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Entropy is a fundamental quantity in many areas of
knowledge, from physics to information science to biology.
Originally put forward in the nineteenth century for very
practical purposes (to quantify the reversibility of thermo-
dynamic cycles, hence of thermal engines), entropy was
the key concept that allowed Ludwig Boltzmann to bridge
the gap between the (time irreversible) macroscopic thermo-
dynamics and the (reversible) microscopic Newtonian phy-
sics. As defined by Boltzmann, the entropy Sp represents
the number of microscopic states that are compatible with
a given macroscopic realization:

SB :kB IDQ7 (1)

where kg is Boltzmann’s constant and Q is the relevant
phase space volume, which is a measure of the number
of microscopic states. Note that the logarithm in the
above definition is required so that Boltzmann’s statistical
entropy possesses the same additive properties as the
thermodynamic entropy.

Later, Claude Shannon discovered that a similar
formula to Boltzmann’s (albeit with the opposite sign)
can be used to quantify the information content of a signal.
Following Shannon’s work, it is customary to identify
entropy with the (lack of) information or “disorder” of a
system. As information is a concept that permeates many
natural sciences, the concept of entropy quickly spread to
other fields, such as biology and genetics.

It was John von Neumann who generalized the
Boltzmann entropy to quantum physics. This is actually
more than a mere generalization. Indeed, equation (1) is
somewhat problematic, as Q has the dimensions of a phase
space volume, while the argument of the logarithm should
be nondimensional — not to mention that Sg can become
negative. But considering that quantum mechanics intro-
duces a minimal action given by Planck’s constant h,
Boltzmann’s formula can be rewritten as: Sg = k In(Q/h%)
(where d is the number of dimensions of the system), which
is always nonnegative as long as Q > h? and vanishes only
when the equality sign holds. In terms of discrete quantum
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states with occupation probabilities p;, the von Neumann
entropy reads as

Svy = — Zpi Inp;, (2)

i=1

which is always positive and only vanishes when one state
is occupied with probability equal to one.

While it is generally admitted that the Boltzmann/von
Neumann/Shannon entropy is a measure of the lack of infor-
mation of a system, it is also clear that such a measure is not
unique. Given a set of events endowed with probabilities p;,
one can construct many other formulae that quantify our
uncertainty about the actual observed outcome. And
indeed, many other definitions of entropy have been pro-
posed in the past [1], so many that it is virtually impossible
to do justice to all of them. In physics, Tsallis’ entropies are a
popular example [2], as are Rényi’s entropies [3]. In biology
too, several measures of biological diversity have been put
forward, see for instance the recent review [4].

How is one to navigate among this plethora of entropy
definitions? An answer was provided recently by Ellerman
[5], who emphasized the importance of making distinctions
between elements of a given set U. If such a set is parti-
tioned into a number n of subsets B; (such that
UL, B; = U), each endowed with a probability p; of finding
an element of Uin that subset, then the probability that in
two independent draws one will obtain elements in distinct
subsets B; and B, is: p,(1 —p;). This is precisely the
concept of distinction, i.e., the ability to establish that
two independent draws are different from one another.
Summing over all n subsets, we obtain the total number
of distinctions, which is the definition of what Ellerman
termed logical entropy:

Sy = Zpi(l -p)=1- ZP? (3)
=1 =1

The subsets B; may contain one single element, in which
case Sy, represents the probability that two consecutive
draws yield different elements of U. S; varies in the interval
[0,1], and the lower bound is reached when one element has
probability p; = 1, while for all others p,,, = 0. For equal
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probabilities (p; = 1/n, Vi), one gets: S, =1—1/n— 1,
when n — oo.

Although the formula (3) is not itself original (for
instance, it is a special case of the Tsalllis entropy), its inter-
pretation in terms of partitions of a set is new and illuminat-
ing. Indeed, the logical entropy enjoys a number of
intriguing features (e.g., it has the properties of a measure,
in the precise mathematical sense) which single it out among
the many other definitions proposed in the literature.

This Special Issue contains a collection of four papers
devoted to the logical entropy and its applications to phy-
sics, particularly quantum mechanics.

The paper by David Ellerman [6] contains an exhaustive
introduction, both conceptual and historical, to the logical
entropy. In particular, it discusses how the latter relates
to the more usual Shannon entropy in quantifying the infor-
mational content of a set.

The paper by Boaz Tamir et al. [7] discusses the possible
extension of the logical entropy to the quantum domain.
Indeed, the logical entropy can be expressed in terms of
the density matrix p as: Sp = 1 — Trp?, and quantifies
the purity of a quantum state. The authors prove several
properties of this entropy for generic density matrices that
are relevant to various areas of quantum mechanics and
quantum information.

The paper by Denis Sunko [8] addresses the logical
entropy in the context of many-body quantum mechanics.
It shows how the logical entropy can be used to distinguish
many-body fermion states by their information content,
although they are pure states whose usual quantum entro-
pies are equal to zero.

Finally, the paper by Giovanni Manfredi [9] points out
that the definition of logical entropy (3) lends itself quite
naturally to a generalization of probabilities to negative
values, an idea that goes back to Feynman and Wigner.
By combining negative probabilities with the definition of

logical entropy, one can recover many intriguing properties
that are typical of quantum systems.

We hope this Special Issue will foster research into a
topic that has a long and distinguished past history, but
still much potential for future developments.
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