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Abstract

The ultrafast electron dynamics in metallic nanoparticles and thin metal films can be investigated using a semiclassical model
based on self-consistent Vlasov—Poisson simulations. Here, we present an ‘Eulerian’ code that solves the Vlasov equation on a reg-
ular phase-space mesh. Eulerian codes possess several remarkable advantages over standard test-particle techniques: (i) they display
a very low level of numerical noise; (ii) they are accurate even in regions of low electronic density; (iii) and, most importantly for
nanosized objects, they preserve the fermionic character of the electron distribution at all times. Numerical examples are provided to
illustrate the potential applications of this method to the study of electron transport in metallic nanostructures.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is nowadays possible, by means of ultrafast
spectroscopy techniques, to assess the femtosecond
dynamics of an electron gas confined in metallic thin
films [1-4] or nanoparticles [5,6], so that theoretical pre-
dictions can be directly compared to experimental
measurements. In order to model and interpret such
experimental results, ab-initio methods can hardly be
employed, as they involve prohibitive computational
times. A possible alternative relies on the use of micro-
scopic kinetic methods, originally developed in nuclear
and plasma physics, and applied more recently to metal
clusters [7]. In these models, the valence electrons are
assimilated to an inhomogeneous electron plasma. The
quantum electron dynamics can be described in phase-
space by the Wigner equation, coupled self-consistently
to the Poisson equation. In the semiclassical limit, this
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Wigner—Poisson system reduces to the Vlasov—Poisson
equations.

The numerical resolution of the Vlasov equation is
usually performed with particle-in-cell (PIC) methods,
which approximate the distribution function by a finite
number of test particles [7]. However, the numerical
noise inherent to this method is too large to allow a pre-
cise description of the distribution function in phase-
space. Further, due to the finite number of particles
used, PIC methods inevitably introduce some amount
of random noise in the Vlasov dynamics, which drives
the system towards classical Maxwell-Boltzmann ther-
malization. Therefore, the fermionic character of the
electrons is not preserved during time evolution, which
constitutes a major drawback for any PIC method.

On the contrary, Eulerian codes [8-12] rely on the
resolution of the Vlasov equation on a regular mesh
on the phase-space (x,v). They generally achieve finer
resolution and display better convergence and stability
properties than the corresponding PIC codes. In this
work, we shall illustrate the good properties of a
recently developed Eulerian scheme [11], which is capa-
ble of preserving the fermionic character of the electron
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distribution exactly and for all times. Thanks to this
numerical technique, we have been able to obtain clean
and meaningful information on the electron dynamics in
a metallic nanostructure.

2. Model

For simplicity, we shall only consider one-dimen-
sional (1D) situations, although the numerical technique
can easily be extended to higher dimensions. The elec-
tron dynamics is governed by the 1D Vlasov equation
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where f.(x, v, ) represents the electron distribution func-
tion in phase-space, and e > 0 and m, are the electron
charge and mass respectively. The electrostatic potential
¢(x) is given self-consistently by Poisson’s equation
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with n, = [ f.dv. The ions are supposed to be motion-
less and described by a density profile ni{x) = no[l +
exp((|x| — LI2)/a;)]"", where ny is the ion density of the
bulk metal, o; a diffuseness parameter [7], and L is the
spatial extension of the ion density. The above model
(1) and (2) can be viewed as the classical limit of the fully
quantum Wigner—Poisson system.

As an initial condition for Egs. (1) and (2), we use the
ground state calculated semiclassically using a Thomas-
Fermi-like approach. The electron distribution is repre-
sented by a Fermi-Dirac (FD) function with finite
temperature 7,
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Note that the chemical potential is implicitly included in
the arbitrary additive constant of the electric potential ¢
(x). By plugging the above FD distribution into Pois-
son’s Eq. (2), we obtain a nonlinear equation for ¢ that
can be solved by an iterative method to obtain the self-
consistent potential ¢ and then the corresponding
ground state distribution from Eq. (3).

The above Vlasov—Poisson equations represent a use-
ful model to study the electron dynamics in nanosized
objects such as metallic nanoparticles and thin metal
films. The model is semiclassical in the sense that it
includes the Fermi-Dirac statistics of the ground state,
but neglects the quantum character of the electron
dynamics. In order to take the latter into account, one
should turn to the Wigner equation, which is the fully
quantum analogue of the Vlasov equation. We are cur-
rently developing an Eulerian codes for the Wigner

equation [13] in order to compare the present results
with those obtained with a fully quantum model.
Returning to the present Vlasov—Poisson model, the
main challenge is now to implement an accurate numer-
ical technique that solves the time-dependent Vlasov
equation. In particular, it is important that the numeri-
cal scheme preserves the fermionic character of the elec-
tron distribution, so that Pauli’s exclusion principle is
not violated. Note that the Vlasov equation does satisfy
the exclusion principle, because of the conservation of
phase-space volume in time (Liouville’s theorem). How-
ever, numerical schemes do not necessarily preserve this
property. The rest of this paper will be devoted to the
presentation of a numerical technique for the Vlasov
equation that, besides being stable and accurate, auto-
matically satisfies this crucial physical property.

3. Eulerian Vlasov codes

The Vlasov equation is usually solved numerically by
means of particle-in-cell (PIC) techniques. The basic
idea is to represent the distribution function as a sum
of delta functions:

f6<x7 v, t) = ZW,&(X—)Q(Z‘))&(U— Uj(t))v (4)

where the w; are constant weights, and the positions x;
and velocities v; of the N test-particles obey the equa-
tions of motion (characteristics of the Vlasov equation):
x; = v; and v; = —eE(x;)/m,. The electric field E = —0¢/
Ox is computed by projecting the particle density on a
spatial mesh and then solving Poisson’s equation. For
applications to degenerate electron plasmas, this method
presents at least two drawbacks: (i) In the initial state
the particles are loaded at random, so that a statistical
noise is introduced, which will pollute the simulation
results at all subsequent times. Statistical noise is pro-
portional to N~"2, and is therefore difficult to eliminate
by simply increasing the number of particles; (ii)) Most
importantly, PIC methods violate the exclusion princi-
ple, so that the initial FD quickly relaxes to a Max-
well-Boltzmann distribution (this relaxation is caused
by the very same statistical noise mentioned above).
For semiclassical Vlasov simulations, Pauli’s exclu-
sion principle can be written in the following form:
fox,0,1) < fo(x,v,t = 0), where f.(x,v,t = 0) is the ground
state FD distribution. In mathematical language, this
means that the distribution function must respect a
‘maximum principle’ (and also a minimum principle,
since obviously f, = 0): this is guaranteed by the proper-
ties of the Vlasov equation, but generally not satisfied by
PIC codes. The accuracy of PIC simulations can
be somewhat improved by using finite-size particles
(i.e. replacing the Dirac deltas in Eq. (4) with smoother
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functions) [14] or by introducing ad-hoc collision opera-
tors [15]. Nevertheless, Maxwell-Boltzmann thermaliza-
tion is still observed after some time. In addition, these
corrections make it difficult to separate the collisionless
Vlasov dynamics from the effect of such ad-hoc terms.
Eulerian methods [8] do not suffer from these draw-
backs and should therefore be a useful tool for the sim-
ulation of nanoscale metallic objects, for which the
electrons are highly degenerate. They are based on the
resolution of the Vlasov equation on a regular mesh cov-
ering the entire phase-space (both position and velocity
co-ordinates), which makes them somewhat more costly
than PIC codes in terms of memory storage and com-
puting time. The main advantage of Eulerian codes is
that good accuracy is guaranteed even in regions of fee-
ble electron density, where the statistical noise of a PIC
code would be most prominent. The timestepping tech-
nique is based on a splitting algorithm [8], which
amounts to solving separately the free-streaming term

ofe , Ofe

E + Ua = 0, (5)
and the acceleration term

Of. eE0f,
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in the Vlasov Eq. (1). The solution from time ¢, to time
t,+1 can thus be obtained in three steps, corresponding
to the solution of the free-streaming term (5) over half
a time step, then the solution of the acceleration term
(6) over a full time step, and finally again the free-
streaming term (5) over half a time step:

SX(x0) = folx — vAL/2,0,1,) (7)
SI*(x,0) = [ (x, 0+ eEAt/m,) (8)
Je(X,0,t001) = fe**(x — vAt/2,v) 9)

where f* and f** denote intermediate solutions. Pois-
son’s Eq. (2) is solved just before Eq. (8) to provide
the electric field. Using the above symmetric scheme,
the method is second order accurate in At.

We note that each term (7)—(9) gives rise to a constant
shift in either position or velocity space. In their numer-
ical implementation, these shifts require the interpola-
tion of the distribution function in phase-space, which
can be performed according to different schemes (cubic
splines, finite volumes, fast Fourier transforms, ...).
However, not all interpolation schemes will satisfy the
exclusion principle. Here, we employ a numerical tech-
nique based on a finite-volume technique, in which the
electron distribution is assimilated to a phase-space
‘fluid’ [9]. The scheme performs a detailed balance of
the fluid entering and leaving each phase-space cell: in
this way, the total mass [/ f,dxdv is conserved exactly
(except, of course, for particles lost at the boundaries).
This method has recently been upgraded by Filbet

et al. [11] by introducing a slope corrector that prevents
the distribution function from exceeding its initial max-
imum level (and from developing spurious negative val-
ues), while still conserving the total mass. With this
correction, the model is able to preserve the fermionic
nature of the electron distribution exactly and for all
times.

4. Simulation results

In order to illustrate the potential applications of
Eulerian Vlasov codes to the study of the electron
dynamics in metallic nanostructures, we have performed
several simulations in 1D slab geometry. A 1D geometry
can actually have realistic applications to the electron
dynamics in a thin metal film [16], as the film can be
assumed to be infinite in the directions parallel to its sur-
face. In all runs, time is normalized in units of the in-
verse plasmon frequency coljel, velocity in units of the
Fermi speed vg, and length in units of Lg = vp/wp,.
The slab thickness is taken to be L = 40Lg and the dif-
fuseness parameter in the ion density is ¢;=0.5 Lg.
The initial electron temperature is 7, = 0.1 7. The typ-
ical number of phase-space mesh points used in a simu-
lation is N, =5000 and N,=300, with a time step
wpeAt = 0.05.

First, the stability properties of the code have been
tested by preparing the system in its ground state and
letting it evolve self-consistently without any perturba-
tion. By definition, the ground state is a stationary solu-
tion of the Vlasov—Poisson system and should remain
stable under the time evolution. However, PIC codes
show a rather quick deterioration of the Fermi—Dirac
ground state, which relaxes to a Boltzmann distribution
in a few (=13) electron plasmon cycles [14,15]. With our
Eulerian code, no departure from the Fermi-Dirac equi-
librium can be detected for times as long as w).t = 600,
corresponding to almost 100 plasmon cycles. The initial
and final energy distributions F(E) (obtained by inte-
grating f, over different energy surfaces) are shown in
Fig. 1, and are almost indistinguishable on the scale of
the figure. Further, during the evolution, the total en-
ergy is conserved with a relative error less than
3x 107°. Such remarkable stability could not have been
achieved with a PIC code.

Subsequently, in order to excite the electron dynam-
ics, we have perturbed the electron ground-state distri-
bution by shifting it in velocity space of a fixed
quantity ov = 0.06 vg. In this way, an amount of energy
E*|Eg = noL(dvlvg)® is injected into the system in the
form of kinetic energy of the center of mass of the elec-
tron population. After applying such perturbation, the
electron cloud is left to evolve under the action of the
self-consistent electric potential. The electron relaxation
is studied by following the time history of several energy
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Fig. 1. Energy distribution at 7 = 0 (solid line) and .t = 600 (dashed
line) for an unperturbed Fermi-Dirac equilibrium.

quantities. The total energy of the electron gas is given
by: Eiot = Eyin + Epor. The kinetic energy can further
be split into three parts; (i) the kinetic energy of the cen-
ter of mass: Eqy =3 ffiz; dx (where j, = [vf,dv is the
electron current); (ii) the Thomas-Fermi energy (energy
of the equivalent zero-temperature state with same den-
sity), which in 1D reads as: Etg = é J ng(x)3dx; and (iii)
the thermal energy: Ey, = Eyxin — Ecm — ETF-

The evolution of such energy quantities is plotted in
Fig. 2. The center-of-mass kinetic energy displays an
oscillatory behavior at the plasmon frequency and
decays down to a negligible value in a relatively short
time (wp.t ~ 100). At the same time, the thermal energy
rises of about 0.13 Ef, which is very close to the value of
the injected center-of-mass energy E* =0.144 Ep. The
remaining part of E* goes into the potential energy,
which readjusts itself to a value slightly larger than that
of the ground state. The Thomas-Fermi energy (not
shown in figure) is almost unchanged during the entire
run. It appears, therefore, that the center-of-mass energy
is converted into thermal energy of the electron popula-
tion. At the end of the run, the electrons have relaxed to

Eth —Etn (0)

0.0 L 1 1

0 100 200 300 400 500 600
mpet

Fig. 2. Time evolution of the thermal, potential and center-of-mass
energies (normalized to Eg). The initial value of the thermal energy
E1(0) ~ 0.4 has been subtracted for clarity.
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Fig. 3. Time evolution of the electron dipole.

a new quasi-stationary state characterized by a larger
thermal energy (and therefore larger temperature) and
an electric energy compatible with such a high tempera-
ture state. The evolution of the electron dipole
(x) = [[ foxdxdv (Fig. 3) confirms that the motion of
the center of mass of the electron distribution is gradu-
ally damped. The observed oscillations occur at the elec-
tron plasma frequency, as expected.

This picture is in agreement with the evolution of the
energy distribution, shown in Fig. 4. The final distribu-
tion is indeed close to a Fermi-Dirac function character-
ized by a temperature higher than that of the ground
state. We point out that this quasi-thermalization pro-
cess is driven by purely mean-field effects, as no elec-
tron-electron collisions are taken into account in the
model. Note that the exclusion principle is still satisfied
even for this perturbed simulation (i.e. nowhere is the
value f, =1 exceeded). The total energy is conserved
with a relative error less than 2 x 10™%,

Further, the fine resolution obtained with the Eule-
rian code allows us to follow the microscopic electron
dynamics in the relevant phase-space, as illustrated in
Fig. 5. It is clear from this figure (see, in particular,
wpet = 150) that only electrons located near the Fermi
surface play a significant role in the thermalization

F (E)

0.0 0.5 1.0 1.5 2.0
E/Eg
Fig. 4. Energy distribution at ¢ = 0 (solid line) and w,.t = 600 (dashed

line). The initial Fermi-Dirac equilibrium was perturbed with dv =
0.06vE.
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Fig. 5. Contour plots of the electron distribution function in phase-
space at different times.

process. The initial perturbation propagates at a speed
close to the Fermi velocity, so that the thermalization
process appears to be of a ballistic rather than diffusive
nature. This is in agreement with experimental results
obtained with thin gold films [1,2].

5. Conclusion

In this work, we have presented a numerical method
for the solution of the Vlasov equation that is particu-
larly well adapted to the study of degenerate electron
plasmas. The method is stable and accurate, and is capa-
ble of preserving the fermionic character of the electron
distribution exactly. Numerical evidence has been pre-
sented in order to illustrate the good properties of such
Eulerian codes. The numerical results have allowed us to
describe with high accuracy the semiclassical electron
dynamics and thermalization in a typical metallic
nanostructure.

Although only 1D examples were reported for the
sake of simplicity, the code can be casily extended to
more spatial dimensions. Indeed, Eulerian codes are
based on a splitting algorithm that treats each phase-

space direction independently. Adding more dimensions
would just increase the number of steps in the time-step-
ping algorithm (7)—(9).

Several extension of this work are possible and cur-
rently under way. The classical ion dynamics [16] can
easily be added through an additional ion Vlasov equa-
tion. Further, it should be possible to include a collision
integral (of the Uhling-Uhlenbeck type) that accounts
for electron—electron collisions. As the Eulerian tech-
nique treats the collisionless (mean-field) dynamics with
great accuracy, the effect of electron—electron collisions
could then be studied without being polluted by spuri-
ous ‘“‘numerical collisions” that are unavoidable with
PIC codes.
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