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Abstract

A one-dimensional Vlasov-Poisson model is used to describe the parallel
transport in a tokamak scrape-off layer. Thanks to a recently developed
‘asymptotic-preserving’ numerical scheme, it is possible to lift numerical
constraints on the time step and grid spacing, which are no longer limited
by, respectively, the electron plasma period and Debye length. The Vlasov
approach provides a good velocity-space resolution even in regions of low
density. The model is applied to the study of parallel transport during edge-
localized modes, with particular emphasis on the particles and energy fluxes
on the divertor plates. The numerical results are compared with analytical
estimates based on a free-streaming model, with good general agreement. An
interesting feature is the observation of an early electron energy flux, due to
suprathermal electrons escaping the ions’ attraction. In contrast, the long-time
evolution is essentially quasi-neutral and dominated by the ion dynamics.

1. Introduction

One of the main challenges for future tokamak operation, such as ITER, is constituted by
the large heat load on the divertor plates. The divertor surfaces are constantly bombarded
with high-energy neutral and charged particles and may thus see their lifetime considerably
reduced [1,2]. The erosion also releases high-Z impurities, which migrate towards the bulk
plasma and, due to radiation, deteriorate its confinement [3]. In order to keep the erosion
of different wall materials within reasonable limits, it is important to estimate the plasma
characteristics in the scrape-off layer (SOL), i.e. the region outside the last closed magnetic
surface (separatrix). Several numerical and analytical studies have addressed the problem
of the transition between a hot plasma and a material surface, both for unmagnetized and
magnetized plasmas [4-7].
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Most such studies focus on the static plasma—wall transition. However, transient events—
such as edge-localized modes (ELMs)—routinely occur in the tokamak edge during H-mode
confinement [8]. ELMs are plasma relaxations, presumably of MHD origin, which cause a
sudden drop in density and temperature of the pedestal plasma, leading to a significant loss of
the stored plasma energy (5—20%) [9, 10]. Once the ELM-driven plasma pulse has crossed the
magnetic separatrix, it travels mainly parallel to the magnetic field lines and ends up hitting
the divertor plate, after a delay typically of the order of a few hundred microseconds. Such
violent events can pose a serious threat to the long-time resistance of the divertor materials.

The SOL is a complex region where a multitude of physical and chemical processes
take place, occurring on rather disparate space and time scales. A realistic description of
the SOL thus requires sophisticated modelling that takes into account, among others, plasma
turbulence, collisions and ionization, impurity transport and plasma—surface interactions. The
corresponding simulations [11, 12] are computationally very costly, so that a thorough analysis
of the various physical regimes is a demanding task.

On the other hand, a few semi-analytical models have been developed in order to capture the
essential features of parallel transport in the SOL. In particular, an elegant and exactly solvable
model can be obtained by neglecting the Coulomb force in the parallel kinetic equation [13].
Together with an initial Maxwellian distribution, this surprisingly simple model reproduces
with good accuracy some of the main features of an ELM signal, most notably its rapid rise
(~200 ws) followed by a much slower decay (up to 3 ms). The main drawback of this model is
that it fails to respect quasi-neutrality, which is a direct consequence of the Coulomb attraction
between the ions and the electrons. (Some form of ‘weak’ quasi-neutrality can be imposed
a posteriori to partially correct this shortcoming [13].)

In this paper, we adopt an intermediate stance: the fully nonlinear parallel dynamics
is solved by means of a self-consistent kinetic model (Vlasov—Poisson equations), but we
neglect collisions and effects due to plasma—surface interactions, such as secondary electron
emission and recycling. The Vlasov equation is integrated numerically using an Eulerian
method (meshing of the entire phase space), which guarantees a high resolution in velocity
space, even in regions of low plasma density such as the sheaths [14]. In addition, thanks
to a recently developed ‘asymptotic-preserving’ numerical scheme [15, 16], it is possible to
lift numerical constraints on the time step and grid spacing, which are no longer limited by,
respectively, the electron plasma period and Debye length.

The resulting numerical code is computationally manageable on a desktop computer
(2-3h of CPU for a typical run, albeit with an effective parallel connection length smaller
than its realistic value) and capable of reproducing with good accuracy the principal features
of parallel plasma transport during ELMs. The rest of this paper will be devoted to the
description of the model and the analysis of the numerical results for some experimentally
motivated scenarios.

2. The Vlasov—Poisson approach

In our approach, we assume that the charged particles (or rather, their guiding centres) travel
along the magnetic field lines, but not across them. Thus, we can adopt a one-dimensional
geometry along the parallel direction, here denoted x, with corresponding parallel velocity v, .
In the perpendicular plane, the distribution function remains Maxwellian at all times, so that
the distribution in the four-dimensional phase space (x, v) reads as

Fj(x,v,0) = fj(x, v, )Mj(vy), ey
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where M;(v1) = (1/2mv7,) exp(—v] /2v7,), vr; = /T;/m; is the thermal speed, and the
label j = i, e stands for ions and electrons, respectively. The temperature is supposed to be
the same for both species, T} = T. = TgLm-
Under these assumptions, the ion and electron evolutions are described by the one-
dimensional Vlasov equations in the parallel phase space (x, vy):
ofi 3 _ 4; 99 0f;

a T ax  m; dx du,

=S§;(x,v,,1), 2)

where g; = de (we consider singly charged ions). The collisionless approximation is
reasonable for the initial phase of high-energy transients such as ELMs, for which the thermal
mean-free-path exceeds the parallel connection length L, defined as the typical distance
between the outer midplane and the divertor outer target. In the JET tokamak, the parallel
connection length is roughly L ~ 30 m.

The source terms S; describe the plasma pulse generated by the ELMs, and can be written
as Sj(x, vy, t) = fermj(x, vx)g(t), where

2 2 2 2
xz) exp(—v?/2v3;) )

g kY, 2 vrj ’
and g(#) models the pulse temporal profile. Thus, the source is a Maxwellian distribution,
whose spatial profile is given by a Gaussian with width o ~ 0.1L; and peak density ngpm.
Finally, the electrostatic potential ¢ (x, ¢) obeys the one-dimensional Poisson equation

8%¢ e
W = —g(ni —ne). @

The above equations are solved on an interval x € [—Ly, L], where x = =L represent the
locations of the divertor plates. The plates are supposed to be perfectly absorbing surfaces
(i.e. the incoming flux is zero) and are kept at constant electric potential, ¢ (L)) = 0.
Besides being relevant to the ELM dynamics in a tokamak, the above model describes
the general scenario of an initially neutral plasma created in a confined region delimited by
two grounded plates: the plasma first undergoes an expansion into vacuum and then reaches
the plates. Here, we are mainly interested in the plasma features on the plates, particularly the
particle and energy fluxes, defined, respectively, as (we omit the species index for clarity):

I'(t) =/// v, F(£Ly, v, 1) dv, (%)

1
0@ = /// 5m(v§+vi)vxF(iL”,v,t)dv =Q,+0,. (6)

SeLmj (X, vy) = ngLm exp <—

It can be readily checked that O =T Tgpm.

We use typical parameters for type-I ELMs [13]: plasma density ngiy = 5 x 10 m ™3,
temperature Tgrm = 1.5keV, and parallel connection length L = 30 m. With these values
(and considering hydrogen ions, m; = 1836m.) the ion traversal time is 7j; = L /vri ~ 80 us
and the Debye length Ap ~ 40 um. In the simulation results, the parallel energy fluxes will
be expressed in terms of Q¢ = nepmvriTeLm, Which, for the above set of parameters, is
Qref =4.5GWm™2,

The relevant physical regime will be determined by two dimensionless parameters, namely,
the ion-to-electron mass ratio and the ratio of the Debye length to the parallel connection length,
A = Ap/L ~ 1075, The latter is particularly important as it determines the scale length over
which quasi-neutrality can be violated. This can be easily seen by rewriting Poisson’s equation

3
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in dimensionless units, normalizing space to L, the densities to ngp v, and the electric potential
to Tgrm/e:
2

ngTf = ne — n;. (7)
When L — 0, the only way to satisfy Poisson’s equation is for the plasma to be quasi-neutral
(ne — nj — 0). The electric potential does not vanish, but takes exactly the value required
to enforce the quasi-neutrality constraint. In that case, Poisson’s equation cannot be used to
determine the potential, as equation (7) becomes singular.

When 1 is finite but very small, as is the case for our problem, quasi-neutrality is satisfied
over distances much larger than the Debye length, but breaks down at finer scales (a typical
instance is the sheaths that form at the plasma—surface boundary, which have a thickness of
a few Debye lengths). Thus, an increasingly fine spatial resolution is required as A — 0. In
addition, since the plasma frequency scales as A~!, the time step must also be reduced in the
same proportions. Indeed, it has been proven that a numerical instability occurs if the adopted
time step is larger than the inverse plasma frequency [15].

For the above reasons, it would be useful to replace the standard Poisson’s equation (7)
with an equivalent equation that can provide ¢ when A — 0. This can actually be achieved
rather easily [15, 16] by using the mass and momentum conservation equations derived from the
Vlasov equations (2). The resulting ‘reformulated’ Poisson’s equation, written in appropriate
dimensionless units, reads as

32 (3% 0 0P 02
V—=—)+— i+ne) — | =——(Ri — Re), 8
12 <8x2> dx [(8" "ie) ax] PPol ) ®)
where ¢ = me/m; and R; = [ fjv2 dv (see appendix A for details on its derivation).

Equation (8) is completely equivalent to the standard Poisson equation (provided the latter
and its time derivative are satisfied at + = 0), but does not become singular in the asymptotic
regime A — 0. For this reason, the above approach has been termed ‘asymptotic-preserving’
method.

Thanks to the asymptotic-preserving scheme, it is possible to employ a grid spacing that
exceeds the Debye length and, more importantly, a time step larger than the inverse plasma
frequency. In the forthcoming simulations, we have used a grid spacing Ax = 2)p and a time
step up to At = 4wpe. Note that here Ap and w,, refer to their initial values computed with the
peak density ngpym and temperature Tgpy. These values, in the normalization of equation (7),
are equal to A and A ™', respectively.

Some details on the numerical techniques used to solve the model equations are
provided in appendix B.

3. Free-streaming model

Fundamenski et al [13] have developed a simple analytical model for parallel transport, which
nevertheless captures the main features of an ELM signal, most notably its rapid rise and slower
decay. The model completely neglects Coulomb interactions, so that the Vlasov equations are
reduced to the following free-streaming equations (in the rest of this section we omit the species
index for simplicity):

aof of
— +v,— = S, vy, 1). 9
o T Uy = S0 e ) ®
This equation possesses the exact solution
t
fx v, ) = / Sem(x — vt + vt v)g () dr'. (10)
0
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We further assume that the source is instantaneous in time, g(t) = 8(¢), where § is the Dirac
delta function, and that it is localized in space, ng v (x) = ffcoo Jem(x, v)dv = \/EGS(x).
With these hypotheses, it is possible to express analytically all relevant quantities at an arbitrary
location x.

For the particle density, we obtain

on x2
N(x, 1) E/// F(x,v, t)dv = - EILM exp <_2t2v;)’ (11)

whereas the particle flux yields: I' = (x/¢) N. Further, we have for the kinetic energy:

1 2
E(x.1) = N/// F(x, v, t)%vz dvo=8+& = %):—2 + Tom (12)
and the energy flux:
m x?
Q(xat)zQH"‘QL:Et_zr""FTELM- (13)

Using these expressions, we can define the parallel sheath transmission coefficient: y; =
0,/(T'&y), which is exactly equal to unity within this model.

The above formulae will be used as a benchmark for the numerical results presented in
the next section.

4. Simulation results

We now present the numerical results obtained by solving the full Vlasov—Poisson equations,
i.e. including the effect of the electric field. We shall use two types of temporal profiles for the
sources in the Vlasov equations (2): an instantaneous source g(¢) = §(¢), and a distributed-in-
time source with

PR
g(t) = Ct*exp (—M> , (14)

207
where the normalization constant C is chosen so that fooo g(t)dt = 1. Provided that 0; < 1y,

the above expression peaks at t = (o/2)(1 + /1 + 852/ tg) and has the advantage of vanishing
att = 0.

In all cases, except where otherwise stated, we use the following parameters: m; =
1836me, 0y = 0.1L}, and A = 1073, This value of A is much larger than the realistic value
for ELM plasmas. However, we have checked that the evolution of relevant quantities (such
as the particle and energy fluxes) are virtually unchanged when smaller values of A are taken
(an exception is an early peak in the electron energy flux, which disappears in the asymptotic
limit A — 0; see later for further details). Thus, it appears that for A = 10~ we have already
reached the asymptotic regime and the results can be confidently extrapolated to the realistic
value of A.

4.1. Instantaneous source

First of all, we tested our numerical code by comparing the analytical results from the free-
streaming model with the numerical solution of the Vlasov equation without electric field (9).
As expected, the analytical and numerical fluxes (not shown here) were virtually identical.
Next, we turn to the full solution of the Vlasov—Poisson equations including the electric
field. Figure 1 shows the evolution of the electron and ion particles and energy fluxes on the
divertor plates (since this case is symmetric there is no difference between the inner and the
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Figure 1. Particles (left panel) and energy (right panel) fluxes as a function of time normalized to
the ion transit time. Solid lines refer to the ions, dashed lines to the electrons. The dotted lines
represent the ion fluxes obtained from the free-streaming model. Top panels: A = 1073; bottom
panels: A = 2.5 x 1074,

outer plates), for A = 1073 and A = 2.5 x 10~*. The standard pattern (sharp rise, followed by
a slower decay) is recovered in the simulations.

Very little difference in the fluxes is observed between the A = 103 andthe A = 2.5x 107*
cases. Therefore, it seems that the asymptotic regime (A — 0) has already been reached, so
that the results for the fluxes should remain unchanged for a realistic value of A, which is of
the order 1079,

The ion and electron particles fluxes are virtually identical, which is a consequence of
quasi-neutrality. In contrast, the electron energy flux is appreciably smaller than that of
the ions. This is in line with measurements of the heat load on a tokamak divertor plates,
where the electron load is observed to be roughly one third of the ion load [17, 18]. The free-
streaming model (dotted line in figure 1) is fairly accurate for the ion fluxes, especially over long
times.

The above dynamics occurs on the timescale of the ionic transit time 7;, as is expected
from quasi-neutrality. However, an early burst of electrons is observed on the electronic transit
time scale, as can be seen from figure 2. This burst is due to a bunch of electrons escaping
the attraction of the ions and reaching the plates before quasi-neutrality can be established.
Indeed, the height of this peak decreases with decreasing A, i.e. when quasi-neutrality is
stronger. From the free-streaming result (equation (13)), the electron energy flux should peak at
Ipeak = 0.57c. The observed peak is at roughly one half of this value, signalling that the peak is
caused by suprathermal electrons travelling with an average velocity equal to twice the thermal
speed.

It would be interesting to deduce a scaling law for the deposited electron energy as a
function of A. This can be done by integrating the electron fluxes in figure 2 between t = 0
and, say, t = 1. The electron kinetic energy deposited on the divertor plate (x = L) is
then defined as Eeec = for”e Q.(t) dr and is shown in figure 3 on a log-log plot. It is clear

6
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Figure 2. Electron energy flux on the divertor plate for short times, for three values of the normalized
Debye length: & = 1073 (solid line), A = 5 x 10~* (dashed line), and A = 2.5 x 10~ (dotted
line). Note that here time is normalized to the electron transit time e = /me/m;T|;.

4
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10° 7%

10 7L ‘ ‘
-5 104

A

Figure 3. Diamonds: electron kinetic energy deposited on the right plate (x = L)) as a function
of L. The straight solid ine represents the curve Eclec/ TELM = 1512,

that E.. depends quadratically on A. In the present case, we obtain a scaling law of the
type: Eeee/ Tem & 1542, which allows us to extrapolate the result to realistic values of A.

The mechanism responsible for the above effect is best understood by inspecting the
parallel phase space (x, v,), displayed in figure 4, where we show the contour plots of the
electron distribution function at various times. The electron velocity distribution on the right
boundary is shown in figure 5 at the same instants. Very early, a small fraction (about 0.2%)
of energetic electrons is ejected from the bulk plasma and hits the divertor plate. This leaves
behind a net positive charge that traps the remaining electrons in a potential well, preventing
them reaching the divertor plates. The potential well expands slowly following the motion of
the ions (on a timescale ~7;) and finally reaches the boundary, thus releasing the ions’ and the
(remaining) electrons’ energy onto the divertor plate. On the timescale of the ion dynamics,
the velocity distributions on the wall become approximately half-Maxwellian for the electrons
and Maxwellian for the ions [19], as can be seen from figure 6.

The densities and temperatures of the two species of particles on the plate are depicted
in figure 7. The temperatures are particularly interesting: whereas the electron temperature
converges to a constant (about one thousandth of the initial value Tgy ), the ion temperature
decreases with time as ¢ ~2. This type of decrease is readily obtained from the free-streaming
model and was anticipated in earlier studies [20]. (One should keep in mind that here we
are talking about the parallel temperatures; the perpendicular temperatures remain constant
for all times, since no coupling between the parallel and perpendicular motion is allowed in
our model).
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Figure 4. Contour plots of the electron distribution function in the parallel phase space at different
times, measured in units of the electron transit time Tje = +/m./m;7)i. Only contour levels for
which f. < 10~ are shown.

The parallel sheath transmission coefficients are shown in figure 8. Whereas yj; quickly
reaches unity, as expected from the free-streaming model, y. is twice as large. This is due to
the fact that the electronic distribution on the divertor plate is a half-Maxwellian (see figure 6),
so that the parallel kinetic energy & is twice as small compared with a full Maxwellian.

Finally, we show the time evolution of some integrated quantities, particularly the kinetic
and potential energies (figure 9). As long as the main plasma population does not reach the
plates, it expands freely into a vacuum. During this phase, lasting up to ~0.27;, some kinetic
energy is transferred from the electrons to the ions.

This transfer occurs because of the fast electrons that move rapidly forward leaving the
ions behind, as was shown in figures 4 and 5. This creates a charge imbalance—and therefore
an electric field—at the plasma—vacuum front, which is revealed by the peak of the potential
energy in figure 9. The electric field slows down the electrons and accelerates the ions, thus
effectively transferring some kinetic energy from the former to the latter. Eventually, the ions
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Figure 5. Electron parallel velocity distribution at x = L at different times, measured in units of
the electron transit time tje = /me/m;T|i.
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Figure 6. Electron (left panel) and ion (right panel) velocity distribution at x = L at the end of
the run (t = 3.737);).

catch up with the electrons, the plasma becomes locally neutral, and the potential energy goes
to zero. Over longer times (¢ > 0.27);), the charged particles start being lost on the divertor
plates and consequently both kinetic energies decrease.

4.2. Time-distributed source

In actual ELM events, the plasma pulse is not instantaneous, but has a finite duration, which
is of the order of a few ion transit times. In order to simulate this type of scenario, we use a
pulse temporal profile such as that of equation (14), with oy = 0.77); and #y = 1.47); (the plot
of g(), given by the dotted line in figure 10, shows that the pulse peaks at about 1.97;).

The evolution of the particle and energy fluxes is shown in figure 10. The fluxes reach a
maximum at roughly one ion transit time after the source peak. The ion energy flux is about
30% larger than that of the electrons, whereas it was almost four times larger in the case of an
instantaneous source (figure 1). Itis useful to compare these results with a free-streaming case,
for which the electric field was neglected (figure 11). In the free-streaming case, the electron
fluxes peak earlier, basically in phase with the source (at closer inspection, the electron fluxes
peak around 2-3 electron transit times after the peak of the source). Also, a larger fraction of
the energy flux is carried by the electrons, at the expense of the ions’ energy flux. Clearly, the
electric field has the effect of transferring some energy from the electrons to the ions.

By inspecting the electron energy flux for short times (figure 12), we also observe a small
peak occurring on the electronic timescale, as we had found for the case of an instantaneous

9
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Figure 7. Time evolution of densities (left panel) and parallel temperatures (right panel) at x = L.
The temperatures are normalized to their initial value 7Tgp m. Solid line: ions; dashed line: electrons.
The dotted line in the left panel represents the theoretical prediction of equation (11) for the ions.
The inset in the right panel shows the ion temperature multiplied by 2.
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Figure 8. Parallel sheath transmission coefficients for the electrons (diamonds) and the ions (stars).
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Figure 9. Time evolution of the total ion kinetic energy (dotted line), electron kinetic energy
(dashed line), potential energy (x 1000) (thin solid line), and total energy (thick solid line). All
quantities are normalized to the initial total energy.

source. Now the peak appears later, since the plasma needs to build up progressively, but still
occurs much earlier than the peak of the ELM pulse (see inset of figure 12).

The velocity profiles on the divertor plate (figure 13) are similar to those obtained in the
case of an instantaneous source, i.e. half-Maxwellian for the electrons and roughly Maxwellian
for the ions.

10
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Figure 10. Particles (left panel) and energy (right panel) fluxes as a function of time, for a case
with time-distributed source. Solid lines refer to the ions, dashed lines to the electrons. The dotted
lines represent the source temporal profile g(¢), in arbitrary units.
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Figure 11. Same as figure 10 for free-streaming particles (no electric field).
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Figure 12. Electron energy flux on the divertor plate for short times (in units of the electron transit
time). The inset shows the temporal profile of the source g(#).

Finally, the parallel sheath transmission coefficients are shown in figure 14, revealing some

interesting behaviour. The ion coefficient remains close to unity for the entire duration of the
run, signalling that the Vlasov—Poisson result stays close to the free-streaming solution. The
electronic coefficient displays a long transient, which corresponds to the time-window when
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Figure 13. Electron (left panel) and ion (right panel) velocity distribution at x = L at the end of
the run (¢ = 9.347);), for a case with time-distributed source.
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Figure 14. Parallel sheath transmission coefficients for the ions (solid line) and the electrons (dashed
line), for a case with time-distributed source. The dotted line represents the source temporal profile
g(t), in arbitrary units.

the source is active, then quickly relaxes to its asymptotic value (y;. = 2) after the source is
extinguished.

5. Conclusion

Parallel transport plays a major role in the dynamics of ELM events in a tokamak. Even
relatively simple models that ignore Coulomb interactions [13] manage to reproduce with
fair accuracy the main features of an ELM event, particularly the energy load on the divertor
plates.

Stimulated by this observation, we constructed a minimal kinetic model of parallel
transport during ELMs, based on the Vlasov—Poisson equations in the direction parallel to
the magnetic field (in the perpendicular plane, the plasma is supposed to be Maxwellian). The
results of numerical simulations performed with this model were compared systematically to
the free-streaming solutions [13].

Several interesting conclusions can be drawn from our study:

(i) Even for moderate connection lengths (we used L = 1000Ap throughout this work) the
particles and energy fluxes are correctly described, i.e. by decreasing the ratio A = Ap/L;
the fluxes are virtually unchanged;
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(i) Whereas the ion fluxes are relatively well reproduced by the free-streaming model, the
electron fluxes are not. This is because the free-streaming model does not properly include
quasi-neutrality;

(iii) On the electron transit time scale, an early burst can be observed on the divertor plates,
which corresponds to suprathermal electrons escaping the ions’ attraction due to their
large kinetic energy. The remaining electrons are trapped in the potential well created by
the ions (which now outnumber the electrons) and evolve in unison with them. On the
ion timescale, the plasma is everywhere neutral, except for a positive net charge in front
of the divertor plates (sheaths);

(iv) The long-time velocity distributions on the plates are Maxwellian for the ions and half-
Maxwellian for the electrons;

(v) The parallel sheath transmission coefficients tend rapidly to 1 for the ions and 2 for the
electrons;

(vi) Mostof the above results hold equally for an ELM pulse with arealistic duration tgrm ~ Tjji-

The present model could be further improved in several ways. First, a pre-ELM
environment (low temperatures and densities) should be computed self-consistently and used as
a starting background prior to the ELM pulse. Second, even though collisions are not dominant
due to the high temperature of the ELM pulse, they may play a role over long times, so that
a suitable collision term should be added to the Vlasov equations. Finally, the perpendicular
dynamics should be treated with more sophistication, by taking into account that the magnetic
field decreases with increasing distance from the tokamak axis. This introduces a ‘mirror’ force
that acts differently on ions with different magnetic moments (this effect should be negligible
for the electrons) and couples the parallel and perpendicular dynamics. A sufficiently accurate
description could be achieved by assuming that the magnetic moment is an exact invariant and
then using an approach such as that of [21]. The above issues are currently under investigation.
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Appendix A. Reformulated Poisson’s equation

As mentioned in section 2, in order to compute the potential ¢ leading to a quasi-neutral
regime (the limit A — 0) we need a reformulation of the Poisson’s equation that does not
become singular in this limit. Such an equation was already derived in the case of the Euler—
Poisson [15] and the Vlasov—Poisson systems [16, 22]. For the sake of completeness, we show
how the reformulated Vlasov—Poisson model is obtained in our case.

We start with the following scaled Vlasov—Poisson equations

o, o 09 0

N = Si(x, vy, t A.l
or TV xSy gy, T i Ue) A1)
0 a d¢p 9
e + 0, e | 39 O _ Se(X, vy, 1) (A2)
ot 0x  dx OJvy
929
228 = i— e, (A3)
which are obtained by normalizing equations (2)—(4) as follows:
s X 5= = T U, ;= " b= ¢ (A.4)
L, T, Ly NELM T./e
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(the overcarets, which will be omitted in the following, stand for the dimensionless variables).
By taking the first two moments of the difference between equation (A.1) and equation (A.2),
we obtain

0;(nj — ne) + 0, (Ji — Je) =0, (A.5)

0/ (Ji — Je) + 0x(Ri — Re) + (e ni+ne) 0,9 =0, (A.6)
where J; = [ f;(x, vy, 1) vy dvy and R; = [ f;(x, vy, 1) v2 dv,. Now we subtract the spatial
derivative of equation (A.6) from the time derivative of equation (A.5):

2 0 0P 92
m("i —ne) — I [(5ni +”e)a:| =52

Finally, using Poisson’s equation we express 3,2, (n; — ne) in terms of ¢ and thus recover the
reformulated Poisson equation (8).

It can further be shown [16,22] that the reformulated Poisson equation (8) (coupled to
the Vlasov equation) is rigorously equivalent to the standard Poisson equation (7) provided
that ¢ satisfy the following conditions at the initial time: (A*0% ¢ + ni — ne);—o = 0 and
(3 (W02, ¢ +ni — ne))i=o = 0.

(Ri — Ro). (A7)

Appendix B. Numerical methods

The Vlasov equation (2) is solved using an Eulerian method based on a uniform meshing of
the parallel phase space (x, v,). For the time-stepping, a second-order splitting scheme is
used [14], which solves alternatively the advection in real space, 9, f + v, f = 0, and the
advection in velocity space, d; f + (¢ E/m)d,_f = 0. Each advection step is performed using
a third-order positive flux-conservative (PFC) method, with a slope corrector that prevents the
distribution function from becoming negative [23,24]. A typical simulation requires 1000
points both in real space and in velocity space.

As to the reformulated Poisson’s equation, it was shown that an explicit time-stepping
scheme is only stable if At < wp_el ~ X [15]. In order to lift this numerical constraint, the
reformulated Poisson equation must be solved through an implicit scheme. More precisely,
we first discretize equation (8) as follows:

0 (2 0™ = 20,97 + 0,9
ox At?

2

9
+ (en! +n™) 3, ¢™" | = — (R" — R™).
dax?

Then, using Poisson’s equation, we replace foqb’" and 8§X¢m’1 by density terms at the
corresponding time steps:

0 )‘2 m m m+1
— a A_zZ +ény +n, 8X¢

82 1 m— m—
= o5 (R = R+ 52" —n) — (] b=y,

Next, we make use of a discrete form of equation (A.5) to replace (n!" —nl') — (n}" -1 ng”‘l)
with —Af (0, J™ — 9, J"). We thus obtain the discrete (in the time variable) version of the
reformulated Poisson’s equation

9
- [(A2 + At (en +n™)) 9,¢™]
X

82
= A S5 (R = RO+ (" =nd) = A (0" = 0,01, (B.1)
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which allows us to compute ¢™*! from known quantities at time " [16]. A finite difference
method is then used to approximate the spatial derivatives in the equation.

Although the above time-stepping strategy is only first order in time, the method could
be easily extended to second-order accuracy. Some work along this direction was presented
in [15].

Finally, we note that (i) when Ar — O for fixed X, equation (B.1) reduces to a discrete
form of the standard Poisson’s equation; (ii) when A — 0O for fixed At, the scheme leads to
a consistent (non-singular) discretization of the A — 0 limit of equation (8). Indeed, the last
two terms in equation (B.1) are of order O (A?) in virtue of Poisson’s equation, and therefore
vanish when A — 0.
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