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A: SETUP, CALIBRATION, UNCERTAINTIES

Optical trap setup

All experiments are performed on single optically trapped
polystyrene spheres (radius R = 500 nm) taken from a
monodisperse (δR/R = 0.028) solution (ThermoFisher, Flu-
oSpheres) and enclosed inside a fluidic cell filled with dion-
ized water. The microfluidic cell is made with a microscope
slide and a 170 µm thick glass coverslip, sealed with a 120
µm thick spacer.

The optical trap, described in details in Fig. 1, is an evo-
lution of the setup described in our previous work [1]. It
uses a CW near-infrared (λT =785 nm) laser whose intensity
– hence the trap stiffness – can be modulated externally us-
ing a waveform generator. Any trapping protocol can then be
implemented by computer-programming the waveform gener-
ator so that the time-evolution of the trap stiffness follows the
desired profile.

Under such trapping laser modulation, the instantaneous
axial motion x(t) of the bead is monitored using an auxiliary
laser propagating in the opposite direction of the trapping laser
(see Fig. 1). We checked that this low-power probe beam, in-
jected in the fluidic cell from its back-side, does not exerts
any spurious optical force of the trapped bead. The signal col-
lected by the photodiode and the output voltage of the wave-
form generator are simultaneously registered by a multichan-
nel acquisition card (National Instruments, NI-6251) with a
sampling rate fs = 262 kHz. In order to span the signal in
the full dynamic range of the acquisition card, the generator
output voltage was re-scaled using a scaling amplifier (Stan-
ford Research Systems, SIM983) and the voltage time series
of the photodiode was amplified and filtered using low-noise
pre-amplifiers (Stanford Research Systems, SR560).

Stiffness modulation calibration

The trapping laser is modulated according to a given proto-
col κ(t), defined and calculated with chosen transition param-
eters (κi,κ f ,∆t). In order to convert this protocol κ(t) into a
modulating voltage Vmod(t) for the waveform generator, a cal-
ibration procedure is performed. This procedure consists in
measuring the trap stiffnesses associated with a series of con-
secutive values of DC voltages, i.e. consecutive trapping laser

FIG. 1. The trapping laser (λT = 785 nm, 100 mW, TEM00, CW,
Coherent, OBIS LX785) is modulated externally using a waveform
generator (Agilent, 33220A). Linearly polarized along the z−axis,
the beam is sent to a water-immersion objective (O1, 100×, 1.2 nu-
merical aperture (NA)) through a polarizing beam splitter (PBS) and
a quarter-wave plate (λ/4). The intensity I(t) partially reflected by
the end-surface of the fluidic cell varies linearly with the displace-
ment x(t) of the polystyrene microsphere inside the trap. This inten-
sity I(t) is collected and recorded by a p-i-n photodiode (Thorlabs,
DET10A), while a CCD camera is used in the other port of the non
polarizing beam splitter (NPBS) for imaging. The probe beam con-
sists of a second laser (639 nm, 70 mW Thorlabs laser diode, lin-
early polarized) of low power (400 µW). It is injected inside the trap
collinearly with the trapping beam but from behind the fluidic cell
using a dry objective (O2, 60×, NA 0.7). This second beam is sep-
arated from the trapping beam using a dichroic mirror (DM) and the
interference between the transmitted beam and the diffracted light
by the bead is recorded using a second p-i-n photodiode (Thorlabs,
DET10A) placed in a plane conjugated to the back focal plane of the
trapping objective. In order to ensure that a single bead is trapped
without other beads in its vicinity, potentially perturbing the dynam-
ics, the optical trap is equipped with an interferometric scattering
microscope not shown here but described in details in our previous
work [2].

intensities. Each stiffness is extracted from a Lorentzian fit
of the corresponding motional power spectral density (PSD)
of the trapped bead. Associated error bars are obtained from
the uncertainties of the Lorentzian fits (MATLAB Levenberg-
Marquardt algorithm). The calibration curve shown in Fig. 2
corresponds to a linear fit of the evolution of such measured
stiffnesses (including their error bars) as a function of the DC
voltages.
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FIG. 2. Evolution of the trap stiffnesses as a function of DC wave-
form generator voltages. The red dots represent the stiffness val-
ues extracted from the motional PSD, with error bars for each point
combining the uncertainties of the Lorentzian fit of each PSD and
the error made on the Stokes drag γ = 6πRη due to the polystyrene
sphere radius dispersion δR/R. The solid line is the linear fit and the
shaded area represents a 95 % confidence interval for the estimated
linear regression parameters taking into account the weights of the
data points. The (normalized) evolution of the trapping beam profile
at the waist inside the trap is displayed in the inset through a ramp-
ing of the modulation voltage, corresponding to successive trapping
laser intensities. These measurements demonstrate the stability of
the trapping laser profile at the waist throughout intensity modula-
tion protocols.

Monitoring Brownian dynamics

The time evolution of the Brownian system is monitored
by recording the stochastic trajectory of the trapped bead over
2× 104 cycles of the protocol κ(t). Each cycle lasts 50 ms,
where the first 30 ms correspond to the initial thermal equilib-
rium with κi and the remaining (20−∆t) ms correspond to the
final thermal equilibrium at κ f . Each stationary region of the
full trajectory, i.e. corresponding to a constant κ (κi or κ f ),
is sectioned and concatenated with all the other sliced trajec-
tories under the same stiffness. The PSD of this concatenated
trajectory is computed and a Lorentzian fit yields the ensem-
ble average κ . Figs. 3 (a) and (b) respectively show the PSD
of the concatenated trajectories for the equilibria κi and κ f for
the case ∆t ∼ τrelax/10 described in the main text.

Implementing the same procedure, the full temporal trace
of the particle positions undergoing 2×104 cycles is chopped
into trajectories that correspond to a single cycle of the pro-
tocol κ(t). The ensemble of traces then consists of all the
sub-trajectories superimposed within the same time interval,
in such a way that they all start t = −30 ms with κi, as dis-
played in Fig. 4 below.

The instantaneous ensemble variance s(t j) at a time t = t j
( j = 1, · · · ,T × fs), with T = 50 ms and fs = 218 Hz) is
obtained by a vertical cross-cut of the ensemble of trajec-

FIG. 3. Power spectral density of the concatenated trajectories corre-
sponding to the sections of the cycles for which κ is fixed to κi is dis-
played in greeen. The best-fitted roll-off frequency fc = 52.63±0.01
Hz (vertical red line) yields κi = 2.78± 0.08 pN/µm, and the posi-
tion sensitivity parameter is β =

√
kBT/γD f it = 1.21± 0.02 µm/V

-see below. The blue curve is the power spectral density of the
concatenated trajectories corresponding to the sections of the cy-
cles for which κ is fixed to κ f . The best-fitted roll-off frequency
is fc = 98.98±0.02 Hz (vertical purple line) gives κ f = 5.22±0.15
pN/µmfor this case. Here, the positional calibration factor is β =
1.31± 0.02 µm/V. Lorentzian fits (continuous red and purple lines
superimposed to the PSDs) are calculated by implementing a MAT-
LAB Levenberg-Marquardt algorithm for non-linear leasts squares.

tories plotted in Fig. 4. The resulting distribution of po-
sitions ρ(x, t j) is a Gaussian of zero mean µx(t j) and vari-
ance s(t j). Fig. 5 displays the position distribution func-
tions (PDF) before (equilibrium at κi) and after (equilibrium
at κ f ) the change in trapping stiffness imposed by the proto-
col κ(t). The corresponding trapping potentials calculated as
U(x, t j) = −kBT log(ρ(x, t j))+ cst are also shown and com-
pared to the expected harmonic profiles U = 1

2 κx2 evaluated
from the stiffnesses κi,κ f that were extracted from the mea-
sured PSD shown in Fig 3.

Proceeding in the same manner but for all times t j, we can
obtain the temporal evolution of the ensemble variance s(t)
over the full protocol κ(t). Note here that Figs. ?? are built
from the same data collected during the same protocol of du-
ration ∆t = 3.47×10−4s.

From Brownian positions to variances

We remind here a classical result of correlation in the
Langevin theory of overdamped Brownian motion -see for
instance [3]. Starting from the Brownian positions x(t) of
the trapped particle that evolve according the overdamped
Langevin equation

γ
dx(t)

dt
=−κx(t)+Fth(t), (1)
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FIG. 4. Ensemble of trajectories corresponding to one cycle. Top: A
single cycle of the control parameter κ(t) normalized to κi. Bottom:
Position fluctuations of the bead in the trap of modulated stiffness.
The solid vertical lines indicate ∆t = 3.47× 10−4s. The position
distribution functions calculated at the two times indicated by the
dashed vertical lines in the lower panel are displayed in Fig. 5 below
(top panel).

FIG. 5. Top-left panel: Position distribution functions (PDF) built
from the ensemble of trajectories at the two different times t j < t0 and
t j > t f indicated by the two dashed vertical lines in Fig. 4 above (bot-
tom panel), with associated trap stiffnesses κi and κ f respectively.
Top-right panel: Associated trapping potentials extracted from the
PDF as U(x, t j) = −kBT log(ρ(x, t j)) + cst. The solid lines corre-
spond to U = 1

2 κx2 with κ = κi and κ = κ f extracted from the PSD
shown in Fig. 3. Bottom panel: Kurtosis of each PDF for all times
t j .

where γ = 6πRη is the Stokes drag coefficient, which depends
on the radius of the particle R = 500 nm and the dynamic
viscosity of the fluid η ∼ 10−3 Pas at room temperature,
and D = kBT/γ ∼ 0.4 µm2/s the Brownian diffusion coeffi-
cient fixed by the temperature T of water (room temperature)
and the Boltzmann constant kB and Fth(t) =

√
2kBT γξ (t) is

the stochastic Langevin force modeled with a Wiener process
with 〈ξ (t)〉= 0 and 〈ξ (t)ξ (t ′)〉= δ (t−t ′), where 〈· · · 〉 stands
for an ensemble average performed over all the realizations of
the stochastic process.

Considering an initial position x0, the solution of Eq. (1)
writes as:

x(t) = x0 e−κt/γ +
1
γ

∫ t

0
dτ Fth(τ) eκ(τ−t)/γ . (2)

The dynamical equation for the variance s(t) = 〈x(t)2〉 is
obtained by multiplying both sides of Eq. (1) by x(t) and
by taking the ensemble average. This operation points to
determining the correlation 〈x(t)Fth(t)〉 calculated with a
(Stratonovich) stochastic integral as [4]

〈x(t)Fth(t)〉= kBT, (3)

from which the dynamical equation for the variance is simply
given:

γ
ds(t)

dt
=−2κs(t)+2Dγ. (4)

Normality tests

To confirm that all PDF remain Gaussian for all times,
we calculate their kurtosis and verify, for the same ∆t =
3.47× 10−4s protocol -see Fig. 5, bottom panel- that all-
time kurtosis remains very close to 3 throughout the entire
protocol. This test is more critical for the shortest protocol
of duration ∆t = 1.22× 10−4s which is shown in Fig. 6, up-
per panel. As seen in the lower panel, the kurtosis remains
here too very close to 3 throughout the entire protocol. We
supplement this kurtosis-based test of normality by showing
the normalized PDF constructed from all positions recorded
at different t0, t1, t2 times within the protocols, t0, t1, t2 and at
thermal equilibrium t4 after the ∆t = 1.22× 10−4s protocol.
These selected times are shown as vertical lines in Fig. 6.
As clearly seen in Fig. 7, the PDF can be well fitted by zero
mean Gaussian distribution -with larger deviations on the PDf
tails due to a reduction in statistics. Finally, in order to fur-
ther assess the normal character of our PDF, we draw in Fig.
8 a quantile-quantile diagram that clearly show the expected
proximity of our experimental PDF with a normal law. This
diagrammatic analysis is also performed within the protocol
-see inset of Fig. 8.

Statistical uncertainties

The uncertainties for the instantaneous ensemble variances
are obtained following a χ2 law with N−1 degrees of freedom
where N = Ncycles is the number of independent trajectories
xi(t) undergoing one cycle of the protocol κ(t).
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FIG. 6. Top panel: Single cycle of the control parameter κ(t) nor-
malized to κi for the shortest duration ∆t = 1.22× 10−4s protocol.
Middle panel: Corresponding time-evolution of the ensemble vari-
ance s(t) extracted from the PDF of the ensemble of trajectories,
normalized to s f . The red dashed line, superimposed to s(t) between
the transition points, corresponds to the variance extracted from the
slopes of the quantile-quantile plots extracted throughout the proto-
col and shown in the inset of Fig. 8. Bottom panel: Kurtosis eval-
uated throughout the protocol. The vertical lines represent the four
times chosen for the analysis of normality.

FIG. 7. Normalized PDF represented in log-scale for the four times
shown in figure 6. The solid lines represent the results of Gaussian
fits.

PSD calibration uncertainties

Under a trapping laser intensity, the registered p-i-n volt-
age values V (t) that correspond to the position fluctuations
of the trapped bead are converted into displacement units us-
ing the best-fit parameter of the Lorentzian fit of the PSD
of the trajectory (at constant κ). The fit parameter Dfit is
compared to the diffusion coefficient D = kBT/γ expected
from the Fluctuation-Dissipation Theorem, assuming known

FIG. 8. Quantiles of the PDF at four different times of the proto-
col as a function of the theoretical quantiles of a standard N (0,1)
normal distribution. The intersection of all curves coincides with the
2-quantile, indicating that all distributions are of zero mean, the slope
indicates the variance of the distribution, which, as expected, evolves
over time through the protocol. The same analysis is detailed in the
inset within the protocol, for times ti < t < t f . The associated slopes
are then superimposed in Fig. 6, middle panel.

temperature and viscosity. This gives a conversion factor
β =

√
D/Dfit from p-i-n voltages to meters. The uncertainty

on the position sensitivity is obtained from standard error
propagation including the uncertainty on the viscosity result-
ing from the δR/R = 2.8% size dispersion deviation of the
trapped beads.

Instantaneous positions are thus given from the conversion
factor as x(t) = (β ±δβ )V (t), and therefore the variance, up
to first-order in uncertainty, x2(t) = (β 2±2βδβ )V 2(t), (since
µx(t) = 0). The total error of the variance writes as:

s(t j) = σ
2
x (t j)± (δσ

2
χ2(t j)+βδβσ

2
x (t j))︸ ︷︷ ︸

δ s(t j)

, (5)

where σ2
x (t j) = ∑

N
i=1 |xi(t j)−µ(t j)|2/(N−1) is the estimator

of the instantaneous ensemble variance over N cycles, δσ2
χ2

corresponds to the statistical uncertainty in the motional vari-
ance determination (see above) and δβσ2

x the PSD calibration
uncertainty just discussed.

The temporal average variances related to the initial an final
stiffness si and s f are obtained from temporal average. As-
suming ∆t as the interval over which κ(t) remains constant
(either at κi or κ f ), the temporal average · · · of the correspond-
ing variance is:

s =
1
∆t

n

∑
j=1

s(t j), (6)

taking ∆t as the interval over which κ(t) remains constant (ei-
ther at κi or κ f ) and n=∆t · fs with fs = 262 kHz, the sampling
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frequency. The standard deviation of the temporal average is
simply evaluated as:

δts =

√
1
∆t

n

∑
j=1
|s(t j)−〈s〉t |2 (7)

The stationary variances si and s f and their uncertainties
are thus simply given by:

si, f = s±
(

δts+δ s+δtδ s
)

︸ ︷︷ ︸
δt si, f

, (8)

where δ s = 1/∆t ∑
n
j=1 δ s(t j).

Energetics uncertainties

The confidence interval of the mean cumulative work are
computed taking into account the uncertainties related to both
variances and stiffnesses. They are displayed on all energetic
figures at a 95% confidence level.

B: COMPARING OPTIMAL, STEP-LIKE AND ESE
PROTOCOLS

We compare here three protocols that transfer the bead be-
tween two equilibria, going from an initial stiffness κi to a
final one κ f with, for all protocols, fixed and identical κ f ,κi
values given in the main text.

The first protocol consists of a sudden step-like change of
the optical trap stiffness – see Fig. 9, green trace. The second
protocol is the “engineered swift equilibriation” (ESE) pro-
tocol recently proposed and implemented by Martinez, et al.
[5]. We calculate κESE(t) following [5] for a transfer duration
of ∆t = 3.47× 10−4 s. Over the same transfer duration, we
also implement our optimal protocol κopt(t). All protocols are
displayed in Fig. 9.

Fig. 10 gathers the time evolutions of the motional vari-
ances associated with each protocol. As expected, the step-
like protocol displays the longest equilibration time when
compared to the ESE and optimal protocols. From an ener-
getic point of view, the comparison between the two latter
protocols, shown in Fig. 11, clearly reveals the non-optimal
character of the ESE protocol with a cumulated work expense
larger than for the the optimal protocol. This can also be seen
in the inset of Fig. 11 where the excess work expended during
the ESE protocol lies clearly above the optimal lower bound
discussed in the main text.

C: SMOOTH PROTOCOLS

The optimal protocol obtained in this work [Eq. (6) in the
main text] was derived using the Lagrangian density

L[s, κ̂(s)] =
γ

Dγ− s κ̂(s)
−λκ̂(s). (9)

FIG. 9. Calibrated signal of the function generator, for a step-like
(green), ESE (pink), and optimal (blue) protocols. The stiffness κ(t)
is normalized to the initial stiffness κi. The jump for the transition
κi→ κ f starts at t0 = 0 s and, for the case of ESE and optimal ends at
∆t = 3.47×10−4 s, with κi = 2.77±0.08,κ f = 5.22±0.15 pNµm.
The ESE protocol κESE was computed based on Eq. (8) in [5].

FIG. 10. Temporal evolution of the variance s(t), after t0 = 0 s for
the step-like protocol (in green), and the ESE (in purple) and optimal
(in blue) protocols. The variances are normalized to the final equili-
brated variance s f . The data points represent ensemble mean values
of the variance s(t) for each protocol. The shaded areas show the re-
spective 95% confidence intervals. Both ESE and optimal protocols
reach an equilibrium regime s f at ∆t = 3.47×10−4 s∼ τrelax/10 by
construction. Inset: The control parameter κ̂(s) as a function of the
variance s, with the same color codes as in the main figure.

A peculiar feature of L[s, κ̂(s)] is that the corresponding Euler-
Lagrange equation is purely algebraic (as opposed to a differ-
ential equation). Hence, it is not possible to impose the de-
sired boundary conditions on the control parameter κ̂(s) (i.e.
siκi = s f κ f = Dγ) and two jumps have to be added “by hand”
at the beginning and the end of the protocol, as explained in
the main text.
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FIG. 11. Temporal evolution of the mean cumulative energetics of
the different protocols, step-like (lower inset), ESE and optimal. The
mean cumulative work for the optimal protocol is displayed in blue,
with total work W (t)opt = 0.981± 0.059 kBT . The mean cumula-
tive work for the ESE protocol is displayed in pink, with total work
W (t)ESE = 1.142± 0.075 kBT . The mean cumulative heat gener-
ated through the optimal protocol is displayed in orange and the ESE
protocol in yellow. Both are superimposed to the work, with total
heat Q(t)opt = 0.983±0.060 kBT and Q(t)ESE = 1.142±0.076 kBT .
Shaded areas represent 95% confidence levels. Lower inset: Ener-
getics for the step-like protocol. As expected, the mean cumulative
work (in green) reaches immediately Wstep = 0.45± 0.04 kBT . In
brown, the heat, in contrast, achieves the equilibrium value W = Q
with Qstep = 0.45± 0.04 kBT only after τrelax. Upper inset: Com-
parison between the excess work values of the ESE protocol (pink)
and the optimal one (blue) for the transfer duration of duration
∆t = t f = 3.47×10−4 s. The non-optimal character of the ESE pro-
tocol is directly measured with ∆WESE = 0.81±0.08 kBT larger than
the optimal value ∆Wopt = 0.65± 0.07 kBT . The universal bound
∆W = γ(

√
si−
√s f )

2/∆t discussed in the main text is shown by the
continuous line.

Although these jumps can be realized without much trouble
in the experiments, it is interesting to develop a theoretical
procedure capable of furnishing a suboptimal protocol κ̂(s)
that is continuous in the variable s and converges towards the
optimal protocol as some parameter tends to zero. To do this,
we need to limit the gradient of κ̂(s) by adding a further term
to the Lagrangian density (9), which becomes:

L[s, κ̂(s)] =
γ

Dγ− s κ̂(s)
−λκ̂(s)+ ε|κ̂ ′(s)|2 , (10)

where ε is an additional Lagrange multiplier. The above La-
grangian density yields the Euler-Lagrange equation:

2ε
d2κ̂

ds2 =
γs

(Dγ− sκ̂)2 −λ . (11)

As a second-order differential equation, Eq. (11) needs two
independent boundary conditions, thus enabling us to set
siκi = s f κ f =Dγ , as requested for our protocols. When ε→ 0,
we obtain the correct limit case of Eq. (6) in the main text, i.e.,

the optimal protocol containing two points of infinite deriva-
tive (jumps) for the function κ̂(s) at si and s f . Through the
Lagrange multiplier ε , one can limit the value of such deriva-
tive, so that the protocol becomes smoother and smoother as
ε increases.

Equation (11) can be solved numerically by successive iter-
ations. We used the following scheme:

−ακ̂
n+1
i +2ε

(
d2κ̂

ds2

)n+1

i
=

γsi

(Dγ− siκ̂
n
i )

2 −λ −ακ̂
n
i , (12)

where the superscript n denotes the n-th iteration, while the
subscript i refers to the discrete grid si = iδ s, with spacing
equal to δ s. The second derivative is then approximated with
the standard finite-difference formula:(

d2κ̂

ds2

)
i
≈ κ̂i−1−2κ̂i + κ̂i+1

δ s2 .

The parameter α > 0 is needed to ensure the convergence of
the iterative procedure, but does not affect the final result (in-
deed it disappears from Eq. (12) when κ̂

n+1
i = κ̂n

i ).
As an example, we have solved Eq. (11) with physical pa-

rameters D = γ = 1 and λ = 0.81, corresponding to a total
duration for the optimal protocol ∆topt ∼ τrelax/6 according to
Eq. (8) in the main text. The boundary values are si = 1 and
s f = 0.5, κi = 1 and κ f = 2. The smoothness parameter is
ε = 10−5. The numerical convergence parameter is set to α =
0.3. The result of the numerical integration is given in Figs.
12 and 13, for both the optimal (black lines) and smooth (red
lines) protocols. As expected, the smoothed protocol follows
closely the optimal one, except near the extremities where it
reaches its boundary values smoothly and without jumps. The
total time of the smoothed protocol is 0.182× τrelax, longer
than that of the optimal one. But the total work is smaller
Wsmooth = 1.32 < Wopt = 1.38. The time-energy product is
(∆t ∆W )smooth = 0.356 > (∆t ∆W )opt = 0.343, in agreement
with the theoretical considerations detailed in the main text.
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FIG. 12. Smooth protocol obtained from the solution of Eq. (11)
(red lines) and corresponding optimal protocol with same value of λ

(black lines). Top panel: Protocols in the (κ̂,s) plane. Bottom panel:
Protocols κ(t) as a function of time.

FIG. 13. Smooth protocol obtained from the solution of Eq. (11)
(red lines) and corresponding optimal protocol with same value of λ

(black lines) . Top panel: Variance s(t) as a function of time. Bottom
panel: Dissipated heat Q(t) = − 1

2
∫ t

ti dtṡ(t)κ(t) (dashed lines) and
expended work W (t) = 1

2
∫ t

ti dts(t)κ̇(t) (solid lines) as a function of
time.
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