Transport properties of energetic particles in a turbulent electrostatic field
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The diffusion of test particles in a turbulent electrostatic field is investigated numerically. The field

is obtained by solving the Hasegawa—Mima model for two-dimensional drift turbulence. It is shown
that nonlinear coupling significantly reduces the level of transport compared to the linear regime,
and the physical mechanisms leading to this effect are analyzed in detail. Finite Larmor radius
effects, relevant to alpha-particle transport in tokamaks, also reduce the diffusion rate. The scaling
of the diffusion coefficient with Larmor radius is derived from a closure theory, and the predictions
are compared to results from computer experiments. It is suggested that measured diffusion rates of
particles with different Larmor radii can be used to obtain information about the turbulence.
[S1070-664X97)00703-9

I. INTRODUCTION dispersion relation In more recent studie’§ the correlation
length(A;) and time(r,) of a stochasti& x B field are speci-
fied, and the author determines the scaling of the diffusion
coefficient with the Kubo numbeK=vg7/\;, wherevg
pineasures the amplitude of the velocity field. Early theoreti-

Electrostatic drift turbulence is believed to play an im-
portant role in the physics of magnetized plashdsit is
dominated by theExB drift, and involves low-frequency

waves, which are driven unstable by the presence of a te

perature or density gradient. At present, drift turbulence is a?r?l relsult§ v]\c/_erlz _based on e(lch0ﬁure zg)prox!mdﬁuxm_,whlckl\
promising candidate to explain from first principles the hight e electric field s assumed to have Gaussian statistical prop-

levels of energy and particle transport observed in tokamakfgm,es n w]:afyg number space. With ;h|s ashsu?p:tlon, the dif-
(anomalous transportRecent results from realistic kinetic [USion coefficient can be computed from the field spectrum,

and fluid simulations seem to support this conjectufe. which gives correct results in the quasilinear regifbeK

On the other hand, a good understanding of the confing®" K<1). In the opposite limit of large Kubo numbers, clo-
ment properties of energetic alpha particles is of grow-SUre theory pr.ed.|cts the d|ffu§|on coeff|C|.ent to be indepen-
ing importance as tokamak plasmas approach the ignitioFfent of K. This is ObV_IOUS|y I_ncor_rect, Sln_cﬁzoc_ corre-
regime™® Because the Larmor radii of alpha particles born inSPONds to a “frozen” field, which, in two dimensions, only
fusion reactions greatly exceed those of the thermal iongallows for cllos_ed, periodic orbits, a_nd therefore no dlffL.JSIOI’l.
their response to a turbulent field in the plasma can be sigMlore sophisticated result§;'® derived from percolation
nificantly different. For example, the larger scale of gyro andtheory, reproduce the correct behavior within good accuracy,
drift motion will smooth out the effects of short wavelength @s was verified in the simulations reported in Ref. 16.
turbulence, creating a differential response for particles of ~The above studies give a satisfactory picture of the sto-
different energies. Given a theoretical understanding of thighastic diffusion of test particles with zero Larmor radius in

differential effect, observations of alpha-particle trans-2 field composed ofinearly independentvaves. However,
port may yield information on the characteristics of thethese studies disregard the fact that such waves interact non-

turbulencet! linearly with one another, and this greatly restricts their
Here, we shall consider the general plasma physics quegange of applicability, especially when considering large am-
tion of the impact of nonlinear coupling and finite Larmor plitude waves. Nonlinear effects can, in principle, pro-
radius on test particle transport in strong electrostatic driffoundly alter the spectrum of the electrostatic field and there-
turbulence. As a simple paradigm for drift turbulence wefore lead to substantially different diffusion rates. Recehtly,
shall use the Hasegawa—Mima equatfomhose scope and we showed that, for a simple model of two-dimensional
limitations are discussed in Sec. Il. It incorporates bothstrong drift turbulence, nonlinear couplings virtually sup-
strong nonlinearity and linear dispersion in its description ofpress the diffusion of test particles. In the present paper, we
the drift turbulent electrostatic field, thus going beyond theprovide more evidence about this phenomenon, and try to
existing literature dealing with the stochastic diffusion identify a mechanism leading to it. Our interpretation is that
induced by a collection of linearly independent drift strongly nonlinear couplings rapidly modify the initial spec-
waves?~18|n addition, most earlier work does not take into trum during the very early stages of the evolution. The modi-
account finite Larmor radius effects, whose impact on thdied spectrum arising from this early phase is one that leads
particle transport will be one of our main concerns in thisto mainly periodic orbits, and very weak diffusion.
paper. The present paper is organized as follows. In the next
Early numerical studies reported results either for asection, we describe the model we adopt for strong drift tur-
small number of wave¥ or for many waves oscillating at bulence, namely the Hasegawa—Mima equation. Section Il|
the same frequend&y (while, for real drift waves, frequency contains the main numerical results and their interpretation.
and wave number are not independent, but obey a simpll Sec. IV we discuss the impact of large Larmor radius on
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particle transport, and show how knowledge of this effectadiabatic response for the electrons, and purely two-
can be utilized to infer properties of the turbulent field. Con-dimensional (2D) turbulence. The first two hypotheses
clusions are drawn in Sec. V. should not affect our main conclusions on the transport of
test particles. Three-dimensionality might play an important
role. For example, the existence of an inverse cas¢ade
Il. A BASIC MODEL FOR DRIFT TURBULENCE ergy condensing at the smallest wave numligra typical
Our aim is to analyze the motion of test particles in afeature of 2D turbulence** and this may affect the diffu-

strongly turbulent magnetized plasma. In order to do so, Wéion of test particles. A second, important difference is that,

need a nonlinear model for drift turbulence in real spacel three-dimensiong3D), a time-independent field can trig-

whose output is the time-dependent electrostatic potentiaﬂer test particle diffusion, whereas this is forbidden in 2D. At
The potential will then act as an input for the equation ofPresent, the stochastic diffusion of test particles in a 3D field

motion of the test particle guiding centers, which follow the 'S @ largely unexplored domain, which certainly deserves fu-

ExB drift: dr/dt=Bx VB2 This motion is thus uniquely ture investigation. Despite these limitations, one must bear in
determined by the turbulent field at all times. It is worth Mind th;\t, zsmce magnetized 2Iasmas are stglnngly 3”'50'
noticing that the equations of motion are Hamiltonian intfOPIC. the 2D assumption is often a reasonably good ap-
form, with the real spacex(y) coinciding with the phase proximation. In the present paper, we have not included a

space, andH(x,y,t)=é(x,y,t)/B. Our technique for ex- source(forcing) term for the turbulence. Such a term was

tending this approach to the case of finite Larmor radius ié'ncluded in our treatment in Ref. 11, to which we refer for

described in Sec. IV details: for that particular choice of source terms, the results
For the sake of simplicity, and to concentrate on thewere basically the same as for the freely decaying turbulence

relevant issues, we adopt here a long-established model f§PNSidered here. The number of instabilities that could gen-
drift turbulence, the Hasegawa—MintelM) equation’ erate the turbulence is very large, and the mathematical for-
' mulation and parametrization of the corresponding source

d d¢ terms would be very varied. Omission of a source term thus

_ —V24)— . 2p— "

at (p=V7g)~[Véxe, VIVie X’ @ has the further benefit, for the present general plasma physics
Jurposes, of minimizing the number of free parameters and

. C o enabling us to isolate the basic problem of particle transport

the plane perpendicular to the magnetic field directipn in the turbulent field. It can also be seen from the simulations

and can be de_rlve_d from the ion contlr_wulty equa_mon .W'thbelow that the particle diffusion time exceeds the turbulence
ExB and polarization drifts, and assuming an adiabatic re-

sponse for the electrons. Time is normalizedLigC, (C, decay time 1# by at least an order of magnitude, so that the

— T./m; is the sound speddspace to the thermal Larmor turbulent state is effectively stationary for each test particle.
radius p.=C.Q; ! (Q,=eB/m;), and the potential to
(TJe)(pg/Ly); L, is a typical scale of variation of the equi-
librium density profile. The generalized vorticity In a recent communicatiott,we showed that nonlinear
W=¢—V?¢ is the actual quantity transported by the flow. field coupling greatly reduces particle transport. Let us now
The linear limit of Eq.(1) is equivalent to the evolution of a try to identify the main mechanisms leading to the suppres-
collection of independent drift waves obeying ttdimen-  sion of diffusion. In the present example the sums in @y.
sionless dispersion relations, =k,/(1+k?). The computa- are in the ranges2m=10, 2<n=<10, with L,=2L,=20p,
tional box is periodic in the direction (O<x<L,) and finite and »=0.00Dgg, whereDgg=p3Q,/L,, is the gyro-Bohm
iny (—L,<y<Ly; both ¢ and W vanish aty=+L,). A diffusion coefficient. The test particles are initially located in
dissipative term, of the formV2W, is added to the right- a narrow band aroung=0, and uniformly distributed irx.
hand side of Eq(1) to control the numerical noise at small After following the trajectories of 3000 particles, we com-
wavelengths, although no forcing is included at this stagepute several statistical quantities. In particular, the mean
(freely decaying turbulengeThe initial condition is taken to square displacemeit?(t), the diffusion coefficient in thg

This equation describes two-dimensional drift turbulence i

Ill. NUMERICAL RESULTS

be a random vorticity distribution (nonperiodig directionD(t), and the kurtosiK(t) are de-
fined by
o A
WOy t=0=2 2 (i o2 Y0 _ 10—y
Y 2t 2t '
. v 2w (3)
Xsin > — m(y—Ly) |co§ — nx+Bmn|, ([y(t) —y(0)]%)
2Ly Lx K(t)= Ve
2 [yt —y(0)]%)
where B,,,, are random phases ardis the amplitude. This where the angular brackets denote an average over all par-
choice corresponds to a spectriiy |k 3. ticles, andK =1 for a Gaussian distribution. For a truly dif-

Although the HM model Eq(1) captures some of the fusive process, the diffusion coefficient should be asymptoti-
basic properties of drift waves, such as the dispersion relazally time independent.
tion and the main nonlinearities, it is important to be aware  The time history ofy?(t) is plotted in Fig. 1, both for
of its limitations. In particular, the HM equation assumesthe linear and the nonlinear cases, showing clearly that non-
cold ions(thus ruling out finite gyroradius effegtsperfect linear coupling does suppress the diffusion. The kurtosis,
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FIG. 1. Mean square particle displacement in the nonperiodic direction for

the linear(a) and nonlinearb) case. FIG. 3. Contour plot of the generalized vorticity at the end of the nonlinear
evolution. Elongated structures parallel to thexis are visible.

after a short transient, takes a value close to unity for both
cases(Fig. 2. In Ref. 11, we attributed the suppression of izeq aroundy=0; then the simulation is restarted from the
stochastic diffusion to the large scale structures that are cregate to which it has evolved, but now suppressing the non-
ated in the nonlinear evolution as a result of the inversgjnear terms. In practice, we are doing a linear simulation in
cascade. As mentioned in Sec. |, this is essentially a twoyhich the initial condition is the one of Fig. 3. If our con-
dimensional effect, closely related to the conservation of Njecture is correct, the subsequent evolution should lead to a
strophy. These large scale structures are clearly visible frofjery small diffusion coefficient even if the nonlinear terms
the vorticity contours at=200L,/C; (Fig. 3, compare with  are not present: this would mean that the above-mentioned
Fig. 4 which results from the linear evolutipriTheir impact  ransition is already completed & 200L,/C;. The results,
on the level of transport may be due to the fact that, for longspown in Fig. 5, confirm our predictioiFig. 5b)]. In order
wavelengths, all linear waves propagate with the same phasg avoid all spurious effectédue, for example, to dissipa-
velocity, which can be eliminated by a Galilean transformaation), the same experiment has been conducted on the origi-
tion, thus suppressing all time dependence in the potentiahg)ly linear simulation, the one leading to the vorticity field
The nonlinear terms are also negligible whek,<1. There-  f Fig. 4. As expected, in this case diffusion takes pldgg.
fore, particles trapped in these large vortices follow the fieldg)(a)], although at a smaller rate than in Fig. 1, because the
lines adiabatically, and are less likely to “jump” from one fie|d has been decaying frote=0 to t=200L,,/C due to the
vortex to another; nonadiabatic motion is indeed recognizediscous term(in this casep=0.00D ). Finally, if we keep
as the origin of stochastic diffusidn. the nonlinear terms throughout the second phase of the ex-
More precisely, we conjecture that the nonlinear terms iheriment, we again observe no diffusidig. 5c)], just as in
the HM equation induce a rapid transition in the field specne case of Fig. @). This reinforces our belief that, after the
trum at an early stage of the evolution. At the end of thisyansition has occurred, the nonlinear terms play a negligible
transition, the nonlinear terms have become negligible (g0, These results are even more compelling if we greatly
cause long wavelengths dominatehowever, the field requce the viscosity in the second phase of the simulation
emerging from this process is, for the same reason, one th@}—0.000D sg), which is feasible since the nonlinear terms
leads to very low particle transport. are suppresse(Fig. 6).
~ Inorder to verify this conjecture, we perform the follow-  The same experiment is repeated by stopping the simu-
ing numerical experiment. The nonlinear simulation is|ation att="50L,,/C and reinitializing the particles as above
stopped at=200,/Cs; the particle positions are reinitial- (rig. 7). In this case, the transition is not complete, and some

(a)linear

0.5

______ (b)nonlinear

0.0

0 50 100 150 200
t(I"l'l/(:s)

FIG. 2. Time evolution of the kurtosis in the same case as Fig. 1. The solid
curve (a) refers to the linear case and the broken cuiyeto the nonlinear  FIG. 4. Contour plot of the generalized vorticity at the end of the linear
one. For a Gaussian distribution of particles the kurtosis is equal to one. evolution. No anisotropy is observed.
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FIG. 5. Mean square particle displacement in the nonperiodic direction. Th&!G- 7. The same computer experiment as Figal 8nd 8b), but restarting
linear and nonlinear runs of Fig. 1 have been stopped=&00L,/C, and the run att=>50L,/C;. Case(a) comes from the originally linear run and
then restarted from their evolved state, but suppressing the nonlinear term&2se(b) from the originally nonlinear run. Some residual diffusion is now
Case(a) comes from the originally linear run and ca4® from the origi- observed in casé).
nally nonlinear run. Casg) (broken ling is the continuation of the nonlin-
ear run, including the nonlinear terms.
smaller value ofA corresponds to weaker nonlinear effects,
and the solution of Eq.1) should be closer to that obtained
residual diffusion is still observed in the simulation which in the corresponding linear case. On the other hand, the dif-
uses the field arising from the nonlinear evolutiéig. 7(b)].  fusion coefficient also scales with the amplitufer ex-
When nonlinearities are present, the test particle motiommple, in the quasilinear regimB,=A?). In order to com-
shows highly coherent patterns. This is clearly illustrated bypare the relative strength of these two competing effects, we
initially locating the particles within a small square at the performed a simulation wittA=0.5 (in the previous ex-
center of the computational domain, with a uniform distribu-amples we had\=1). It turns out that nonlinear effects are
tion. Since the particle motion is Hamiltonian, the area of the
square is preserved, although its shape is free to change.

(=)
-

¥ (ps)
(]

>

Chaotic motion, and stochastic diffusion, arise when the
shape of the square is so distorted and intricate that, when t= 0L/C t =100 L_/C
larger than the original area of the square. This is what hap- =
pens in the case of linear evolutidRig. 8): after some time,
the motion is preserved over the entire simulation. The shape 0 1'0 20 0 10 20
is deformed, but never loses its identity as a single object. x (p,)

The importance of nonlinear effects in Ed) is deter-
mined by the amplitud@ in Eqg. (2) and by the spectrum of

allowance is made for coarse graining arising from the dis- 4 4 T
creteness of the particles, its effective surface area is much % Q
the original shape is lost and stochastic diffusion takes place.
For nonlinear evolutioifFig. 9), in contrast, the coherence of -4 4
This clearly indicates that nonlinear effects preclude the pos-

- o : : t = 200 L_/C
sibility of chaotic trajectories for the particles. 4 T n/ s

ey

the initial vorticity distribution. For the same spectrum, a

3.0 . 20 0 10 20
2.5
(a)
ool t = 400 L /C,
S 15) '
E
1.0F ] 4
(b) :
0.5
0.0 . . . U
200 250 . (io})c )350 400 0 10 20 0 10 20
n/ e x (p,) x (p,)
FIG. 6. The same computer experiment as Figa) &nd (b), but with a
smaller viscosityy=10“Dgg. Both cases are linear frots=200L,/C; on, FIG. 8. Particle distribution for a typical linear case. Although the area of
but case@) was also linear fromi=0 to t=200L,/C,, while (b) was non- the original small box is preserved, chaotic motion spreads the particles over
linear. the entire computational domain.
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. o . . ) . . _FIG. 11. Particle distribution in a nonlinear case. The computational domain
FIG. 9. Particle distribution for a typical nonlinear case. Particle trajectories -

: e extends fromx=0 tox=L,=20pg, but the particles are allowed to leave the
are not chaotic, and coherent motion is observed.

periodic domain in order to visualize their motion i Particles travel
longer distances ix than iny.

still strong enough to prevent particle diffusion. The same
result is obtained with a larger amplitude=2, which cor-
roborates the hypothesis that nonlinear effects, howeverhe time history oiX(t) is shown in Fig. 10, and reveals that
small, lead eventually to coherent, nondiffusive motion.  the test particles travel langer distance when nonlinear ef-
So far, we have concentrated our attention on the diffufects are switched on. This is the opposite of what was ob-
sion in the nonperiodic directiop. Turning to the periodic tained in they direction. There is, however, no contradiction,
directionx, which is the direction perpendicular to the equi- since the motion along is not diffusive, but rather coherent,
librium density gradient, we define the mean square displaceas shown in Fig. 11, where the patterns of the underlying
mentX(t) through field are clearly revealed by the particle trajectories. Thus,
2/ 2 the coherent motion occurring in the nonlinear regime allows
XAO=(Ix(W) = x(W)]%- “) the particles to travel for short distances yn but much
longer distances ix. This anisotropic effect arises from an
asymmetry in the original HM equation, in which the two
coordinates are not equivalent, since the equilibrium density
gradient is directed along thg axis. Contour plots of the
vorticity also reveal the presence of structures elongated in
thex direction(Fig. 3). The anisotropy of the turbulence can
be quantified by comparing the average unidirectional vor-
ticity spectra

J— L — Lx
W= [ gty W= [wgooid @
Tty

0 125 250 375 500
t (L./C.)
o _ o where, for exampl&V, (y) is obtained from\W(x,y) by Fou-
FIG. 10. Mean square particle displacement in the periodic direatifor x

the nonlineara and linear(b) cases. Note that, contrarily %, X is larger rier tran'Sfor.ming ovek. The spectra defined in E¢p) are
in the nonlinear regime. plotted in Figs. 12 and 13, and show that short scales are

632 Phys. Plasmas, Vol. 4, No. 3, March 1997 G. Manfredi and R. O. Dendy
Downloaded-21-Sep-2000-t0-192.93.241.42.Redistribution-subject-to-AlP-copyright,~see-http://ojps.aip.org/pop/popcpyrts.html.



t = 400 L /C,
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FIG. 12. Unidirectionak spectrum of the vorticity as defined in E&) on
a linear scaléa) and a logarithmic scalbase 19 (b). Large scale structures
are more strongly excited.

t = 400 L, /C,

Ky
t = 400 L, /C,
(b)

-5 .
0.0 0.5 1.0 1.5
log (Ky)

FIG. 13. Unidirectionaly spectrum of the vorticity as defined in E&) on
a linear scalda) and a logarithmic scaléase tei (b). The peak observed
in (a) is centered at a higher wave number compared toxtepectrum of
Fig. 12a). Small scale structures are globally more strongly excited.
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more strongly excited in the direction of the density gradient,
y. The mean square wave numbers in each direction are
(k3)2=1.27 and(k7)"*=3.87.

The different spectra reflect the existence of different
correlation lengths for the two directions. It should also be
noted that, due to the different boundary conditions, open
flow lines can only exist in thex direction, and we have
indeed observed some of them in the vorticity contours.
Along an open flow line, the correlation length is virtually
infinite, and, for a frozen field, a particle moving on such a
line would travel an infinite distance ix, with a finite ex-
cursion iny.

This behavior is a signature of the so-called “zonal
flows,” or elongated structures in the direction perpendicular
to the density gradient, which are visible in Fig. 3. In an
early paper, Hasegawa, Maclennan, and Kod&rspecu-
lated that zonal flows may inhibit particle transport across
the flow, and our numerical results support such a conjecture.

IV. FINITE LARMOR RADIUS (FLR) EFFECTS

For energetic alpha-particles, the guiding-center model
described above is no longer valid, and effects due to their
large Larmor radii must be taken into account. The simplest
model for FLR is obtained by “spreading” the particle over
a ring centered at the position of its guiding-center, and it is
accurate as long as the gyration frequergy=eB/m; is
much larger than the drift frequency,=Q;p/L,. This
model can be implemented numerically by defining the elec-
tric field acting on a particle as the average field calculated at
Ngyro POINts distributed over a ring whose radius is equal to
the Larmor radiu$® The averaging operation tends to sup-
press the smaller-scale components of the electric field
similar effect could arise from the banana orbits, induced by
the inhomogeneity of the magnetic field in tokamak geom-
etry). This point has been raised in the context of electron
diffusion in a stochastic magnetic fiell We have already
showrt! how FLR can greatly reduce the transport of test
particles. We now try to quantify this reduction more pre-
cisely, and suggest a computer experiment in which this ef-
fect is used to extract information about the underlying tur-
bulent field.

According to the closure theory of Refs. 13 and 17, the
test particle diffusion coefficient takes one of the following
dimensionless forms, in the quasiline@mall amplitude
and frozen turbulencdlarge amplitudg regimes, respec-
tively:

1
D2 >, o (Ex(1)-E_(0))?, (68)

1
D?x >, 17 (E(t)-E_(0)), (6b)

where now angular brackets denote average over the random
phases. Thus the diffusion coefficient scales as the square of
the field amplitude in the quasilinear regime, and linearly in
the amplitude in the frozen turbulence regime. The name
“frozen turbulence” is a reminder that the limit of large
amplitudes is equivalent to that of small wave frequencies.
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The more sophisticated results of Refs. 16, 18, and 19 predict a = 0.36

a dependence slightly weaker than linear in the large ampli- ~**° 0.70
tude case Dx|E|%%). However, the important point is that "¢ o
two different regimes can be clearly distinguished. B bR K 000
It can be showf? that our model for finite Larmor radius =~ & -1.4 S 0-40
is equivalent to replacing the true field spectréqnwith an & _16f ¥ 030
effective Jo(pk) E, whereJ, is a Bessel function angd is gl S 0:20
the Larmor radius. This enables us to scale the diffusion _,,f = ¢ o Y
coefficient with Larmor radius, at least in the limpk>1, 04 06 08 1.0 1.2 06 08 1.0 1.2 1.4
for which the Bessel function can be expanded as 108 (e/k) log (p/py)
Jo(pk) < (pk) Y2 Thus, in the limit of large Larmor radii, RPN St L L2 a=46
the diffusion coefficient scales as* in the quasilinear re- o2 {b) ] Lot %
gime[Eq. (6a)], and asp~*2in the frozen turbulence regime  ~ o -
[Eq. (6b)]. Observation of the diffusion properties of alpha Q ’ é‘; 901
particles of different energigand therefore different Larmor £ ™* g 0.90¢
radii) should provide information about the turbulence and = ~04f ...... siope=-0s 2 o.80;
discriminate between the two regimes. ~0.6f - siope=- 1 0.70}
The effective amplitude of the velocity field is measured  -o0.8 A 0.60 e .
by a normalized amplitude, which we now define. The s A 04 06 0 L0 12 14

root-mean squaréms) electric field is

FIG. 14. Scaling of the diffusion coefficient against Larmor radius on a
1 Ly Ly logarithmic scale(base 10 for four values of the normalized amplitude:
Erzms,: |E|2>: [ dxf dy Ez(x,y,O); (7) a=0.36(a); a=1.24(b); a=2.45(c); anda=4.6 (d). The slope=—0.5 line
2|-y|—x 0 Ly (dotted ling corresponds to the large amplitude scaling, while the
slope=—1 line (broken line corresponds to small amplitude scaling.(¢h

E,ms quantifies the amount of electric energy contained in thdhe slope=—0.35 i_s also indicz?\ted, Which_ corresponds to the result of _Ref.
L . . 19 for large amplitude. The different regimes of small and large amplitude

system. In a similar fashion, we also define a rms frequency, clearly visible.

w2 = (@?). Then, the normalized amplitude is given by the

following expression:

27 Epne V. CONCLUSIONS

Lyoms B

a= (8

Anomalous transport in tokamak plasmas most probably
arises from low-frequency, electrostatic, drift turbulence
This definition is very close to the one used by Misguichdriven by ion-temperature-gradient instabilities. To date, it is
et all”in the case of a single frequency. In our first example not yet clear which kind of field spectra can be sustained by
we setA=25, L,=2L,=120, which givesa=0.36, and drift turbulence in a realistic three-dimensional, toroidal ge-
therefore expect to be in the quasilinear regime. We havemetry. An open and important question, for example, is
followed eight groups of particles with different Larmor ra- whether the dynamics will be essentially two-dimensional
dii. The measured diffusion coefficients are shown in Fig.(due to the strong anisotropy induced by the magnetic)field
14(a) on a logarithmic scale. The slope-1 line, corre- or fully three-dimensional. An essentially 2D behavior can
sponding to the quasilinear estimate, is a reasonably accuratave a significant impact on the structure of the spectrum
fit to the computational curve, and certainly better then thg2D turbulence admits an inverse energy casgad@ this in
slope=—0.5 line, which holds in the frozen turbulence re- turn can profoundly influence the transport of test particles.
gime. The oscillations arise from the behavior of the Bessel In this paper, we have discussed the impact of nonlinear
function J,. WhenA=100, L,=120, andL,=150, the nor-  coupling and finite Larmor radius on the transport of test
malized amplitude i®=1.24, and Fig. 1éb) shows that the particles. Our numerical results show that nonlinear field
diffusion coefficient still scales ap~ . For a=2.45[Fig.  coupling can greatly reduce the particle diffusion coefficient.
14(c)] we are at the boundary between the two regimesA detailed study of the physical mechanism leading to this
while for a=4.6[Fig. 14d)] the diffusion coefficient scales effect shows that the nonlinear terms rapidly modify the field
asp Y2 as expected in the high-amplitude frozen turbulencespectrum, and give rise to a new field which induces very
case. In actuality, the slope-0.35 line, which is the result small particle diffusion. This is therefore a practical example
obtained in Ref. 19 in the large amplitude limit, appears toof how 2D turbulence can affect the transport of test par-
give an even better fit, although it is difficult to discriminate ticles.
between the two regimes. By comparing the evolution of an initially localized

In summary, we have been able to reconstruct some gbacket of particles in a linear and nonlinear field, we have
the properties of a turbulent field simply by measuring thealso shown that chaotic motion occurs only in the former
diffusion rates of test particles with different Larmor radii. It case, while in the latter we observe regular, coherent pat-
may be possible to devise techniques, based on this principléerns. The transport is found to possess different properties in
which could be used to determine experimentally the level othe two directions perpendicular to the magnetic field. This
turbulence in a magnetized plasma. anisotropy arises from a fundamental asymmetry in the
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