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Abstract

We consider the interaction dynamics of a classical oscillator and a quantum
two-level system for different pure-dephasing Hamiltonians of the type
H(q, p) =Hc(q,p)1+ Hy(q,p)c,. This type of systems represents a severe
challenge for popular hybrid quantum—classical descriptions. For example, in
the case of the common Ehrenfest model, the classical density evolution is
shown to decouple entirely from the pure-dephasing quantum dynamics. We
focus on a recently proposed hybrid wave equation that is based on Koopman’s
wavefunction description of classical mechanics. This model retains quantum—
classical correlations whenever a coupling potential is present. Here, several
benchmark problems are considered and the results are compared with those
arising from fully quantum dynamics. A good agreement is found for a series of
study cases involving harmonic oscillators with linear and quadratic coupling,
as well as time-varying coupling parameters. In all these cases the classical
evolution coincides exactly with the oscillator dynamics resulting from the
fully quantum description. In the special case of time-independent coupling
involving a classical oscillator with varying frequency, the quantum Bloch
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rotation exhibits peculiar features that escape from the hybrid description. In
addition, nonlinear corrections to the harmonic Hamiltonian lead to an overall
growth of decoherence at long times, which is absent in the fully quantum
treatment.

Keywords: Koopman wavefunction,
mixed quantum—classical dynamics, pure-dephasing systems

(Some figures may appear in colour only in the online journal)
1. Introduction

The search for models describing the interaction dynamics of quantum and classical systems
goes back to the early days in the history of quantum mechanics and is typically related to
the measurement problem. In that context, a quantum system is coupled to a classical sys-
tem comprising a pointer and the environment, that is the rest of the measuring apparatus.
While the environment is usually thought of as a heat bath inducing irreversible thermody-
namical processes, the system-pointer interaction is an intrinsically unitary process known as
pre-measurement [42, 50].

Besides its relevance in such foundational issues, the quantum—classical coupling prob-
lem has also emerged over the years in a series of different contexts. In theoretical physics, for
example, the possibility that the theory of gravity may not be quantized leads to consider coup-
ling the classical Einstein tensor to quantum matter [12]. In this context, the theory of semiclas-
sical gravity is based on a mean-field model that fails to retain quantum—classical correlations
[10]. Furthermore, several activities on quantum—classical coupling are currently motivated by
the necessity of mitigating the computational costs of fully quantum many-body simulations.
For example, in chemical physics molecular dynamics algorithms often approximate nuclei as
classical while retaining the full quantum effects of electron dynamics [15, 35, 55]. In solid
state physics, recent proposals [32] suggest treating the orbital degrees of freedom as clas-
sical while leaving spins as fully quantum observables. Similar quantum—classical descriptions
have also appeared in spintronics, where quantum spins are coupled to classical ferromagnets
thereby reaching unexplored parameter regimes in quantum control [51].

1.1. Models of hybrid quantum-classical dynamics

Despite several attempts [5, 10, 17, 25, 33, 44, 57], most hybrid quantum—classical models suf-
fer from various consistency issues [2, 10, 26, 43, 47, 52]. For example, some models allow for
the violation of the uncertainty principle, while some others fail to return uncoupled quantum
and classical motion in the absence of an interaction potential. Following [10], we can propose
five fundamental properties that quantum—classical dynamical models should possess [23]:

. the classical system is identified by a positive probability density on phase space at all times;

. the quantum system is identified by a positive-semidefinite density operator p at all times;

3. the model is covariant under both quantum unitary transformations and classical canonical
transformations;

4. in the absence of an interaction potential, the model reduces to uncoupled quantum and
classical dynamics;

5. in the presence of an interaction potential, the quantum purity Trj? is not a constant of

motion (decoherence property).

[N
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Notice that the last property rules out the standard mean-field model, which entirely neglects
quantum—classical correlations thereby conserving purity. To our knowledge, the only avail-
able model satisfying all five properties is the Ehrenfest model:

Here, D is the classical Liouville distribution, while the quantum density matrix is p =
f Dyt dgdp. Also, we have denoted ( )= (¢,A1/1) while the hybrid Hamiltonian H =
H(q, p) is a phase-space function with values in the space of Hermitian operators on the
quantum Hilbert space. Despite its popularity in chemical physics [6], the model (1.1) is well
known to be unreliable in reproducing the correct decoherence levels arising from the fully
quantum description. In particular, the Ehrenfest model suffers from the overcoherence prob-
lem, that is it typically leads to higher purity levels than those arising from the fully quantum
treatment [3]. In some cases, a certain undercoherence was also reported [30]. As we will see,
the Ehrenfest model suffers also from other serious issues that become manifest in the class
of Hamiltonians considered in this paper.

Several other hybrid quantum—classical models are available, although they generally fail to
fulfill all the five properties listed above. In some cases this lack of consistency leads to unreal-
istic timescales of the quantum evolution [9]. A candidate model beyond Ehrenfest which satis-
fies all the five properties was recently presented in [21-23]. In that case, the quantum—classical
interaction triggers challenging nonlinear terms and suitable closure schemes are currently
under development. This nonlinear model was formulated upon revisiting a /inear quantum—
classical wave equation (QCWE) previously proposed in [9]. This equation governs the unitary
evolution of a square-integrable hybrid wavefunction Y (g,p,x), where x is the quantum pos-
ition coordinate. In its simplest form, the QCWE reads 8,Y + {Y,H} = ih_l(pc")plfl —H)T.
Satisfying the properties (2)—(5) above, this equation was also shown to retain property (1)
when the Hamiltonian depends on the quantum degrees of freedom through a set of mutu-
ally commuting observables [24] (pure-dephasing Hamiltonian). However, the hybrid wave
equation is not known to satisfy property (1) in the general case. In addition, while this equation
is covariant under gauge transformations Y — ¢/#(¢P) Y| it is not gauge-invariant. This kind of
gauge invariance was indicated as a desirable property in [10], based on the fact that classical
phases cannot lead to measurable effects [50]. Indeed, this gauge invariance plays a key role
in the nonlinear model from [21-23].

While these aspects deserve appropriate care, the hybrid wave equation from [9] seems to
represent a step forward in the current state of the art of quantum-—classical modeling. For
example, unlike widely popular models in chemical physics [5, 25, 35], the hybrid wave
equation preserves the Heisenberg uncertainty principle (as a consequence of property 2).
Also, it reduces to uncoupled quantum and classical mechanics in the absence of an inter-
action potential (property 4), unlike alternative approaches based on master equations [17] or
quantum hydrodynamics [20, 28]. As we will see, it also overcomes the Ehrenfest model in
terms of its predictions on the dynamics of the classical system. Last, the hybrid wave equation
was recently shown to be Galilean-covariant [7], thereby ensuring another desirable property.
Given these aspects of merit, we are motivated to present a benchmark study comparing the
results obtained from the QCWE with those arising from fully quantum dynamics. In par-
ticular we will consider the simple case of pure-dephasing Hamiltonians, for which the clas-
sical density was shown to be always positive-definite [24]. Pure-dephasing problems provide
a suitable benchmark platform for our proof-of-principle study of the mathematical model

3
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under consideration, while the development of a cost-effective computational method is left
for future work. For example, the presence of characteristic curves in its Madelung form makes
the QCWE amenable to trajectory-based methods, as opposed to the more expensive (yet more
accurate) finite-volume schemes adopted here.

This paper will study the case of harmonic and anharmonic oscillators coupled linearly
and nonlinearly to a quantum two-level system, and focus especially on the dynamics of the
quantum subsystem. In addition, we will present some results on the quantum—classical spin-
momentum correlations and we will also consider the case of time-dependent parameters.
While predicting slightly higher levels of decoherence, the hybrid results are in good agreement
with the quantum dynamics when the hybrid Hamiltonian H(g,p) is a quadratic function of
the classical coordinates. One exception is given by the particular case when the oscillator
frequency varies with time. In that case, the fully quantum dynamics displays rather peculiar
features that cannot be reproduced by the hybrid wave model. Furthermore, in the case of
non-harmonic hybrid dynamics, the decoherence becomes particularly pronounced over time
thereby leading to distinctive differences from the fully quantum evolution.

1.2. Quantum-classical wave equation (QCWE)

The formulation of the QCWE exploits an earlier suggestion from George Sudarshan [14, 50].
The idea is to resort to Koopman’s wavefunction description of classical dynamics [34, 36, 56]
in such a way that the hybrid quantum—classical motion can be formulated on the tensor product
Hilbert space comprising products of classical and quantum wavefunctions. The general the-
ory of the resulting model for hybrid quantum—classical wavefunctions has been presented in
several instances [9, 22-24, 54]. At this stage we simply present its hybrid wave equation in
the general form:

or i OH OH ~
&_{H’T}_5<Aq(’9p_“4"aq_ >T' (1.2)

As mentioned previously, T(g,p,x) is a wavefunction depending on the classical phase-
space coordinates z = (¢q,p) as well as the quantum coordinate x. The right-hand side of
equation (1.2) deserves some comments. First, the vector potential A = (A,,.A,) is called
symplectic potential and its defining relation is

VA— (VA" = -], with JI= (_01 (1)> ,
where the gradient V = (9,,0,) is computed in the phase space. The symplectic potential is
defined up to a pure gradient gauge term. In the standard gauge, one has A= (p,0) so that
in the purely classical case H = H1 the parenthesis on the right-hand side of equation (1.2)
reduces to the phase-space Lagrangian . = p0,H — H. Indeed, this term on the right-hand
side of equation (1.2) has the role of incorporating the phase evolution in the classical sector
[16, 24]. Another relevant gauge is given by

1

A=(p.0)~ 3V (pg) = 5(p.~4)

In this gauge, the QCWE reads

or - i (pOH qoH -~
= —{HT}= H|Y
- =52 )
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which is the form used throughout this paper. This harmonic gauge is particularly convenient
for purely quadratic Hamiltonians since it makes the right-hand side of equation (1.2) vanish
identically.

In the QCWE setting, the quantum density matrix is given by

p= / Y(¢,p)Y"(g,p)dqdp, (1.3)

which is consistently positive definite thereby ensuring that the uncertainty principle is satisfied
at all times. Here, the notation is such that YT (g, p) is the quantum adjoint, so that both TTTZ =
(Y1|T2) and YTY = ||Y||? identify distributions on the phase space. In addition, the classical
distribution reads

pe(q.p) = IX(q.p)|I*> — div (|| Y (q,p)|*JA(g,p)) + hIm{YT(g,p), Y (q.p)}. (1.4)

While this expression is generally sign-indefinite, the corresponding distribution was shown
to remain positive for pure-dephasing Hamiltonians, that is Hamiltonians depending only on
a set of mutually commuting quantum observables [24]. In addition, upon using the exact fac-
torization Y (g,p,x) = \/D(g,p)e’@P)/ ") (x;q,p) [1, 22], we observe that the classical phase
S(q,p) enters explicitly the expression (1.4) of the classical density, thereby affecting classical
averages. This feature may appear counterintuitive since classical phases should not generally
lead to observable effects. Indeed, we do not measure Hamilton—Jacobi functions. One can
argue that in the present formalism the single terms in equation (1.4) do not possess any phys-
ical meaning per se, and only the full expression identifies a relevant quantity. Alternatively,
one can modify the current model by enforcing a gauge principle to treat classical phases as a
gauge freedom; this is the approach recently proposed in [22, 23].

In the present context, both the quantum density matrix and the classical distribution may
be realized as suitable projections of a hybrid von-Neumann-type operator D(g,p) so that
pe=TrDand p = i Ddgdp. Explicitly, one has

D =YY" —div(JATYT) + in{T, T}

This quantity is needed to compute quantum-—classical expectation values. For example, the
total quantum—classical energy is given by Tr(DH) (H) and analogously (A) = Tr(DA) for
an arbitrary hybrid observable A(g,p).

A typical initial condition for the QCWE is given by a factorized hybrid wavefunction of
the type Yo(g,p,x) = x(q,p)¥(x), where x and ¥ are quantum and classical wavefunctions,
respectively. The Koopman wavefunction y is chosen in such a way that at the initial time
pe 1s a Gaussian distribution centered at (go,0). Then, the expression (1.4) leads to solving a
differential equation whose solution leads to [9]

_.pdg 11— (1 + 6H0)C_BH0 . 1 2 1
Y —W(x)e R, | — with  Ho=~p*+~
0<Q7p7x) (‘x) e 2 \/27‘(’ BH% ) 1 0 Zp 2(

q—q0)*.
(1.5)

Here, (3 represents an inverse classical temperature. In the fully quantum description, this initial
condition corresponds to the tensor product of a quantum state W(x) with a Gaussian wave-
packet centered at (go,0). While the function (1.5) is suitably normalized, it possesses a long
tail in the phase space which arises from a decay of the type 1/H,. The slow decay of the Koop-
man wavefunction represents a challenging aspect for the numerical implementation, which
especially intervenes in the computation of expectation values.

5



J. Phys. A: Math. Theor. 56 (2023) 154002 G Manfredi et al

2. Pure-dephasing systems

This paper presents a case of study focusing on the interaction of a classical oscillator with a
quantum two-level system. In the fully quantum domain, these models were widely studied in
the open systems literature [11], and are often known in optics as variations of the quantum
Rabi [31, 58] and Jaynes—Cummings models [37]. In the corresponding quantum—classical
setting, the hybrid wavefunction is a two-component spinor T = (Y, ,T_). In particular, we
focus on pure-dephasing Hamiltonians of the general type [27, 48, 49]

H(q.p) = Hc(q.p)1+ (Hi(¢.p) + Bo)7. @.1)
Here, Hc is a purely classical Hamiltonian function, while H; is a quantum—classical coup-
ling term and By represents an external magnetic field driving the spin variable. Also, 7, =
diag(1,—1) is the third Pauli matrix and 1 is the identity matrix.

2.1. Hybrid wave equation for pure-dephasing Hamiltonians

For generic nonlinear Hamiltonians in this class, the QCWE reads

T
ih% =ih{He, Yoy =LYy, 2.2)

with Hy =Hc =+ (H;+By) and L£4(z) =2z-VHy(z)/2 — Hy(z). Our numerical solution
takes advantage of the Madelung representation Y = /D1 exp (iS+/h). Then, the densit-
ies D+ and phases S obey the following equations in the phase space

0Dy ={Hy,D4}, 2.3)

08+ ={H+,S+}+ L. (2.4)

These are the transport equations that will be solved numerically to obtain the quantum—
classical hybrid results. The chosen numerical algorithm is a grid-based split-operator tech-
nique that advances the functions Dy and Sy alternatively in position space g and in
momentum space p, using a finite volume method [19]. Grid-based computational methods
possess good accuracy and stability properties, usually better than methods based on tra-
jectories, although they require a higher computational cost. More details are given in the
appendix A. Our initial condition for Yoy = /Dot exp(iSo+ /k) reads
_P9 1 1 )2

1 1—(1+ BHy)e Pt _ )
Doy = — Sor = th  Hy=-p*+=(q—
0+ = 5 B2 . 0+ > wi 0=5P + 2(@ 90

which corresponds to equation (1.5) with ¥ (x) replaced by the spinor ¥ = (1,1)//2.
In this Madelung formulation, the classical density is written as:

p(z) =Y [Di +div (DiJVSi n gDiﬂ , 2.5)
+

with [p.(z)dz = [[Dy(z) + D_(z)]dz, while the quantum density matrix is:
A t _ T[> YT
p—/T(z)T (z)dz = /dz (Tj_T_ T2

— d D+
- Z /DJFD,e_iAS/h
where AS =S5, — S_ is the phase difference.

/D D,e’AS/h
+ S (2.6)
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2.2. Inadequacy of the Ehrenfest model and other features

Despite their intrinsic simplicity, pure-dephasing systems represent a relevant benchmark test
case for two main reasons.

First, pure-dephasing systems cannot be adequately modeled by the Ehrenfest
equation (1.1), since in that case the classical motion decouples entirely from the quantum
dynamics. This is easy to see by noticing that the initial condition (1)|5,1) = 0 is preserved
in time, so that the classical evolution in equation (1.1) simply becomes

D+ {D,Hc} =0.

In particular, this indicates the complete absence of quantum backreaction on the classical
motion, so that, when H¢ = (p* 4+ ¢*)/2 the classical system undergoes trivial rotations in
phase space, in obvious contrast with the behavior arising from the fully quantum treatment.

Another relevant property of pure-dephasing systems is that, whenever H¢ and H; are
quadratic functions, the QCWE can be solved exactly [9, 24] thereby providing important
information to test the numerical results. In this particular case the evolution of the classical
density (1.4) is shown to be identical to the Wigner oscillator dynamics predicted by the cor-
responding fully quantum problem. Indeed, since the two components Y 1 of the hybrid wave-
function decouple entirely, one shows that the two densities

1 .. "
pr = T[>+ EdIV(Z|Ti|2) +AIm{Y% Ty}

obey a classical Liouville equation: 9,p+ = {H, p+ }. Notice that the densities py are trans-
ported along the characteristics of the time-independent vector field (0,H, —0,H~+ ) and thus
they remain strictly positive at all times. Then, the sign of the classical density p. = p+ + p— is
also strictly preserved, thereby indicating the absence of wavefunction nodes that may instead
appear in the general case of quantum dynamics.

For the corresponding quantum problem, the Wigner function of the oscillator wavefunction
satisfying

ihdpp = Hep + (Hy+ Bo)o.1p (2.7)

is given by W= W, + W_. Here, W is the Wigner transform of ¢ and obeys O,Wy =
{{H+,Wy}}, where {{-,-}} is the Moyal bracket. Then, if Hy is a quadratic function the
Moyal bracket reduces to the Poisson bracket, thereby recovering exactly the same classical
flow that arises from the QCWE. Notice how this result is in direct contrast with that produced
by the Ehrenfest model, for which the oscillator dynamics decouples completely and becomes
harmonic.

In the following sections, we will compare the results of the QCWE with those arising
from the fully quantum treatment of the Hamiltonian (2.1). For more details on the quantum
dynamics, see appendix B. In particular, we will consider different cases of H¢ and H; cor-
responding to harmonic oscillator motion with linear and quadratic coupling (section 3) and
two types of anharmonic potentials and coupling (section 4). Regimes with both constant and
time-dependent parameters will be investigated.
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3. Harmonic motion

This section presents the results obtained from the numerical implementation of the QCWE
for pure-dephasing Hamiltonians of the type (2.1), in the special case when

1
He=3 (P* +uw’q?) (3.1)

and Hj is either linear or quadratic. This hybrid Hamiltonian represents the pure-dephasing
interaction of a harmonic oscillator that is coupled linearly or quadratically with a two-level
system. In particular, we will compare the results obtained with the QCWE to those obtained
from the fully quantum evolution. In the last part of this section, we will also study the case in
which either the oscillator frequency w or the parameters in H; depend explicitly on time.
Notice that, as shown before, in the case of Hamiltonians that are at most quadratic, the
classical density evolution obtained from the QCWE coincides exactly with the Wigner distri-
bution dynamics that is obtained from the fully quantum treatment. Thus, the present study will
only consider the dynamics of the Bloch vector describing the quantum two-level subsystem.

3.1 Linear coupling

Here, we consider in (2.1) a linear interaction Hamiltonian of the type

Hy=1q (3.2)
and the parameter values:

w=1, v =0.5, By =0.2.

The initial condition is given by equation (1.5) with initial shift gy = 0 and inverse temper-
ature $=2. Units in which w = h =m =1 are used throughout this paper. A fully quantum
system corresponding to equations (2.1), (3.1), and (3.2) was discussed in [45] in the context of
electron—phonon coupling. In the case By = 0, the corresponding quantum Hamiltonian iden-
tifies the simplest version of the Jahn—Teller problem in chemical physics, known as E® 3
Jahn-Teller model [41].

Figure 1 shows the Bloch vector dynamics along with purity evolution, where purity is given
by P(t) = Tr p*. Since in the present pure-dephasing case (o) is conserved, the motion occurs
in the plane (o,) = 0. While the former gives an overview of the quantum subsystem dynamics
(spin dynamics), the latter quantifies decoherence. Notice the good agreement between the
hybrid and fully quantum results, although we see the slightly lower purity level attained by
the hybrid system. The latter feature means that the decoherence induced on the two-level
subsystem is higher in the case of an interaction with a classical oscillator, compared to a fully
quantum oscillator.

Another possibly relevant quantity is the spin current (pc,). Here, we are particularly inter-
ested in the quantum—classical spin-momentum correlations (po,) — {p){(c,) whose time evol-
ution is represented in figure 2. The spin-momentum correlations achieve lower absolute val-
ues in the hybrid case. In other words, the correlations generated in time by the fully quantum
dynamics are higher than the quantum—classical correlations achieved during the hybrid evol-
ution. In addition, we notice that when the quantum state turns back pure, the spin-momentum
correlations vanish for both quantum and hybrid dynamics.

Overall, we found that the Bloch dynamics resulting from the QCWE is in good agreement
with the predictions of the fully quantum theory, while the correlations between the oscillator
and the two-level system reach higher values in the fully quantum case. We recall that the
harmonic oscillator evolution is exactly the same in the two cases.
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Figure 1. Dynamics of the quantum subsystem (linear coupling). The left panel shows
the evolution of the Bloch vector in the equatorial disk (o) = 0: the purple color corres-
ponds to earlier times, while yellow indicates later times r = 20. The dashed line corres-
ponds to the hybrid evolution, while the thick solid line represents the fully quantum
dynamics. The right panel shows the evolution of purity with the same convention.
The same graphical conventions and color code will be used throughout the remain-
ing figures.

Evolution of spin-current products difference

0.3
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Figure 2. Spin-momentum correlations (linear coupling). The pale blue curves indicate
the evolution of the spin current correlation (pay) — (p)(dy), for the quantum evolution
(solid curve) and the hybrid evolution (dashed curve). Note that in this case {p) =0,
because no initial shift was present (go = 0).

3.2. Quadratic coupling

This section focuses on pure-dephasing systems of the type (2.1), where H¢ is the harmonic
oscillator Hamiltonian (3.1) and the interaction term is given by

(3.3)
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with parameters
w=1, n=20.5, By=0.3.

In the absence of momentum coupling, the corresponding quantum case was considered in
[45]. In the absence of both momentum coupling and magnetic field, an analogue quantum—
classical system was approached by the QCWE in [9]. In the case considered here, the quantum
correspondent of the coupling Hamiltonian (3.3) has made its appearance in the context of
the two-photon Rabi dynamics [4]. The pure-dephasing limit was considered in [18, 40, 53],
although in those cases the magnetic field By appearing in equation (2.1) is absent. While
the inverse temperature of the initial condition is fixed (8 = 2), here we will study both cases
go = 0 and gp = 1 to observe the effects of an initial shift in position.

It is perhaps interesting to mention that, if gy = 0, switching off the external magnetic field
By leads to an absence of Bloch rotation in both the quantum and the hybrid cases. This can
be seen explicitly for the QCWE equation upon using the polar form Y = \/Dye’S+/% in the
corresponding wave equations. Then, the QCWE leads to the expectation value expressions

((70), (By)) = 2/\/D+D_(cos(AS/h),—sin(AS/h)) dgdp,

where AS = S, — S_. The latter quantity vanishes at all times due to the initial condition (1.5)
and the particular form 9, — {Hc1+ H;5,, T} = 0 of the QCWE when By = ¢o = 0. Thus,
(6y) = 0 remains true at all times and the Bloch vector simply oscillates in amplitude along
the x-direction. The same peculiar behavior is also observed in the simulations of the fully
quantum dynamics, although its analytical justification is less obvious.

The remainder of this section deals with the case of a nonzero magnetic field, By = 0.3.
Figure 3 illustrates the dynamics of the two-level subsystem. Independently of the presence
of an initial shift, we observe essentially the same features that had already appeared in the
case of linear coupling, although now the difference in purity reaches slightly higher values,
meaning that the quadratic coupling leads to stronger decoherence effects in the hybrid case.

In the presence of an initial shift gy = 1, the spin current may again be adopted to illustrate
the correlation dynamics between the oscillator and the two-level system (see figure 4). In
contrast with the case of linear coupling (figure 2), the hybrid correlations are now higher
than those observed in the full quantum dynamics. We recall, however, that the linear coupling
case in figure 2 did not involve any initial shift, so the two results are not directly comparable.
Again, we notice that, when purity reaches its maximum, spin-momentum correlations vanish
and this happens for both quantum and hybrid dynamics.

In summary, the case of quadratic coupling does not lead to any substantial differences with
respect to the conclusions found when the coupling is linear. The main difference resides in a
slightly bigger difference in purity, whose quantum predictions are however still qualitatively
reproduced.

3.8. Time-dependent parameters

In this section, we keep the form of the Hamiltonians (3.1) and (3.3) and consider the separate
cases where either the oscillator frequency w or the coupling constant 7 are dependent on time.
As we will see, while the case of a variable coupling yields again a good qualitative agreement,
the case of variable frequency leads to a very peculiar quantum dynamics that escapes from
the QCWE description, which instead reproduces the quantum oscillator dynamics exactly.
Notice that a variable oscillator frequency is a less realistic situation than the case of a variable
coupling strength.
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Figure 3. Dynamics of the quantum subsystem (quadratic coupling). Bloch and purity
dynamics corresponding to the quadratic coupling in equation (3.3). The upper panels
refer to the case go = 0, while the lower panels represent the case go = 1.

We start by considering the following temporal expression for w(r):
1
w(t)=1+ iAw [tanh (r — ;) — tanh (r — 1,)], 3.4)

with Aw = 0.4, r; =20, and #, = 60. In this case, we ignore the effects of an initial displace-
ment g and we consider a much lower magnetic field By = 0.02 in order to emphasize the
effects of the time-dependence. The inverse temperature is still 5 =2 and the coupling strength
is 7 = 0.5. This case exhibits a very different qualitative behavior of the Bloch rotation between
the hybrid and fully quantum cases, while purity is still satisfactorily reproduced by the QCWE.
In particular, the Bloch rotation in the hybrid case is entirely determined by the magnetic field,
while the fully quantum case exhibits an atypical Bloch dynamics that is triggered by a nonzero
relative phase of the spinor components. As shown in figure 5, at the time when the frequency
develops a derivative (t; = 20), the positive (counterclockwise) Bloch rotation observed in the
fully quantum case reverses its sign and becomes very fast until the frequency returns to its
original value. After that point in time (#, = 60), the Bloch rotation slows down and turns back
positive. On the other hand, this remarkable effect cannot be captured by the hybrid QCWE
dynamics, for which the rotation remains slow and positive at all times. Instead, the classical
density D = ||Y||? resulting from the QCWE reproduces the quantum dynamics of the time-
dependent oscillator exactly, as discussed in section 2.2.

1
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Figure 4. Spin-momentum correlations (quadratic coupling). Same as figure 2, although
now the curves are obtained in the case of quadratic coupling with an initial position
displacement go = 1. Notice that (p) does not vanish in this case.

In the second simulation, we take a constant oscillator frequency (w=1) and a time-
dependent coupling coefficient 7)(¢) given by

1
n(t) =mno + EAn [tanh (z — #;) — tanh (£ — 1,)],

with 779 = 0.5 and Ay = —0.1. The results are illustrated in figure 6. Contrarily to the previous
situation (constant coupling and varying frequency), here the QCWE reproduces rather well
both the Bloch rotation and the purity evolution. Once again, as in earlier cases, the purity
predicted by the hybrid dynamics reaches slightly lower values compared to the fully quantum
case.

4. Anharmonic motion

For a Hamiltonian that is at most quadratic, the oscillator dynamics is identical in the quantum
and hybrid cases, as was shown in section 2. In such cases, we observed a good agreement also
for the quantum two-level subsystem, although distinctive differences emerged in the case of
a variable oscillator frequency.

Here, we extend our study to the more challenging scenario of anharmonic motion, for
which the quantum and classical dynamics differ at long times. We recall that, as discussed
in section 2.2, the Ehrenfest model (1.1) is inadequate also for anharmonic pure-dephasing
dynamics since it leads to a completely decoupled classical evolution. This problem is absent
in the QCWE and here we present results for two cases, where either the classical Hamiltonian
Hc(g,p) or the coupling term H;(g,p) involve some nonlinear terms. Two types of nonlinear
correction terms are considered: a quartic term and a rational term of the type ag*/(1 + ag?).
The latter belongs to a wider class of potentials known as Mitra potentials [13, 39]. Among
others, Mitra potentials were used in the calculation of bond state spectra; see [46] for this and
other occurrences of Mitra potentials.
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Figure 6. Dynamics of the quantum subsystem. Bloch (left panel) and purity (right
panel) dynamics corresponding to the Hamiltonians (3.1) and (3.3), with a time-
dependent coupling constant 7(¢) whose evolution is presented in the right panel as
a black solid line (see main text for the analytical formula). The results from the hybrid
(dashed lines) and the fully quantum (solid lines) dynamics exhibit overall qualitative

agreement.
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Figure 7. Dynamics of the quantum subsystem (quartic potential). Bloch and pur-
ity dynamics (left and right panel, respectively) corresponding to the pure-dephasing
dynamics for a harmonic oscillator with a quartic potential correction.

4.1. Quartic potential correction

In this section, we modify the hybrid dynamics in section 3.2 by adding a quartic potential
correction, that is
2 2 2 4

HC(P7‘1)=IH_#+6%7 @.1)
while the coupling terms remain quadratic: H(p,q) = $1(g> — p?) + By. We recall that the
quantum dynamics arising from a quartic potential term differs substantially from its classical
counterpart [38]. Here, we use the following parameters: oscillator frequency w =1, quad-
ratic coupling n = 0.3, external field By = 0.1, and correction parameter ¢ = 0.01. The initial
condition is still the one of equation (1.5), with inverse temperature 3 =2.

The results for the Bloch and purity dynamics of the quantum subsystem are displayed in
figure 7. The purity oscillates while decreasing to a lower value in the hybrid case with respect
to the fully quantum case. This result should be compared to the one obtained for a purely
quadratic Hamiltonian, see figure 3: in that case, the hybrid purity was following more closely
the fully quantum one, both returning to values very close to unity. In other words, in this case
of quartic potential correction we observe that the decoherence in the hybrid dynamics tends
to become more and more pronounced over time, while its overall average levels do not seem
to vary in the fully quantum case. Also, we notice a faster Bloch rotation in the hybrid case
with respect to the fully quantum result.

Due to the slow decay of the hybrid wavefunction (1.5) and the rapid growth of the quartic
potential ~ g*, the implementation of the hybrid dynamics corresponding to the classical
Hamiltonian (4.1) is particularly challenging and the long-time simulations do not allow a
satisfactory energy conservation. In order to test the long-time hybrid dynamics, we have con-
sidered a rational correction term, which is tailored to grow asymptotically as ~ g?. This is
discussed in the next section.

4.2. Rational correction terms

In this case, we modify the dynamics from section 3.2 by adding a rational correction term [13,
39, 46] ag* /(1 +2a.g?) to either the classical Hamiltonian H¢ or the coupling H;. Hence, we
consider hybrid Hamiltonians (2.1) with either
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Figure 8. Dynamics of the quantum subsystem (rational potential correction). Bloch
and purity dynamics (left and right panels, respectively) corresponding to the pure-
dephasing dynamics for a harmonic oscillator with a rational potential correction. The
top panels illustrate the short-time dynamics, while the bottom panels represent the long-
time motion.

P’ + g aq* N, 9 o
H H =—(g°— 4.2
C(p q) 2 1 2aq2’ 1(p7q) 2(q P )7 ( )
or
P+ wiq? ) ag*
H _— H =—(qg°— c———. 4.3
cp,q) = > 1(P:9) 2(61 p)te 11200 (4.3)

For this set of simulations, we use the following parameters: oscillator frequency w = 1, quad-
ratic coupling n = 0.5, external field By = 0.1, and inverse temperature 5 = 2. In addition, we
set a« =0.1. Compared to the quartic correction of the preceding section, which dominates at
large values of g, the rational potential is strongly anharmonic at small values of ¢ while it
becomes again quadratic for g — oo.

In the first case, we consider a correction of the classical potential (¢ = 0.1 and ¢, = 0), while
in the second case we insert a correction in the coupling (e =0 and €, = 0.05). The results
are plotted respectively in figures 8 and 9, for short times (7 € [0,20], top panels) and long
times (¢ € [0, 100], bottom panels). For both cases, the short-time hybrid dynamics reproduces
relatively well its fully quantum counterpart. Nevertheless, we note a significant difference: for

15
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Figure 9. Dynamics of the quantum subsystem (rational coupling correction). Bloch and
purity dynamics (left and right panel, respectively) corresponding to the pure-dephasing
dynamics for a harmonic oscillator with a rational coupling correction. The top pan-
els illustrate the short-time dynamics, while the bottom panels represent the long-time
motion.

a correction in the classical potential, the Bloch rotation appears faster in the hybrid dynamics
than in the quantum evolution, whereas the opposite occurs when the correction applies to the
coupling term. This is similar to what was found in the case of a quartic correction. At longer
times, the quantum dynamics found by the hybrid model deviates from the fully quantum
predictions. The average value of purity appears to decay again, although this decay is slower
compared to the case of a corrected classical potential.

Finally, we also present a comparison of the uncertainty evolution in the quantum and
hybrid cases; see figure 10. For short times, the hybrid predictions are in excellent agree-
ment with the fully quantum results. For long times, the behavior is very different depend-
ing on whether the rational correction term is inserted in the potential or in the coupling.
In the first case, we observe uncertainty oscillations with a much smaller amplitude in the
case of the hybrid dynamics, while in the second case this difference in amplitude is less
pronounced so that the hybrid model still yields a certain agreement with the fully quantum
dynamics.
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ult, while dashed lines identify the hybrid dynamics.

5. Conclusions

A fully quantum description of complex systems is often a fierce challenge, both for analyt-
ical developments and numerical calculations, especially for objects containing as many as
hundreds or thousands of particles. In those cases, it may be necessary to separate the system
under study into various subsystems, some of which are treated classically and some quantum
mechanically. For instance, we may consider a quantum object immersed in a solution of water
molecules that are described classically.

However, quantum and classical motion are governed by very different mathematical
descriptions, i.e. point trajectories in the phase space for classical systems and wave equations
in a Hilbert space for the quantum dynamics. Hence, coupling a quantum system to a classical
one is by no means an easy task. Several approaches to couple quantum and classical systems
have been proposed in the past, but each of them presents some drawbacks. Pure-dephasing
Hamiltonians are an especially challenging test case for hybrid quantum—classical models and
popular approaches are known to struggle. An example is given by the Ehrenfest model, in
which the classical system decouples completely from the quantum degrees of freedom.

Here, we have used pure-dephasing systems as a benchmark test ground for a recently
developed method, jointly proposed by one of us [9]. The method is based on the theory of
Koopman wavefunctions, which is a representation of classical mechanics based on the same
Hilbert-space formalism as in quantum mechanics (self-adjoint operators, unitary evolution,
etc). This feature makes it a compelling candidate to represent hybrid systems that are partly
quantum and partly classical. The resulting QCWE governs the dynamics of a hybrid wave-
function comprising both quantum and classical properties.

Our cases of study focussed on the hybrid dynamics of a classical oscillator coupled to a
quantum two-level system. In the fully quantum case involving a harmonic oscillator, these
test cases emerge as limit cases of the Jaynes—Cummings model [8] (large-detuning approx-
imation) or, more generally, Rabi models. See also [45] for the experimental relevance of this
type of dynamics in the context of electron—phonon coupling at low temperatures. The hybrid
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Koopman equations were implemented into a numerical code that follows the evolution of the
hybrid wave function (or rather, its amplitude and phase) in the classical phase space. The long
tail of the initial condition (1.5) requires special care in the numerical implementation.

For several Hamiltonians involving a harmonic oscillator with linear or quadratic coup-
ling, an overall good agreement was found between the QCWE model and the fully quantum
description. For example, the classical evolution coincides exactly with the oscillator dynamics
predicted by the fully quantum treatment. Also, the Bloch sphere motion and the purity evol-
ution (quantifying quantum decoherence) appear to be well reproduced by the hybrid model.
This good agreement persists in the case of a time-dependent coupling, while the case of a
time-varying classical frequency leads to very peculiar Bloch rotation dynamics in the fully
quantum description, and this feature escapes from the quantum—classical treatment.

For non-quadratic Hamiltonians, the quantum and hybrid dynamics agreed sufficiently well
for short times. For long times, the quantum purity tends to decrease in the hybrid description,
while its average levels appear unvaried in the fully quantum treatment. This means that we
observed a higher level of decoherence in the hybrid description. Also, unlike the predictions
of the Ehrenfest model, the QCWE retains the quantum backreaction force on the classical
evolution in all the considered cases.

The present results suggest that the Koopman approach represents a valuable step forward
in modeling hybrid quantum—classical dynamics. Indeed, while overcoming several outstand-
ing challenges, this approach has recently led to an upgrade model that, unlike the QCWE used
here, is successful in retaining the positivity of the classical Liouville density while treating
classical phases as unmeasurable quantities [21-23]. Current computational efforts are focus-
ing also on this more advanced approach. For now, we emphasize that the present work is a
proof-of-principle study of the QCWE mathematical model and we do not dwell upon the com-
putational complexity of our numerical implementation. On the one hand, the presence of char-
acteristic curves for the evolution of the density D = || Y ||? seems to offer some advantages over
fully quantum treatments and certain quantum—classical descriptions [35]. On the other hand,
the long tail in the initial condition (1.5) may pose new challenges, e.g. involving the statistical
sampling. Nevertheless, we believe that the QCWE and its recent nonlinear upgrade provide
a valuable platform for the identification of new convenient multiscale tools in computational
physics and chemistry. In the context of nonadiabatic molecular dynamics, for example, ‘the
parallel development of rigorous but computationally expensive methods and more approxim-
ate but computationally efficient methods’ is regarded as absolutely ‘critical’, as discussed in
[29]. Other questions also involve the level of applicability of the quantum—classical treatment
itself, which may or may not always be a good approximation depending on the fully quantum
problem under study. It appears that little is known about this particular problem beyond the
standard literature on Born—Oppenheimer molecular dynamics in the adiabatic regime.

Future work will consider more realistic models, beyond the pure-dephasing Hamiltoni-
ans studied here. It will also be interesting to consider more complex classical subsystems,
e.g. comprising many interacting classical particles.
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Appendix A. Numerical solution of the phase-space equations

The transport equations (2.3) and (2.4) for the hybrid model both take the following form:

Oif+ V(P)aqf“‘ U(‘])apf_ £(q7p) =0, (A.D)

where V(p) = 0,H and U(q) = —0,H. These are Vlasov equations, well-known in the plasma

physics community. They can be solved by projecting the phase-space density f(¢q,p,?) on a

phase-space grid f;;(f) = f(q:,p;,t) and using a split-operator method for the time stepping.
The split-operator technique amounts to solving in sequence the following equations:

Of + V(p)d,f=0, for At/2 (A2)
Of + U(q)d,f =0, for At/2 (A3)
af — L(g,p) =0, for At (A4)
Of + U(q)8,f =0, for At/2 (A.5)
Of + V(p)d,f =0, for At/2. (A.6)

Note that the above scheme is time-symmetric, and hence exact to second order in the time step
At. Each of the above equations possesses an exact solution. For instance, for equation (A.2),
one has:

Aaq,p,t+ At)2) =flg— V(p)At/2,p,1), (A7)

i.e. a shift of V(p)Ar/2 in the g direction. Similarly, for equation (A.3) one gets a shift of
U(g)At/2 in the p direction. The solution of equation (A.4) is trivial.

Although the shifts (A.7) are exact, they will not generally map one grid point onto another,
hence the need for an interpolation technique. Several methods have been used in the past,
ranging from cubic splines to spectral methods. Here, we have used a finite-volume scheme,
which has the advantage of locally conserving the transported quantity exactly [19]. For most
simulations reported in this work, we used a computational box [—25,25] x [—25,25] (position
space X momentum space), with N, = 1000 points in position space and N, = 1000 points in
momentum space. The time step was typically Ar = 0.01.

Grid-based codes generally display good accuracy properties, as they mesh the entire phase
space with the same resolution, so that even regions of low phase-space density are well
sampled. This is in contrast with trajectory-based methods which sample the phase-space dens-
ity using pointlike marker ‘particles’: in regions where the density is low the number of markers
is also low, leading to poor statistical sampling. In addition, since each of the steps (A.2)—(A.6)
has an exact solution in time, grid-based methods do not suffer from limitations due to the
Courant—Friedrichs—Lewy conditions.



J. Phys. A: Math. Theor. 56 (2023) 154002 G Manfredi et al

The main limitation of grid-based codes applied to Vlasov-like equations such as
equation (A.l) is their significant computational cost, due to the necessity of meshing the
entire phase space, which can become a hindrance for high-dimensional configurations. In the
present context, this issue is even more compelling because the initial condition (1.5) decays
algebraically instead of exponentially, as is commonly the case for initial conditions described
by a Maxwell-Boltzmann density.

Appendix B. Solution of the Schrédinger equations

If the Hamiltonian is at most quadratic in the phase space variables (g, p), then it is possible to
find a semi-analytical solution to the Schrodinger equation:

i0ppy = Hitpy (B.1)

for the spinor ¢ = (34,7 )T. For the case of quadratic coupling considered in the main text,
the Hamiltonian is:

2 2 2
Hy = SO 0 (2 2y ), ®2)

It can be shown that an exact solution to the time-dependent Schrodinger equation takes the
Gaussian form

26\
b (q) = (22) exp(~bc g 4 + s (g 4 Hies (g ds) +ics), B

provided the initial condition is also in this form. In the above expression, the auxiliary func-
tions a4 (1), b1 (1), ¢+ (t), d+ (¢) and e (¢) are real functions that depend on the time #, and A1
are normalization constants chosen so that |A, |* + [A_|* = 1.

By injecting the Gaussian wave function (B.3) into the Schrodinger equation (B.1) and
equating the coefficients of the terms in ¢°, ¢' and ¢?, one obtains that the above auxiliary
functions should obey the following set of ordinary differential equations:

. wz

ay = — <0 2 (ad - bY) [1F (1),
by = —4arbi[1Fn(1)],
¢ =~ OE0 B (G b ) 1 0(0)] F Bo(r), (B4)
dy = e[l 4[?7( 1,
ek = —d[w? (1) £ (1)),
where a dot stands for differentiation with respect to time. As initial condition at =0, we
take: b (0) = 1/2 (minimum uncertainty wave packet), d4 (0) = g and e4 (0) = 0 (Gaussian
wave packet centered at ¢o), and a4 (0) = ¢+ (0) = 0 (vanishing initial phase).

The equations (B.4) form a system of nonlinear ordinary differential equations, which can
be solved numerically with little effort, using for instance a standard fourth-order Runge—
Kutta scheme. Once the auxiliary functions are known (numerically) for all times, it is easy

to reconstruct any observable from the wave function (B.3) at time ¢. For instance, the mean
position is:

(@) =dy AP +d AP,

and the z component of the spin
2 2 2 2
0= [10sP dg= [0 dg =1~ AP
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which also shows that (o;) is a constant of the motion, as expected. For other variables, the
expressions are more convoluted, but can still be easily computed.

For Hamiltonians other than quadratic, the above procedure cannot be used and a fully
numerical solution of the Schrodinger equation (B.1) has to be envisaged. For the anharmonic
Hamiltonians considered here, we chose a standard Crank—Nicolson scheme, which is second-
order accurate in time and space.
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