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We present a self-consistent mean-field model based on a two-component Pauli-like equation that incorporates
quantum and relativistic effects (up to second order in 1/c) for both external and internal electromagnetic fields. By
taking the semirelativistic limit of the Dirac-Maxwell equations in the presence of an external electromagnetic field
we obtain an analytical expression of a coherent light-induced mean-field Hamiltonian. The latter exhibits several
mechanisms that involve the internal mean fields created by all the electrons and the external electromagnetic
field (laser). The role played by the light-induced current density and the light-induced second-order charge
density acting as sources in Maxwell’s equations are clarified. In particular, we identify clearly four different
mechanisms involving the spins that may play an important role in coherent ultrafast spin dynamics.
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I. INTRODUCTION

Under intense light-matter conditions, relativistic correc-
tions may play a significant role in various systems like dense
plasmas [1], heavy atoms and molecules [2,3], or condensed-
matter systems [4]. A theoretical description of the associated
charge and spin dynamics can be in principle investigated using
relativistic versions of density functional theory (DFT) based
on the Dirac-Kohn-Sham equations and relativistic mean-field
or Dirac-Hartree-Fock models [5–8]. However, these fully
relativistic descriptions involve a four-component Dirac wave
function, where the role played by the electronic spinor is
concealed, as well as the physical mechanisms that involve the
spin degrees of freedom. Such approaches are therefore not
useful to validate or uncover new mechanisms in the physics
of condensed matter where only electronic two-component
Pauli spinors are considered.

An understanding of ultrafast spin-light interactions is
particularly required in the field of femtomagnetism, where the
ultrafast demagnetization of ferromagnetic samples induced
by femtosecond laser pulses has been studied for almost two
decades [9–11] without reaching any consensus regarding
the physical mechanisms that underly the quick loss of
magnetization. Many relevant proposals have been suggested
to explain the ultrafast spin dynamics, ranging from spin-
flip scattering involving magnons [12], electrons [13,14], or
phonons [15], to superdiffusive spin current theory [16] or
angular momentum transfer with light [17].

This issue has taken a new turn with an experiment per-
formed on ferromagnetic films [4], showing how to eliminate
the ultrafast demagnetization associated to thermal effects and
therefore how to have access to the coherent magneto-optical
response of the spins. This result indicates that the response of
the material induced by a 50-fs laser pulse interacts coherently
with the spins to produce a significant magneto-optical effect
during the pulse propagation. According to the authors of
[4], the observed results may be explained by the relativistic
interaction between spins and photons through the Foldy-

Wouthuysen (FW) Hamiltonian representing the expansion
of the Dirac Hamiltonian at second order in power of 1/c

[18]. The major role is played by a spin-orbit coupling (SOC)
involving the electromagnetic field of the laser pulse which
goes beyond the usual SOC due to the electric field of the ions.

To gain a sound understanding of these coherent effects, a
theoretical description requires the modeling of the nonlinear
dynamics of a quantum-relativistic system of many interacting
electrons excited by an intense and ultrashort electromagnetic
field including all the light-matter terms up to second order in
1/c. Unfortunately, an analytical solution of such a many-
electron system does not exist, and its numerical solution
using ab initio methods is beyond the ability of present-day
computers. To circumvent this problem, one may work within
a mean-field theory, where the global effect of the N -particle
interactions are incorporated in an effective field that acts on a
one-particle Hamiltonian. Furthermore, it is worth mentioning
that a mean-field derivation including all second-order terms
in 1/c is a required step before adding further effects such as
exchange and correlations.

To achieve this task, in a previous work [19], we laid
the foundations of a two-component self-consistent mean-
field model originating from the semirelativistic limit of
the Dirac-Maxwell equations at second order in 1/c. It has
been shown that a self-consistent theory valid up to second
order in 1/c requires the semirelativistic expansion of the
charge and current densities acting as sources in the Maxwell
equations, themselves expressed as a power series in the
inverse of the speed of light [20]. This model preserves the
mathematical structure of the Schrödinger or Kohn-Sham
equations [21]. In a further work we found that the model is
able to describe all the electromagnetic interactions occurring
in a two-electron system (as described by the Breit-Pauli
Hamiltonian), such as the spin-orbit and spin-other-orbit
interactions as well as the spin-spin interaction [22]. Moreover,
the model clearly explains how these interactions are created
within the single-electron Foldy-Wouthuysen Hamiltonian
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involving the internal electromagnetic potentials originating
from the electronic charge and current densities.

In the present work, we consider the addition of an ex-
ternal electromagnetic field that creates light-induced sources
leading to a coherent effective mean-field Hamiltonian. The
latter represents the coherent electromagnetic response of the
spin-polarized electron gas induced by the external excitation.
It contains precisely four identified mechanisms involving the
spin degrees of freedom that can be associated to spin-orbit
and spin-other-orbit interactions both induced by the external
light pulse. A dimensionless analysis based on realistic values
of light-matter conditions shows that these coherent effects
may play a role in the experimental trends observed in [4].
The present results can also enlighten the discussion about
the mechanisms underlying the origin(s) of the laser-induced
demagnetization.

Finally, let us also mention interesting works that have
tried to evaluate the contribution of the relativistic effects
proposed in [4]. The incorporation of light-induced relativistic
terms on hydrogenlike atoms [23] or semiclassical Drude-
Voigt model [24,25] shows that these effects may produce
a magneto-optical contribution, whereas a more recent ab
initio investigation on the linear magneto-optical response
functions [26] concluded that their contributions are negligible.
However, each of the above studies was performed within
radically different approximations, so that the debate is still
open. We hope that the present work will help focus on the
particular spin-light interaction obtained within the Dirac-
Maxwell model, which appears to be relevant for addressing
the issue of ultrafast coherent magneto-optics.

The paper is organized as follows. In Sec. II, we present
the semirelativistic Dirac-Maxwell system in the presence of
an external electromagnetic field leading to the light-induced
mean-field model, including the role of the microscopical
sources. We show in Sec. III that these light-induced effects
are not negligible within current light-matter conditions and
we perform a detailed analysis of the microscopic mechanisms
involving the spins. We conclude in Sec. IV.

II. THEORY

A. Semirelativistic limit of the self-consistent Dirac-Maxwell
equations in the presence of an external electromagnetic field

We consider a many-electron system in the presence of
an external electromagnetic field (for instance, a laser pulse)
where both quantum and relativistic effects can in principle
play a significant role. In a quantum relativistic mean-field
approach, the electron dynamics is governed by the Dirac
equation (q = −e with e > 0),

i�
∂�

∂t
= [cα · (p − qAext − qAint)

+mc2β + q�ext + q�int]�, (1)

where a distinction is made between the external potentials
(�ext,Aext) related to the laser pulse and the internal potentials
(�int,Aint) created by the presence and the motion of all the
electrons. The Dirac wave function is a bispinor � = (φ,χ )
where φ and χ are, respectively, the electron and positron Pauli
spinors and α and β are the Dirac’s matrix [18]. Equation (1)

FIG. 1. Scheme of the self-consistent model.

is coupled self-consistently to the Maxwell equations written
in terms of the scalar and vector potentials (�k , Ak) (k = ext,
int) in the Lorentz gauge (∇ · Ak + 1

c

∂�k

∂t
= 0),⎧⎨

⎩−��ext + 1
c2

∂2�ext
∂t2 = 0,

−�Aext + 1
c2

∂2Aext
∂t2 = 0

(2)

and {
−��int + 1

c2
∂2�int
∂t2 = qρ

ε0
,

−�Aint + 1
c2

∂2Aint
∂t2 = qμ0j,

(3)

where the sources are expressed with the four-component
Dirac current density as

(ρc,j) = c

N∑
i=1

(�†
i �i,�

†
i α�i). (4)

Equations (1)–(4) constitute a fully relativistic model for
describing the quantum dynamics of a system of N interacting
electrons in the mean-field approximation. A scheme of this
self-consistent model is depicted in Fig. 1.

In the present work, the internal electromagnetic fields are
treated in the Coulomb gauge (∇ · Aint = 0) along with the
quasistatic approximation (�Aint � 1

c2
∂2Aint
∂t2 ). In this frame-

work, the Maxwell’s equations (3) have to be modified and,
following the procedure detailed in [27,28], can be expressed
in terms of two Poisson-like equations{ −��int = qρ

ε0
,

−�Aint = qμ0jT,
(5)

where jT is the transverse component of the current density j
(by definition j = jT + jL, where jL is the longitudinal current
density with ∇ · jT = 0 and ∇ ∧ jL = 0 [29]). The analytical
solutions of Eqs. (5) can be expressed as [27]

�int(x) = q

4πε0

∫
dx′ρ(x′)
|x − x′| , (6)

Aint(x) = qμ0

4π

∫
dx′

(
j(x′)

2|x − x′| + r(r · j(x′))
2|x − x′|3

)
, (7)
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where r ≡ x − x′. In addition, the external fields will be also
treated in the Coulomb gauge and described by the quantities
�ext and Aext.

We consider now the semirelativistic limit of the Dirac-
Maxwell system of Eqs. (1), (2), and (5) valid up to the
second order in powers of 1/c, where only the electrons
should be considered. The Dirac bispinor is transformed into
a two-component Pauli spinor � = (φ,χ ) → φ. Using the
Foldy-Wouthuysen transformation, the Dirac Hamiltonian in
the presence of an electromagnetic field [Eq. (1)] is expanded
to second order in 1/c (also at second order in 1/m) [19,30,31]
to give

H = mc2 + [p − q(Aext + Aint)]
2

2m
+ q(�ext + �int)

− q�

2m
σ · ∇ ∧ (Aext + Aint) − q�

2

8m2c2
∇ · (Eext + Eint)

− q�

4m2c2
σ · (Eext + Eint) ∧ [p − q(Aext + Aint)]. (8)

Here, the first term on the right-hand side is the electron rest
mass energy, the next two terms are the standard Schrödinger
Hamiltonian in the presence of an electromagnetic field, the
fourth term is the Pauli spin term (Zeeman effect), the ∇ · E
term is the Darwin term, and the last term represents the spin-
orbit coupling (SOC).

In Eq. (8) we neglected the term − (p−qA)4

8m3c2 which is the
first relativistic correction to the electron mass (expansion of
the Lorentz factor γ to second order). This assumption is
motivated by the fact that this term introduces fourth-order
derivatives in the evolution equation, unlike the nonrelativis-
tic Schrödinger equation which only contains second-order
derivatives. Another important point is that this term is of
third order in 1/m, which is beyond the purpose of this work.

Working within the nonrelativistic Pauli limit also requires
one to take the low-speed limit of the Maxwell equation.
We focus first on Eqs. (5) involving the internal potentials
produced by the sources. It has already been shown in [19,22]
that the charge and current densities can be expanded in powers
of 1/c with ρ = ρ(0) + ρ(2) + · · · and j = j(0) + j(2) + · · · as

ρ(0) = φ†φ, (9)

j(0) = i�

2m

(
φ∇φ† − φ†∇φ

) − q

m
φ†φA

+ �

2m
∇ ∧ (

φ†σφ
)
, (10)

ρ(2) = �
2

8m2c2
∇ · ∇(φ†φ) − q�

4m2c2
∇ · (

(φ†σφ) ∧ A
)

− i�2

8m2c2
∇ · (φ†σ ∧ (∇φ) + (∇φ†) ∧ σφ), (11)

j(2) = − q�

4m2c2
(φ†σφ) ∧ E − �

2

8m2c2

∂

∂t
∇(φ†φ)

+ i�2

8m2c2

∂

∂t

(
φ†σ ∧ (∇φ) + (∇φ†) ∧ σφ

)
+ q�

4m2c2

∂

∂t

(
φ†σφ ∧ A

)
. (12)

In order to build a model treating at the same order the
equation of motion (Pauli) and the field equations (Maxwell)
one should also expand Maxwell’s equations (6) and (7) to
the second order in powers of 1/c by writing the electromag-
netic potentials as �int = �(0) + �

(2)
int + · · · and Aint = A(0)

int +
A(2)

int + · · · [20]. Consequently, the Poisson-like equations (5)
are related to the above sources given in Eqs. (9)–(12) as
follows:

A(0)
int = 0, (13)

− ��(0) = qρ(0)

ε0
, (14)

− �A(2)
int = qj(0)

T

ε0c2
, (15)

− ��
(2)
int = qρ(2)

ε0
. (16)

The second-order current density j(2) should be neglected
since it would give rise to an internal potential of order 1/c4.
However, that is not the case for the term ρ(2) which is needed to
have a complete description. If some external electromagnetic
fields are also present (e.g., the laser pulse) these can be
assumed to be of zeroth order. The external potentials of
Eqs. (2) can thus be written as �ext = �

(0)
ext and Aext = A(0)

ext.
Let us now look at the different terms that make up the

current and charge densities. As for the current density j(0), the
first term on the right-hand side of Eq. (10) denotes the orbital
charge current, while the last one represents the spin current

j(0)
orb = i�

2m

(
φ∇φ† − φ†∇φ

)
, (17)

j(0)
spin = �

2m
∇ ∧ (

φ†σφ
)
. (18)

The middle term in Eq. (10) reads as j(0)
A = − q

m
φ†φA and is an

electronic current induced by any vector potential (sometimes
called the “paramagnetic current”). In the present work,
restricted to order 1/c2 and 1/m2, jA can only be induced by
the external vector potential, Aext = A(0)

ext being of zeroth order.
Indeed, the internal vector potential A(2)

int , being of second order,
would induce a second-order current j(0)

A(2)
int

�→ j(2)
A creating a

potential that is of fourth order in 1/c. Therefore, only the
vector potential originating from the external electromagnetic
field is considered here, and the associated current is marked
with the subscript “field” meaning “field induced”

j(0)
field = − q

m
φ†φAext. (19)

The above remarks also apply for the second-order density
ρ(2), which can be split into the following three types of terms:

ρ
(2)
orb = �

2

8m2c2
∇ · ∇(φ†φ), (20)

ρ(2)
spin = − i�2

8m2c2
∇ · (φ†σ ∧ (∇φ) + (∇φ†) ∧ σφ)), (21)

ρ
(2)
field = − q�

4m2c2
∇ · (

(φ†σφ) ∧ Aext
)
. (22)

042117-3



Y. HINSCHBERGER, G. MANFREDI, AND P.-A. HERVIEUX PHYSICAL REVIEW A 93, 042117 (2016)

The quantity ρ
(2)
orb originates from the Darwin term illustrating

a correction to the potential energy due to the so-called
Zitterbewegung (trembling motion of the electron in a volume
of size λ3

C where λC = h
mc

is the Compton wavelength

[18]), while ρ(2)
spin and ρ

(2)
field are obtained from the spin-orbit

interaction. Thereby, it has to be noted that the light-induced
term ρ

(2)
field involves also the spin.

As a consequence, the internal fields involving the light-
matter operators in the Foldy-Wouthusen Hamiltonian of
Eq. (8) are split into the following terms:{

�int = �(0) + �
(2)
orb + �(2)

spin + �
(2)
field,

Aint = A(2)
orb + A(2)

spin + A(2)
field,

(23)

with their analytical expressions using Eqs. (6) and (7) given by

�
(k)
int = q

4πε0

N∑
i=1

∫
dx′ρ(k)

i (x′)
|x − x′| , (24)

A(l+2)
int = qμ0

4π

N∑
i=1

∫
dx′

(
j(l)
i (x′)

2|x − x′| + r(r · j(l)
i (x′))

2|x − x′|3
)

, (25)

where the superscripts (k) and (l) denote respectively the type
of sources ((k)

int =(0) ,
(2)
orb,

(2)
spin,

(2)
field) and ((l+2)

int =(2)
orb , (2)

spin,
(2)
field),

which refer to the equation sets [(9),(20),(21),(22)] and

[(17),(18),(19)]. Finally, by plugging Eq. (23) into Eq. (8),
with the analytical form of Eqs. (24) and (25), one obtains the
low-energy Pauli equation

i�
∂φ

∂t
=

(
mc2 + p2

2m
+ U ext + U int + U int

ext

)
φ, (26)

which constitutes with Eqs. (13), (14), (15), and (16) a
self-consistent mean-field model at second order in powers of
1/c in the presence of an external electromagnetic field.

The Pauli Hamiltonian is composed of three groups of terms
U ext, U int, and U int

ext. The first (U ext) incorporates the coupling
between the electron and the external field. It is just the FW
Hamiltonian of a single electron in the presence of an external
electromagnetic field with ∇ ∧ Aext = Bext and Eext ‖ Aext:

U ext = q�ext − q

m
Aext · p + q2

2m
A2

ext − q�

2m
σ · Bext

− q�
2

8m2c2
∇ · Eext − q�

4m2c2
σ · Eext ∧ p . (27)

Note that the paramagnetic current operator acting on
a wave function φ leads to − q

2m
(p · Aext + Aext · p)φ =

− q

2m
(2Aext · (pφ) + (∇ · Aext)φ). In the Coulomb gauge the

second term is zero.
The term U int is related to the mean internal interactions

created by the other electrons of the system, and reads as

U int = q
(
�(0) + �

(2)
orb + �(2)

spin

) − q

m

(
A(2)

orb + A(2)
spin

) · p − q�

2m
σ · ∇ ∧ (

A(2)
orb + A(2)

spin

) + q�
2

8m2c2
��(0) + q�

4m2c2
σ · ∇�(0) ∧ p .

(28)

It has been shown in [22] that the above potential is
equivalent to the Breit-Pauli interaction in the Hartree approx-
imation. More importantly, it was shown precisely how the
light-matter operators of the single-electron FW Hamiltonian
couple to the different types of internal fields to recover all the
electron-electron interactions involved in a two-body system
at second order in 1/c. Here, we just recall that the first term
q�(0) is the usual Hartree term while q�

(2)
orb and q�

2

8m2c2 ��(0)

are mean contact terms. The magnetic dipolar term − q

m
A(2)

orb · p
illustrates the coupling between the electron momenta. The
term q�

4m2c2 σ · ∇�(0) ∧ p is obviously the spin-orbit interaction
with the mean electric field and the second-order potential
q�(2)

spin represents the spin-orbit interaction of the mean particle
moving around the electron charge. The Zeeman interaction
− q�

2m
σ · (∇ ∧ A(2)

orb) denotes a spin-other-orbit coupling due
to the orbital motion, whereas − q

m
A(2)

spin · p also represents
a spin-other-orbit coupling involving the charge motion and
the others spins of the system. The last term representing
a Zeeman effect related to the spin current of the system
− q�

2m
σ · (∇ ∧ A(2)

spin) logically gives the spin-spin interaction.
Finally, we focus our attention on the last term of Eq. (26)

denoted U int
ext. This term represents a light-matter interaction

between the internal mean fields of the system and the external

electromagnetic field

U int
ext = q�

(2)
field − q

m
A(2)

field · p + q2

m
Aext · (

A(2)
orb + A(2)

field

)
+q2

m
Aext · A(2)

spin − q�

2m
σ · (∇ ∧ A(2)

field

)
− q2

�

4m2c2
σ · (∇�(0) ∧ Aext

)
. (29)

It represents a coherent light-induced mean field displaying
two important properties. First, such term is created by the
external field U int

ext = U int
ext(Aext) and is therefore a coherent

interaction, in the sense that these effects do not exist if the
external field is turned off U int

ext(Aext = 0) = 0. Then, all the
terms in Eq. (29) contain at least one mean internal potential
suggesting these effects include all the electrons of the system.
It thus represents a macroscopic response of the system to the
initial light perturbation. The importance and the outcomes of
these terms are discussed in Sec. III.

Among all the interactions representing U int
ext, it can be

seen that three terms act only on the electronic charge:
the magnetic dipolar interaction with − q

m
A(2)

field · p and two
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other terms originating from the energylike term q2A2

2m
that involves the different vectors A of the problem: q2

m
Aext · A(2)

orb and
q2

m
Aext · A(2)

field. Their analytical forms are given below by replacing A(2)
orb and A(2)

field with their expressions:

− q

m
A(2)

field · p = − q

m

[
−qμ0

4πm

N∑
i=1

∫
dx′

(
(φ†

i φiqAext)

2|x − x′| + r[r · (φ†
i φiqAext)]

2|x − x′|3
)]

· p, (30)

q2

m
Aext · A(2)

orb = q2

m
Aext · qμ0

4π2m

N∑
i=1

∫
dx′

(
2φ

†
i piφi

|x − x′| + 2r(φ†
i piφi · r)

|x − x′|3
)

, (31)

q2

m
Aext · A(2)

field = q2

m
Aext · −qμ0

4πm

N∑
i=1

∫
dx′

(
(φ†

i φiqAext)

2|x − x′| + r[r · (φ†
i φiqAext)]

2|x − x′|3
)

. (32)

The coherent light-induced mean field exhibits also two terms involving directly the spin degrees of freedom. The first one comes
from the Zeeman interaction with − q�

2m
σ · (∇ ∧ A(2)

field) and the second from the spin-orbit operator − q2
�

4m2c2 σ · (∇�(0) ∧ Aext).
They precisely read as

− q�

2m
σ · (∇ ∧ A(2)

field

) = − q�

2m
σ · ∇ ∧ −qμ0

4πm

N∑
i=1

∫
dx′

(
(φ†

i φiqAext)

2|x − x′| + r[r · (φ†
i φiqAext)]

2|x − x′|3
)

, (33)

− q2
�

4m2c2
σ · (∇�(0) ∧ Aext

) = − q2
�

4m2c2

q

4πε0
σ · ∇

(
N∑

i=1

∫
dx′φ†

i φi

|x − x′|

)
∧ Aext. (34)

Finally, one can also see two terms containing the spins indirectly via the internal fields of the system. The second-order potential
energy q�

(2)
field has spin-light-induced properties due to the term ρ

(2)
field [see Eq. (22)] and the operator q2

m
Aext · A(2)

spin couples the
external vector potential with the one of the spin system. In both cases, the spin represented by the Pauli matrix σ remains inside
the integrals

q�
(2)
field = q

q

4πε0

(
− �

4m2c2

) N∑
i=1

∫
dx′∇ · ((φ†

i σφi) ∧ qAext)
|x − x′| , (35)

q2

m
Aext · A(2)

spin = q2

m
Aext · qμ0

4π

N∑
i=1

∫
dx′

(
∇ ∧ (φ†

i σφi)

2|x − x′| + r[r · ∇ ∧ (φ†
i σφi)]

2|x − x′|3
)

. (36)

A detailed analysis of the last four terms is performed in Sec. III.C. We show quickly in the next paragraph how the latter
interactions are related to those of the Breit-Pauli Hamiltonian.

B. Equivalence with the Breit-Pauli Hamiltonian within the
Hartree mean-field approximation

The Breit-Pauli Hamiltonian describes the interaction
between two moving electrons at second order in 1/c.
It has its origin in the nonrelativistic limit of the Breit
Hamiltonian HB describing the retardation effects on the
electromagnetic energy between two electrons in the Dirac’s
formalism: HB = −ē2 αi ·αj

2rij
− ē2 (αi ·rij )(αj ·rij )

2r3
ij

[32–34], where

ē2 = q2

4πε0
. The latter can be built from the classical Darwin

Lagrangian LD = ē2 vi ·vj

2c2rij
+ ē2 (vi ·rij )(vj ·rij )

2c2r3
ij

[35], which rep-

resents the classical energy of two moving charges U =
1
2

∑
i

∑
j 	=i (qi�j − qivi · Aj ), where � and A are obtained

by expanding to second order in 1/c the Liénard-Wiechert
potentials [36]. The Breit-Pauli Hamiltonian HBP

ij completes
the classical description by adding the quantum and relativistic
properties due to the electron spins

HBP
ij = −π�

2ē2

m2c2
δ(rij ) − ē2

2m2c2

(
pi · pj

rij

+ rij · (pj · rij )pi

r3
ij

)
+ �ē2

4m2c2

(
σ j · rij

r3
ij

∧ (pj − 2pi) − σ i · rij

r3
ij

∧ (pi − 2pj )

)

− �ē2

4m2c2

(
− 8π

σ i · σ j

3
δ(rij ) − σ i · σ j

r3
ij

+ 3
(σ i · rij )(σ j · rij )

r5
ij

)
, (37)

where the first line of Eq. (37) denotes “spin-free” terms through a contact operator and the coupling between the electronic
momenta, the second line represents the “spin-orbit” and “spin-other-orbit” interactions, and the last line illustrates the “spin-spin”
interaction. It has been shown in [22] that, for a system of N interacting electrons, the Breit-Pauli operators in the mean-field
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Hartree approximation are equivalent to the operators of U int given by Eq. (28). When one considers an additional external
field (�ext,Aext), the Breit-Pauli Hamiltonian is modified into HBP

ij �→ HBP
ij (Aext). Indeed, by performing a Foldy-Whouthuysen

transformation on a Dirac-Breit two-electron system, one can show that the modification brought by the external field up to
second order in 1/c only requires the canonical substitution pi �→ pi − qiAext and pj �→ pj − qj Aext [37]. Consequently, these
modifications only affect the spin-free, spin-orbit, and spin-other-orbit terms of Eq. (37) leading to

HBP
ij (Aext) = HBP

ij + ē2

2m2c2

(
pi · qj Aext

rij

+ rij · (qj Aext · rij )pi

r3
ij

)
+ ē2

2m2c2

(
qiAext · pj

rij

+ rij · (pj · rij )qj Aext

r3
ij

)

+ ē2

2m2c2

(
− qiqj A2

ext

rij

− qiqj

rij · (Aext · rij )Aext

r3
ij

)

+ �ē2

4m2c2

(
σ j · rij

r3
ij

∧ (2qiAext − qj Aext) − σ i · rij

r3
ij

∧ (2qj Aext − qiAext)

)
. (38)

In this case, the exact Hamiltonian of the N interacting electrons in the presence of an external electromagnetic field at second
order in powers of 1/c is given by

H =
N∑

i=1

[
mc2 + p2

i

2m
+ U ext

σi ,pi

]
+ 1

2

∑
i

∑
j 	=i

[
ē2

rij

+ HBP
ij (Aext)

]
.

The modifications that bring the external field are twofold: (i) an action on each electron given by Uext
σi ,pi

, which is just the
FW Hamiltonian at second order in 1/m; (ii) the addition of the extra terms given by Eq. (38). By taking the total wave
function of the system in the Hartree approximation φ(r1, . . . ,rN ) = φ1(r1)φ2(r2) . . . φN (rN ) and using the Lagrange method
of undetermined multipliers, one obtains the Hartree-Breit-Pauli equations for a spinor φi(ri) ≡ φ, which is a solution of the
single-particle Pauli equation: ( p2

2m
+ mc2 + U ext + UBP

eff + UBP
eff(A))φ = i�

∂φ

∂t
, where UBP

eff is equivalent to Eq. (28) and UBP
eff(A)

represents the contribution of the new terms of Eq. (38). The latter are split into spin-free terms (sf ) and spin terms (σ )
as UBP

eff(A) =sf UBP
eff(A) +σ UBP

eff(A). The expressions of the mean fields given by the first three spin-free terms of Eq. (38) read
respectively as

sf UBP
eff(A) = ē2

2m2c2

( ∑
i 	=j

∫
dx′φ†

j (x′)
(

qj Aext

|x − x′| + r(qj Aext · r)

|x − x′|3
)

φj (x′)
)

· p

︸ ︷︷ ︸
− q

m
A(2)

field·p: Eq. (30)

,

+ qē2

2m2c2
Aext ·

∑
i 	=j

∫
dx′φ†

j (x′)
(

pj

|x − x′| + r(pj · r)

|x − x′|3
)

φj (x′)

︸ ︷︷ ︸
q2

m
Aext·A(2)

orb: Eq. (31)

,

+ qē2

2m2c2
Aext ·

∑
i 	=j

∫
dx′φ†

j (x′)
(

− qj Aext

|x − x′| − r(qj Aext · r)

|x − x′|3
)

φj (x′)

︸ ︷︷ ︸
q2

m
Aext·A(2)

field: Eq. (32)

, (39)

where the underbraces indicate the correspondence of each term with the spin-free terms obtained in Eqs. (30), (31), and (32).
The case of the spin terms is a bit more tricky but does not present major difficulties. These mean-field interactions are shown
below in Eq. (40) and correspond to the four spin terms of Eq. (38) respectively taken from the left to the right of the last line

σUBP
eff(A) = q�ē2

2m2c2
Aext ·

∑
i 	=j

∫
dx′φ†

j (x′)
(
σ j ∧ r

r3

)
φj (x′)

︸ ︷︷ ︸
Spin-other-orbit: q2

m
Aext·A(2)

spin: Eq. (36)

− �ē2

4m2c2

∑
i 	=j

∫
dx′φ†

j (x′)
(
σ j · r

r3
∧ qj Aext)

)
φj (x′)

︸ ︷︷ ︸
Spin-orbit:q�

(2)
field: Eq. (35)

− �ē2

2m2c2
σ ·

∑
i 	=j

∫
dx′φ†

j (x′)
( r

r3
∧ qj Aext

)
φj (x′)

︸ ︷︷ ︸
Spin-other-orbit:− q�

2m
σ ·

(
∇∧A(2)

field

)
: Eq. (33)

+ q�ē2

4m2c2
σ ·

⎛
⎝∑

i 	=j

∫
dx′φ†

j (x′)
r
r3

φj (x′)

⎞
⎠ ∧ Aext

︸ ︷︷ ︸
Spin-orbit:− q2�

4m2c2 σ ·(∇�(0)∧Aext): Eq. (34)

.

(40)
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The equivalence with the spin terms of Eq. (29) is indicated
in the underbraces and can be understood as follows.
In Eq. (38), the four spin operators refer to particle i

or j with the subscripts indicated in the spins (σ i ,σ j )
and the electronic charges (qi,qj ). When applying
the Lagrange method of undetermined multipliers
δ< φ(r1, . . . ,rN )|UBP

eff(A)|φ(r1, . . . ,rN ) > = 0, the operators
related to particle i (σ i ,qiAext) are taken out of the integral
becoming (σ ,qAext), while those of particle j (σ j ,qj Aext)
remain inside the integral. Hence the first spin-other-orbit
term involving (σ j ,qiAext) in Eq. (38) leads to a term looking
like ≈ qAext

∫
dx′ . . . σ j , which can obviously be identified

to q2

m
Aext · A(2)

spin of Eq. (36). Then, one can see that for
the second term, exhibiting a spin-orbit interaction, both
quantities σ j and qj Aext will be kept inside the integral and
can only correspond to the term q�

(2)
field of Eq. (35). The

same procedure is used to attribute the spin-other-orbit term
(σ i ,qj Aext) to − q�

2m
σ · (∇ ∧ A(2)

field) and the last spin-orbit term

(σ i ,qiAext) to − q2
�

4m2c2 σ · (∇�(0) ∧ Aext).
The equivalence of the light-induced mean field originating

from the Dirac-Maxwell equations with the Breit-Pauli Hamil-
tonian in the presence of an external electromagnetic field is
still valid. This fact may appear less surprising if one notes
that both approaches are performed under the same conditions,
namely the Coulomb gauge and the quasistatic approximation.
Anyway, following this particular result, one can claim that the
light-matter operators involving the spin can be attributed to
the spin-orbit and spin-other-orbit interactions, both induced
by the external electromagnetic field.

III. DETAILED ANALYSIS

A. Order of magnitude of the light-induced mean-field terms

The Pauli-like Hamiltonian in Eq. (26) exhibits three types
of terms, namely the interaction with the external field U ext, the
mean internal interactions U int, and the semirelativistic light-
induced mean field U int

ext. We propose, as a first approximation,
to express these Hamiltonians with dimensionless parameters
involving the internal and external parameters of the system.
The first term U ext is the FW Hamiltonian at second order in
1/c. In their seminal paper, Foldy and Wouthuysen explained
that the dimensionless quantities in their transformation were
h

mc
∇ and h

mc2
∂
∂t

[30]. By considering a time-dependent external
electromagnetic field, the spatial (time) derivative can be
replaced by λ−1 (ω) and the dimensionless quantities read
as λC

λ
(ωC

ω
), where λC = h

mc
is the Compton wavelength and

ωC = 2πc
λC

is the Compton frequency. Then, by using the
following relations involving the external electromagnetic
field quantities |Bext| ≈ |Aext/λ|, |Eext| ≈ |�ext/λ|, |�ext| ≈
|cAext|, and |Eext| = |cBext|, one may express U ext as

U ext ≈ e�ext

(
1 + λC

λ
+

(
λC

λ

)2

+ O

(
c−3

))
, (41)

where �ext is the scalar potential of the external electro-
magnetic field. In the case of the internal mean field U int,
which also represents an expansion to second order in 1/c,
the electric field is due to the Coulomb interaction and
the wavelength of the external field has to be replaced by
a characteristic electronic distance. By taking the distance

between two interacting electrons rij , one can see that the
operators of U int can be expressed as

U int ≈ Nē2

rij

(
1 +

(
λC

rij

)2

+ O

(
c−3

))
, (42)

where N is the number of electrons in the system. Finally,
the light-induced mean field U int

ext, which belongs exclusively
to the second order in 1/c, is composed of both internal and
external properties and thus reads

U int
ext ≈ Nē2

rij

(
λC

rij

)(
e�ext

mc2

)
+ O

(
c−3

)
. (43)

We want to estimate the importance of the light-induced mean
field U int

ext. Being itself of the second order in 1/c it has
to be compared to the second-order energy corrections of
the internal mean field U int. Indeed, it is the spin-orbit, the
spin-other-orbit, and the spin-spin interactions that contribute
to the magnetic ordering of the N -electron system. The latter
are represented by the second term in Eq. (42) and can be

written as U
int(2)
ext ≈ Nē2

rij
( λC

rij
)
2
. The light-induced mean field can

modify the internal ordering without necessarily reaching the
ionization regime for which one needs to have at least the en-
ergy of the Coulomb interaction U int(0) ≈ Nē2

rij
. Consequently,

using �ext = (Eextλ) we define a yield parameter η that reads

η = U int
ext

U int(2)
= rij

λC

eEextλ

mc2
. (44)

With a basic dimensionless approach, the yield parameter
finally depends only on the intrinsic electron wavelength (the
Compton wavelength: λC = 2.42 × 10−12 m), a characteristic
electronic distance (rij ), and the amplitude and wavelength of
the external electromagnetic field.

To get a quantitative estimation, we propose to focus on
the experiment where the coherent ultrafast magneto-optical
measurements were performed on ferromagnetic nickel thin
film [4]. As mentioned in the Introduction, the authors
suggested that the observed trends originate from a relativistic
coupling between spin and photons through a Zeeman effect
and a spin-orbit coupling involving the electromagnetic fields
of the laser as well as the coherent magnetic response of all
the interacting spin-electron gas (including all the field terms
up to second order in 1/c). The present model accurately
describes these effects at least in the mean-field approximation
(without exchange and correlation effects). In Ref. [4], the
50-fs laser field was centered at λ ≈ 800 nm with an intensity
E0 around E0 = 1 mJ/cm2 and the thickness of the nickel

film was 7.5 nm. Using the relation cε0E
2
ext

2 = 10×E0(mJ/cm2)
�t

[24] one can estimate Eext ≈ 4 × 108 V/m. The choice of
an electronic distance is maybe more difficult. One could take
rij ≈ 10−10 m, or even larger since rij could also represent the
typical interelectronic distance in the nickel film. For instance,
with rij included in the interval rij ∈ [10−10 m, 3 × 10−10 m]
one obtains η ∈ [3%,9%]. Even using the lower limit, the
result is not so negligible considering the rough approximation
provided by the dimensionless analysis. Hence it would be
relevant to perform a sophisticated and rigorous analysis based
on a numerical study, which should be able to give a more
precise estimation of η.
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However, these effects may play a really important role by
employing a larger field amplitude. With an electric field am-
plitude of Eext = 1010 V/m, a value that is currently available
in laboratories, the value of η can easily reach η ≈ 65% even
with rij ≈ 10−10 m. Therefore, these coherent effects appear
to be somehow important, and we thus perform a detailed
analysis of the related mechanisms in the following section.

Here, let us mention a few comments about the do-
main of validity of the model regarding the specifications
of the external electric field. It must be first emphasized
that the model is no longer valid if the field energy is
close to the electron mass energy where the phenomenon
of particle-antiparticle creation occurs. It corresponds to an
electric-field amplitude of Eext = mc2

qλC
≈ 1018 V/m. It must be

also checked under which conditions higher-order corrections
can be omitted. For instance, we show in [37] that it exists, at
third order in 1/m, a coherent coupling between the external
fields and the internal fields. For an electric field amplitude
of 1014 V/m the contribution of the third-order terms with
respect to the second-order terms has been estimated to be
about 2%. Therefore, below this electric field amplitude value,
contributions of third order may be neglected.

In a more general context, we show in [31] that the FW
expansion at higher orders in 1/m may be grouped into two
categories: (i) the direct couplings between the spin and the

external field that reads as q�ext(1 + ( λC
λ

) + ( λC
λ

)
2 + · · · ); (ii)

the expansion of the kinetic energy mc2β(1 + T 2

m2c4 )
1/2

. The
FW procedure at fourth and fifth order leads also to mixed
operators of these two types. For the first category of terms (i),
higher orders can be neglected as soon as the laser wavelength
remains sufficiently large compared to the Compton wave-
length, λC. For instance, this is the case for a visible or UV
radiation, and even for the beginning of the soft x-ray spectrum.
By taking λ = 1 nm one gets ( λC

λ
) ≈ 10−3. Consequently,

one would need an electric-field amplitude of 8 × 1015 V/m

for having the third-order correction qEextλ( λC
λ

)
3

equal to

the second-order term ē2

rij
( λC

rij
)
2

computed using rij ≈ 2 Å.
Concerning the category (ii), the kinetic energy expansion
leading to (p−qA)4

8m3c2 is more singular. This term varies according
to m−3 and c−2 and therefore belongs to an intermediate
order compared to ( λC

λ
)
n
, where m and c evolve together.

In the present work, we made the choice to neglect it. It

is justified if P4

8m3c2 < ē2

rij
( λC

rij
)
2 ⇔ P < 2 × 10−24 kg m s−1,

where P ≡ p − qAext − qAint. This condition is satisfied for an
electron momentum p ≈ 9 × 10−25 kg m s−1 (rough estimate
using the Fermi velocity of Ni Ref. [38]) and an internal field
−qAint = ē2λC

cr2
ij

≈ 10−28 kg m s−1. The case of the external field

is more tricky. Using the experimental conditions of Ref. [4],
Eext ≈ 4 × 108 V/m and λ = 800 nm, one gets −qAext ≈
qEextλ

c
≈ 10−25 kg m s−1 leading to a value of q4A4

8m3c2 which is
not so far from the limit value for which this term must be
considered. The latter is equal to Eext ≈ 3 × 109 V/m for λ =
800 nm and Eext ≈ 5 × 1010 V/m for λ = 50 nm. Nevertheless,
it must be emphasized that this term does not affect the spins.

However, higher amplitudes of the electric-field require
more careful attention because crossed terms like p · A3, p2A2,

or p3 · A may influence the charge dynamics and introduce
additional spatial derivatives. Starting from the condition
P < 2 × 10−24 kg m s−1 with p ≈ 9 × 10−25 kg m s−1 and
λ = 800 nm, crossed terms become important respectively for
−qAext ≈ {5 × 10−24; 10−23; 10−22} kg m s−1 corresponding
to an electric-field amplitude of Eext ≈ {1010,3 × 1010,3 ×
1011} V/m. These values increase with the wavelength of
the laser. Indeed, in the mid-UV spectrum for λ = 50 nm,
the critical electric-field amplitudes are Eext ≈ {2 × 1011; 4 ×
1011; 5 × 1012} V/m.

Consequently, one can argue that the present description
of the spin dynamics is valid when the external electric-
field amplitude is below approximately 3 × 109 V/m for
wavelengths within the visible spectrum. A larger amplitude
of the external electric field may be also used by employing a
shorter wavelength (≈ 5 × 1010 V/m for λ = 50 nm).

B. Mechanisms involving the coherent spin dynamics

As explained in the Introduction, the origin of the quick loss
of magnetization following the interaction of a ferromagnetic
sample with an ultrafast femtosecond laser pulse is still under
active debate. The demagnetization process occurs within two
kinds of physical interactions. The first is related to the electro-
magnetic ordering of the system induced by the polarization of
the external electromagnetic field, while the second is linked to
its internal disorder created by the associated thermal effects.
In the last case, the heat filled by the laser generates an increase
of the system temperature, and the thermal agitation modifies
randomly each spin-orientation leading to a diminution on the
average magnetization of the sample.

The coherent magneto-optical signal extracted from the
experiment performed in [4] shows that light-induced coherent
effects play an important role in the first few femtoseconds
of the demagnetization process. It is legitimate to ask what
are the main physical mechanisms underlying these effects.
For that purpose, let us analyze the spin terms of the Pauli-
like Hamiltonian of Eq. (26) that only involve the external
electromagnetic field and the spin degrees of freedom σU .
One may distinguish

σU = σU ext +σ U int
ext,

where σU ext represents the direct coupling between the spin
and the laser through the Zeeman interaction and a laser-
induced spin-orbit coupling with

σU ext = − q�

2m
σ · Bext − q�

4m2c2
σ · Eext ∧ p, (45)

and σU int
ext stands for the indirect coupling between the spin and

the laser which reads as

σU int
ext = − q�

2m
σ ·

(
∇ ∧ A(2)

field

)
− q2

�

4m2c2
σ · (∇�(0) ∧ Aext

)
+ q�

(2)
field + q2

m
Aext · A(2)

spin. (46)

The operators in Eq. (45) illustrate a direct interaction between
the laser electromagnetic field and the electron spin. The latter
have already been mentioned in other works [4,23,31] and do
not constitute the purpose of the present work.
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FIG. 2. Mechanisms of type (A) (see details in text).

Let us now focus on the elements of Eq. (46), which can be
separated into two types of interactions as follows.

(A) The first two terms exhibit explicitly the Pauli spinor σ

and involve a Zeeman-like interaction − q�

2m
σ · (∇ ∧ A(2)

field) and

a SOC-like operator − q2
�

4m2c2 σ · (∇�(0) ∧ Aext). They represent

the mean-charge responses [characterized by (�(0),A(2)
field)]

acting on the electron spin.
(B) The two others q�

(2)
field and q2

m
Aext · A(2)

spin depict the
interaction between the electronic charge q and the spin
dependent mean-field terms. They illustrate the mean-spin
responses.

Let us focus first on the terms of type (A).
(A1) The Zeeman-like term − q�

2m
σ · (∇ ∧ A(2)

field) can be eas-
ily understood. The electron spin interacts with the magnetic
field created by the motion of charges induced by the laser field.
Indeed, the external vector potential Aext creates an internal
current j(0)

field = − q

m
φ†φAext leading to a vector potential A(2)

field
which is finally related to a light-induced magnetic field
Beff = ∇ ∧ A(2)

field. This intuitive picture is depicted on the left
panel of Fig. 2.

(A2) The spin-orbit mechanism − q2
�

4m2c2 σ · (∇�(0) ∧ Aext)
is the usual one involving the electron momentum p to which
we add the momentum associated to the external vector
potential p �→ p − qAext. The motion of the electronic charge
is modified under the action of qAext, as well as its orbital
angular momentum with respect to the positions of the other
electrons. The effective magnetic field seen by the electron
spin is therefore modified during the action of the pulse and
reads ∇�(0) ∧ Aext (see right panel of Fig. 2).

(B1) As for the second-type terms acting on the charge,
one can see that the operator q2

m
Aext · A(2)

spin represents an
electromagnetic energy involving two vector potentials: the
one of the light Aext and one of the system A(2)

spin. The latter
is created by the internal spin current j(0)

spin as depicted in the
left panel of Fig. 3. This interaction can be seen as an energy
term looking like q2A2

2m
or as a paramagnetic dipolar coupling

where qAext substitutes to the electron momentum p. We
remember also that the magnetic field ∇ ∧ A(2)

spin generated by

FIG. 3. Mechanisms of type (B) (see details in text).

j(0)
spin that couples to the electron spin via a Zeeman interaction

corresponds to the internal spin-spin interaction given in U int.
(B2) Finally, the last term q�

(2)
field is the most surprising.

The electronic charge feels a second-order Hartree poten-
tial that is related to the charge density ρ

(2)
field = − q�

4m2c2 ∇ ·
((φ†σφ) ∧ Aext), this latter quantity being a function of both
the spin and laser field. The two vectors σ and Aext generate
another one ((φ†σφ) ∧ Aext) which is finally associated to an
effective electric field Eeff (see right panel of Fig. 3).

As a summary, the connection between these interactions
and the microscopic sources producing the electromagnetic
field is depicted in Table I. Given the order of magnitude of
the coherent effects within current light-matter interaction con-
ditions, and following the above analysis, one would suggest
that these four mechanisms,may play an important role within
the first few femtoseconds of the demagnetization process.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, the semirelativistic limit of the self-consistent
Dirac-Maxwell equations was obtained up to second order
in 1/c in the presence of an external electromagnetic field.
The result consists on the availability of a self-consistent
two-component mean-field model that incorporates all the
quantum and relativistic effects occurring at order 1/c2. The
model also leads to a coherent light-induced semirelativistic
Hamiltonian that can describe the coherent interaction of an
ultrafast laser pulse with a system of N interacting electrons
in the mean-field approximation. The latter appears to be
relevant to current laser-matter conditions. We have extracted
four clearly identified mechanisms that involve the interaction
of the external laser pulse with the spin degrees of freedom.
They can be seen as light-induced spin-orbit interaction and
light-induced spin-other-orbit interaction. We hope that the
present work will lead to promising numerical investigations in
a near future. Also, we believe that these results can be helpful
to enlighten the issue of the microscopic interactions in the
light-induced ultrafast spin dynamics. However, at this current
step, the model presents several limitations that have to be
incorporated in future analytical and numerical developments.
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TABLE I. Origin of the different types of interaction terms in the semirelativistic light-induced mean-field Hamiltonian U int
ext [Eq. (29)].

Coulomb Paramagnetic I Paramagnetic II Zeeman Spin-orbit

Sources q�(2) − q

m
A(2) · p q2

m
A(2) · Aext − q�

2m
σ · (∇ ∧ A(2)) − q2

�

4m2c2 σ · (∇�(0) ∧ Aext)

ρ(0) Spin-orbit [Eq. (34)]

j(0)
orb Spin free [Eq. (32)]

j(0)
spin Spin-other-orbit [Eq. (36)]

j(0)
field Spin free [Eq. (30)] Spin free [Eq. (31)] Spin-other-orbit [Eq. (33)]

ρ
(2)
field Spin-orbit [Eq. (35)]

First, one should be able to produce numerical calculations
of the charge and spin dynamics and see how strong the
light excitation should be to perturb significantly the equi-
librium state fixed by the internal electromagnetic interactions
[39,40]. Furthermore, the set of obtained equations appears to
be a time-dependent self-consistent Schrödinger-Poisson-like
system including magnetic properties. It thus belongs to a
well-known framework which can be in principle numerically
solved [41]. Another goal of such modeling is to establish
a hierarchy between the mechanisms that involve the spin
degrees of freedom, and to determine which mechanisms are
the most relevant ones, depending of course on the initial
conditions given by the choice of a physical system. Also,
one should go beyond the Hartree approximation which
neglects the exchange and correlations effects. The latter
playing an important role in ferromagnetic materials, we
hope to incorporate them in a future work. Finally, another

improvement would be to incorporate a second (or multiple)
light pulse(s) to describe efficiently the nonlinear optical
effects. Indeed, most experimental techniques that extract
information on the ultrafast spin and charge dynamics are
based on nonlinear time-resolved pump-probe or four-wave
mixing experiments, whose experimental signals exhibit a
nonlinear combination of pump and probe beam intensities.
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