inside the porous materials.

In this paper, we study the modification of the hard-
sphere boson—boson collision process induced by the pre-
sence of a condensate. We develop an approximation proce-
dure where the complex highly nonlinear two-particle

interaction is expressed in terms of an effective scattering
length. We describe the two-body collisions in a simple form
with a clear physical interpretation. In order to proceed, we
approximate the complex two-body collision integrals with
some hard-sphere collision operators. We assume that the
effective scattering length a.¢ varies with the quasi-particle
energy. The value of a. is obtained by solving a variational
problem. The physics of the binary collisions is interpreted in
a simple manner. Depending on whether the boson energy is
above or below a certain threshold, the noncondensed bosons
can be classified in two groups. Above the energy threshold,
the bosons are essentially unaffected by the presence of the
condensate. They collide by hard-sphere interaction and their
scattering length is equal to the bare scattering length ay. In
the opposite limit, the low energy bosons interact with a
modified scattering length. The value of the effective inter-
action is approximatively constant for all energies below the
threshold.

2. Model

2.1. Bogoliubov—Baliaev—-Popov (BBP) theory

The Bose-Einstein condensation of positronium is a kinetic
process where the atoms lose energy via interaction with
surfaces or impurities and decay to the ground level. Since
positronium is a metastable atom it is possible to detect the
evolution of the kinetic energy of the gas during the cooling
process. The evolution of the positronium speed may be
observed by two different techniques: the angular correlation
technique [29], which measures the coincidence of two pho-
tons produced by the positron annihilation and the Doppler-
broadened spectra technique [30], which measures the energy
of the emitted photons. The experimental detection of the gas
evolution would offer a precious opportunity to investigate
the validity of the kinetic theory of the condensation
dynamics.

The Bose—FEinstein condensate is a quantum mechanical
state that extends over macroscopic distances. The detailed
description of the formation of the condensate requires a fully
quantum formalism. The simple particle—particle hard-sphere
interaction is usually considered as the only relevant inter-
action between the bosons. However, the full quantum
treatment of the boson gas dynamics indicates that the many-
body quantum correlations induced by the presence of the
condensate modify the interaction between two low-energy
bosons.

When the temperature of a gas of bosons decreases under
a critical value T, a macroscopic number of bosons occupy
the lowest energy level and form a Bose—Einstein condensate.
At finite temperature, the condensate coexists with a gas of
bosons whose thermal energy dispersion follows the Bose—
Einstein distribution with zero chemical potential (we will
denote this ensemble of bosons as ‘noncondensed gas’). The
relevant two-particle interaction of most boson systems that
have been considered for the experimental production of a
Bose-Einstein condensate (with the exception of bosons that
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are complex excitations of solid state systems like, for
example, the polariton), is the hard sphere s-wave collision.
Hereafter, we will denote by a, the bare scattering length.

In this work, we focus on the modification of the boson—
boson bare interaction below the condensation temperature.

According to the Bogoliubov theory, the quantum
mechanical correlation with the condensate modifies sig-
nificantly the microscopic boson—boson interaction inside the
noncondensed gas. A new type of interaction, hereafter
denoted as ‘condensed—noncondensed (NC) interaction’,
becomes relevant (for a general introduction to this subject
see [31]). From a physical point of view, the NC interaction
takes into account the microscopic processes whereby a boson
is exchanged between the condensate and the noncondensed
gas. Despite the fact that the total number of bosons is con-
served, the scattering NC process is formally described by a
two-particle collision process with creation (which physically
corresponds to the ejection of a boson from the condensate
into the gas) or annihilation of a boson (which indicates the
capture of one free boson by the condensate). Mathematically,
it is described by a three-density Boltzmann collision integral
containing some modifications of the scattering coefficients
and the density of states.

The many-body theory of a gas of bosons interacting
with a condensate was initially developed by Bogoliubov,
Beliaev and Popov [32-34]. According to the BBP theory, the
bosons in the noncondensed gas are represented by dressed
quasi-particles. Consequently, the two-particle collision takes
a more complex form that differs substantially from the
simple hard-sphere interaction. Intuitively, the main correc-
tions to the bare boson—boson interaction are expected to take
place at low energy. Indeed, only the interaction between
bosons whose energy is close to zero (in the Bogoliubov
approach the zero of the energy is taken equal to the con-
densate mean field energy, so that the energy of the con-
densate is zero by definition) should be modified by the
presence of the condensate. At high energy, the bosons
become free and the main scattering interaction reduces to the
bare hard-sphere interaction.

A quasi-particle with momentum p is a quantum-
mechanical state made of the superposition of a pair of par-
ticle-hole states with momentum p. The squared modulus of
the projection of the quasi-particle state in the particle space is
given by = % + % [10]. Here, E is the quasi-par-
21+ (%)
ticle energy, Ey = gn, where n. is the condensate density, g

/i .
™ ay and m is the
m

the interaction strength given by g =
boson mass. At low energy (£ < Ey), 1 — 0.5. The quasi-
particle is an equal mixture of particle and hole states. In the
opposite limit, at the free-particle regime E > Ey, 1 — 1 and
the quasi-particle reduces to the usual bare boson. In the same
way, dressed interactions are expected to degenerate into the
bare s-wave scattering for E > E.

The BBP theory thus indicates the existence of a certain
value of the quasi-particle energy E, under which the mod-
ification of the bare two-particle interaction becomes

important. This consideration plays a crucial role for the
definition of an effective scattering length.

2.2. Kinetic theory of the positronium gas

We discuss now the evolution equation of the quasi-particles.
Since the drift motion of the quasi-particles is not relevant for
our discussion, we will assume that the gas of bosons and the
condensate are uniform in space. From a mathematical point
of view, the evolution of the quasi-particle distribution
function f of the noncondensed interacting bosons is descri-
bed by the Boltzmann equation [35-37]:

9 _

5 QIT, f1+ WIS, f]. ey

The first term on the right-hand side describes the collision
between two bosons that belong to the noncondensed gas
(NN interactions). We have:

QIT. A1) =7 [ TI + /) +£)fifi

—hA A+ )0+ f)]
X é‘(E‘l + E2 - E3 - E4)6(p] + P — p3 - p4)
x dp, dp; dp,, 2

8ag
Q2n)33m?’ pi
is the scattering amplitude, whose expression is given in the
appendix (equation (19)). We introduced the shorthand notations
fi =f(p,) and E; = E(p,), where £(p;) denotes the Bogoliubov

quasi-particle energy £(p) = \/ (;;; + E, )2 — E2.

The second term on the right-hand side of equation (1)
describes the processes where one boson is exchanged
between the condensate and the noncondensate gas (NC
interactions). Such processes are crucial for the description of
the condensate growth. We have

where v = denotes quasi-particle momentum and T

WIS, f10) = 2¢ [ 8(Ei+ E2 = E6®, + p; — By

X [ +/HDHA + L) =AM+ )]

x S dp, dp;

+¢ [(6E — B2~ Es®, — p, — p)
x [ +hh —h0 + /A + )]

x S dp, dps,

3
where ¢ = &Lzzm and S is the correspondent scattering
amplitude, whose expression is given in equation (20) in
the appendix. In many relevant cases, the distribution function
of the quasi-particles is isotropic with respect to the
momentum. Consequently, in equation (1) it is more useful
to use the quasi-particle energy E; = £(p,) instead of the
momentum. In our discussion, we always assume that the
bosons are at equilibrium so that the isotropic assumption
applies. In this case, the expressions of the Boltzmann
collision kernels Q[T, f] and WI[S, f] simplify considerably.
They are given in the appendix.
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The derivation of the Boltzmann integrals Q[T, f] and
WIS, f]is quite complex. In particular, the derivation of the
scattering coefficients S and T requires cumbersome calcu-
lations [31, 37, 38].

Such scattering kernels are obtained in a quantum many-
body framework. The condensate comprises a macroscopic
number of atoms. However, the condensate wave function is
not an eigenfunction of the number operator. For this reason,
the number of atoms ins the condensate is not a well-defined
quantity. The fluctuations of the number of atoms contained
in the condensate lead to an entanglement between the atoms
inside and outside the condensate. This phenomenon is at the
origin of the highly nonlinear two-body interactions described
by the scattering coefficients S and T. In the standard
description of the two-body collision processes, the NC col-
lision integral WIS, f] is not present. The NC collision int-
egral WIS, f] has no analogous term in the standard two-
body collision processes. It is a direct consequence of the
Bogoliubov quasi-particle transformation and is an original
result of the BBP theory. However, equation (3) can be jus-
tified as follows. We assume that the distribution function that
describes both the condensate and the gas of noncondensed
bosons can be written as [39]

f® =f"(p) + §@Qr7)n, “

where f’ is an integrable and regular function except maybe
in p = 0. The function f’ describes the noncondensed gas
and the term with the Dirac delta the condensate. We use the
ansatz of equation (4) in equation (2). By formally developing
the result up to the fist order in the condensate density n., we
obtain the operator WV except for the term S, which cannot be
derived in such an elementary manner.

The main difficulty related to the application of
equation (1) to some real situation arises from the presence of
the collision scattering kernels T and S in the Boltzmann
collision integrals. They characterize the microscopic
boson—boson collision and are nontrivial functions of the
energy of the quasi-particles before and after the collision.
It would be convenient to have a simple approximation of
such scattering integrals. The main result of our analysis
is to show that to a good approximation, it is possible to
replace the complex two-body interaction by a hard-sphere
interaction.

In order to proceed, it is useful to rewrite equation (1) in
term of dimensionless variables. As already mentioned,
Ey = gn, is the typical value of the energy where the mod-
ifications of the boson—boson collision take place. This is
confirmed by the fact that the scattering coefficients T and S
depend on the quasi-particle energy via the product 7
(explicitly T(EE? g—z %) %) and S(%’ Z—Z %‘)) This con-
sideration suggests the use of the following scaled variables
for the energy E' = E/kgT, the momentum p’ = p/ \/kB—T ,
and the condensate density 77 = ;;"; Here, T denotes the
temperature. In the scaled variables the equation becomes (for

Table 1. Typical values of the scaled density 7 in some realistic
cases.

Density (nm73)

Atom Scattering n
length (nm)
oPs 1077 -1073 0.16 [40] 1073 — 4 x 102
Rb  107° 5.5 [41] 1.7 x 102
2BNa 107° 4.5 [41] 14 x 1072

simplicity, we drop the prime in our notation)

QIT. f1(p) = v(kBTVfT(;, = ;)

X [ +DA +HL)Af —hAA +15)
x (L + 1]

x 6(Ey+ Ey — E3 — Ey)

X 6(p;+ Py — P3 — Py

x dp, dp; dp,,

&)
and similarly for the term W[S, f] with the substitution
§_> 8aognn

man/i?’

7= plays a relevant role. It contains the physical

In our analysis, the scaled condensate density

n =

keT
parameters that characterize the condensate (density n,
temperature 7 and interaction strength g) and will be used
in order to relate our results to the experimental conditions.

Now, we write 77 in a form that is more suitable for the

physical interpretation. The following formula
-2 2/3 .
T. = 20l ( > ) relates the condensation temperature to
mkg \2.612

the total density of the bosons n. Moreover, the ratio between
the density of condensed bosons n. and the total density n is

3/2
given by % =1- (%) (see, e.g., [10]). Simple manip-
ulations lead to
T T

= 3.79(— — —) ao n'’3,
T 1.

where we used g = 47/i%ag/m. Of particular interest is the
case where the condensate density is of the same order of the
total density of the gas. For instance, when the system is
composed by a 50/50 density mixture of condensed and
noncondensed bosons (% = (0.5), the previous formula
becomes

i = 3.01 ag n'/3.

It is worth noting that 7 is directly related to the relevant
dimensionless parameter n.ag which is usually considered for
the study of the many-body expansion of the two-particle
interaction [10]. Our results are based on the dressed
scattering interaction obtained from the BBP theory. The
validity of the BBP theory is restricted to the case of diluted
gases for which nag < 1. Accordingly, our results are limited
to small values of the scaled condensed density 7.

Typical values of 7z for several atomic systems are indi-
cated in table 1.
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3. Minimization technique

In this section, we describe an optimization technique that is
useful to simplify the two-boson collision process. In order to
introduce our approach, it is useful to consider a textbook
result. Let us consider the classical Boltzmann equation for a
rarefied gas subject to some elastic collisions described by the
transition rate W(p,, p,), where p, and p, are respectively the
pre- and post- collision momenta. The master equation for the
boson density is

of Sy
_— = d —
o= W@ por ) dp, — 2 o’ (©)
where
m(p) = fW(Pl’ p,) dp,. )

The last term of equation (6) is the so-called ‘loss term’,
which takes the form of the Bhatnagar—Gross—Krook (BGK)
relaxation time. Such a simple form allows to interpret 7! as
the collision frequency of a particle with momentum p,. This
the natural way to proceed in the case of the linear Boltzmann
equation (6) and makes the 7~! term simpler to analyze than
the full collision coefficient W(p,, p,).

In the following, in analogy with equation (7), we replace
the coefficients S and T by a simpler parameter that is
interpreted as an effective scattering length for the dressed
quasi-particles.

We will focus only on equation (2), but the same con-
siderations apply to equation (3) with obvious modifications.
QIT, f1(E)) is a nonlinear operator. It maps the pair (T, f) to
the function 7 = Q[T, f]. Our strategy is to replace the four-
energy function T(E,, E, E;3, E4) with a single function
o (Ep). The function o is chosen in such a way that the dis-
tance between the new function 4’ = Q[o, f] and h is
minimum. The distance is calculated with the following L*
norm

Il = | [0 dE. ®)

Here, p denotes the density of states. The minima should be
taken for all the functions f that belong to a certain functional
space. For our purposes, it is more convenient to chose f on
the basis of some physical considerations. The Bose—Einstein
condensate is characterized by the existence of macroscopi-
cally occupied quantum states and, strictly speaking, does not
rely on thermal equilibrium. However, the Bose—Einstein
condensate of weakly interacting gases is typically formed at
the thermal equilibrium. In these cases the distribution
function of noncondensed bosons is the Bose—Einstein
function fgg with zero chemical potential (in our normalized
units fyr = [ef — 1]71). This would suggest to evaluate the
minimum of the norm by setting f = f;;. However, by
definition, the Bose—Einstein distribution belongs to the
kernel of the collision operator irrespectively of the choice of
the scattering parameter. In this case, our minimization
procedure would lead to the trivial solution ¢ = 0. This
problem is solved if, in analogy with equation (6), we
evaluate the minima only for the loss term (out-scattering) of

the collision integral in equation (2) (the term with the minus
sign). We remark that, since at equilibrium the two out- and
in- scattering terms balance each other, the same calculation
applied to the gain term would not change the final result.
Hereafter, we will denote with the superscript / the integral
collision kernel containing only the loss terms.

In the end, our approach leads to the following optim-
ization problem: to find o (E) that minimizes the norm
| QUT, fze]l — Q'lo, fglllz- The variational —calculation
gives

QT fuel— Q1o el =—2 [ (QT = 0 i)
0
% (Q180, fy ) (Er) dE;

The minimum is thus given by
o
So | Q'T, fze] — Q'lo, figlllz = 0.

We obtain

O[T, fagl
E)y= ———=—, 9
o(E) oIl £ 9

It is useful to note that this result agrees with equation (7).
Equation (9) applied to the rarefied Boltzmann gas (6)
provides o = 771,

In our procedure, the optimum function o is a local
minimum with respect to the energy. A stronger requirement
would be to find a constant oy such that the problem has a
global minimum. This can be easily obtained by replacing ¢

with a constant and the operator % with the ordinary deri-
a

. d . .
vative o In this case, the results is
lo}

j; T QT S 1 QUL fyp] P (ED) dE,
f:o QL. fulp(EDPAE,

o]

However, since some interesting physical insight emerges by
the analysis of the behavior of o as a function of the quasi-
particle energy, in the following we will make use only of
equation (9).

4. Results

4.1. NN scattering

We apply our minimization procedure to the NN collision
kernel. Equation (2) shows that the collision integral is pro-
portional to the square of the scattering length aq. It is con-
venient to define o(E) = a% and interpret the quantity
aef = aga as an effective scattering length. The full col-
lision dynamics is thus approximated by a hard-sphere
interaction. The only modification is the introduction of an
energy dependent effective scattering length. We have

fT(E, = B E)M dp, dp; dp,
J M dp, dp; dp,

o} (E) = . (10
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Figure 1. Left panel: effective scattering length ot as a function of the energy, for different normalized condensate densities 7z. Right panel:
Fraction of bosons with modified scattering length (blue continuous curve, left vertical axis), together with the approximation n; o< /it (red
dashed line); the green dotted—dashed curve represents the effective scattering length (right vertical axis).

where

_ OB\ + Ey — E3— E)6(p, +p, — P3 —

p,)
(eB2 — 1)(1 — e B)(1 — e E) '

M

After some algebra (we use equation (17) in the appendix),
equation (10) simplifies to:

aF (Ep)

el e i /
N — — E, dE
_.f; j; E’ E’ E’ EnEi+E—E M dE, dEs

o0 E\+E,
f M dE, dE;
0 0

(1)

where

1 _C(Ew By, B3, Ey + E; — E3)
(B2 — D1 — e B)(1 — 54

12)

and ( is given by equation (18). The result of the calculation
is shown in figure 1. We depict o as a function of the scaled
quasi-particle energy (note that we use a logarithmic scale for
the energy). Each curve is related to a different value of the
normalized condensate density 7z. The effective scattering
length shows a monotonic two-step behavior. As expected, at
high energy the quasi-particle loses its character of mixed
quantum state and reduces to the simple bare boson.
Accordingly, a1 goes to unity and the effective scattering
length reduces to aq. As already pointed out, the value 77
discriminates between low and high quasi-particle energy.
When the energy decreases, around E = 77, the function ot
increases rapidly and saturates to a value around /2. From
equation (11) it easy to see that for £ < 7 and 7 going to
zero, at — ~/2. The relevant limit for low energy scattering
is thus
lim lim o% = lim lim T = 2.
n—0 E;—0 n—0 E;—0

This two-step behavior suggests the following interpretation
of the results. We divide the noncondensed bosons into two
populations characterized by two different scattering

lengths. Low energy (E < i) bosons have an augmented
scattering length of around +/2, while high energy (E > i)
bosons keep the bare interaction a,. In order to evaluate the
ratio between the density of low and high energy bosons,
we calculate the fraction n; of bosons whose effective
scattering length is more than 5% higher than the bare
interaction

1

1 1
m=—[  fe@dp=—[  ———pE)dE.
n Jar>1.05 nJar>105 e — 1
(13)

Here, n is the density of noncondensed bosons. The mean
scattering length seen by the low energy population is

ao
Aeff,] = —
n; Yar>1.0

a 1
_ % f a1 (E)———p(E) dE.
n; Jar>1.05 e —1

s atfgg (p) dp

(14)

The result of the calculation is shown in figure 1 (right panel).
The interval of values that are relevant to the positronium
condensation process are indicated by vertical lines. How-
ever, our result is quite general and can be applied to different
boson systems. The only parameter that describes the
condensate is 7. In order to discuss our results, let us
consider a Bose—Einstein condensate made of ortho-positro-
nium with density of 10 *nm 3. According to table 1,
7 >~ 4 x 1072, From figure 1 (right panel) we see that around
30% of the positronium atoms (continuous blue curve) scatter
with a scattering length of around 1.18 a(y ~ 0.2 nm. For the
remaining 70% of the positronium atoms the scattering length
is not modified. This example illustrates that, by using our
approach, the corrections to the collision dynamics may be
quantified in a simple way.

Our discussion is based on the saturation of a7 around
E = 7, which can be understood by simple considerations.
According to the Bogoliubov theory, the density of states of
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the quasi-particles is

3|

Vm3/2i V<§)2 -
()

where V is the volume of the system. We assume here for
simplicity 7 < 1. At high energy E > 1 > 7 (corresponding
to E > kgT for the nonscaled variables), the product fp is
dominated by the exponential decreasing. In the opposite
limit £ < 7, the product pfy goes as 7 ~'/2. It is interesting
to note that the function pfgr is regular in the right
neighborhood of zero. This contrasts with the standard theory
of bare bosons for which the product between the Bose—
Einstein distribution and the density of states goes as E —!/2
around E = 0. The real condensates that are produced in the
experiments are characterized by small parameters 77. In this
case, we can estimate the number of low energy bosons as
proportional to %ﬁ = J/@. In order to validate our estima-

Ne)

PE = i

>

tion, in figure 1 (right panel) the red dashed line depicts the
curve /71. Our simple estimation agrees very well with the
numerical results.

4.2. NC scattering

We apply our minimization procedure to the collision
operator WV of equation (3). We note that YV depends linearly
on the condensate density 7. and on the bare scattering length
ao. In analogy with the previous section, we define the
minimization function ¢ in equation (9) by o = ag and we
interpret the quantity apas as the effective scattering length
for the NC interaction. Equation (9) leads to

WIS, fie]
as (B = L2 15:Joe]
WL, fagl
[ s B B+ By M7 dE,
— 000
= , (15)
(e%e} "
1l M dE,
o )2 2 \2
) ()
where he have defined
M = (1 — e BFayl 202 — 1) E, >0 '
(1 —ef2)! —E<E<O0
The right-hand side of equation (15) follows from

equation (23) after some straightforward algebra. The result
of the calculation is displayed in figure 2. In the left panel we
plot ag as a function of the boson energy for different values
of the parameter /7. In contrast to the NN collisions, here the
picture of a two-population behavior does not apply. All the
curves show a minimum of the interaction for E ~ 77 and
the limit of zero energy is ag(0) = 0.5. It is easy to show that
the limit of vanishing condensate density gives lim;_,gas = 1
as expected. However, the convergence is slow and even for
small condensate densities (for example 7 = 1075) «g differs
significantly from the unity. This fact has a direct conse-
quence on the growth rate of the condensate. The evolution

equation of the condensate density is

dn 2
f=_= S, f1dp,.
& P fW[ f1dp,

Our calculations show that, as a first approximation, we can
model the condensation as a hard-sphere collision process
with scattering length a.r = agas < ag. The direct conse-
quence is that the growth of the condensate proceeds more
slowly than would be the case if the bare interaction ay were
used. The study of the dynamical evolution of the number of
condensate particles and the estimate of the speed at which
the condensate is formed is particularly relevant for the
positronium system. Our results indicate that when the
condensate starts to form, the two-body interaction becomes
stronger. This eases the transition of the atoms from the gas to
the condensate. This behavior was already observed in [37],
where the evolution of a condensate obtained by evaporation
of a trapped boson gas was reproduced through a kinetic
approach. The results showed that the increase of the collision
interaction strength leads to a more efficient thermalization of
the atoms, thus speeding up the formation of the condensate.
In analogy with equation (14), we can quantify the
modification of the scattering length by taking the mean of
as on the total population of noncondensed bosons. We
obtain

1 1 >
os = [oshe@dp=- [ as) p(E) dE.

et —1
(16)

The result is displayed in the right panel of figure 2 (blue
curve). For sake of comparison, in the same plot we also
depict the analogous calculation for a1 (similar to the result
of figure 1 but without distinguishing between high and low
energy bosons). Comparing with the a7 curve, we see that, in
the case of the NC interaction, the variation of the main
effective scattering length is more pronounced. For
=4 x 102 (ortho-positronium density of 10~ nm™>)
the scattering length decreases by around 50% for the
production of the condensate (NC process), while it increases
only by few percent for the collisions in the noncondensed
gas (NN process).

5. Conclusions

We analyzed the boson—boson scattering process below the
condensation temperature. Our study was based on the quasi-
particle Bogoliubov theory and the two-body collisions are
described by the Boltzmann formalism. By using a variational
approach, we approximated the complex scattering interaction
with a hard-sphere collision process and found that a modified
scattering length should be used. Such an effective scattering
length quantifies the corrections to the bare scattering inter-
action in a simple manner. Our results are general and apply
to different species of bosons. The noncondensed bosons can
be classified in two groups. The quasi-free bosons that are
essentially unaffected by the presence of the condensate and
the low-energy bosons for which the scattering length is
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Figure 2. Left panel: effective scattering length ag as a function of the energy, for different normalized condensate densities 77. Right panel:
mean effective scattering length for NN (green dashed curve) and NC (blue continuous curve).

modified. The corrections to the bare scattering length are
expressed in terms of a single dimensionless parameter that
completely characterizes the condensate. The connection of
our theory with the condensation dynamics of the positronium
was also discussed.

Appendix

We state here a simplified form of the Boltzmann collision
operators given in equations (3)—(5) under the assumption that
the boson distribution function is isotropic on the momentum
variable. The explicit form of equation (5) has already been
derived in other publications [16]. Here, for ease of the reader,
we state the final result

QIT. f1=7 [ TIA + /A + L)k,
—hA LA +£)]
X(S(E]+E2—E3—E4)
6(p; + P2 — P3 — Py) dp, dp; dp,

=L [ 1A+ +pnk
P+
— A+ +ITC

X §(E1 + E2 — E3 — E4) dE2 dE3 dE4, (17)

where

C(Ey, Ea, B3, Ey) =[min(p, + p3, p, + 1)

—max (|p; — psl, 1P, — p1)]

x [ ——. (18)

=234 [} 4 (1)2
E;
We denoted by p, = ENE) = E*>+ (m)?> — i, the

inverse of the Bogoliubov energy dispersion. The collision

kernel is given by

T(E\, Ea, E3, E4) = (uiupuzity + viupusiy
+ vidauzvy + vivavaus + upvaviu)?,
(19)

where

2JE? + (i)

and v = /1 — u?. The derivation of equation (19) can be
found in [37] or in a equivalent form in [38].

We derive the explicit form of the NC Boltzmann kernel.
We start from

WIS, f1=2¢ [[8(E + E2 — Eo®, + b, — o)

< [A + DA+ 5 —ALA + )]
x S dp, dp;

+¢ [~ B2~ EDo — by — )
LA+ RS = KU+ A+ £)]

x S dp, dp;.
The collision kernel S is given by [31, 35, 37]

S(E1, Er, E3) = (muau3 + vivavs + ujvavs

+ ViU vy — uvouz — v1u2u3)2.

(20)

We make the substitutions p, — —p, and we write in a
compact form

WIS, f1 = WLIS, f] + WIS, fI.
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We obtain

Wi[S,f](E1)=§f[(1 + f)OF + £)f
— AT+ )1+ £)1Sp; py
X 6(E) £ Ey — E3)0(p; + Py + P3)

x dp, dp; dp, dps,
(2D

and 0+ =1, 0~ = 0. We used dp = p? dp dp and the hat
denotes the unit vector. We consider the angular integration in
equation (21)

= [ 5+ p, + py dp, dp;
1
()}

f el PP P2 dyy d7y dp, dps.

Using

f el dp = f ePn d7j

_ 27Tfl ePneososin b dgp = 4nS Pl (22)
0 pn

where ¢ denotes the angle between p and 77, we obtain

- (271r)3 [ eweretromg? an an ap, dp,

8 foc sin(p,n)sin(p,n)sin(p;n) d
0 n &

P1P2P3

o0 1 D

Using f w dn = gsgn(a) where sgn denotes the sign,
0

we obtain

™

P1P2P3
+ sgn(p, — p; — p3)
+ sgn(p; — p; — po)l-

Z=-

[1 + sgn(p; — p, — p3)

After simple manipulations, equation (21) becomes

WLIS. FI(E) = f—ﬂf:o [+ /) + )

P1
—hh A+ £)ISx; x5
x [1 + sgn(py —p, — )
+sgn(p, —py — pp)
+ sgn(p,—p; — py)1 dE,,

where p, = E7!(E;) (see above), p, = E(E + E;) and
] m .

X=- — " By using Ep, —p,) < Ep) +

e () L 1

E(p,) < E(p, + p,) for p; > p,, the previous integral can

be easily simplified. We obtain

WLS, fIE) =

2 00 00
52;’"]; I RCEAIGETAY;
1

—HOT+ )T+ £)]
" S(E), E», E3)(0* + 1)
g () ()

X 5(E1 + E2 — E3) dE2 dE3.

(23)
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