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Magnetic force fields of isolated small
nanoparticle clusters†
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The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their pro-

perties at the single nanoparticle level. There has been a lot of progress in the understanding of the mag-

netic properties of NPs, but incomparably less when interparticle interactions govern the overall magnetic

response. Here, we present a quantitative investigation of magnetic fields generated by small clusters of

NPs assembled on a dielectric non-magnetic surface. Structures ranging from individual NPs to fifth-fold

particulate clusters are investigated in their magnetization saturation state by magnetic force microscopy

and numerical calculations. It is found that the magnetic stray field does not increase proportionally with

the number of NPs in the cluster. Both measured and calculated magnetic force fields underline the great

importance of the exact spatial arrangement of NPs, shedding light on the magnetic force field distri-

bution of particulate clusters, which is relevant for the quantitative evaluation of their magnetization and

perceptibly for many applications.

1. Introduction

Stable and well characterized magnetic nanoparticles (NPs) are
much sought after in many research fields. In particular, bio-
related applications making use of iron-oxide NPs (magnetite –

Fe3O4 and maghemite – Fe2O3) are currently one of the
pharmaceutical markets with the fastest growth.1,2 Such nano-
particles are now intensively used in biomedical imaging, diag-
nostic and therapeutic applications.3–7 Their rather easy
synthesis,8–10 along with their peculiar magnetic properties11

and relatively low toxicity12,13 also make them ideal candidates
as contrast agents for magnetic resonance imaging (MRI),14–17

heat generators for cancer treatment by magnetic
hyperthermia,18–21 and carriers in drug delivery systems.22,23

As always the case for any compound which is meant to be
used in human health, there are stringent requirements on the
properties of these materials. From the nanometer-scale inter-
action point of view, the magnetic properties of NPs are of
utmost importance for their entire spectrum of applications.24

For example, the local magnetic field surrounding the NPs is
crucial for self-organization of NPs in solutions and on
surfaces.25,26 Or, the magnetic field of NPs is key for magnetic
relaxation-based detection, which is not limited to MRI.27

Magnetic relaxation-based detection exploits the local mag-
netic field generated by NPs by altering the spin–spin relax-
ation time of nearby molecules. In the MRI detection scheme
the additional homogeneous external magnetic field is high
enough to enable a magnetization saturation state of NPs. In
any case, the study of NPs in their magnetic saturation state is
consequently of critical importance.

The local magnetic field is nonetheless strongly modified
by aggregation, an effect which has been recognized quite
early to further enhance the rate of transverse spin relaxation
of nearby water molecules for instance.27–30 An efficient
implementation of NPs in applications is consequently
strongly related not only to their saturation magnetization – an
active research field in synthetic inorganic chemistry – but also
to the magnetic properties of NPs, which has been shown to
be impacted by the degree of clustering,22,31–35 or the for-
mation of controlled multicore particulate architectures.36–38

The characterization of the local magnetic field generated by
either individual or few interacting NPs (hereafter referred to
as clusters) is, therefore, also of great interest.

Here, we present an experimental and theoretical study on
a quantitative evaluation of the magnetic force fields created
by clusters consisting of 1 to 5 NPs. A homogeneous external
magnetic field able to saturate the magnetization of NPs has
been used. It was found that the local magnetic force fields do
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not increase proportionally with the number of NPs in the
clusters. Moreover, minute modifications of the spatial
arrangement of NPs in the cluster were found to drastically
modify the magnetic stray field, which in turn has a great
impact on the quantitative determination of the magnetic
moments of the clusters. In particular, it is shown that at dis-
tances smaller than the size of the clusters, the NPs do not
equally contribute to the measured signal, yielding an overesti-
mation of the magnetic moment of clusters when using a two-
dipole model. This model is nevertheless shown to be suited
for distances exceeding some critical values, which can be
roughly approximated as twice the diameter of NPs forming
the clusters. For measurements performed at larger distances,
the application of the two-dipole model leads to a good esti-
mation of the magnetic moments, improving further for clus-
ters having a compact configuration.

Our numerical analyses were carried out by virtually split-
ting both the tip and the clusters into a large number of micro-
scopic elements, permitting a full pairwise integration of mag-
netostatic potentials. This method allows taking into account
the exact geometry of both tip and sample, which is crucial in
the present study. Using the numerical results given by our
model in combination with the experimental findings, we
provide unprecedented insight into the quantitative evaluation
of the magnetic field generated by the clusters of NPs. The
importance of the tip–sample distance and of the spatial
organization of the particulate clusters is clearly emphasized.
The results shed light on the magnetic force field distribution
near the clusters of NPs, which is relevant for a broad range of
applications.

2. Experimental and modeling details

The investigation of the local field distribution above magnetic
nanostructures of dimensions down to a few nanometers can
be experimentally achieved by means of either magnetic force
microscopy (MFM)39 or electron holography.40 The former
technique has been extensively used in the last two decades
and is now a mature approach, providing unique information
about the nanoscale magnetism of on-surface,41,42 immersed43

or embedded nanostructures.44 MFM uses the attractive and/or
repulsive magnetostatic interactions established between the
magnetic probe of the microscope and the near-field magnetic
stray field emerging from the nanostructure, yielding a force
gradient image. The signal is generally measured by converting
the local magnetostatic interaction to an amplitude or phase
change of the vibrating cantilevered MFM tip.39,41 In a first
approximation, the phase shift of the cantilever vibration can
be written as a function of the gradient force along the
z-direction:

Δϕ ¼ �Q
k
@Fz
@z

; ð1Þ

where Q is the oscillation quality factor of the cantilever and k
is the cantilever spring constant. For quantitative information,

the phase shift needs to be probed at various tip–sample dis-
tances. This is in order to allow a 3D imaging of the magnetic
field distribution generated by the magnetic
nanostructure.39,45 Moreover, a quantitative interpretation of
the phase shift is also complex, since it depends on the
detailed magnetic properties of the tip.46,47 A few experimental
studies have nevertheless proven the extraction of quantitative
information feasible, such as magnetization or coercive fields,
provided the exact spatial distribution of the tip magnetization
is known.48–51 Nonetheless, in many studies the two-dipole
model52 was used to interpret the experimental findings.53–55

The two-dipole model, also called the point-probe model,
replaces the magnetic nanostructure by a unique magnetic
dipole moment, and idealizes the tip magnetization by a mag-
netic dipole moment which is virtually located in the tip at a
certain distance from the apex.52 Within this model, the phase
shift of the cantilever is directly proportional to the nano-
structure magnetic dipole moment and to the magnetic dipole
moment of the tip.52 This two-dipole model has been success-
fully applied for extracting quantitative magnetic information,
particularly on nanostructures able to generate field geome-
tries similar to those used for the tip calibration.56–58

Accordingly, spherical NPs with known magnetization have
been employed to calibrate the magnetic tips, which were sub-
sequently used to determine the magnetic moment of other
spherical NPs or clusters.58,59,63

Our experiments have been performed under ambient con-
ditions using an ICON-AFM apparatus controlled by a
Nanoscope V electronics. The topographic images have been
acquired in tapping mode, while the lift mode was used for
the magnetic (MFM) imaging. The tip–sample distance has
been determined by adding the mean topographic scan height
(30 nm) to the tip-lift values used in the MFM scan. The spring
constant of the used cantilevers was between 2 and 3 N m−1

and their resonance quality factor ranged between 500 and
1000. The probes were silicon tips covered with a hard mag-
netic coating presenting a coercive field of about 250 Oe. A
magnetic field of 0.5 T was permanently applied in all experi-
ments reported in this work. This field is high enough to satu-
rate both the magnetic MFM probe and the NPs. Other details
about the experiments are described in section SI3.† A charac-
terization of the tip magnetic properties in the framework of
the two-dipole model is presented in section SI4.† The mag-
netic moments of the NPs evaluated with the two-dipole
model are in section SI5.†

The numerical simulations were conducted by considering
the real geometry of the tip and the number and organization
of the NPs. The configuration used in the simulations is
sketched in Fig. SI9.† The advantage of our simulation model
is that it considers a tip and a sample composed of small mag-
netic elements (meshes), which better account for the geome-
try of the systems. A magnetic moment corresponding to the
respective volume is associated with each mesh element.
Various mesh sizes have been checked, until a convergence
was obtained. This typically corresponds to square meshes of
lateral sizes below 2 nm (see section SI6†). The experimental

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 1842–1851 | 1843



height of the tip H was also considered to obtain a conver-
gence of the calculated force. The elementary force between
two elementary magnetic elements of magnetic moments M1

�!
and M2

�!
separated by~r, reads:

Δ~F M1
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For a saturated magnetization along the z-direction, the total
magnetic force is obtained by integrating over the whole system:

~F ¼
ð
d~r′d~r′′d~F MNPs

���!ð~r′Þ;MTip
��!ð~r′′Þ;~r′′�~r′

� �
; ð3Þ

where m represents the magnetization density. This expression
can be numerically evaluated as a function of tip–sample dis-
tance z, yielding as well the first derivative of force versus dis-
tance, which can then be compared with the experimental

phase shift. Section SI6† is a complete compilation of all para-
meters used in simulations.

3. Results and discussion

The high-temperature decomposition of magnetic precursors in
organic solvents enables the formation of highly crystalline NPs
of various sizes, shapes, compositions and magnetic
properties.10,64 Spherical Fe3O4 NPs with diameters of 30 nm ±
5 nm with high saturation magnetization values have been used
(sections SI1 and SI2†). Prior to the deposition, the NPs were
dispersed in chloroform. The residual traces of water in chloro-
form solvent lead to the assembly of NPs into ring structures of
various diameters, as reported elsewhere for gold nano-
particles.65 In between the ring structures, clusters comprising a
different number of NPs can be found (Fig. 1, also section SI1†).

3.1. Magnetic phase-signals and the two-dipole model

Phase shift profiles as a function of tip–sample distance are
shown in Fig. 1. The total magnetic moment of the clusters is

Fig. 1 Top row: AFM topographic images (200 × 200 nm2) of a single NP and of various clusters made from two to five iron-oxide nanoparticles.
The vertical scale bar is 34 nm. Middle row: MFM phase shift profiles (horizontal direction) as a function of tip–sample distance [tip lifts from 20 nm
(dark blue) to 65 nm (light brown), values measured with respect to the topographic scan which is at about 30 nm from the sample surface]. Lower
row: Phase shift profiles (vertical direction). Profiles are vertically offset for clarity.
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expected to proportionally increase with the number of NPs
composing the cluster, inducing a proportional increase of the
phase shift as well. As seen in Fig. 1, this is not the case, since
the variation of the phase shift signal does not scale with the
number of NPs in the cluster. It is important to note that for
large distances (80–95 nm: light-brownish curves), the phase
signal tends, however, to vary proportionally with the number
of NPs. We will see below that the phase shift also depends on
the spatial arrangement of NPs in the cluster. In any case, the
experimental results presented in Fig. 1 already justify a
deeper analysis of how the magnetic field generated by
different clusters evolves with the number and organization of
NPs. Moreover, experimental observations also reveal the need
to develop an accurate numerical model which can be sub-
sequently used for quantitative characterization of the mag-
netic fields generated by the clusters of NPs.

3.2. Stray fields of single NPs

We have pursued our analysis by extracting quantitative infor-
mation on the magnetic moments of various NP clusters. This
was first realized by characterizing the MFM tip on reference
samples consisting of six different isolated NPs having dia-
meters ranging from 26 nm to 34 nm (Fig. 2 and Fig. SI5†).
This analysis is a necessary step towards obtaining quantitative
information about the magnetic moment of clusters.58,59 It is
worth noting that the diameters of the NPs have been esti-
mated from height profiles and not from lateral sizes, as
lateral dimensions are usually overestimated by tip convolution
effects.59 With the convolution effects not being present at the
top of a nanoparticle, the extracted diameters of NPs are then
in agreement with the size histograms obtained from electron
microscopy images (section SI2†).

Another important issue in non-contact phase imaging is
the electrostatic contributions which can interfere with “mag-
netic” phase shifts.60 However, since all the measurements
presented here are done in the saturation state of the magneti-
zation, the electrostatic contribution is negligible as compared

to the magnetic signal.61 A negligible contribution of the
electrostatic field is also indicated by the asymptotic variations
of the phase signal with the tip–sample distance, which can
only be explained by an insignificant gradient of the electro-
static field in the respective tip-distance interval.62 The mag-
netic field produced by homogenously magnetized spherical
NPs (especially at saturation) is hence well approximated to the
field of a point dipole positioned at the center of the spherical
NPs. This is the core of the two-dipole model as used in MFM,
and is quite accurate for individual NPs.62 The strength of the
magnetic field is expected to be proportional to the magnetic
moment of the nanoparticle, which in turn increases with its
diameter (section SI4†).

Within this description, a slight deviation of the magnetic
moment induces a significant modification of the field above
the nanoparticles. Consequently, different volumes of the mag-
netic tip are involved in collecting the magnetic signal.
Evolution of the MFM phase shift with the tip–sample distance
is perfectly fitted with the two-dipole model, as seen in
Fig. 2(a), provided that the magnetic dipole moment of the tip
(mtip) as well as its virtual location (δtip) within the tip volume
are free fitting parameters. The significant variations with the
NP diameter should be noted. Since the magnetic moment of
each NP is well known, the two fitting parameters can be deter-
mined as a function of NP diameter. The resulting values are
summarized in section SI4.† Those values are helpful for the
subsequent analyses of clusters.

Each pair of parameters (mtip, δtip) reflects the magnetic
force field generated by an isolated NP. Both mtip and δtip are
found to increase with the increasing diameter of the particle.
The values of mtip are of the order of 10–17 Am2, which is in
good agreement with known values of magnetic moment of
the tips. Plotting the mtip as a function of δtip results in a
linear dependence (Fig. 2). In our case, this dependence might
be triggered by the reduced variation in the NP size, since for
fields generated by nanoscale current-carrying parallel litho-
graphed wires, a power-law behavior has been observed.57

3.3. Dimers and the role of planarity

The calibration of the magnetic tip enables the extraction of
magnetic properties of clusters presenting different spatial
organizations. For instance, clusters D1 and D2 in Fig. 3 were
formed by assembling two NPs (D1: 30 nm and 28.5 nm; D2:
31 nm and 27.5 nm, respectively, also see Fig. SI6†). From
these sizes, we can consider that both dimers have an identical
volume of magnetic material even if their spatial arrangement
is different. The main difference between the two dimers is
that the NPs in D2 do not lie in the same surface plane. They
partially overlap (section SI3†), appearing in the image in a
more compact form than for D1 where both NPs are in the
surface plane (Fig. 3).

It is now interesting to realize that the field generated by D2
emerges from a smaller area displaying a larger decay length.
This is a simple and clear example of how the NPs in the
dimer can impact the MFM signal along a particular direction.
Moreover, the phase signal as a function of tip–sample dis-

Fig. 2 (a) Phase shift of six single NPs of various diameters. Solid lines
are fits obtained with the two-dipole model. The insets are the topo-
graphic images of the investigated NPs (150 × 80 nm2). (b) Plot of the
magnetic dipole moment of the tip as a function of its virtual location in
the tip volume. The blue line is a linear fit.
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tance (proportionally to the tip lift in MFM) of D2 exhibits a
more sloped profile, which means that D2 generates a mag-
netic force field with a greater gradient magnitude in the
normal direction.

In order to quantify the stray field generated by the clusters
and to observe at which distances from the cluster surface the
two-dipole model increases its accuracy we calculate the ratio
between the phase signals of the clusters and of a single NP.
As an example, the ratio between the experimental MFM phase
shifts recorded for the two dimers (D1 and D2) and a single
NP (S4) are shown in Fig. 3. The NP has been chosen in order
to approach as close as possible the mean diameter of the NPs
composing the cluster. As is seen, for distances above 80 nm,
the D2/S4 ratio is indeed almost 2, in agreement with the two-
dipole model (which stipulates that if the magnetic moment of
the investigated cluster is doubled, the phase shift should also
double). However, at lower distances, the ratio decreases down
to about 1.5. The D1/S4 ratio starts at 1.7 at the largest distance
and smoothly decreases towards 1.2 for the smallest distances
[Fig. 3(b)], remaining therefore significantly lower than the
ideal value of 2. These findings suggest in both cases that the
tip does not perceive the entire cluster magnetic moment,
which is a significant deviation from theory.

From the fits, δtip is 79 and 82 nm for D1 and D2, respect-
ively. The δtip values are larger in comparison with the ones
obtained for isolated NPs. By applying the linear dependence
from Fig. 2(b), the values of magnetic moment of the tip are
2.95 × 10–17 Am2 and 3.23 × 10–17 Am2, when using D1 and D2,
respectively. The higher value of the moment observed for D2
is due to the compact geometry, as the stray field interacts
with a larger tip volume than in the case of D1. Finally, the
extracted values of the magnetic dipole moment of D1 and D2
are 6.91 × 10–18 Am2 and 7.69 × 10–18 Am2, respectively. These
values represent a percentage of 68.5% and 75.5% of the sum
of magnetic moments of the two NPs forming D1 and D2.
Consequently, when individual NPs come closer to each other
and start clustering, only a fraction of the entire magnetic

moment is detected by the MFM tip, undermining the two-
dipole model. Interestingly, in compact geometries, where NPs
partially overlay, the tip starts to perceive the entire magnetic
moment for tip–sample distances exceeding roughly twice the
diameter of a single NP.

3.4. Trimers, tetramers, and pentamers and compactness

It is pertinent to verify this trend and to further investigate the
effect of the arrangement of NPs in clusters of higher order.
The association of a third NP to a dimer leads to a variety of
geometrical “trimer” configurations. We analyzed 5 different
3-fold clusters (trimers) (Fig. 4). In Tr1, a NP partially super-
imposes over the other two, giving rise to a slightly out-of-
plane and compact triangular configuration when looking
from above; Tr2 has an almost perfect isosceles in-plane tri-
angular configuration, while Tr3 presents a slightly more open
triangular shape. Tr4 is less bent, resembling a linear chain,
whereas Tr5 has the two outer NPs in part overlaying the
central one, forming a more compact geometry as seen from
the top view. This has consequences for the field gradient gen-
erated in the out-of-plane direction, as discussed below in
relation with the phase ratio comparison of the trimers.

As highlighted in Fig. 4(b), the phase shift for 3-fold clus-
ters is even more drastically influenced by the NP arrange-
ment. The evolution of the phase shift as a function of dis-
tance is very abrupt in the case of compact Tr1, i.e. the gener-
ated magnetic force field has the steepest gradient. The slope
of the signal gradually decreases for Tr2 and Tr3, becoming
the lowest for Tr4. In other words, as the trimers evolve from a
compact triangular configuration to a linear-like chain, the
magnitude of the generated magnetic force field decreases. In
turn, the force field for Tr5 becomes again comparable to the
one of Tr2 and Tr3, an effect which is due to the partial over-
lapping of outer NPs. Hence, we can conclude that the assem-
blage of NPs in linear-like chains generates reduced magnetic
force fields above the center of the chain, whereas compact or
overlapping NP geometries yield gradient fields of greater
magnitudes.

The phase shift signals on the trimers have also been nor-
malized by the phase signal of a single NP. Again, the latter

Fig. 3 (a) Phase shift of two dimers (D1 and D2) of different organiz-
ations. Solid lines are fits obtained with the two-dipole model. The
insets are the topographic images of D1 and D2 (150 × 100 nm2). (b)
Distance dependence of the phase shift for the two dimers divided by
the phase shift of a single NP.

Fig. 4 (a) Phase shift of five 3-fold clusters (trimers) of various com-
pactness. Solid lines are fits using the two-dipole model. The insets are
the topographic images of the trimers Tr1 (scale bar: the large side of
images is 170 nm). (b) Phase shifts for the five trimers divided by the
phase shift of a single NP, reported as a function of tip–sample distance.
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were estimated by averaging the diameters of the NPs consti-
tuting the respective trimers (Fig. SI7†). The magnetic
moments of the trimers were evaluated by applying the same
procedure as previously used for the dimers. Assuming for
instance that the compact Tr1 trimer has a magnetic moment
three times larger than the one of a single NP, it is expected
that the phase shift ratio reaches a value of 3 over the entire
range of distances. As shown in Fig. 4(b), the ratio is largely
below 3 and only tends to this value for distances above 85 nm.
For Tr1, the extracted magnetic moment almost equals the sum
of the magnetic moments of the individual monomers – 90%
recovery (section SI5†). In the case of Tr2 and Tr3 – where the
apparent surface area increases as a result of the larger spacing
of the NPs – the recovery percentages are 85.5% and 80%,
respectively. The phase shift ratios for Tr2/S3 and Tr3/S2 are
close to 3 only for large distances (85–95 nm), and steeply fall to
1.7 when the distance decreases to 50 nm [Fig. 4(b)]. The recov-
ery percentage reduces significantly to 66% and 70% for Tr4
and Tr5 clusters, respectively. Accordingly, the Tr4/S2 ratio
varies very rapidly from 1.3 to 2.6, while the Tr5/S5 ratio has a
smooth linear trend between 1.5 and 2.

The magnitude of the detected magnetic moment of a
cluster therefore significantly depends on the degree of com-
pactness and on the tip–sample distance. For compact triangu-
lar clusters the tip detects a full magnetic moment only at dis-
tances exceeding 80 nm. As the separation between NPs
increases, the recorded magnetic force field decreases,
affecting the overall magnitude of the magnetic moment of
clusters.

We have expanded our study to larger clusters formed by
the assembly of four and five NPs. In the case of “tetramers”
(Te), the NPs are spatially arranged in such a way that they are
located in the corner of a slightly distorted square, while NPs
in “pentamers” (Pe) form an almost regular pentagon (Fig. 5 &

Fig. SI7†). The phase shift of the pentamer has a slightly larger
magnitude than that given by the tetramer (Fig. SI8†). In
general, we find that the less compact geometries have a great
impact on the magnitude of the extracted magnetic moment.
The recovery percentage is 64% and 67% for the tetramer and
pentamer, respectively (Table SI2†). This indicates that a larger
2D spatial extension of NPs results in a magnetic force field of
a smaller magnitude and a shorter decay length. As can be
seen in Fig. 5, where phase shift ratios are plotted for clusters
with increasing connectivity, the Te/S4 and Pe/S4 phase shift
ratios only approach values of 3.5 and 4.6, respectively, at the
largest distances. Only the smaller compact clusters have the
tendency to reach a phase shift ratio identical to the number
of NPs. These findings again cannot be understood in the
framework of the two-dipole model where the clusters are
described by point-like magnetic dipole moments.

4. Numerical simulations

Calculations of the magnetostatic interactions between the
microscope tip and the NPs were modeled by using the con-
figurations found experimentally. A detailed description of the
method can be found in section SI6.† The interaction between
the magnetic tip and the sample has been simulated by
placing the tip apex above the center of mass of the studied
clusters. In Fig. 6(a), we show the computed magnetic forces
as a function of distance for three isolated NPs of different dia-
meters: D = 26 nm, 30 nm and 34 nm. As expected, the mag-
netic force increases with the size of the NPs while the total
magnetic moment scales with the volume. In Fig. 6(b), the
theoretical force gradient values are plotted (which are pro-
portional to the experimental phase shift) with respect to the
tip–sample distance. Comparison with the experimental

Fig. 6 (a) Variation of the magnetic force between the tip and three
single NPs of different diameters (D = 26 nm, 30 nm and 34 nm) as a
function of tip–NP distance. (b) Variation of the force gradient as a func-
tion of distance for the three different single NPs. The inset exhibits the
variation of the gradient force ratio between the larger single NPs (D =
30 and 34 nm) and the smallest single NP (D = 26 nm) as a function of
distance by using our simulation method (full curve) and an equivalent
two-dipole model (dashed curve).

Fig. 5 Phase shift of several clusters divided by the phase shift of a
single NP. The NP has been chosen with a diameter close to the mean
diameter of those composing the cluster. The insets are the topographic
images of the analyzed clusters.
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results presented in Fig. 2 reveals that the simulated force gra-
dients exhibit the same trend as in experiments. Indeed, in
both simulated and experimental cases, the force gradient
increases for larger NPs. The difference between the force gra-
dients however shrinks as the distance between the tip and the
NP increases.

Due to the finite element modeling used here, the numeri-
cal analyses do not need to take into account a change in the
tip magnetization or any modification in the localization of tip
moment, as required in the two-dipole model. Deviations from
the two-dipole model can be quantified by comparing the
simulated force gradient ratio between two different NPs with
respect to the two-dipole model. In the latter case, the force
gradient ratio between two different NPs is constant as a func-
tion of distance, as shown for instance in the inset of Fig. 6(b).
The simulations indicate that the ratios depend on the tip–
sample distance, progressively converging to the value given by
the two-dipole model. The simulations are therefore expected
to give details about why the fitting of experimental phase
shifts with the two-dipole model required a change of both the
tip magnetic moment and its location within the tip volume.

4.1. Influence of compactness

To study the influence of the in-plane compactness of the clus-
ters on the generated magnetic field, we calculated the force
gradients for four configurations where the in-plane arrange-
ment of the NPs has been changed. Since the most relevant
experimental results concerning the modification of the mag-
netic force field have been obtained on 3-fold clusters, we
chose to work with clusters formed by NPs of the same dia-
meter (D = 30 nm). Their configurations are shown in Fig. 7.
The 3-fold clusters can be differentiated by the parameter θ

which represents the angle between the central NP and the two
outer NPs [Fig. 7(c)]. The first trimer has a linear-like chain
configuration, which corresponds to an angle θ = 0. In the next
two configurations, the outer NPs are symmetrically displaced
with respect to the central NP, while keeping the NPs in the
same plane, i.e. the one perpendicular to the tip axis. This
gives rise to triangular clusters with θ = π/8 and θ = π/4, respect-
ively. The latter cluster has a more compact structure with the
three NPs forming an equilateral triangle θ = π/3.

From Fig. 7(a), it can be seen that the magnetic force
exerted on the tip gradually increases as the cluster changes
from a linear to a triangular configuration. The differences
between the four configurations are as expected more visible at
small distances. The more compact the trimer, the stronger
the magnetic force. The magnitude of the magnetic force field
therefore depends on the geometrical configuration of the
trimer. The slope of the force gradient vs. distance is also sig-
nificantly reduced for low compactness [Fig. 7(b)]. The com-
puted force gradients are consequently in very good agreement
with the experimental phase shifts plotted in Fig. 4. Moreover,
at large distances (≫D), the force gradients converge to the
same value because all four computed configurations have the
same total magnetic moment. In the case of the most compact

trimer (θ = π/3), the force gradient shows the greatest variation,
as also found experimentally (Tr1 in Fig. 4).

The force gradients shown in Fig. 7(b) are divided by the
force gradient obtained for a single NP. The resulting curves
are shown with solid lines in Fig. 8(a). It is seen that the ratios
display a smoother variation as the trimers adopt a less
compact geometry. It is worth recalling that these ratios indi-
cate how the magnetic fields generated by a cluster deviate
from the fields generated by a single NP. As a matter of fact,
the ratio cannot be larger than three for a trimer.

When the Tr/S ratio reaches the maximal value of three, it
means that the magnetic force field is not any more dependent
on the spatial arrangement in the trimer. In our numerical
analyses, we found a maximum value of 2.8 at 95 nm in the
case of the most compact trimer (θ = π/3). This maximum
value decreases considerably at the same distance for less
compact trimers. It means that even at distances larger than
2–3 times the NP diameter, the tip is still sensitive to the 2D
spatial arrangement of the NPs in the trimer.

For the sake of comparison, we also calculated the force
gradient ratios for θ = 0 and θ = π/3 trimers using the two-
dipole model. The results are shown with dashed lines in

Fig. 7 (a) Force and (b) force gradient between the tip and the four
clusters depicted in (c). (c) Top view of four trimers of different com-
pactness. The red crosses represent the lateral position of the tip.
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Fig. 8(a). A full analysis performed with the two-dipole model
is presented in section SI7.† At large distances >2D, the ratio
for the compact trimer is greater than the ratio of the linear
trimer, which is qualitatively in agreement with both previous
simulations and experiments. For small distances (<2D), the
ratios show a completely different variation as compared with
the respective curves obtained with our finite element model
and with the experiments. For instance, at distances of the
order of D, the two dipole model predicts a ratio for the linear-
like chain cluster higher than the one for the compact trimer,
an aspect which is neither observed in our finite-element mod-
eling nor in the experiments. The ratio even becomes negative
at very short distances (<D), meaning that the force between
the tip and clusters is attractive. This happens because the tip
dipole moment is so close to the dipole moment of NPs that
there is an angle where the sign of the magnetic force
changes. This is not the case either in our finite element mod-
eling or in the experiments, because of the finite size of the
NPs and of the tip. Altogether, these results already show that
the two-dipole model cannot capture a reliable magnetostatic
interaction at separation distances <2D.

The force gradients of several clusters ranging from two to
five NPs divided by the force gradient of a single NP are shown
in Fig. 8(b). These theoretical ratios can be compared with the
experimental curves presented in Fig. 5. As is seen, the
numerical results support the experimental findings.
Depending on the number of NPs composing the clusters, the
ratios progressively increase as the distance increases,
approaching a saturation value. Above approximately 70 nm,
the ratios are almost 2 and 3 for dimers and trimers, respect-
ively. Instead, at the same 70 nm separation distance, the
ratios for tetramers and pentamers are only 3.6 and 4.5, satur-
ating at 3.9 and 4.8 only for very large distances. This is due to
the fact that the tip senses differently the magnetic force fields
depending on the 2D organization of the NPs in the cluster, as
also observed experimentally.

5. Summary and conclusions

We presented a combined experimental and theoretical study
on a quantitative evaluation of the magnetic force fields gener-
ated by clusters formed by associations of single NPs on a
solid non-magnetic substrate. The experimental results
obtained under a saturation magnetic field of 0.5 T have
shown that the magnetic force fields do not increase propor-
tionally with the number of NPs in the clusters. Furthermore,
for dimeric and trimeric clusters, minute modifications of the
2D spatial arrangement of NPs in the clusters drastically
modify the surrounding magnetic field. For these clusters, the
magnitude of the generated force field follows the prediction
of the two-dipole model, but only at distances exceeding some
critical values (about twice the diameter of a NP). For tetra-
mers and pentamers the two-dipole model is found to overesti-
mate the value of the magnetic moments in the whole range of
the experimental distances. The largest the in-plane lateral
expansion of the cluster the less accurate is the two-dipole
model in extracting quantitative information. This is because
the principal condition for the use of a two-dipole model is
related to the lateral extension of the clusters which should be
smaller than the distance at which the magnetic force field is
evaluated.

Good agreement with the experimental results, in the entire
range of tip–sample distances, was obtained by considering
the real geometry of the system, namely by splitting both the
tip and sample in a finite number of microscopic elements
and performing a full pairwise integration of magnetostatic
potentials. The numerical calculations conducted with this
finite-element model provided unprecedented insight into the
quantitative evaluation of the magnetic field generated by
assemblies of NPs, and put forward the importance of the
spatial organization. The magnetic force field in the proximity
of clusters has a complex distance-dependent structure, being
driven significantly by the exact number of NPs. Compact clus-
ters have a general tendency to generate an enhanced force
field able to extend at larger distances, which is the result of
interparticle magnetic interactions and cooperative effects.
Our results may have an impact on the chemical design of NP-
based clusters for various applications, including biomedical
and therapeutic strategies or magnetic information
technologies.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank N. Beyer for technical assistance, O. Ersen for TEM
measurements, S. Colis for magnetic hysteresis measurements,
and R. Dudric for XRD data. This work is supported by ANR
METABIP (12 BS10 003 01), ANR OH-RISQUE SMARAGD (14

Fig. 8 (a) Force gradients for the four trimers divided by the force gra-
dient of a single NP (30 nm in diameter). For comparison, the results for
θ = 0 and θ = π/3 as computed with the two-dipole model are shown
with dashed lines. (b) Force gradients for clusters composed from two
to five NPs divided by the force gradient of a NP.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 1842–1851 | 1849



OHRI 0008 01), EOARD (FA8655-13-1-3001) and partially by
ANR-11-LABX-0058-NIE within the Investissement d’Avenir
program ANR-10-IDEX-0002-02. C. Iacovita acknowledges
financial support from Romanian National Authority for
Scientific Research, CNCSIS-UEFISCDI, through researcher
mobility project no. PN-III-P1-1.1-MC-2017-0981 and a research
project to stimulate young independent teams with no.
PN-III-P1-1.1-TE-2016-0967. We thank CNRS & University of
Strasbourg for support.

References

1 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander
Elst and R. N. Muller, Chem. Rev., 2008, 108, 2064–2110.

2 J. Gao, H. Gu and B. Xu, Acc. Chem. Res., 2009, 42, 1097–
1107.

3 N. Lee, H. R. Cho, M. H. Oh, S. H. Lee, K. Kim, B. H. Kim,
K. Shin, T.-Y. Ahn, J. W. Choi, Y.-W. Kim, S. H. Choi and
T. Hyeon, J. Am. Chem. Soc., 2012, 134, 10309–10312.

4 M. Colombo, S. Carregal-Romero, M. F. Casula,
L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen,
D. Prosperi and W. J. Parak, Chem. Soc. Rev., 2012, 41, 4306.

5 A.-H. Lu, E. L. Salabas and F. Schüth, Angew. Chem., Int.
Ed., 2007, 46, 1222–1244.

6 J. H. Kang, E. Um, A. Diaz, H. Driscoll, M. J. Rodas,
K. Domansky, A. L. Watters, M. Super, H. A. Stone and
D. E. Ingber, Small, 2015, 11, 5657–5666.

7 M. Mahmoudi, S. Sant, B. Wang, S. Laurent and T. Sen,
Adv. Drug Delivery Rev., 2011, 63, 24–46.

8 W. Wu, Z. Wu, T. Yu, C. Jiang and W.-S. Kim, Sci. Technol.
Adv. Mater., 2015, 16, 023501.

9 D. Ling and T. Hyeon, Small, 2013, 9, 1450–1466.
10 A. Demortire, P. Panissod, B. P. Pichon, G. Pourroy,

D. Guillon, B. Donnio and S. Bégin-Colin, Nanoscale, 2011,
3, 225–232.

11 S. Noh, W. Na, J. Jang, J.-H. Lee, E. J. Lee, S. H. Moon,
Y. Lim, J.-S. Shin and J. Cheon, Nano Lett., 2012, 12, 3716–
3721.

12 U. O. Häfeli, J. S. Riffle, L. Harris-Shekhawat,
A. Carmichael-Baranauskas, F. Mark, J. P. Dailey and
D. Bardenstein, Mol. Pharm., 2009, 6, 1417–1428.

13 G. Liu, J. Gao, H. Ai and X. Chen, Small, 2013, 9, 1533–
1545.

14 H. Bin Na, I. C. Song and T. Hyeon, Adv. Mater., 2009, 21,
2133–2148.

15 Z. R. Stephen, F. M. Kievit and M. Zhang, Mater. Today,
2011, 14, 330–338.

16 N. Lee and T. Hyeon, Chem. Soc. Rev., 2012, 41, 2575–2589.
17 Y. Jun, J. Lee and J. Cheon, Angew. Chem., Int. Ed., 2008, 47,

5122–5135.
18 L. Lartigue, C. Innocenti, T. Kalaivani, A. Awwad, M. del

M. Sanchez Duque, Y. Guari, J. Larionova, C. Guerin, J.-L.
G. Montero, V. Barragan-Montero, P. Arosio, A. Lascialfari,
D. Gatteschi and C. Sangregorio, J. Am. Chem. Soc., 2011,
133, 10459–10472.

19 L. C. Branquinho, M. S. Carriao, A. S. Costa, N. Zufelato,
M. H. Sousa, R. Miotto, R. Ivkov and A. F. Bakuzis, Sci.
Rep., 2013, 3, 2887.

20 C. Martinez-Boubeta, K. Simeonidis, A. Makridis,
M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra,
S. Estradé, F. Peiro, Z. Saghi, P. A. Midgley, I. Conde-
Leborán, D. Serantes and D. Baldomir, Sci. Rep., 2013, 3,
1652.

21 C. Blanco-Andujar, A. Walter, G. Cotin, C. Bordeianu,
D. Mertz, D. Felder-Flesch and S. Begin-Colin,
Nanomedicine, 2016, 11, 1889–1910.

22 O. Veiseh, J. W. Gunn and M. Zhang, Adv. Drug Delivery
Rev., 2010, 62, 284–304.

23 M. Das, D. Mishra, P. Dhak, S. Gupta, T. K. Maiti, A. Basak
and P. Pramanik, Small, 2009, 5, 2883–2893.

24 E. Bellido, N. Domingo, I. Ojea-Jiménez and D. Ruiz-
Molina, Small, 2012, 8, 1465–1491.

25 A. Shavel, B. Rodriguez-González, M. Spasova, M. Farle and
L. Liz-Marzán, Adv. Funct. Mater., 2007, 17, 3870–3876.

26 L. Balcells, I. Stankovic, Z. Konstantinovic, A. Alagh,
V. Fuentes, L. López-Mir, J. Oró, N. Mestres, C. Garcia,
A. Pomar and B. Martinez, Nanoscale, 2019, 11, 14194–
14202.

27 J. M. Perez, L. Josephson, T. O’Loughlin, D. Högemann and
R. Weissleder, Nat. Biotechnol., 2002, 20, 816–820.

28 C. Min, H. Shao, M. Liong, T.-J. Yoon, R. Weissleder and
H. Lee, ACS Nano, 2012, 6, 6821–6828.

29 J. Conde, J. T. Dias, V. Grazão, M. Moros, P. V. Baptista and
J. M. de la Fuente, Front. Chem., 2014, 2, 48.

30 L. Gutiérrez, L. de la Cueva, M. Moros, E. Mazaro, S. de
Bernardo, J. M. de la Fuente, M. P. Morales and G. Salas,
Nanotechnology, 2019, 30, 112001.

31 K. Wu, K. Schliep, X. Zhang, J. Liu, B. Ma and J.-P. Wang,
Small, 2017, 13, 1604135.

32 P. Gillis and S. H. Koenig, Magn. Reson. Med., 1987, 5, 323–
345.

33 L. Josephson, J. M. Perez and R. Weissleder, Angew. Chem.,
Int. Ed., 2001, 40, 3204–3206.

34 R. A. Brooks, Magn. Reson. Med., 2002, 47, 388–391.
35 H. Shao, T.-J. Yoon, M. Liong, R. Weissleder and H. Lee,

Beilstein J. Nanotechnol., 2010, 1, 142–154.
36 H. Gavilán, A. Kowalski, D. Heinke, A. Sugunan,

J. Sommertune, M. Varón, L. K. Bogart, O. Posth, L. Zeng,
D. González-Alonso, C. Balceris, J. Fock, E. Wetterskog,
C. Frandsen, N. Gehrke, C. Grüttner, A. Fornara, F. Ludwig,
S. Veintemillas-Verdaguer, C. Johansson and M. P. Morales,
Part. Part. Syst. Charact., 2017, 34, 1700094.

37 P. Bender, J. Fock, C. Frandsen, M. F. Hansen, C. Balceris,
F. Ludwig, O. Posth, E. Wetterskog, L. K. Bogart,
P. Southern, W. Szczerba, L. Zeng, K. Witte, C. Grüttner,
F. Westphal, D. Honecker, D. González-Alonso,
L. F. Barquin and C. Johansson, J. Phys. Chem. C, 2018,
122, 3068.

38 S. Ota, Y. Matsugi, T. Nakamura, R. Takeda, Y. Takemura,
I. Kato, S. Nohara, T. Sasayama, T. Yoshida and K. Enpuku,
J. Magn. Magn. Mater., 2019, 474, 311.

Paper Nanoscale

1850 | Nanoscale, 2020, 12, 1842–1851 This journal is © The Royal Society of Chemistry 2020



39 P. Grütter, H. J. Mamin and D. Rugar, Magnetic force
microscopy, Springer, Berlin, Heidelberg, 1992, pp. 151–207.

40 R. E. Dunin-Borkowski, T. Kasama, A. Wei, S. L. Tripp,
M. J. Hÿtch, E. Snoeck, R. J. Harrison and A. Putnis,
Microsc. Res. Tech., 2004, 64, 390–402.

41 I. Passeri, D. Angeloni, L. Reggente and M. Rossi, Magnetic
Force Microscopy, Magnetic Characterization Techniques for
Nanomaterials, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2017.

42 P. Ares, M. Jaafar, A. Gil, J. Gómez-Herrero and A. Asenjo,
Small, 2015, 11, 4731–4736.

43 C. Dietz, E. T. Herruzo, J. R. Lozano and R. Garcia,
Nanotechnology, 2011, 22, 125708.

44 A. Krivcov, J. Schneider, T. Junkers and H. Möbius, Phys.
Status Solidi A, 2018, 216, 1800753.

45 M. V. Rastei, R. Meckenstock, J. P. Bucher, E. Devaux and
T. Ebbesen, Appl. Phys. Lett., 2004, 85, 2050–2052.

46 M. V. Rastei, R. Meckenstock and J. P. Bucher, Appl. Phys.
Lett., 2005, 87, 222505.

47 M. V. Rastei, M. Abes, J. P. Bucher, A. Dinia and V. Pierron-
Bohnes, J. Appl. Phys., 2006, 99, 084316.

48 H. J. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser,
R. Hofer, S. Martin, H.-J. Güntherodt, S. Porthun,
L. Abelmann, J. C. Lodder, G. Bochi and R. C. O’Handley,
J. Appl. Phys., 1998, 83, 5609–5620.

49 P. J. A. van Schendel, H. J. Hug, B. Stiefel, S. Martin and
H.-J. Güntherodt, J. Appl. Phys., 2000, 88, 435–445.

50 T. Häberle, F. Haering, H. Pfeifer, L. Han, B. Kuerbanjiang,
U. Wiedwald, U. Herr and B. Koslowski, New J. Phys., 2012,
14, 043044.

51 S. Schreiber, M. Savla, D. V. Pelekhov, D. F. Iscru, C. Selcu,
P. C. Hammel and G. Agarwal, Small, 2008, 4, 270–278.

52 U. Hartmann, Phys. Lett. A, 1989, 137, 475–478.

53 R. B. Proksch, T. E. Schäffer, B. M. Moskowitz,
E. D. Dahlberg, D. A. Bazylinski and R. B. Frankel, Appl.
Phys. Lett., 1995, 66, 2582–2584.

54 M. Abes, M. V. Rastei, J. Venuat, A. Carvalho, S. Boukari,
E. Beaurepaire, P. Panissod, A. Dinia, J. P. Bucher and
V. Pierron-Bohnes, J. Appl. Phys., 2009, 105, 113916.

55 D. Passeri, C. Dong, M. Reggente, L. Angeloni, M. Barteri,
F. A. Scaramuzzo, F. De Angelis, F. Marinelli, F. Antonelli,
F. Rinaldi, C. Marianecci, M. Carafa, A. Sorbo, D. Sordi,
I. W. Arends and M. Rossi, Biomatter, 2014, 4, e29507.

56 J. Lohau, S. Kirsch, A. Carl, G. Dumpich and
E. F. Wassermann, J. Appl. Phys., 1999, 86, 3410–3417.

57 T. Kebe and A. Carl, J. Appl. Phys., 2004, 95, 775–792.
58 S. Sievers, K.-F. Braun, D. Eberbeck, S. Gustafsson,

E. Olsson, H. W. Schumacher and U. Siegner, Small, 2012,
8, 2675–2679.

59 L. Angeloni, D. Passeri, S. Corsetti, D. Peddis,
D. Mantovani and M. Rossi, Nanoscale, 2017, 9, 18000–
18011.

60 M. Jaafar, O. Iglesias-Freire, L. Serrano-Ramon, M. Ricardo
Ibarra, J. Maria de Teresa and A. Asenjo, Beilstein J.
Nanotechnol., 2011, 2, 552–560.

61 L. Angeloni, D. Passeri, F. A. Scaramuzzo, D. Di Iorio,
M. Barteri, D. Mantovani and M. Rossi, AIP Conf. Proc.,
2016, 1749, 020006.

62 L. Angeloni, D. Passeri, M. Reggente, D. Mantovani and
M. Rossi, Sci. Rep., 2016, 6, 26293.

63 C. Moya, Ó. Iglesias-Freire, X. Batlle, A. Labarta and
A. Asenjo, Nanoscale, 2015, 7, 17764–17770.

64 L. Wu, A. Mendoza-Garcia, Q. Li and S. Sun, Chem. Rev.,
2016, 116, 10473–10512.

65 L. Malassis, D. Jishkariani, C. B. Murray and B. Donnio,
Nanoscale, 2016, 8, 13192–13198.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 1842–1851 | 1851


	Button 1: 


