PHYSICS OF PLASMAS VOLUME 9, NUMBER 3 MARCH 2002

Non-Gaussian transport in strong plasma turbulence
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The transport of test particle ensembles moving in turbulent electrostatic fields governed by the
Hasegawa—Mima equation is investigated. It ranges from subdiffusive to ballistic, depending on the
size (in terms of thermal ion Larmor radiof the domain considered, and on the magnitude of the
background density gradient. In addition to the electrostatic potential, other fields, notably the
vorticity and the Weiss field, prove to be very useful in accounting for particle dynamics and
transport. For example, the existence of well defined core-circulation cell vortex structure in the
Weiss field gives the most reliable guide to particle trapping, while locales of zero vorticity define
regions of filamentary particle flow. Differential transport of guiding center particles and energetic
particles gyrating with significant Larmor radius is investigated; the latter is strongly inhibited.
© 2002 American Institute of Physic§DOI: 10.1063/1.1445426

I. INTRODUCTION poloidal component, and show that the HM model, despite
its simplicity, yields evidence for transitions between quali-
The evidence for anomalous transport—that is, transportatively different types of transport when its parameters are
which is turbulence-driven and not necessarily describablgaried. Poloidal plasma flow and poloidally extended turbu-
by simple local diffusion—in magnetically confined plasmaslent structures are central to tokamak confinement, and inter-
is overwhelming. Classical reviews chronicling the develop-est has naturally focused on their implications for radial
ment of observations, theory, and modelling over the past 1¥ransport and confinement. Outward transport is the result of
years are provided by Refs. 1-4. In parallel, in a generatonvolving poloidal and radial steps, and it is only safe to
physics context, interest has grown in the fundamentaimplicitly “average over” poloidal motion if one is con-
mechanisms that can give rise to anomalous transport, and rinced that:(a) the statistics of poloidal stepping are “stan-
how they can be quantified and characterized; see, for exdard,” so that one knows how to perform the poloidal
ample, Refs. 5-7. With some recent exceptions, howeveasveraging—this is not necessarily the case for non-Gaussian
(see, for example, Refs. 8—)l@here has been only a limited distributions;(b) poloidal and radial stepping are uncorre-
attempt to apply the general physics concepts of “strangdated. Given the nature of turbulent transp@dr example,
kinetics” within a fusion context. In the present paper, wethe roles of trapping and jumpsnd the(sometimes ex-
establish further linkages through a study of particle transtreme inhomogeneity of plasma turbulence in tokamaks, it
port in strong plasma turbulence modelled by theappears worthwhile to explore the nature of poloidal trans-
Hasegawa—Mim&HM) equation'! whose physics is domi- port in greater depth, so as to achieve progress on these
nated by theEXB drift and involves low frequencycom-  questions. Further, as point and(b) may depend on par-
pared to the ion cyclotron frequeney;;) waves driven un- ticle energy, we shall also investigate the impact of finite
stable by the presence of a density or temperature gradieritarmor radius(FLR) effects on poloidal transport. We re-
The Hasegawa—Mima equation thus provides a nonlinegported some preliminary results in a previous letfeand in
model for drift turbulence in real space, whose output is thehis paper we expand and explain them. We show how the
time dependent electrostatic potential. This potential theworticity and Weiss fields, derived from the electrostatic po-
acts as an input for the equations of motion of ensembles dkntial and described below, can be used to account for par-
charged test particles, whose orbits we follow and whoseicle trapping and flights.
statistical transport properties we then infer. The HM equatioht is a relatively simple two-
We have previously investigated radial particle transpordimensional model for the turbulent electrostatic field in the
in this way!?'® and found that nonlinear coupling signifi- (X, y) plane perpendicular to the magnetic fieBB2), and
cantly reduces the level of transport compared to the lineahas many wider physical applicatiohsThe model assumes
regime: this reduction was mainly ascribed to the formationcold ions,T;<T, (T;, being the ion(electron temperaturg
of radial gradients in the velocity field. Now we turn to the with negligible inertia parallel t&. The quasineutrality con-
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dition nj=n, is satisfied, wheren;, is the ion (electron The coefficientL represents the dimensions of the com-
density; the electrons are assumed to have an immediafrutational box, i.e., the number of thermal ion Larmor radii
adiabatic response, with Boltzmann distribution; and theirencompassed by it. The larger the box, the greater the num-
background density depends only pnequivalent to the ra- ber of vortices that it can support. This can qualitatively
dial direction in a tokamakgy,=ny(y). The HM equation is change the dynamics, as we shall see in Sec. Il B. Further-

then writtert! 13 more, by varying the magnitude of the coefficighin Eq.
p ” (1), one can control the importance of the linear terms, which
—(¢p—V2¢)—{¢,V2p}— p—=0. (1)  arise from density anisotropy. The model is thus well suited
at IxX to studying the linear dispersive effects of anisotropy on the

Herex andy are normalized to the thermal ion Larmor radius Poloidal transport of test particleSec. 11l G. Even for mod-
ps=Cslwei, Wherece=T./m; is the sound speed and, erate values 03, the electrostatic potential develops an an-
the ion mass; the timeis normalized to/c,, whereL is a  1SOtropic spectrum, shallower ky and steeper it .*° This

characteristic length of the systemf;is the electrostatic po- 1S @ Signature of the presence of zonal flows, i.e., potential

tential normalized to To/€)(ps/L); {A,B}=0,A 4B structures elongated in the direction of propagation of drift
e S H ) X y . .

~9,A 3,B is the Poisson bracket and waves (), which are well known to have an impact on

particle transport in the direction of the density gradignt (
a4, 5 see, for example, Refs. 12, 13.
dy n[no(y)] 2 The zonal flows considered in this paper are generated

. . . via the presence of linear dispersive wavése so-called
is a parameter measuring the anisotropy of the backgroun‘dﬁ_eﬁect,,),le and are completely analogous to the zonal

density (this should not be confused with the standardfIOWS appearing in the context of geophysical fluid

plasma_ﬂ'_ the ratio of _thermal to magnetic press_)JrEhe dynamicst’ In tokamak physics, zonal flows can also be cre-
linear limit of Eq. (1) is equivalent to the evolution of a 4oy 1y 4 different mechanism, which involves a nonadia-
coIIec_t|or|1 of |(rj'1.depen.dent ?”,ﬁ waves, each obeying the diyiic electron response for purely radial, zero-frequency
mensionless dispersion relation modes. This requires a smakiut significant modification to
Bk the standard HM equation, as proposed by Smolyakov and
X 8-22 i
O T I R2 3 co-workers: In the present paper, we shall not consider
this alternative route to zonal flow generation, but shall
where kx(yz) is the wave number in th&(y) direction and rather concentrate on the standard HM model. Zonal flow

:8:

k2=k2+ Ky generation in the HM equation was also studied in a recent
We have implementé&® Eq. (1) in a computational paper® which includes the effect of magnetic shear.
box of arealL XL (L is expressed in units gbs), which is The HM equation can also support drifting nonlinear

finite in they direction and periodic in the direction of propa- vortex structures, which can trap particles for relatively long
gation of drift wavesx, which is equivalent to the poloidal times, and therefore affect their diffusion rate. This effect has
direction in a tokamak. As explained previously*for rea-  recently been studied by Nauliet al,?* who use a model
sons of numerical stability a dissipation teinis added to  similar to ours(the Hasegawa—Wakatani equatiohs but
the right hand side of Eq1) for high wave numbers, to- with different boundary conditions, periodic in both direc-
gether with a forcing ternt, in order to reach a quasi- tions. It appears that with such boundary conditions the ef-
stationary state. These terms have the following form in Foufect of zonal flows is reduced. Particles are trapped within
rier space: the vortices for some time, but ultimggely they become un-
_ 4 2 _ trapped, so that the computed diffusioms approximately
Di= = (kD (A+K) by, S=AdK=ky), “ nolrorgal for both the radia[I) and the poloidalpzirections. Fi-
wherev is the dissipation coefficient, whilé andk; are the nally, if a particle has finite Larmor radius, this can average
amplitude and wave number of the forcing, which is local-out the smaller wavelengths that it experiences, thus affect-
ized at high wave numbers in both tkandy directions. The ing the transport; in Sec. IV we consider simulations that
initial condition is taken to be a random distribution for the take this effect into account.
fluid part of the potential vorticity:

(= V2¢)(x,y,t=0)
Il. TEST PARTICLES

A T L
=E E —Osir{—m<y— —” In order to analyze the transport of test particles moving
nom o \n?+m? L 2 in the HM field, we create an ensemble of*l1particles,

seeded at rest once the turbulence has settled to a quasi-

, ) stationary state, and randomly distributed over the whole of
the computational box except for a small border. Their sub-

where s, are random phases aAg is a constant. Equation sequent motion is given by tHeXB drift

(1) is solved numerically by means of a hybrid spline-

spectral method coupled to a leapfrog integrator in time. ﬂ—BxV—QS ©6)

Typically a mesh 512513 is used. dt " B?"

2m
X CO Tnx+ Dmn
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Here ¢ is the electrostatic potential resulting from the nu-and the strairs is given bysz=sf+s§, where
merical solution of the HM equation and we neglect the po-

duy vy PP

larization drift. The equations of motion are Hamiltonian in =Y = (10)
form, with the real spacéx, y) coinciding with the phase X ady ax dy
space andH(x,y,t)=¢(x,y,t)/B as Hamiltonian. The test
particles are noninteracting and without inertia, so that we
consider only their guiding center motion; finite Larmor ra- dvy  dvy PP PP
dius effects will be introduced later. Recall that for normal 527 5 WZ a2 oy (11)
diffusion (a classical random walkthe mean squared dis-
placement It is then possible to define the Weiss fi&dby?®
Ax2 =L 06—(x))? - Q=s’-w? (12)
(ax7 N ’ @) As has been shown by Wei&jf the strain rate along a

is proportional to time{Ax2)~t. If transport is anomalous Particle path is slowly varying with respect to the vorticity
(“strange kinetics™7), this becomegAx2)~t#: for 0< g_radlent_, the Lag_ranglan evolutlo_n ﬁf(v is given by a linear
<1, we have subdiffusion; for4 x<2, supradiffusion; and differential equation whose solution is
for u=2, ballistic motion—particles move with constant ve- - 1
locity. The main purpose of the present paper is to evaluate vwexp 2\/6t)' 13
the exponenj for poloidal transport in turbulence governed ThusQ determines whether, and how fast, two initially close
by different regimes of the HM equation, and we shall seefluid elements will(exponentially separate @>0) or not
that u can be smaller or larger than unity. (Q<0), following the frozen streamlines. The square root of

The equations of motion, E@6), are solved numerically Q is not a Lyapunov exponent in the strict mathematical
by means of a second order leapfrog scheme, which displaygense, but plays an analogous role as an inverse timescale
little numerical diffusion. TheEXB velocity field at the par- that quantifies the stochasticity of particle motion in the tur-
ticle locations is computed by linear interpolation. This over-bulent field.
all numerical scheme has been tested by taking a “frozen” One can therefore simplify the picture of two-
velocity field: in this case, the particles should simply rotatedimensional turbulence by an elementary partitioning of the
inside the vortices on closed orbits, with no diffusion. Thefield into two distinct domains: elliptic domainsQ&0)
scheme correctly reproduces this behavior, within good apwhere rotation dominates deformation, and hyperbolic do-
proximation, over a large number of rotatiois(the com- mains Q>0) where deformation dominates rotation. As
putational box dimension measured in unitpgfandg (the  pointed out, for example, by ElhAui?’ vortex cores with
anisotropy of the background dengitgre the two essential negativeQ correspond to the center of the vorticesfinand
dimensionless parameters governing the HM equation. Weend to be surrounded by an annular region of posi@ye
have performed two sets of computer experiments: firstcalled the circulation cell; in the following we will refer to
holding 8=0 fixed (the isotropic and purely nonlinear case this combination as a core-circulation cell vortex structure.
we have run three simulations for different valued.pthen, = These structures are usually embedded in a background sea
for L=20, we have run another set of simulations increasingvhere Q is close to zero and essentially random. They are
the value off3. normally more sharply spatially localized than vorticespin

so that the Weiss field can give a clearer indication of the
structures that dominate the field.

Ill. TRANSPORT

A. Basic definitions

. . ) .. B. Uniform background density
Let us briefly review some concepts that will assist in

explaining some aspects of the transport. A two-dimensional ~ To study the influence of the computational box dimen-
turbulent field may be decomposed by distinguishing thesions on the transport of test particles, we have run the HM
contributions of rotation and deformation. In our case, thecode for =0 and increasing values df, starting fromL
electrostatic potentiap is also acting as the stream function = 20. Initial wave numbers are chosen with m) in Eq. (5)

of the particles, in the sense tha& (v,,v,) is the Eulerian  in the ranges #n<6 and 8<m<12, andA,=2. The par-

velocity field ticles are seeded once a stationary turbulent state has been
reached, so the transport does not depend on the initial con-
vy =— @ v :@_ (8) ditions of the HM field. The forcing is at high wave numbers,
ady Yoox with amplitudeA=4 in Eq. (4), and the dissipation coeffi-

cientv is adjusted to the appropriate value for the scale con-
sidered. Unlike the Navier—Stokes equation, the HM equa-
tion contains a characteristic length scalg, so that one can
derive two estimates for the eddy turnover tirtie., the
typical timescale of the turbulengdor length scales smaller
or larger tharpg. These are, respectively,

Vortices with >0 (<0) are called anticyclone&yclones,
and particles trapped in them rotate clockwisaticlock-
wise). The vorticityw is

_duy vy

W= Tx ay =V, ©)
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FIG. 2. Mean squared displacemdux?) divided byt®5, for 8=0 and

~0.29
L =20, showing quasisteady subdiffusion.

Provenzale also remarks that in forced turbulence, vortices
are continuously generatédlbeit slowly, and the only pos-
sibility for a particle to enter a vortex core is to be captured
by a newly forming vortex during the generation process.
Thus, in forced turbulence, the particle distribution becomes
homogeneous on a very long timescale, which is determined
by the typical lifetime of the vortices rather than by the eddy

_0.47

_0.€%

S -~ turnover time. In our particular case, the fields evolve very
T e slowly, so the four vortices have a practically infinite life-
FIG. 1. Weiss fieldQ for =0 andL=20, showing clear core-circulation time. The resulting transport is clearly subdiffusive, as
cell vortex structures. shown in Fig. 2, and the exponept tends slightly to de-

crease over time. This is due to the fact that the background
velocity is very small and the vortices move increasingly
1 5 12 ’1’2_ slowly, partly because it is difficult to reach a perfectly sta-
Tes™ FLLW ¢|*dr ’ tionary state in the simulation, so that the turbulence is
slightly damped at long times.
1 T ForL =120 we takev=3x 103 andk;=(6.5,6.5). The
Telm| 2 JL L'V oI dr ' 19 gifference between,s~ 10 andre,~300 is now evident. We
_ _ run the simulation for several tens of; with the particles
all our simulations are run for severajs and e, . starting in the rectangle ¥x<110 and—50<y<50. The
For L =20, we taker=6x10"" andk;=(40,40). Both  \yeiss field is shown in Fig. 3: in contrast to the previous

Te1 @nd 7¢s are of order unity, and our run lasts several hun-c45e no vortex structures are observed, and peaks and wells
dreds ofr. The particles are seeded in the rectang®exl ot 3 have similar amplitudes, both several orders of magni-

=19 and—9=y=9. The electrostatic potentigl varies in-  ,4e smaller than in thé =20 case. This corresponds to a

creasingly slowly as time evolves. After long times, four gjy,ation where only the randomly fluctuating background
well-defined vortices inp survive, and these correspond to

four core-circulation cell vortex structures in the Weiss field
Q, embedded in the background sé@g. 1). The core-
circulation cell structure is extremely coherent, and evolves
slowly on the turbulence timescale, while the background sea
corresponds to very small Eulerian velocities. This is due to
the fact that the vortices are too far from each other for their
respective velocities to be additive; the velocities are much
larger within the vortices than outside.

The test particles essentially follow the underlying vor-
tex structure of the Weiss fiel®, which, as we shall see,
provides a more useful guide to their ensemble dynamics~
than doesp. Particles that start within a vortex core tend not
to escape, even when two vortices merge, while particles tha
start outside a vortex core tend not to penetrate it. The vortex
cores thus act as if surrounded by a nearly impermeable bar
rier.

From previous hydrodynamical simulations,
Provenzal® points out that particles are ejected only during R
strong vortex—vortex interactions. In our case, even when -
two vortices merge into one, only a few particles are ejected,
all the rest ending up in the resulting single vortex core. FIG. 3. Weiss fieldQ for 3=0 andL=120: no vortex structures.
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FIG. 4. Mean squared displacemetx?) divided byt, for 8=0 andL
=120, showing quasisteady normal diffusion.
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sea is present. The Eulerian velocity displays some vortices,
but is predominantly random. The particles still avoid some
forbidden areas, but as a whole they are much more uni- X

formly s.p'read thar_1 foI'__= 20. Thellr mean squa”?d d|splac_e— FIG. 5. Eulerian velocity fields for 8=0.05 andL =20. Open paths from
ment (divided by timg is shown in Fig. 4, and is approxi- |eft to right are visible.

mately constant, so that the resulting diffusion is normal.

For values ofL betweenL=20 andL=120, the trans-
port is subdiffusive, but with an exponent increasing with  magnetic field laboratory devices operating at larger for
and the vortex structures are increasingly destroyed. Abovehich the standard diffusion picture should be used with
L =120 the transport is normal and only the coefficient var-more caution.
ies. We can make two deductions from those studies. First,
the Weiss field plays the central role in determining particle . .
trapping. Only if it corresponds to a core-circulation cell in C. Increasing anisotropy
the Q field does a vortex that is visible in the electrostatic ~ We turn now to the influence of density anisotrofoy,
field significantly trap particles and reduce the exponent okquivalently, of the linear terjin the HM equation. Whes
diffusion. Second, there is a well established transport reis increased, drift waves propagating toward the negative
gime (normal diffusior) once a threshold i is crossed. direction appear. We therefore hold=20 and run simula-

We also note that the vortices observed in Fig. 2 ardgions with 8=0.05 andB=0.25. The reference case is now
reminiscent of the so-called Larichev—Reznik modsee, the =0 andL =20 simulation reported in Sec. Il B; we use
for instance, Ref. 29 and references thekeimhich is an the same dissipation and forcing, obtaining approximately
exact vortex solution to the HM equation propagating alonghe same eddy turnover time. The initial position of the par-
the x direction. The modon is formed by a localized dipolar ticles is the same as in the purely nonlinear case.
structure, with both potential and vorticity taking different WhenB8=0.05, the electrostatic potentigldisplays two
signs on either sides of an axis of symmetry. This is, how-major vortices, but they are not as well defined and well
ever, rather different from the vortices observed in our simuseparated as fg8= 0, and they move and merge much faster.
lations, which display the core-circulation cell structure de-Two vortex structures survive for long times and they drift in
scribed above. Our vortices are spontaneously generated liye —x direction with a speed of the order of 19in our
the turbulence under the action of the forcing—they are notnits. Also, the Weiss field has elongated horizontal features,
exact solutions of the HM equations, although they appear tto which we will return later in this section. The Eulerian
survive over long times. Further, these vortex structures areelocity field is displayed in Fig. 5, showing open paths from
no longer observed for larger valueslofFig. 4). left to right, with rather high velocity.

In summary, we find that the particle transport changes The final positions of the test particléEig. 6) reveal
nature with(restoring dimensional unitd./ps=p, *, where  ordered structures and display qualitatively different features
p. is the normalized ion “thermal” Larmor radius. Transport on the left and on the right. At far left the particles are clus-
scaling laws are sometimes expresse@ap; , whereD is  tered in disks or circles, everywhere else being empty. The
the transport coefficient angl an exponent defining the type two disks are the vortices that were in the computational box
of scaling(Bohm, gyro-Bohm, .). Therefore, in our simula- at the time when the particles were injected. They have
tions, varying the dimensions of the computational box istrapped the particles initially seeded in the cores and ad-
equivalent to varying the value @f, . Our study shows that vected them. Analogously, the circulation cells have trapped
not only the scaling of the transport coefficient, but also thesome particles and are advecting them, explaining the circles
nature of the transpor{normal versus “strange; can of particles present. Figure(l§ shows the portion—150
depend on the magnitude @f,. For moderate values of =x<—90 of the domain, with the particles superimposed on
p. (= 1/20), the observed transport is clearly subdiffusive.the Weiss field, and illustrates this phenomenon. The trajec-
For smaller valuegp,<1/120, a regime more relevant to tory x(t) of a trapped particle and the potential seen by it are
tokamak physics the transport is normal, suggesting that thedisplayed in Figs. (&), 7(b). It appears that the particle
standard diffusion approximation can be justified in this con-moves with constant velocity and stays on an isopotential
text. This may not be the case, however, for small-size, loncurve within the vortex, so that the potential seen by the
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X FIG. 6. Positions of the diffused test
particles for 3=0.05 andL=20. (a)
Position of all the particles(b) Par-
ticles at far left superimposed on tkge
field. (c) Particles at far right superim-
posed on thep field.
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particle is approximately constant; the particle thus has balethers are trapped in circulation cells and then advected to
listic motion at the speed of propagation of drift waves. Thethe left for a certain time. The coexistence of those different
situation is different at far right, where we observe filamentstypes of transport yields supradiffusion with exponent

of particles. These are located in the areas between neighbor-1.7, as shown in Fig. 8.

ing vortices of opposite sign i, as is clear from Fig. @), For 8=0.25, the vortices in the electrostatic potential
where the velocity of the two surrounding structures is addipropagate toward the left with a velocity of approximately
tive, and there are open paths of Eulerian velocity. Thes@0 !, which is an order of magnitude larger than for the case
particles have ballistic motion too, as can be deduced fron8=0.05. The field lines move and mix quickly, and no vor-
the trajectory displayed in Fig.(@. However, the potential tex survives for long times. The Weiss field displays no vor-
seen by these particles is not constéat was the case for tex structure, and only the background sea is left. The Eule-
particles at far left but rather oscillates around zero, asrian velocity is much higher in the regions between electro-
shown in Fig. Td). These oscillations are probably due to thestatic vortices than inside them, and there are open paths
random nature of the potential in the background sea beffom left to right. Despite the apparent disorder of tihe
tween vortices. The remaining particles have less well deandQ fields, the particles have closely correlated positions,
fined types of motion: some perform random walks, whileas shown in Fig. 9. The fact that there are no longer

220 i 0.8 fj__\A
0.4 1

15r b

< 10 \ s 00f 1
-95r N -0.41 b FIG. 7. (a) Trajectoryx(t) of a particle

trapped by a vortex an¢b) local po-

—200 ’ —0.8 ’ * tential at x(t): the particle being
2662 3512 43t62 5212 6062 2662 3512 43t62 5212 6062 trapped, ¢ is approximately constant
and nonzero(c) Trajectory x(t) of a
() (0 . _
particle that travels to the far right and
220 0.8 ' (d) local potential aix(t): the particle
L | I | oscillates across the region whete
115 0.4 changes sign. Parameters @8e0.05
P4 10F 1 & O.OL\/\/\/\/\/\/\/\/\/V\A/\N\/\/\ andlL=20.
—95r . ~0.4F 4
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FIG. 8. Mean squared displaceménix?) divided byt*”, for 8=0.05 and
L =20, showing quasisteady supradiffusion.

any well defined structures in the Weiss field reduces the X

amount of trapping, and the best way of accounting for the ‘

position of the particles is now through the vorticity Eq.  FiG. 10. Contour plot of the vorticity for 5=0.25 andL =20, showing
(9). Figure 10 shows a snapshotwf displaying zonal flows  zonal flows. Dotted linesw<0; unbroken linesw>0.

(elongated structurgsn the vorticity approximately parallel
to thex axis. This is also reflected in the averaged correlatio
lengths ofw, that inx being approximately double that in
On the other hand, there is a tendency for the particles to sta’?;1
in areas wherav=0 (see also Ref. 27 so that the filaments
of particles correspond to the isolin@s=0 of the zonal

flow. For example, the group of particles that travel to the fal>: AS In the preceding subsectiofBec. IIIB), a well-
right follow the lower isolinew=0 of the well defined pat- established transport regime appears once a threshold in a

tern aty=— 5. There, the signs of the local vortices are Suchsp(—:-C|f|c parameter is crossed: in the present case the relevant

that the particles are pushed toward the right. Consideratiof'fwameter is3, and the threshold separates a region where

of the vorticity fieldw is thus helpful in identifying dynami- "€ transport is supradiffusive from a region where it is bal-

cally significant zonal flows. These zonal flows are presenESt'C' Th's_ thfShﬁu vaIue_o,B dtralcrealse.s W'Ith mcreasﬂigf N
throughout the duration of the run, and are responsible fo ecause, in the equation, the relative importance of the

the coherent particle positions displayed in Fig. 9. They als&honli?ear terms dre]creas_esd_for smaI;eL wave nu]rcniimlms_ld |
give rise to the layered pattern in Fig. 11, which shows howfNus argerl.). A schematic diagram of the types of poloida

strongly the transport can depend on the initial position ofransport resulting from the HM model whehandL are

the particles. This explanation also applies to the group oYa”ed is displayed in Fig. 13.
particles that travel to the far right in the ca8e-0.05; see
Fig. 6. The resultant transport is ballisfigig. 12a)] and the
mean displacement ix has increasing velocity toward posi- Fusion reactions in a deuterium-tritium tokamak palsma
tive x [see Fig. 1fb)], a feature known as “anomalous produce 3.5 MeV alpha particles whose Larmor radii greatly
advection.”® The influence of zonal flows and coherent exceed those of the thermal ions, so that their response to
structures, in a simple deterministic Hamiltonian model de-
rived from the HM equation and incorporating asymmetric
turbulence, has been studied by del Castillo—Negi&te.
The author found that the trapping effect of the vortices com-

rl)ined with the zonal flows gives rise to anomalous diffusion,
omalous advection and e statistics.

Other runs with3>0.25 have been performed, all of
which give ballistic motion with a coefficient increasing with

IV. FINITE LARMOR RADIUS (FLR) EFFECTS

10

> OF
10
5 -
_5 -
> 0 b
_5 -
-10 I !
-10 . 0 5 10 15 20
—-400 -195 10 215 420 x
X
FIG. 11. Initial positions of the particles for which the total displacement in
FIG. 9. Positions of the test particles fr=0.25 andL =20 att=5482, X is positive. Particles whose total displacemenkiis negative have been
showing a high degree of spatial correlation. removed. Case witl3=0.25 andL = 20.
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t
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. FIG. 14. Dependence of transport on Larmor radiusdet0 andL =120,
381 7

for p=0, 5, and 10. Mean squared displaceméax?) divided by time
2 o | reveals normal transport with diffusion coefficient decreasing with
\

19+ h

10
2282 3882 5482 Let us first consider runs with only nonlinear effects
t present, so that the fluctuations are isotropic. We thke

FIG. 12. Transport fo3=0.25 andL = 20. () Mean squared displacement = 120, which gives normal diffusion. The fields are the same
(Ax?) divided byt?, ballistic transport(b) Mean displacemenik) increases  as in the analogous case of the preceding section, however,
with x, anomalous advection. the 10 particles now have normalized Larmor radigs
=p./ps (Wherep, =v, /w¢j) and start in a rectangle defined
Iby 10=x=110 and—50<y=50. Whenp=1 the transport is
essentially identical to that obtained fpe=0. Some small

turbulence in the plasma can be significantly different. Fo

example, the larger scale of gyromotion and drift motion will = - oo
’ : o glfferences are visible whep=5, but forp=10 the diffusion

smooth out the effects of short wavelength turbulence, creal ticiont | bstantially reduced while the t st
ing a differential response for particles of different energies.Coe icient 1S substantially reduced while the transport stays

Given a theoretical understanding of this differential eﬁ‘ect,normal’ as shown in Fig. 14. The correlation lengths for the

observations of alpha particle transport may yield informa-e'e.Ctros.tatIC potentiall., thg vorticity field, \,,, and the
eiss field\q, have approximate values between 3 and 6,

tion on the characteristics of the turbulence. Studies of th i di th A=\ =\ b K2 d

influence of the finite Larmor radiu$-LR) on the transport 0 kfln X _?_2 ny, IWI b= Hw= "Q tﬁcauseN' i d)tanth

resulting from the linearized HM equation were performed inQ . ¢'. us as long ap IS smafler than or simiiar to the
typical size of the structures, FLR effects are irrelevant.

Refs. 12, 13, showing the reduction of the diffusion coeﬁ‘i-Wh b | h g introduced by th
cient for increasing Larmor radii. Here we extend the simu- eén p becomes farger, the averaging introduced by inhe
FLR affects the particle response to the vortices, and the

lations to the full equation. tude of the t (i v reduced thouah it
The simplest model for FLR is obtained by ‘spreading’m""g.nI ude ot the transport Is greatly recuced, even though Its
qualitative charactefnorma) is unaltered.

the particle over a ring centered at the position of its guiding F isotropic fluctuati f d ith
center, and this is accurate as long as the gyration frequencg_0 gr arélicirggm uc uatlons, x\./eh per orrtr;e”. ? run t\.NI
w¢; iIs much larger than the drift frequeney, = w.ips/L,, H : tf?n s plzirLa;Qmeﬁerstwvl\? gl\I/e thshlc mo |ont
wherelL,, is the typical density scale length. This model can;'.v er: b eredgre no be ects. We-en ar.gél_ N é:ofmpu a
be implemented numerically using linear interpolation to cal- |cinoa 1 OXd 5|men5|(1n5560090atjt§<a| we requzrt ,I ag f ord b
culate the electric field &y, (=8 in our casg points dis- p(_)$' <§g ;’szpé“; <20p?:r_ Icles |1réarr1ec ant%e € w;;z y
tributed over a ring whose radius is equal to the Larmor1 Xsouand—cUusy=2sy. Figure 1o Shows the resutting
radius, and then averaging the electric field over thosiransport, which is evidently balhst!c_and again _ver_y_S|m|Iar
points® The averaging operation tends to suppress thdo" P=0 andp=1, whereas fop=>5 it is strongly inhibited,
smaller scale components of the electric field. although still ballistic. The reason for this threshold effect in
the Larmor radius is to be found in the zonal flows, for which

B o subdiffusive
ballistic snormal
025 = supradiffusive
o = ballistic 5.OO><1O_4
' -4
0.15 o 3.75x10
supradiffusive N _4
0.1 o o & 2.50x10
3
005 o Y o 1.25x1074
subdiffusi al
0 Dx O 5 norm; o
~0.05 2800 4800 6800
20 40 60 80 100 120 L/ps t

FIG. 13. Schematic of transport regimes in the parameter spa@ .(The FIG. 15. Dependence of transport on Larmor radius #3#0.2 andL
squares and circles represent some of the runs; the lines separating the50, for p=0, 1, and 5. Mean squared displaceméhk?®) divided by t?
various regimes indicate approximately where the transitions occur. reveals ballistic transport with coefficient decreasing vgith
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the vorticity correlation length,, is ~5 in x and~2.2 iny. eters. Nevertheless, there seems to be a general tendency to
Whenp is comparable to or larger than their width, the par_e_stablis_h stable regimes once certain critical values of the
ticle sees a field averaged over different uncorrelated vortidimensionless parametegsandL/ps have been crossed. Our
ces, so that the resultant velocity is strongly reduced. results also show how use of derived quantities, notably the
We infer that the effect of FLR is negligible below a Vorticity and the Weiss potential, can assist in understanding
certain threshold, but whep becomes comparable to or SOMe of the complexities of the underlying particle dynam-
larger than the turbulent structures that determine the trandtS:
port, this strongly inhibits the diffusion. The value of the
diffusion coefficient is then drastically reduced, while the
exponent is relatively unaffected. FLR effects can thus create  We would like to thank Dr. J. J. Rasmussen and Dr. V.
large quantitative changes in the transport, without changindlaulin for useful discussions.
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