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Abstract. Several analogies between simple physical systems
are presented. A quantum mechanical argument is used to
give direct proof of the equivalence between the one-
dimensional & body problem (with hard particles) and

the problem of a single particle bouncing in 2 billiard
delimited by an M-dimensional simplex. Then, for a system
made of two soft particles, we prove the equivalence with
an optical reflection/refraction problem.

1. Introduction

The problem of N hard particles of different masses,
moving on a line and interacting through elastic col-
lisions has received much attention during the last 20
years. In fact, this simple system seems very promis-
ing to provide new insights into the foundation of
statistical mechanics.

Furthermore, computer experiments can be carried
out in a straightforward and very precise way, since
the equation of motion can be integrated exactly,
obviously up to the machine precision for floating
real numbers. Many works have focused on the ergo-
dic properties of such a system: some of the most
recent numerical results (Rouet et @/ 1993) indicate
that the system is always ergodic for N > 2 (except
for the trivial case of all equal masses). When
N =2, the system is probably also ergodic, except
for a countable set of mass ratios; also, it has been
shown, for N > 2, that some particular initial condi-
tions give rise to periodic orbits for any mass ratio
(Rabouw and Ruijgrok 1981).

On the other hand, the literature on c¢lassical bil-
liards is extremely large, and we shall not try the
impossible task of making an even partial biblio-
graphy on this subject. By definition, a billiard is
a system composed of one point particle moving
inside an A-dimensional volume, and bouncing

Résumé. On présente ici quelques analogies reliant des
systémes physiques simples. A 'aige d'un argument
quantique, on montre I"%équivalence entre le probléme de &
masses impénétrables 4 une dimension, et celui d’une seuie
particule dans un billiard & N dimensions en forme de
simplex. Pour le probléme de deux corps pénétrables, on
montre Péquivalence avec un probléme d’optique de
réflection et réfraction.

elastically against its boundary. Depending on the
shape of the boundary, the orbits can be periodic
or chaotic.

The fundamental point, which is common to both
the one-dimensional A-body and the biiliard system,
is that velocity space and configuration space are
totally decoupled and can each be handled sepa-
rately. In fact, the velocities of two particles after
they have collided depend only on their velocities
before the collision, and not on their positions. This
remarkable property is due to the fact that, in both
systems, there is no potential, but only kinetic
energy. The interactions between the particles (or
between one particle and -the boundary) are
expressed through a geometric law (perfect reflec-
tion) rather than a physical one (which would imply
the existence of a potential, and thus of a potential
energy).

In fact, the analogy between these two systems can
be brought, further, as it has been shown in a number
of papers. The aim of the article is to present such a
parallel in a far simpler way, as well as to add a few
original contributions. In section 2 we state the fun-
damental property that links the N-body and the bil-
liard systems, and prove it by means of quantum
mechanical arguments. Incidentally, this will extend
the demonstration to the quantum domain. In sec-
tion 3, we present another analogy, now involving
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particles with soft cores (i.e., penetrable particles). In
section 4 we conclude.

2. Billlards and N-body problems

Hobson (1975) proved the following very remarkable
theorem: the problem of two hard particles of masses
m, and m; bouncing elastically in a one-dimensional
box delimited by two hard walls is strictly equivalent
to that of a particle moving inside a right triangle
having an interior angle of tan™' (m,/m;)'/? (‘trian-
gular billiard’). This result was generalized by Foidl
and Kasperkovitz (1988) to the N-body problem,
which was proved to be equivalent to a billiard in a
N-dimensional simplex, defined as follows:

{(x1,x3,...x5) €RY: 0 < x,/ /iy < X2/ < ..
< xy/v/my < 1}

However, the demonstration given in Foidl and Kas-
perkovitz (1988), is based on quite complicated alge-
braic arguments. In this paper, we shall show that, by
considering the same problem from the viewpoint of
quantum mechanics, the above proof turns out to be
straightforward, and easily generalized to any num-
ber of particles. Then, nothing prevents us from
applying Bohr’s correspondence principle to argue
that the demonstration must also be valid in the clas-
sical limit {i.e. when /i — 0).

In order to fix the ideas, let us consider ¥ = 2 par-
ticles of masses m, and m, in a one-dimensional box
of unit length. The walls are situated at ¢ =0 and
q = 1. The particles interact elastically between them-
selves and with the walls. Let us call ¢, and ¢, respec-
tively the position of the first and second particle.
Since the particles cannot cross each other, the only
accessible zone of the configuration space is the sur-
face (in fact, a right isosceles triangle) such that:
0< g £ g3 <1 (see figure 1).

In quantum mechanics such a system is described
by a wavefunction %{q;,¢,,t), which obeys the

Figure 1. The configuration space for the two-body
problem is the shaded right isosceles triangle:
0<g<g; <1

1
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Schrédinger equation:
L O oy K&y
= e—— ———+V
L 61‘ 2m1 6q‘% 2m2 aq% + (ql1QZ)¢

where V(qy,42) = Vo[6(g) — 42) + 6(q1) + 8(g2 — 1),
¥y — oo. In this case, the potential being infinite, if
the wavefunction is initially zero in the region out-
side the isosceles triangle of figure 1, it will remain
equal to zero for any time, and the problem reduces
to the free-particle Schrodinger equation:

W__KIY_KPy
ot 2m, dqt  2my Og3
endowed with the following boundary conditions:
W =0,g2,0) =g 2 =1,0) =¥(q1 = g2,1) =0

meaning that the wavefunction is zero outside the tri-
angle.
We now perform the following rescaling:

x = /mq y=y/maq; (2)

which transforms the Schrédinger equation (1) into
the following one:

ihai)=—fi—2-(ﬁ @)s—h—?Aﬂ/} 3)

ih (1)

ot 2 lax? " 9y? 2

A, being the Laplacian in two dimensions.

In the new variables, ¥(x, y, f) must be zero on the
boundary of the right triangle defined by the relation
0 < x//m <y//m; < |(figure 2). Now, the Schro-
dinger equation (3), with the above boundary condi-
tion, describes the motion of a particle of unit mass in
the triangular billiard shown in figure 2. As is proven
in Hobson (1975), the internal angle is given by
a = tan™" (my/m;) 2.

The demonstration can be trivially generalized to
the N-body case by defining

Xy = Gy . XN = PNy

and obtaining the N-dimensional Laplacian in the
Schrédinger equation. The equivalent billiard will

Figure 2. The equivalent billiard is the shaded right
triangle, the sides of which are proportional to the
square root of the masses.
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therefore be given by the simplex

05\/_<\;‘2_ jTN—NSI‘ (4)

This is the result found classically by Foidl and
Kasperkowitz (1988) through much longer calcula-
tions. Qur approach proves that it keeps its validity
in the quantum mechanical domain. Furthermore,
the demonstration only implying simple geometrical
arguments, it must remain valid when the classical
limit is taken.

As a matter of fact, once the result has been estab-
lished, one can go back to classical physics and try to
recover a similar proof.

The Hamiltonian of the two-body problem is

Pl Pz

= ﬁ'ﬁ'm + Wlb(q1) + (g1 — 2)

+8(g2 — 1] (%)

Hig,q2,p1.p2) =

with Vp — o,
Let us perform the following (canonical) transfor-
mation:

x = q/m ¥ =qnm Py =pifvmy
Py =p2f (6)

which gives the new Hamiltonian;

K5 en2y) =24 24 Vl6(3) + B ] )
+8(y - )] ™

where we have used the property of the delta function
8(x/a) = ab(x), and then absorbed the constant z in
the factor ¥}, which tends to infinity.

The Hamiltonian (7) can be regarded as describing
the motion of a unit mass particle in the triangle
delimited by the straight lines;

x=0 y=xvm/m; y=m
which is plotted in figure 2. Since ¥, — o0, a particle
with initial coordinates (xp, yp) inside the triangle will
remain inside for all times, and bounce elastically
against the walls.

As to the N-body problem, we foilow the same
procedure to get the equations of the N+ 1 straight
lines that delimit the simplex (4).

In summary, it becomes now clearer why the proof
is more direct in the frame of quantum mechanics.
The correct rescaling for the momentum is the one
that eliminates the masses from the kinetic part of
the Hamiltonian; then, the rescaling of the position
variable is obtained by requiring the transformation
to be canonical.

In quantum mechanics the canonical relation
between position and momentum is automatically
satisfied by the formalism; also, the potential part
of the Hamiltonian can be intuitively treated (as is
usually donte) by imposing the correct boundary con-

ditions for the Schrodinger equation. Then, the proof
follows as an immediate consequence.

3. Another analogy: soft-core particles and
diffraction

So far, we have considered the case of hard-core par-
ticles, for which ¥y — oo, and thus the particles can-
not cross each other. Indeed, this property was
fundamental to prove our resuit: it is the relation of
order among the particles that defines the boundary
of the N-dimensional simplex.

The next step, which we undertake in this section,
would naturally consist in considering a systern of
soft-core particles, for which ¥ < o0, so that the par-
ticles can cross each other if their relative kinetic
energy is sufficiently high,

Let us be more precise, and analyse what happens
when two particles collide. First of all, we remark
that two particles can interact only when they are
at the same point, since the interaction potential is
still of the form V(g,,4;) = Voé(gq, — 72) (zero-range
interaction). Now, the kinetic energy of the couple
can be decomposed into the energy of its centre of
mass (hereafter called Kg) plus the energy of the par-
ticles in the reference of their centre of mass (referred
to as Kg), with of course

ET =KG +KR'

Thus, when two particles find themselves at the

same point:
(a) if Kg < Vp, they do not cross each other, and
modify their velocities just as in the hard-core case:
(b) if Ky > ¥y, they cross each other without any
change in velocity.

Remember that, for the hard-core particles, the
accessible region of the configuration space was the
simplex {0<x;<x <...<xy<I}. Now, the
relation of order is no more satisfied, and therefore
all the N-dimensional cube of unit side is accessible.
In fact, when two particles cross each other, the
representative point of the system in configuration
space jumps from ome simplex to another, There
are N! ways of rearranging our particles, so that
there must exist N! different simplexes in the accessi-
ble configuration space. It is indeed a known result
that the N-dimensional unit cube can be covered
with N1 simplexes.

We now come at the main result of this section,
which may be stated as follows: the above system of
N = 2 soft particles in one dimension is equivalent to
the propagation of a beam of light in a rectangle with
perfectly reflecting sides, and in which one diagonal is
constituted of a thin slide of some refracting material
{(with refractive index n < 1), while the rest is vacuum
{n = 1). Just as in the hard—core case, the sides of the
rectangle are in the same ratio as the square root of
the masses of the particles; in addition, the refractive
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index n is a function of the potential barrier 1, which
we will determine later on.

Unfortunately, such an amusing result is no more
valid for N >3, and the reason why will become
apparent from the forthcoming discussion.

Now, in order to prove the previous property, we
need to establish the following theorem, which
cxtends the analogy between the billiard and the
two-body problem, and is perhaps interesting in
itself.

We decompose the total momentum of the two-
body system in the sum of the momentum of the
centre of mass, pg, and the relative momentum

PIR = —Par = Pr. With:

R py — m
Pc=P1+P2 pr= -&"M—lh (8)
M =nm +my,
The total energy too can be split into two terms:
Mp
=K ==
By =Kg+ Kp = 2M+2m1m2 (9)
with, in terms of p; and po:
_ (mapy — mpy)’ _ (& +p2)°
ke = 2Mmm, K=" — (0

Using the rescaling (6), we can express the two last
quantities terms of the components of the momen-
tum of' the equivalent billiard system, p, and p,:

(\/"_sz Vmp,)?
=T,wn71px+@y)2- (11)

Do these quantities have some particular meaning for
the billiard system? They do: in fact they represent
the components of the total energy respectively nor-
mal and parallel to the hypotenuse of the triangle
in figure 2.

In order to prove this, we rotate axes by an angle
a. Then:

(pn):(co.sa siua)(px). (12)
Py —sina cosa/\ py
Recalling _ that tane = /ma/r, and  thus
cosa = +/m /M, we get:
A_ 1 2
K === _(szpx - lepy)
2 2M (13)

Pu 1
Ky=~ m(\/ﬂTtpx'i'fm_zpy)z-

Comparison between equations (11} and (13), shows
that:

K, =K K =Ks. (14)
We are now getting closer to the previously

announced optical analogy.
The angle of incidence 3 with respect to the normal

209
direction is defined as follows
tang = 2L — (Kn)'/2 (K )1/2
P1 K, Kn
LA L)
= + pa). 15
mzm—mlpz(pl p2) (15)

There will exist a critical angle 3. that discriminates
whether the particles do or do not cross each other.
Such a critical angle is thus determined by the rela-
tion Kp = F;, which can be written as:

K _Er
1+ K A
or
12
tan g, = (ﬁ - l) . (18}
14

For 8> 3. the particles are reflected, while for
f < . they cross each other. We also see that all
the physics of the collision is contained in the param-
eter ..

Now, let us define another physical system: a light
beam travels in a rectangular domain, with perfectly
reflecting sides; one diagonal of the rectangle is con-
stituted of a thin slide of refracting material index
n < 1; the rest of the rectangle is vacuum {n = 1).
What happens when the beam of light approaches
the refracting slide? Figure 3 shows a zoom of such
an event: if the angle of incidence 8 is larger than
B, we have total reflection; if 8< 3, we have a
double refraction after which the beam continues its
propagation on a line parallel to the line of inci-
dence. If the thickness 4 of the slide is small, the
deflection will also be small (Born and Wolf 1980).

As a matter of fact, the optical probiem is more
complicated, inasmuch as the beam is always partly
reflected and partly transmitted. It is at this point
that the analogy ceases to be rigorous, and in the fol-
lowing we shall suppose that the beam is aiways
either reflected or transmitted, according to its angle
of incidence. This just means that the physics of wave
propagation is more complex than the simple
mechanical model, and that some phenomena have
to be neglected: anyway, the analogy still keeps some
heuristic value.

To conclude this section, we calculate the refractive

Figure 3. The beam is either reflected or transmitted
depending on its angle of incidence. We have reflection
for 8 > 3. and transmission jor 8 < &..
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index associated to the two-body problem. From the
refraction law, it follows that the relative refractive
index is linked to the critical angle by the following
relation:

(17)

Taking into account equation (16), a little algebra
yields:

n = sin ;.

(18)

For ¥y =0, 8. = «/2 and the particles always cross
each other (no interaction); for ¥, = Er, 8. =0 and
we recover the hard-core case.

Unluckily, as we had anticipated, this analogy does
not work for the three-body problem. The corre-
sponding optical system would be a cube, made of
six simplexes, which makes a total number of six
interfaces inside the cube. The problem is that we
cannot properly define a refractive index for each
interface. In fact, from equation (18), the refractive
index depends on the total energy of a couple of-par-
ticles, which, when N > 2, is no longer conserved.
Thus, the refractive index of an interface would
depend on the past history of the whole system, a
situation which is hardly found in common optical
materials.

4, Conclusion

The principal aim of this paper is to summarize sev-
eral analogies between a few, very simple physical
systems. In one case, a remarkable result was that
the analogy can be demonstrated in a far more
straightforward way if the problem is posed in the
frame of quantum, rather than classical, mechanics.

These considerations may have some pedagogical

value in showing that the difficulty of a problem
closely depends on the mathematical apparatus that
one displays in order to solve it. On the other
hand, different physical pictures of the same math-
ematical problem can provide new insights and often
help intuition. Since the number of physical systems
about which we have an immediate intuition is very
limited (and most are macroscopic, simple systems),
the importance of such analogies becomes evident
as soon as we want to investigate more exotic physi-
cal situations. Furthermore, it seems to us that the
present day physics education (at least in Europe) is
based in an exaggerated way on the manipulation
of formulas, and much less on their interpretation.
Developing such analogies can be, in our view, a
way of acquiring familiarity “with the concepts,
together with a certain detachment from the math-
ematical tools. s

A second point that may interest the physics teacher
is that such systems as the N-body, one-dimensional
system are both conceptually simple and easy to simu-
late numerically. Such very delicate concepts as ergo-
dicity, reversibility, invariants, can be visnalized in
an extremely explicit way through a five-minutes
numerical simulation. Finally, we point out that both
the hard and soft-core two-body problems can in prin-
ciple be realized experimentally, by means of a laser
beam travelling in a reflecting/refracting box,
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