Reviews of Modern Plasma Physics (2021) 5:7
https://doi.org/10.1007/s41614-021-00056-y

REVIEW PAPER

®

Check for
updates

Fluid descriptions of quantum plasmas

Giovanni Manfredi' ® - Paul-Antoine Hervieux' - Jérome Hurst'

Received: 30 July 2021 / Accepted: 8 October 2021
© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2021

Abstract

Quantum fluid (or hydrodynamic) models provide an attractive alternative for the
modeling and simulation of the electron dynamics in nano-scale objects. Compared
to more standard approaches, such as density functional theory or phase-space meth-
ods based on Wigner functions, fluid models require the solution of a small num-
ber of equations in ordinary space, implying a lesser computational cost. They are,
therefore, well suited to study systems composed of a very large number of parti-
cles, such as large metallic nano-objects. They can be generalized to include the spin
degrees of freedom, as well as semirelativistic effects such as the spin-orbit cou-
pling. Here, we review the basic properties, advantages and limitations of quantum
fluid models, and provide some examples of their applications.

Keywords Solid-state plasmas - Quantum hydrodynamics - Vlasov and Wigner
equations - Nanoplasmonics

1 Introduction: Fluid models for classical and quantum plasmas

Recent decades have witnessed a remarkable surge of interest for the electronic
properties of nano-scale objects, particularly when excited by electromagnetic radi-
ation (Voisin et al. 2000; Bigot et al. 2000; Manfredi et al. 2018; Maniyara et al.
2019). This is a very vast domain of research that encompasses all sorts of nano-
objects (metallic films and nanoparticles, carbon nanotubes, semiconductor quantum
dots ...), new materials like graphene, as well as meta-materials whose structure can
be engineered so as to display some particular electromagnetic properties. Potential
applications are impressive, and range from high-performance computing (efficient
storage and transfer of information), to nanoplasmonics (Stockman 2011; Moreau
et al. 2012) (optical filters, waveguides), and even to the medical sciences (biomedi-
cal tests and sensors) (Hainfeld et al. 2004; Tatsuro et al. 2006).
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The electronic response of such systems (often in the out-of-equilibrium and non-
linear regimes) can be assimilated to that of a one-component quantum plasma and
may be treated at different levels of approximations. For systems containing many
interacting electrons, condensed-matter physicists and quantum chemists have devel-
oped various theoretical strategies, such as the time-dependent density functional
theory (TDDFT) and time-dependent Hartree—Fock (TDHF) methods. TDDFT and
TDHEF are wavefunction-based methods, but they can be reformulated in the phase-
space language familiar to plasma physicists by making use of Wigner functions.
In a recent work (Manfredi et al. 2019), we reviewed the use of phase-space meth-
ods for applications to condensed matter and nanophysics. The first chapters of that
work also discuss some general properties of solid-state plasmas.

Both approaches (wavefunction and phase space) are rather costly in terms of run-
time and memory storage, especially for systems containing thousands of electrons.
A possible, less costly alternative is provided by fluid models, which can be derived
from the corresponding kinetic equations (Wigner for a fully quantum approach, or
Vlasov for semiclassical modeling) by taking velocity moments of the distribution
function (Manfredi and Haas 2001). Although some information is inevitably lost in
this procedure, one can expect the fluid approach to be accurate enough to provide
key insights on the underlying physical mechanisms, while at the same time, remain-
ing affordable in terms of computational cost. Like their classical counterparts, the
validity of quantum fluid models is restricted to long wave lengths compared to the
interparticle distance (Khan and Bonitz 2014). However, they can deal with nonlin-
ear effects (large excitations), quantum effects (tunnelling), Coulomb exchange (an
effect related to the Pauli exclusion principle), and electron—electron correlations.

In the fluid approach, the electron dynamics is described by a set of hydrody-
namic equations (continuity, momentum balance, energy balance) that include quan-
tum effects via the so-called Bohm potential. A considerable gain in computing time
can be expected in comparison to Wigner or TDDFT simulations: indeed, TDDFT
methods must solve N > 1 Schrodinger-like equations, while the phase space
approach doubles the number of independent variables (positions and velocities).
Hydrodynamic models were used in the past in condensed-matter physics, particu-
larly for semiconductors (Miiller et al. 2004) and, to a lesser extent, metal clusters
(Domps et al. 1998; Banerjee and Harbola 2000). More recently, the quantum fluid
description has been extended to include another important property of the elec-
tron, namely its spin (Brodin and Marklund 2007). The resulting fluid equations are
much more involved that their spinless counterparts, but may find useful applica-
tions, in condensed-matter physics, to the emerging field of spintronics (Hirohata
et al. 2020), and in plasma physics to the study of highly polarized electron beams
(Wu et al. 2019, 2020). Quantum fluid theory finds further applications to the dense
plasmas produced in the interaction of solid targets with intense laser beams (Kremp
et al. 2001), to warm dense matter experiments (Dornheim et al. 2018), to quan-
tum nanoplasmonics (Ciraci et al. 2013; Ciraci and Della Sala 2016; Baghramyan
et al. 2021; Toscano et al. 2015), and to compact astrophysical objects such as white
dwarf stars (Uzdensky and Rightley 2014).

The purpose of this short review is to present the results on quantum fluid mod-
els obtained in our research group at the University of Strasbourg during the last 2
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decades. The bibliography on quantum plasmas has grown immensely during this
period and it is hardly possible to do justice to all works on this topic. A recent
paper (Bonitz et al. 2019) has tried to summarize the status of present quantum fluid
theory, as well as the prospects for future developments.

The present work is organized as follows. In Sect. 2, we derive the fluid equations
in the simplest case and describe their properties. In sect. 3, we discuss the range
of validity of the fluid approach. In particular, the closure relations are analyzed by
comparing the fluid and kinetic dispersion relations in two regimes of interest: fast
Langmuir waves and slow ion acoustic waves. Section 4 contains a practical exam-
ple of application of quantum fluid theory to plasmonic oscillations in a metallic
nanoshell. Section 5 generalizes the fluid equations to take into account the elec-
tron spin. More advanced semirelativistic effects, such as the spin—orbit coupling,
are also considered. In sect. 6, we discuss a variational formulation of the quantum
fluid equations through an appropriate Lagrangian. The variational approach enables
us to reduce the full fluid description to a set of a few ordinary differential equations,
which can then be solved either analytically or numerically with little computational
cost. Some applications to electronic modes in semiconductor quantum wells are
also illustrated.

2 Quantum fluid models without spin
For a classical collisionless plasma, the electron dynamics is fully described by a
probability distribution in the phase space f(r,p,1), evolving in time according to

the Vlasov equation. For a quantum electron gas, the corresponding statistical tool is
the density matrix:

N
prr') = Y p P, e
a=1

where p, is the probability to be in the state ¥,. To make contact with classical
plasma physics, it is useful to introduce the Wigner distribution function, defined as

1 ip-A y) A
ter =g [ (Gl g4 o

The Wigner function evolves in time according to the following Wigner equation

of P o e 1 ) ) _ '
R T / dadp’e™ 7 [Vr,) - VELlfep' 0. ()

where e > 0 and m are the electron charge and mass, respectively, the indices +
denote the shifted positions r, =r + 1/2, and the potential V(r, ) is either an exter-
nal potential or a self-consistent potential obtained from Poisson’s equation (or the
sum of both).
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The Wigner approach allows one to recast the dynamics of a quantum electron
gas in the familiar formalism of the classical phase space. But it should not be for-
gotten that the Wigner function, although real, can take negative values, and is,
therefore, not a true probability distribution like its classical counterpart. Two com-
prehensive reviews of the Wigner phase-space methods applied to the description
of quantum plasmas were published recently in this journal (Manfredi et al. 2019;
Melrose 2020), to which we refer the reader for further details.

Fluid, or hydrodynamic, models are usually obtained by taking moments of the
relevant phase-space distribution (Vlasov or Wigner). Thus, the k-th order moment
is defined as:

m(r, 1) = /f(r,p, HpRp---Qp dp,
N ——

k times

“

where the symbol ® denotes the tensor product. Clearly, m, is a tensor of rank k.
Each moment obeys an evolution equation, which can be interpreted as a conserva-
tion law for a given physical quantity (mass, momentum, energy, etc...). The evolu-
tion equation for the moment of order k generally depends on the equation for the
moment of order k + 1, thus forming an infinite hierarchy of equations. Hence, some
further assumptions are needed in order to close this infinite system. Here, we will
essentially consider two-moment fluid systems, based on the evolution of the elec-
tron density n(r, t) (zeroth order moment):

N
/ fdp = p Ve 0¥, (1) = n(r. 1), )
a=1

and the electron current j(r, t) (first order moment):

N
[ o100 =2 ¥ p, e oveien - wieove, el sjen. ©
a=1

A generalization of this procedure to higher order moments was also developed
(Haas et al. 2010).

By integrating the Wigner equation (3) over the momentum variable, we obtain
the continuity equation (conservation of mass):

on
— +V-(mu) =0,
o (nu) @)
where we used the mean velocity u(r,t) =j(r,t)/n(r,f). Multiplying the Wigner
equation by p and integrating yields the evolution equation for the mean velocity
(momentum conservation law):
ou

d_ti +u(Ou;) = —

1

— 0P+ 20V, (8)
nm m
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where we adopted the Einstein summation convention over repeated indices (this
will be used systematically in the rest of this work). Note that Eq. (8) has the same
form as the Euler equation in standard hydrodynamics.

The pressure tensor P; is a second-order moment of the distribution function
defined as

P = / wwifdp, 9)

where we separated the mean fluid velocity u from the velocity fluctuations
w = v — u. To obtain the evolution equation of the pressure tensor, one should take
the second order moment of the Wigner equations, which would contain the third-
order moment (energy flux), and so on and so forth. As we are aiming at a two-
moment fluid model, we should try to obtain some closure relation that allows us to
express P;; as a function of the lower order moments n and u.

A simple closure can be achieved by writing the pressure tensor in terms of the
electronic wave functions. Using Egs. (2) and (9) and after some algebra, one is
able to write the pressure tensor as follows:

h2

P =1 P [(0:#7)(9#,) + (9#7) (0:¥,) — ¥ [0:(9¥.)] = Pu[0:(0¥;)]]

h2

+
dmn

S k) O o) - wﬂf:ﬂ] .

(10)
To interpret this pressure tensor, we shall use the Madelung decomposition (Made-
lung 1927):

Y

iS,(r, 1)
Y, @1 =A,r1)exp < m >,

where A, (r, t) is the amplitude of the wave function and S, (r, t) its phase, both being
real functions.
The individual particle density and velocity for each wave function are defined
as:
ngr,t) =A2(r,0), u,(r,n)= lVSa(r, 0. (12)
m

The connection with the global fluid variables n and u, derived from the Wigner
approach, is made by taking the statistical average of Eqs. (12), to obtain

N N
1
n= leana and (u,)=u= - leanaua. (13)

Then using, Egs. (11)—(13), one obtains a simpler form for the pressure tensor:
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P = mn((”i”j) - <”z><”j>)

S Y N IO BN YN ) [ Ree)

The first term of the right-hand side (Pg) has the form of a velocity dispersion, i.e.,

(14)

the same form as the standard definition of the pressure tensor in an ordinary classi-
cal gas. It is a statistical term which disappears for a pure quantum state, i.e., when
only one quantum state is occupied in Eq. (1). Hence, we can use our knowledge of
classical fluid dynamics to obtain appropriate closures for this “classical” pressure
term. For instance, for an isotropic Maxwell-Boltzmann equilibrium at constant
temperature 7, (isothermal transformation), one would have: Pg = 6[jP[n], with
P[n] = nkgT,, where kg is the Boltzmann constant and 6, is the Kronecker delta. For
an ideal and fully degenerate electron gas, this “classical” and isotropic pressure
would coincide with the Fermi degeneracy pressure (Ashcroft et al. 2002):

3 2 2/3h2
R M) (15)
Sm

The above examples are simple instances of equations of state (EOS).

The second term of the right side is proportional to Planck’s constant 7, hinting at its
quantum origin. Indeed, this quantum pressure term Pg has no classical counterpart and
subsists even when only one state is occupied in Eq. (1), i.e. for a pure quantum state.
Physically, it originates from the Heisenberg uncertainty principle, which forbids that a
quantum particle possesses a definite velocity, except if its position is completely delo-
calized. For instance, it is in virtue of this “quantum” pressure that the ground state of a
quantum harmonic oscillator has a finite velocity dispersion, unlike a classical
oscillator.

An exact closure for the quantum pressure can be found under the (rather restric-
tive) assumption that the amplitudes of all the wave functions are identical, i.e.
ny(r,t) = n(r, t), Ya (Manfredi 2005). In this case one obtains:

7 = 5 (0vm) (ovm) - vila (o) | 10

To simplify even more, one can assume the isotropy of the pressure, i.e. pe = po ;i
ij y
yielding

2
Pen] = [V - v/a V() (17

where we have indeed expressed P¢ in terms of the electron density and its deriva-
tives. This completes the closure procedure. We also note that the quantum pressure
(17) can be rewritten in the form of a potential, by noting that

vp?

— =VV,, 18
. B (18)
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where Vj; is the Bohm potential (Bohm 1952), defined as:

AR
B="5 i :

However, we note that the hypothesis of identical amplitudes for all the wave func-
tions, although certainly sufficient to obtain an exact closure of the quantum pressure
term, is by no means necessary for approximate closures. Indeed, the Bohm poten-
tial is in reality a quantum correction to the electron kinetic energy (Michta et al.
2015), as was already noticed by von Weizsidcker many years ago (von Weizsdcker
1935). It can be derived from the standard Thomas—Fermi theory including gradient
corrections, and it appears as the first gradient correction beyond the local density
approximation. As a gradient correction, it disappears for a homogeneous density
profile and is small for weak spatial modulations (long wave lengths). This suggests
that the closure (17) is approximately correct for density gradients that are not too
strong. A simple dimensional analysis shows that, for an electron gas at zero temper-
ature, the scale length beyond which this closure is acceptable must be of the order
of the Thomas—Fermi screening length A, = \/2¢yEr/(e?n,), where e is the abso-
lute electron charge, g, is the dielectric constant in vacuum, #, is a reference number
density, and Ep = 21 (37r2n0) is the Fermi energy.

Then, using the closure relations for the classical pressure (15) and the quantum
pressure (17), one can rewrite the fluid equations (7) and (8) in the closed form:

19)

% + V- (nu)=0,

20
ou; h? Vz\/; 1 e 0
— +u;0u) = =—0;| —— | — —9,P+ —9,V.
oo 2m? Vn nm m

The above quantum fluid equations (20) are usually referred to as the quantum
hydrodynamic (QHD) model. The potential V(r, f) can often be written as the sum of
an external potential V,,, and a self-consistent Hartree potential V,, which is a solu-
tion of the Poisson equation

V2V, = en/e,. 1)

Equations (20)—(21) constitute a useful semiclassical mean-field model to treat the
electron dynamics of a degenerate electron gas, simpler to implement numerically
than the corresponding Wigner equation. They were used, for instance, to study the
nonlinear electrons dynamics in metallic films (Crouseilles et al. 2008) or, more
recently, monopole plasmon oscillations in a C¢; molecule (Tanjia et al. 2018) and in
a metallic nanoshell (Tanjia et al. 2018).

Further, the total potential V in Eq. (20) can be augmented to include non-ideal
effects such as electronic correlations and the exchange interaction. The exchange
interaction stems from the fact that the many-body wave function of a system of
uncorrelated fermions is not simply the product of single-particle wave functions,
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but rather has the form of a Slater determinant. This guarantees that the many-
body wave function is antisymmetric (changes sign when two particles are inter-
changed), as it should be for fermions (Manfredi et al. 2019). Both exchange and
correlations can be included in the fluid models, following the approach of den-
sity functional theory (DFT), by defining appropriate potentials V[n] and Vy[n]
that depend functionally on the electron density. The simplest choice is the so-
called local density approximation (LDA) (Kohn and Sham 1965), whereby the
exchange and the correlation functionals depend locally on the electron density.
For instance, the LDA approximation for the exchange potential is:

2 1/3
Vylnl = =% (3) nl/3, (22)

4reg \

More sophisticated functionals were designed to describe electron correlations in the
transition region between the bulk and an outer surface of a nano-object, see (Arm-
iento and Mattsson 2005). Many other approximate functionals have been developed
over the years (such as the generalized gradient approximation, GGA), making DFT
methods a cornerstone of computational materials science and theoretical chemistry
(Jones 2015). A recent benchmarking study compared the performances of various
commonly used exchange-correlation functionals regarding their ability to describe
electronic systems under external harmonic perturbations with different amplitudes
and wave-numbers (Moldabekov et al. 2021). These functionals can be used in fluid
models to extend their validity beyond the mean-field approximation.

Alternatively, the exchange interaction can be taken into account in a phase-
space description, such as the Wigner or Vlasov equations. As the exchange is a
two-body effect (beyond mean field), one must include corrections brought about
by the two-body distribution function to derive a suitable kinetic equation (Zama-
nian et al. 2013). Next, one can follow the same moment-taking procedure as
above to obtain a set of fluid equations that include the electron exchange interac-
tion, as was done very recently in Ref. (Haas 2021).

Finally, we note that the fluid equations (20) can be viewed as a time-depend-
ent generalization of the early Thomas—Fermi theory of the atomic electron gas
(Thomas 1926). Indeed, taking 0/0t = 0 and u = 0 everywhere, and neglecting
the quantum term (i.e., the Bohm potential), one gets:

_ve +eVVy +eVYV,

ext
n

=0.

Using Eq. (15), and defining the chemical potential y as an integration constant, we
obtain

2
—;l—m(37r2n)2/3 +eVylnl+ eV, = u, (23)

which is an integral equation for the ground-state density » and is identical to the
standard Thomas—Fermi equation (Michta et al. 2015).
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3 Validity of quantum fluid models
3.1 Closure relations

As we have seen in the preceding section, the fluid equations need two further clo-
sure relations to form closed system—one for the classical pressure and one for the
quantum pressure (or Bohm potential). The validity of the model thus relies on the
accuracy of such closure hypotheses. Several recent works have analyzed this issue
and suggested procedures to improve the simple closure relations mentioned above
(Haas and Mahmood 2015; Moldabekov et al. 2018; Vladimirov and Tyshetskiy
2011).

In this section, we will investigate the closure relations by computing the lin-
ear dispersion relations for the fluid model and the corresponding kinetic one
(Wigner—Poisson) and comparing the two results. This will be done for two extreme
cases of high-frequency Langmuir waves (plasmons) and low-frequency ion acous-
tic waves. It will appear clearly that the closure relations are not universal, but have
rather to be adapted to the physical situation under study.

To fix the ideas, we choose a polytropic EOS for the classical pressure:

Y
P=PO<£> , 24)

where n; is an equilibrium density and Py = nyky7, is the equilibrium pres-
sure. By taking small fluctuations around the equilibrium (n =n, +n; + --- and
P =Py+ P+ --), one can write: P; = ykgT,n,. Thus, for y = 1 one recovers the
isothermal case for an ideal classical gas and for y = 5/3 the ideal Fermi degeneracy
pressure [see Eq. (15)].

For the quantum pressure, we stick with the isotropic expression (17)—or equiva-
lently the Bohm potential (19)— but multiply it by a (yet arbitrary) factor { > 0. It
will be apparent in the forthcoming discussion that this factor need not be equal to
unity.

In summary, we have constructed a two-parameter family of closure relations,
spanned by the parameters (y,{). In the next subsections, we will determine their
values in two specific cases of linear wave propagation.

3.2 Linear dispersion relation: high-frequency Langmuir modes

Kinetic theory The kinetic dispersion relation for longitudinal Langmuir waves
(plasmons) is obtained by linearizing the electron Wigner equation (3) together with
the Poisson equation for both electrons and fixed ions:

VV =e(n —ngy)/e,. (25)

The ions are supposed to be fixed and constitute a homogeneous neutralizing back-
ground with density n,, equal to the equilibrium electron density. The linearization
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procedure yields the following longitudinal dielectric function (Klimontovich and
Silin 1960; Tyshetskiy et al. 2011)

2 (0) ()P
a@m=1+;gl/mf(wmw%ﬂf‘@ RE[2m) 6
Ny

w—-k-v

where f@(v) is the equilibrium electron distribution function, ny = [ f@dv is the
equilibrium density, and w, = y/e?n,/(me,) is the electron plasma frequency. Note
that here we use the velocity v = p/m instead of the momentum.

To simplify the analysis, we consider a one-dimensional system along the direction
of propagation of the Langmuir waves, denoted x, and rename v, — v and k, — k for
the wave vector. The dispersion relation w(k) is obtained by setting e(w, k) = 0, where
 and k are, respectively, the complex frequency and the wave vector of the excita-
tion modes. Finding the complete dispersion relation is in general a challenging prob-
lem , because of the presence of a singularity in the denominator of Eq. (26) (for a
recent attempt at solving this problem rigorously, see Hamann et al. 2020). The correct
treatment of this singularity in the complex plane yields the imaginary part of the fre-
quency, which represents Landau damping.

Here, we do not consider this effect and only focus on the real part of the fre-
quency. Furthermore, we make two assumptions, namely that (i) quantum effects
are small and that (ii) the wavelength of the modes are large. The first assump-
tion means that 7k/(2m) < v. In this case, we can perform a Taylor expansion on
FOW + hk/2m), yielding:

2
f(0)<v N %) = fO() J_rf«))’(v)% + %ﬂ(’)”(v)(%) +ee @D

where the apex denotes differentiation with respect to v. Substituting into the dielec-
tric function, one obtains:

qmm=1+zﬁ dv

P 28
o w—kv  24m?n, @8

w? FO' ) co;hzk / FO" ()
+ dv
o — kv
As expected, if we set i = 0 in the above equation, we recover the dielectric func-
tion corresponding to the Vlasov-Poisson equations (Lyu 2014).

The second assumption (long wavelengths), implies that k << w/v, hence there
is no singularity in the denominator: in this limit, the frequency is real and Landau
damping vanishes. This is of course consistent with fluid models, which also contain
no Landau damping. By performing the expansion up to third order in kv/ew:

the dielectric function becomes:
w}% kzco; . a)ﬁhzk4 1
e(w’k)ZI_E_Sw‘l vy - el (30)
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where we used the equilibrium mean square velocity, defined as
(V) = 1 /f<°)v2dv. 31)
gy

Keeping only terms with small wave vector k (long wavelength), we obtain the dis-
persion relation

2 2 2/.2 h2k4
w=wp+3k(v>+4—mz+---. (32)

This is a quantum extension of the well-known Bohm—Gross dispersion relation,
which was found earlier by several authors (Pines 1961; Manfredi 2005). Note that
for a Maxwell-Boltzmann distribution (v?) = kpT,/m = v? , whereas for a Fermi-
Dirac at zero temperature (fully degenerate gas) (v*) = kzTy/(5m), where

2/3 . .
T, = % (37[21’[0) ’*is the Fermi temperature of the electron gas.
B

Fluid theory Next, we compute the fluid dispersion relation by linearizing the con-
tinuity and Euler equations (20), together with the Poisson equation for both elec-
trons and fixed ions (25). We use the EOS (24) for the classical pressure and, as in the
Wigner—Poisson case, restrict our analysis to one spatial dimension along x. We expand
all quantities around the equilibrium {n,,u, =0,V,, =0} by writing n = n, + n,,
u = uy + u,, etc..., and neglect second order terms such as n, u,. The first-order classical
pressure reads as: P, = ykgT,n,. Then, expressing all first-order quantities in term of
plane waves

ny(x,t) = i) exp (—iwt + ikx), (33)
we arrive at the fluid dispersion relation:

2 2 2.2 it

(] =a)p+ykvth+é’4—mz. (34)
For a Maxwell-Boltzmann equilibrium ({(+?) = vrzh), the kinetic (32) and fluid (34)
dispersion relations become identical, for small wave vectors, if one chooses y = 3
and ¢ = 1. Hence, comparison of the two models suffices to fully determine the clo-
sure relations, at least in the linear response regime. These closures can be under-
stood as follows. For a classical ideal gas, the polytropic exponent for an adiabatic
and reversible (isentropic) transformation is y = (d + 2)/d where d is the number of
degrees of freedom (equal to the number of spatial dimensions for point-like parti-
cles). Then, one has to choose d = 1 because Langmuir waves (plasmons) propagate
fast in one direction, with no exchange of energy in the transverse plane, so that only
one degree of freedom is effectively active. The choice { = 1 amounts to choosing
the quantum propagation velocity of a free electron obeying the Schrodinger equa-
tion. Again, this choice is dictated by the fast motion of Langmuir waves, which, to
lowest order in 7, do not feel the Coulomb potential.
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3.3 Linear dispersion relation: low-frequency ion acoustic modes

Here, we discuss the linear response theory of ion acoustic waves (phonons),
which are routinely observed in solid-state plasmas (Ma et al. 2015). For such
waves, the phase velocity is intermediate between the ion and the electron ther-
mal speeds:

@

Vin,i < X

L Viner (35)
where v, ;, = \/kgT;,/m;,. It will also be assumed that the ions are classical and
cold, i.e. T; <« T,, while the electrons are quantum. We shall follow the derivation
detailed in Haas et al. (2003) and Haas and Mahmood (2015).

Kinetic theory Under these hypotheses, and also assuming wave propagation
along the x direction only, the Wigner—Poisson dielectric constant reads as:

®?.  @wtm J fOW + nk/2m) - fO© — hk/2m)

’k = 1 - i + e s 36
e(@.k) w?  hk’n, ’ ® — kv (%6)
where coi[ .= e’ny/(m; €,). The last term in Eq. (36) can be expanded in powers of
h, yielding:

02 O Rk O
”‘/fg )d+ e /fe ()dv+....

kny | o—kv ’ 24nym? | o —kv

Because of the hypothesis (35), we can neglect the frequency w in the above expres-
sions. Taking a Maxwell-Boltzmann distribution

2
FO = _ " exp| - V2 , 37)
V 2r vth,e 2Vzh,e

we can compute the intergals:

fe(o)’ ) 1o . fe(O)m ») 2n,
dv=-2—" dv=-=
v vlh,e v vth,e

where we used (V) =2 .
th,e

Inserting into the dielectric constant (36) and setting e(w, k) = 0, yields the
kinetic dispersion relation

c2k?

ECAVESEN
1+ (1-2 e

2 _
Win =

(38)

where A, =vy,,/®,, is the Debye length, ¢; = Apw,; = \/kgT,/m; is the sound
speed, and H = hw),, /(kT,) is a dimensionless parameter that measures the impor-
tance of quantum effects.
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Fluid theory The relevant 1D fluid equations for the ions and the electrons read
as follows

anze+a(nze te)_o’ (39)
o.P 2 0)% n,
MmOty + u,0,1,) = €0, Vy = = +¢ %()(T\/_) (40)
e e n,
m,(0,u; + u;0,u;) = —ed, Vy, 41
3V =—-<(n,—n,),
x H £ (nz ne) (42)
n Y
Pe = nOkBTe<_e> ’ (43)
Iy

where we already neglected thermal and quantum effects for the ions. Furthermore,
we also neglect the electron inertia (m, << m;), so that the left-hand side of Eq. (40)
vanishes.

We write all quantities as the sum of a homogeneous equilibrium term plus a
small fluctuation: n,; = ng +n,;(x, 1), and similarly for u,;, V, and P,. At equi-
librium, ug = Vg, =0 and P, = ynokgT,. Then, we write all fluctuations as plane
waves, as was done in Eq. (33). Looking for normal modes, we obtain after some
algebra:

2 2k2+§ k4 D pl
ﬂu1d 212 4 (44)
1 +yk2a2 + ¢ Bk 24 ? 2

where ¢, = \/ykgT,/m; is the sound speed.

To compare the kinetic and fluid results, we expand Eqgs. (38) and (44) in powers
of the wave number k and retain terms up to k*. We obtain:

i

2

km 1 _ _ I'LZ 212

2 =1 <1 12>k 2+ (45)
a)z.

which coincide for y = 1 and ¢ = 1/3. The exponent y = 1 can be explained by
the ions evolving in the thermal bath of the electron population, which is at fixed
temperature 7,. Hence, the ion fluid follows an isothermal transformation, which is
indeed characterized by y = 1.
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3.4 Discussion

From the above examples, it appears there is no universal closure relation that
is valid for all regimes. Restricting ourselves to the polytropic form (24) for the
classical pressure and the expression (17)—or equivalently the Bohm potential
(19)—for the quantum pressure, yields a family of closure relations that depend
on the two parameters y and {. In the linear regime, the values of these two param-
eters depend on the frequency and the wavelength of the normal modes under
consideration. Here, we have seen that the extreme cases w/k > v,, , (Langmuir
waves) and w/k < v, , (ion acoustic waves) yield different values for these two
parameters, as was already noticed in Haas and Mahmood (2015).

The closure relations adopted here are all local, i.e. they depend on the value
of the electron density at a certain spatial point. Moldabekov et al. (2018) pro-
vided a general framework for such local closure relations in the various regimes
of short or long wavelength, and small or large frequency. In addition, they gen-
eralized the Bohm potential to include non-local effects. Very recently, the same
authors introduced the concept of many-body Bohm potential and showed how it
can be used to improve the accuracy of the quantum fluid description (Moldabe-
kov et al. 2021).

In the sections above, we discussed the closure relations for the pressure and
Bohm potential for a 3D electron gas (although the problem was further reduced
to 1D, the assumptions for the closure assume a 3D gas). In connection to nano-
physics, there exist materials where the electron dynamics effectively occurs in
lower dimensions. Examples include 2D electron gases occurring in semiconduc-
tor heterostructures (Khan et al. 1992) or graphene layers (Berger et al. 2004),
and 1D electron gases in nanowires and carbon nanotubes (Tans et al. 1997).
For these low-dimensional configurations, the closure relations for the quantum
pressure (Bohm potential) are fundamentally different from the 3D case, and the
resulting dispersion relations are different too. These issues were discussed in a
recent work (Moldabekov et al. 2017).

We conclude this section by noting the similarity between the quantum fluid
approach and the time-dependent orbital-free density functional theory (OF-DFT)
(Witt et al. 2018). The latter is a description of the electron gas that is based
uniquely on the electron density n(r) (like all versions of DFT), without requiring
the calculation of pseudo-orbitals as is done in the more standard Kohn—Sham
approach (for a brief discussion of DFT and its relationship to quantum plasmas,
see Manfredi et al. (2019)). The theorems of DFT ensure that a complete descrip-
tion of the electron gas can be obtained through the electron density alone, pro-
vided one is able to write down the exact energy functional

E[n] = T[n] + E.[n] + Eg4[n] + Exc[n], 47)

where the various terms on the right-hand side represent, respectively, the kinetic,
external, Hartree, and exchange-correlation energies.

Next, we suppose that the kinetic energy functional may be written as
T[n] = Tyln] + Tyn], i.e. the sum of a von Weizsicker energy
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)
Tw[n]=/\/5<%>v2\/2dr, (48)

and a residual term Ty[n] (known as the Pauli functional, which will incorporate,
among others, terms that pertain to the “quantum pressure” in the fluid formal-
ism). Then, the function ¥ = \/Z obeys a Schrodinger-like equation with a density-
dependent effective potential

V,gln] = % (Tg (1] + Eoy[n] + Eyln] + Excln] ) (49)
where % denotes the functional derivative (Levy et al. 1984; Chan et al. 2001). By
generalizing to the time-dependent case and performing an inverse Madelung trans-
formation, i.e. by writing ¥ = y/ne®/" [see Eq. (11)], one can derive a system of
equations for n and u = VS/m which is identical to our quantum fluid model. The
theorems of DFT and TDDFT then ensure that it exists, at least in principle, an
energy functional which renders the density-dependent equations exactly equivalent
to the full N-body problem.

All this may seem in contradiction with the above statement that there is no uni-
versal closure relation for the fluid equations. However, for the time-dependent ver-
sion of DFT, the energy functional may depend on the initial condition, hence dif-
ferent evolutions (Langmuir and acoustic waves, for instance) could require different
functionals. Further work on the comparison between quantum fluid theory and
time-dependent OF-DFT is needed to clarify those subtle issues.

4 Application: electronic breathing modes in metallic nanoshells

Here, we apply the quantum fluid equation derived in Sect. 2 to a particular class of
nano-objects, namely metallic nanoshells, which are hollow structures with approxi-
mately spherical geometry, and radius in the range 20~100 nm.!

4.1 Model

As a minimal quantum fluid model for metallic nanoshells (Manfredi et al. 2018),
we consider a spherically-symmetric system where all quantities depend only on the
radial coordinate r and the time 7. The ion lattice is represented by a uniform con-
tinuous positive charge density (jellium), whereas the electrons are described by the
following set of fluid equations. Atomic units (a.u.) are used in this section; these
correspond to setting 47e, = e = 7 = 1in the formulas written in SI units. In atomic
units and spherical co-ordinates, the continuity and Euler equations read as:

! Parts of this section appeared earlier as a conference proceeding (Manfredi et al. 2018). They are
reproduced here with permission.
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on 19, ,
@9 =0,
ot o) (50)

ou 0u_%+1d<vf\/;> 10P_ 0Vye

—_— +u_ — —_—
ot or or  20r \/;

where n is the electron number density, u is the mean radial velocity, P is the (iso-
tropic) pressure, Vy is the exchange and correlation potential. V; is the Hartree
potential obtained from Poisson’s equation: VfVH = 47r(n - nl-), where n,(r) is the
density of the ion jellium and Vf = izdr(rzd,) is the radial Laplacian operator.

The second term on the right-hanrd side of Eq. (51) is the Bohm potential, which
contains quantum effects to lowest order. For the exchange potential, we use the
standard local density approximation (LDA):

) (51)

2\1/3
Cr)Z s, 52)

Vxlnl = —
T
and for the correlations, we employ the functional proposed by Brey et al. (1990),
which yields the following correlation potential:

Velnl = —yIn (1 +6n'73), (53)

with y = 0.03349 and 6 = 18.376 in atomic units. We further assume the electron
temperature to be much lower than the Fermi temperature of the metal, so that the
pressure can be approximated by that of a fully degenerate electron gas, as in Eq.
(15).

With the aim of modelling metallic nanoshells, the ion jellium density n;(r) is
chosen to be constant and equal to n inside a spherical shell of internal radius R; and
external radius R,, and zero outside. We further define the nanoshell mean radius
R = (R; +R,)/2 and the thickness 4 = R, — R,;. Assuming global charge neutrality,
the total number of electrons inside the shell is:

RP—PR?
N=nV=—"——, (54)

73
s

where V is the volume of the nanoshell and r, is the Wigner—Seitz radius of the
metal. Finally, the plasmon frequency can be written as: @, = 1/3/ r3. In the forth-

coming sections, we will consider sodium nanoshells with r; = 4.

4.2 Numerical results: ground state

Before considering the dynamical response of the system, we need to compute its
ground state. This can be obtained as a stationary solution of Egs. (50)-(51) which
is computed numerically using an iterative relaxation procedure (Crouseilles et al.
2008).

@ Springer



Reviews of Modern Plasma Physics (2021) 5:7 Page 17 of 38 7

. . . . . T T T T T
1k 4
4x10°
3
_ 3x10® =
3 g
< g
2 2x103 2
c
g 2
g
-3
1x10 =
0t
. . . . .
10 20 30 40 50 60 70
r(a.u.) r(a.u.)

Fig.1 Ground state of two typical Na nanoshells containing N = 1919 and N = 753 electrons. Left
panel: Electron densities computed using a DFT code (solid lines) and the fluid approach (dashed lines).
Right panel: Effective potentials for the same cases. Reprinted with permission from Manfredi et al.
(2018)

The electron density and effective potential profiles for two typical Na nanoshells
containing, respectively, N = 1919 and N = 753 electrons are presented in Fig. 1.
Both nanoshells have a central radius R = 40 a.u., but different thicknesses (4 = 10
and 25 a.u.). On the same figure, we also show the density profiles computed using
a standard DFT code. The agreement is very good, and even more so considering
that the fluid results (labeled QHD) require no more than a few minutes runtime on
a standard desktop computer. In particular, the nonlocal spillout effect (electron den-
sity extending beyond the steplike ion density profile) is well described by the QHD
method, even for the smaller structure (N = 753), where the spillout is very promi-
nent and the electron density is nowhere flat. For the larger nanoshell (N = 1919),
the two overdensities at the internal and external radii in the QHD density profile are
a lower-order quantum effect, a remnant of the well-known Friedel oscillations vis-
ible in the corresponding DFT profile.

4.3 Numerical results: dynamics

Having computed the ground state of the electron system, we need to perturb it
slightly in order to induce some dynamical behavior. As we are interested in plas-
monic breathing modes, the perturbation will also be spherically symmetric. For the
excitation, we use an instantaneous Coulomb potential applied at the initial time:
Vet ) = £ 1 5(t), where § is the Dirac delta function, z is a fictitious charge quanti-
fying the mglgnitude of the perturbation, and 7 is the duration of the pulse.

To analyze the linear response of the system, we study the evolution of the mean
radius of the electron cloud, defined as: (r) = 1%] f0°° rn(r, 1) 4xr*dr. The Fourier
transform of (r) in the frequency domain is shown 1n Fig. 2, left frame. For the larger
nanoshell (N = 1919), the frequency spectrum shows a sharp peak near the plasmon

frequency w, = 4/3/ r3 =5.89 eV. This behavior is compatible with the computed

ground-state density profile (Fig. 1), which displays a region of almost constant
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Fig.2 Linear-response frequency spectrum for two typical Na nanoshells containing N = 1919 (red solid
lines) and N = 753 (blue dotted lines) electrons. Left frame: fluid (QHD) results; Right frame: TDDFT
results. Reprinted with permission from Manfredi et al. (2018)

density in between the inner and outer radii. In contrast, the spectrum of the smaller
nanoshell (N = 753) is much more fragmented and actually displays fwo principal
peaks around the plasmon frequency, at about 5.6 eV and 6.2 eV, plus a number of
smaller peaks at lower energies.

Still on Fig. 2 (right panel), we show the monopolar polarizability « computed
with a linear-response TDDFT code (Maurat and Hervieux 2009), using the same
parameters and exchange-correlation functionals as for the fluid (QHD) simulations.
The results compare rather favorably with the fluid ones. For N = 1919, one domi-
nant peak is observed at 5.6 eV, i.e. slightly redshifted compared to the pure plasmon
frequency. This redshift can be understood in terms of dissipative phenomena (such
as Landau damping, i.e. the coupling of the plasmon mode to single-particle modes)
that are not included in the fluid description. More interestingly, the spectrum of the
smaller nanoshell (N = 753) reveals the same two-peak structure also observed in
the fluid simulations, now with frequencies ~ 5.16eV and 5.45 eV, again slightly
redshifted compared to corresponding peaks in the fluid spectrum. The more com-
plex spectrum observed for N = 753 is probably due to the shape of the ground state
electron density, which looks more like a bell curve with no flat region inside the
lattice jellium (see Fig. 1).

5 Fluid models with spin effects

The electrons are elementary fermions that carry not only an electric charge equal to
—e, but also a magnetic moment (spin) equal to 72/2. The effect of the spin appears
whenever the electron is immersed in a magnetic field. Even in the absence of an
external field, an electron orbiting in the Coulomb potential of a positively charged
nucleus will feel the effect of a magnetic field in its own frame of reference (this
“spin-orbit coupling” will be discussed in Sect. 5.4). Spin effects play an important
role in many modern applications aimed at the storage and transfer of information,
which go under the name of spintronics (Hirohata et al. 2020). In plasma physics,
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polarized electron beams can now be created and precisely manipulated in the labo-
ratory (Wu et al. 2019, 2020; Nie et al. 2021; Crouseilles et al. 2021).

Some of the materials presented in this section is taken from the PhD thesis of
one of the co-authors (Hurst 2017).

5.1 General spin fluid equations

Fluid models that include spin effects are derived, as usual, from the corresponding
kinetic (Wigner or Vlasov) equation by taking velocity moments. For spin-1/2 fer-
mions, the Wigner function is no longer a scalar, but rather a 2 X 2 matrix (Arnold
and Steinriick 1989). The fully quantum evolution equation of such matrix Wigner
function is extremely complicated and hence of limited practical use. In the semi-
classical limit, this equation gives rise to a matrix spin-Vlasov equation, which treats
the electron motion in a classical fashion while preserving the intrinsically quantum
character of the spin degrees of freedoms (Hurst et al. 2014, 2017):

§+v Vfo——(E+v><B) V.o +
Hp o)
mV[B——(vXE)] Vifi = 5 22[E><(B><V)]f 0.
of; e
E+v-Vﬁ-—n—1(E+V><B)'V»fi+
—@V[B,»—L(vXE)] Vo - [EX(BXV)]fo (56)
2#3
; {[B——(vxE)] xf}

where (fy,f) are the four components of the 2 X 2 matrix Wigner function, and
S =(.f,»f.). The factor 7 is hidden in the definition of the Bohr magneton
Hp = eh/(2m). The quantum corrections in Eqs. (55)—(56) (terms preceded by uj)
couple the orbital (f;) and the spin (f;) components of the Wigner function through
the Zeeman effect and the spin—orbit interactions. The latter are given by those
terms preceded by 1/c?, signalling that the spin—orbit coupling is a relativistic effect.
There are no quantum corrections to the orbital electron dynamics because they
appear only at the second order in 7.

Starting from the spin-Vlasov Egs. (55)—(56), we derive the fluid equations by
taking velocity moments of the phase-space distribution functions. At first, we will
only include the Zeeman interaction. To obtain the fluid closure, we will employ a
general procedure based on the maximization of entropy (see Sect. 5.2). Fluid mod-
els with spin—orbit effects will be discussed further in Sect. 5.4.

Going back to the Vlasov equations (55)—(56), we note that the scalar and vector
distribution functions fy(r,v,) and f(r,v,t) represent, respectively, the probability
density for a particle to be at a point (r,v) in the phase space and the probability
density for that particle to have a spin directed along the direction of f. Hence, f;
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incorporates all the information unrelated to the spin, while f incorporates all infor-
mation about the spin of the electron.

With these definitions, the particle density n and the spin polarization S of the
electron gas are easily expressed as moments of the distribution functions f; and f:

n(r,t) = / Sfor,v,dv, (57)
h
S(r, 1) =5 /f(r, v, t)dv. (58)
We further define the quantities
1
u = / viodv, (59)
J;Sa :g / vif,dv, (60)

Pl.j :m/wiw]fodv, (61)
m, =n d
jo =5 | vivfedv, (62)

Qijk =m/wiijkfodv, (63)

where we separated the mean fluid velocity u from the velocity fluctuations
w =v —u. Here, P; and O, represent the pressure and the generalized energy flux
tensors. They coincide with the corresponding definitions for spinless fluids with
probability distribution function f;,. The spin-velocity tensor J;i represents the mean
fluid velocity along the i-th direction of the a-th spin polarization vector, while 11,
represents the corresponding spin-pressure tensor.” The evolution equations for the
above fluid quantities are obtained by taking velocity moments of Egs. (55)—(56):
on

5 + V. (nu) =0, (64)

2 Strictly speaking a pressure tensor should be defined in terms of the velocity fluctuations w;w;, but this
would unduly complicate the notation. Thus, we stick to the above definition of IT;, while still using the
term “pressure” for this quantity.
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L0, —(S X B), =0, (65)

1 e
n +u(0u)+ — 0P+ — [Ei+(uxB)i]+WSa(diBa):0, (66)

S
ugh
S + < jlekJ + = JkaBkJS+—(aB) =0, (67)

a o

oP;
ij e
(68)
€ S S —
+euBiPi] + 5 3 [0, (55 — ) + 0B, (75, = S, =0.

A different set of fluid equations for spin-1/2 particles was derived by Brodin and
Marklund (2007) using a Madelung transformation on the Pauli wave function.
Another fluid theory was derived by Zamanian et al. (2010) from a Vlasov equation
that includes the spin as an independent variable in an extended phase space (Zama-
nian et al. 2010). More recently, a relativistic hydrodynamic model was obtained
by Asenjo et al. (2011) from the Dirac equation. These approaches usually lead to
cumbersome equations that are in practice very hard to solve, either analytically or
numerically, even in the nonrelativistic limit.

Still another approach is based on a generalization of the Bloch equations (Andreev
2015). Instead of adding “‘spin-dependent” moments to the usual ones as was done
above—see Eqgs. (58), (60), and (62)—Andreev (2015) treats separately the spin-up and
spin-down components in the corresponding Pauli equation. Performing a Madelung
transformation for each component, one arrives at a set of four fluid equations (two
continuity and two Euler equations), which are then closed using an appropriate equa-
tion of state for the pressure.

Going back to our fluid model (64)—(68), some further hypotheses are needed to
close the set of equations. We first note that, by definition, the following equation
is always satisfied: / w;f,dv = 0. The same is not true, however, for the expression
obtained by replacing f, with f, in the preceding integral. If we assume that such a
quantity indeed vanishes, i.e. f w,f,dv = 0, we immediately obtain that

I =uS,. (69)
Physically, this means that the spin is simply transported along the average fluid
velocity. This is of course an approximation that amounts to neglecting some spin-
velocity correlations (Zamanian et al. 2010).

With this assumption, Eq. (67) is no longer necessary and the system of fluid
equations reduces to

3—” +V-(@n)= (70)
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e +0,(u,5,) + <(SxB), =0 (71)
ot i Ya m a —
%y, w(@u)+ -3 P + CE+@xB)] + —5,(08,) =0,  (72)
ot P am Y o m U0 g2 e\,
O WP+ Poduit + Prduit, + Pyt + 0 0
— T WO Ly + Fp oty + Fyopu; + Fyogly + 0, Oy
ot y J J y : (73)

e
+ [eniBiPyi + €xiBiPy] = 0.

Interestingly, in Eq. (71), the spin polarization is now transported by the fluid veloc-
ity u, as in the model of Zamanian et al. (2010). To complete the closure procedure,
one can proceed in the same way as is usually done for spinless fluids, see Sect. 2,
for instance by assuming that the pressure is isotropic and replacing Eq. (73) with
the polytropic expression (24).

5.2 Fluid closure: maximum entropy principle

The maximum entropy principle (MEP) is a well-developed theory that has been suc-
cessfully applied to various areas of gas, fluid, and solid-state physics (Ali et al. 2012;
Trovato and Reggiani 2010; Romano 2001; Anile and Muscato 1995). The underly-
ing assumption of the MEP is that, at equilibrium, the probability distribution function
is given by the most probable microscopic distribution (i.e., the one that maximizes
the entropy) compatible with some macroscopic constraints. The constraints are gener-
ally given by the various velocity moments, i.e., the local density, mean velocity, and
temperature.

Here, we shall follow the derivation detailed in Hurst et al. (2014). To illustrate the
application of the MEP theory to a spin system, we write the Hamiltonian as follows

2
H= m% + V(r)oy + uzB - o, (74)

where o) is the 2 X 2 identity matrix and o is the vector of the Pauli matrices

01 0 —i 10
(o) o= () ml h) o

The relevant entropy density is

_ J kg Tr{Flog F — F} (M=B)
sh) = { [gmm]kB Tr{FlogF+ (1 — F)log(l — F)} (F-D), }7 (76)

for Maxwell-Boltzmann (M-B) and Fermi-Dirac (F-D) statistics, respectively.
Here, F is the 2 X 2 matrix Wigner function
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1 1
F= EGOfO + Ef -0, a7

The detailed calculations for three- and four-moment closures are given in Hurst
et al. (2014). Here, we consider the simplest case where only three fluid moments
(density n, mean velocity u, and spin polarization S) are kept,

For the M-B statistics, the pressure and the spin current at equilibrium turn out to be

P; =mTr</ vivjfe”dv> — mnu* = nkgTé; (78)

Iy =S,u;. (79)

Thus, considering three fluid moments and M—B statistics, leads to the standard
expression for the isotropic pressure of an ideal gas, together with the “intuitive”
closure condition (69) for the spin current tensor.

We repeated the above procedure for the F-D statistics and, as in the case of M—B,
we recover the closure: J: ,Sa = u;S,. For the pressure, we obtain

2/3
) (6;:2) ) 5/3 ) 5/3
- 7 _Z z 80
Pg g |(n=5181) o+ (ngis) ®0)

When the spin polarization vanishes, Eq. (80) reduces to the usual expression of the
zero-temperature pressure of a spinless Fermi gas (15). This can be interpreted as
the total pressure of a plasma composed by two populations (spin-up and spin-down
electrons). Due to the Zeeman splitting, the density of the particles whose spin is
parallel to the magnetic field is lower than the energy of the particles whose spin is
antiparallel. Equation (80) shows that the two populations provide a separate contri-
bution to the total fluid pressure.

5.3 Linear dispersion relation

We want to compute the effect of the spin dynamics on the linear dispersion relation for
Langmuir waves. To describe the electron dynamics, we use the following fluid model:

% + V. () =0, (81)
aS°'+a( S,) +<(SxB), =0 82
ot i\UiRg m e = U, (82)
()ui 0lP 1 e
— +u;(ou;) + —+ Eai(—evH + V) + ﬁsaa,.(B +B,),. (83)
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where we have used the closure relations: Jisa = u,;5* for the spin current, and
P = nykgT(n/ny)" for the isotropic pressure. The Hartree potential is a solution of
Poisson’s equation: v? Vy = e—‘;(n — n,), where n,, is the homogeneous ion density.

The above equations are essentially identical to Egs. (70)—(72), with some extra
terms:

1. The magnetic field B(r,t) = V X A(r, t) is a solution of the quasi-static Maxwell-
Ampere equation

V2A(r, H = —%MOV X S(r, 1). (84)

Note that we did not consider the self-consistent magnetic field created by
charge currents and neglected the Lorentz force in the momentum equation (83).
The reason is that we focus on plasma waves propagating in a well-defined lon-
gitudinal axis, with no coupling to the other transverse directions. Hence, the
only contribution to the magnetic field arises from the spin polarization S and
accounts for magnetic dipole interactions.

2. We include the exchange and correlation fields V,.[n(r, 1), m(r,?)] and
B, [n(r,t),m(r,t)]. Here, m = 25 /h is the magnetization vector, which has the
same dimensions as the electron density and can be used to compute the electron
polarization rate: # = |m|/n. Exchange and correlation potentials can be taken
from the vast literature on DFT (see, for instance Maurat and Hervieux (2009)
Gunnarsson and Lundqvist (1976)) and enable us to go beyond the mean-field
approximation, where the only electron—electron interactions are those modeled
by the self-consistent Hartree potential. For the present derivation, it is not neces-
sary to provide an explicit form for the exchange and correlation fields.

To obtain the dispersion relation of plasma oscillations, we study the evolution of a
small deviations from the equilibrium. The equilibrium state is given by a homogene-
ous electron gas with density n, and vanishing mean velocity (i, = 0), which is ini-
tially spin-polarized along the z direction (§ = Syé,). Assuming that the perturbations
are plane waves propagating in the x direction, we can express the fluid quantities as
follows:

n(r,t) = ny + oénexp [itkx — wt)], (85)
S@r,t) =8, + 68 exp [i(kx — wt)], (86)
u(r,t) = duexp [i(kx — wr)], (87)

where the subscript O denotes quantities at equilibrium and the 6 quantities are small
perturbations. We write the self-consistent and the exchange-correlation fields in the
same way as

@@, 1) = ¢ exp [i(kx — wr)], (88)
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B(r,1) = 6B exp [i(kx — w1)], (89)
V.. 2 GA o

ch[n, m] = ch[no, m()] +|on on " + g(SS . ﬁ " e(kx t), (90)
xc 2 anc i(kx—owi

B, [n,m) = B, [ny,my] + | én on | + Eés- om |, ! (kx—on), 1)

my

my

Injecting Eqs. (85)—(91) into the fluid equations (81)—(83) and retaining only first-
order terms yields the following dispersion relation:

kgT
o’ = o + Ky ——+
P m

oV,

< on

where 7, = |m|/n, is the equilibrium polarization. The second term on the right-

hand side is the usual thermal correction (Bohm—Gross), the next term represents

the exchange-correlation corrections, and the last term derives from the self-consist-

ent magnetic field [Maxwell-Ampere equation (84)]. Terms preceded by #, are due
to the electron polarization

The above dispersion relation (92) is identical (in the small wave number k regime)

to that obtained from the corresponding spin-Vlasov equations in Manfredi et al. (2019)

(see section 7.3), provided that the polytropic exponent is taken y = 3, as was discussed

earlier in Sect. 3.2.

oV, ©2)

o 0B,
<+ 1y om

+ HoHp—— on

0B,
om

Moo
) k2 Bm ’72

+’7()MB 0°

5.4 Spin-orbit coupling

In the above calculations, we constructed fluids models with spin effects by only con-
sidering the Zeeman interaction. The same procedure can be carried over to the case
where spin—orbit interactions are included Hurst et al. (2017). A straightforward inte-
gration of Egs. (55)—(56), with respect to the velocity variable, leads to the following
fluid equations :

P4y (nit) =0,

ot ©3)

(SxB) t— EJS =0, (94)

2 Cjkaij
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+u(0u)+ aP+ [E+(u><B)]+ S(a,.Ba)

or
i 95)
s s S|
t ez S [”taj(EkSI) +E;(9Ty) = (aiEk)]jl - (ajEk)‘liZ] =0,
o8 ~ pgh
s 4 € S 4
5 i S +< By + — Bl + 2 ——(0,B,)n
U U Up 96)
B B
+ Weklaal (Ek”“i) - Mekm(aiEz)”“k + ﬁeklaerskEsHirl =0,
oP;
= + 0Py + Pi0gt; + Pydg; + Pyogiu + 0, Qe + — [e,d,.ij + e Py By
H Hp
+ZB[6in<JJ§(—ujSk)+dBk( USk)] 60, [E( uuS,)]
H
+2 32 rk[)EVI:EkIZ< MS>+€klj< MS)]
s s s
- 2 €rsi [a E < jirl Mj"rl) + aE (lel ui']rl)]
HB Hp S -
= e, [E ( ujs,)] - 56, [E, (5~ uS)] = 0.
o7
where we introduced a new average velocity and a new spin current
- _ =S _ S Hp
u=u-— ch nEXS JU—JU-FWﬁ'UkEkn (98)

Some further hypotheses are needed to close the above set of Egs. (93)—(97).
Inspecting the evolution equation (97) for the pressure tensor, one notices that most
spin-dependent terms cancel if we set
Iy, =S, and I = uJs,. (99)

This is a generalization of the simple closure described in Sect. 5, whereby both the
spin density S, and the spin current Jﬁx are transported by the mean fluid velocity u;.

With this assumption, Eq. (96) and the definition of the spin-pressure I7;, are no
longer necessary. The system of fluid equations simplifies to

on

PR (nu) =0, (100)

oS,
3 + a,.(u,.sa) -

(B - ﬁu xE)] —0, (101)
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a—+u(0u)+ — 0P+ — [E+(u><B)]+ S(()l.Ba)

d (102)
Ejkl [E (ak” ) - (aiEj)]S[ =0,

2mc2

ﬂ + w0 Py + Py opu; + Pyopu; + Pyojuy

ot (103)

+ 0O + ” [eklink + ekleik]Bl =0-.
Then, by supposing that the system is isotropic and adiabatic, i.e. P; o n#é
(where d is the number of degrees of freedom) and Q; = 0, one is able to close the
system of fluid equation.
In summary, Eqgs. (100)—(102), together with an adapted expression of the pres-

sure, constitute a closed system of hydrodynamic equations including spin—orbit
effects.

6 Variational approach to the quantum fluid models

6.1 Basics: Lagrangian formulation of the fluid equations

We recall the quantum fluid equations considered in Sect. 2, written here in atomic
units (drey = e =h = 1)

24V () = (104)
V2
‘3—"+u Vi =V WV = ok ( \)[) (105)
n
V2V, = 4xn, (106)

with the degenerate pressure P = é(3ﬂ2)2/3n5/ 3,

The above fluid equations may be represented by a Lagrangian density
An,6,V,), where 6(r, 1) is related to the velocity through u = V6. The expression
of such Lagrangian density reads as:

Ln,0,V,) = g(ve)2+ ‘2—9 + i(v 2+ 10(3 2)23 513

—nVy - g(vv,,) :

(107)
—-nV

ext

By taking the Euler-Lagrange equations with respect to the three fields
Xi=1{n0,Vy}
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0.7 0.2 00%
—-V.=—-="==0, (108)

i oVy, 0dtdy
one recovers exactly the quantum fluid equations (104)—(106).

So far, no approximations were made. To derive a tractable system of equations,
one needs to specify a particular ansatz for the electron density. In general, we posit
that the density depends on the position r and, parametrically, on N functions of
time d,(¢), -+, dy(t), which are not specified for the moment. Hence, we write:

n(r, 1) = Nlrid, (1), dy(©), -+, dy(1)]. (109)

With this assumption, the time dependence of the electronic density is embedded in
the dynamical variables d, (¢), -+ , dy(?). The spatial profile A of the density can, for
instance, be tuned to match the ground state of the system.

The reduced Lagrangian L is obtained by integrating the Lagrangian density over
all space

Lﬁ@@LMﬁnyi/szmmxdmnw. (110)

Then, the Lagrangian L can be used to find the dynamical equations for the param-
eters d,(¢) through the Euler-Lagrange equations:

0_di - Ea_d, =Y (111)
which yield a system of differential equations such as

&) = fi(dy@), -, dy®),
dy (1) = fo(d, (@), -, dy @), a12)

@D = foldy @), . dy().

In summary, thanks to the above variational approach, the very complex nonlinear
many-body dynamics has been translated into a set of ordinary differential equa-
tions for the quantities d,(¢). The latter may be easily solved with standard numerical
methods, such as Runge—Kutta.

For practical applications, the variational method can be difficult to use. Indeed,
to find the Lagrangian (110), one has to specify, in addition to the electron density,
an analytical expression for the fields 8(r, r) and V(r, f) as functions of the dynami-
cal variables. The field 6(r, t) is related to the mean velocity and should satisfy the
continuity Eq. (104), while the field V}; has to obey Poisson’s equation (106). It is
worth insisting on the fact that we need to find analytical expressions of 8 and V},
to make the variational approach useful for applications. However, this can be dif-
ficult to do in practice and depends mostly on the mathematical expression that we
assumed for the electronic density, i.e. on the function A in Eq. (109). Neverthe-
less, the procedure generally yields rather robust results. For instance, it was noted
in Haas et al. (2009) that, even for an approximate density profile, the resonant
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frequencies computed with the variational method are still very close to the exact
ones, as will be shown in the forthcoming subsection.

6.2 Application I: electronic breathing mode in a 1D quantum well

As an example of application of the variational method, we consider an electron
gas trapped in a 1D harmonic potential.® This is a situation that can be encountered
when modeling the electron dynamics in a semiconductor quantum well. The evolu-
tion of the electron density n(x, f) and mean velocity u(x, f) is governed by the fol-
lowing 1D continuity and momentum equations

on 0

AL =0,

= T o (nu) (113)
ou ou__10p 10V, # o(%Vn »
ot ox  mnox mox 2m? 0x \/Z ’ (114)

where m is the effective electron mass, % is the reduced Planck constant, P(x, ?) is
the electron pressure, and V =V (x) + V(x, 1) is the effective potential, which is
composed of a confining and a Hartree term. The Hartree potential obeys the Pois-
son equation, namely V}; = —e? n/e, where € is the effective dielectric permittivity
of the material.

The pressure P(x, ¢) in Eq. (114) is related to the electron density »n via a poly-
tropic equation of state: P =nky T (n/n)?, where y = 3 is the 1D polytropic expo-
nent and 7 is the mean electron density.

The electrons are confined by a harmonic potential V, = %w%mxz, where w,, can
be related to a fictitious homogeneous positive charge of density n, via the relation
w, = (e*ny/me)!/2. We then normalize time to wj'; space to Ay = (ky T/m)'/? [wy;
velocity to Ay @; energy to kzT'; and the electron density to 7. Quantum effects are
encapsulated in the scaled Planck constant H = @, /ky T. These nondimensional
units will be used in the rest of this section.

The system of Egs. (113)—(114) corresponds to the following Lagrangian density:

oV, \? "
L(n,0,Vy) =1<—H> —nVH—n%— W) dn’
2\ ox

_1 n[%]erH_z [0_n]2 v
2 ox 4n Lox conf”
The velocity field can be written as the gradient of the ancillary function 6(x, 1),
as u=00/0x. The potential W(n) in Eq. (115) is a function of the pressure,
n dpP dn’

W= < = (3/2)(n/n)>. The Euler-Lagrange equations with respect to n, 6

dn’ n

(115)

3 Parts of this section appeared earlier in Ref. Haas et al. (2009). Copyright (2009) by the American
Physical Society.
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and V,; yield the equations of motion (113)—(114), as well as the Poisson equation

for V.
We further assume a Gaussian profile for the electron density
A (—d)
) )= — - s
n(x, 1) . exp [ P (116)

where d(f) and o(¢) are time-dependent functions that represent the center-of-mass
(dipole) and the spatial dispersion of the electron gas, respectively. The constant
A=N/ \/ﬂ, is defined in terms of the total number of electrons N = [ ndx.

The other fields to be inserted in the Lagrangian (115) are 6 and Vj; and they
are determined by requiring that the continuity and Poisson equations are satisfied.
Inserting the Ansatz of Eq. (116) into the continuity equation (113), one obtains:
0 = (6/20)(x — d)* + d(x — d). The solution of the Poisson equation with a Gauss-
ian electron density is

V,=-Ace /% — A [Z et
i ce 2§r\/_

4
20

) + const, (117)

where Erf is the error function.
Finally, one obtains the Lagrangian

i B) 2 2
L= 1 /de=d+0' _d+0'

27 A 2 2
Vi VEe w .
+ 2" Ao — -
2 662 802

which only depends on the dipole d and the variance o and their time derivatives.
The Euler-Lagrange equations corresponding to the Lagrangian L read as

d + d =0, (119)
2A 3A2 2

a+a=ﬁ;u+¢_ + 2 (120)
2 3263 403

The confining potential V. appears in the harmonic forces on the left-hand side
of Egs. (119) and (120). It should be noted that the equations for d and ¢ decouple
for purely harmonic confinement. Equation (119) describes rigid oscillations of the
electron gas at the effective plasmonic frequency, the so-called Kohn mode (Kohn
1961). Equation (120) describes the dynamics of the breathing mode, i.e. coherent
oscillations of the width of the electron density around an equilibrium value given
by & = 0. The three terms on the right-hand side of Eq. (120) represent, respectively,
the Coulomb repulsion, the electron pressure, and the Bohm potential.

The frequency £2 = €2(A, H) of the breathing mode can be obtained by lineariz-
ing the equation of motion (120) in the vicinity of the stable fixed point of U(c).
The behavior of the breathing frequency with A (which is proportional to the
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Fig.3 The breather frequency £
as a function of A, for H = 0.5.
Solid line: analytical results
from the variational method.
Squares: The Wigner—Poisson
simulations. The inset shows
the mean electron density (n)

as a function of A. Reprinted
with permission from Haas et al.
(2009). Copyright (2009) by the
American Physical Society

electron density) is shown in Fig. 3. For A = 0 (i.e., when the Coulomb interaction is
switched off) the exact frequency is £2 = 2aw,,. For finite A, the breathing frequency
decreases and approaches €2 = w,, for A — oo. This is due to the fact that, for large
A, the electron density becomes flat and equal to n, (see the inset of Fig. 3), and is
exactly neutralized by the ion density background. For such a spatially homogene-
ous system, one can use the results of the Bohm—Gross dispersion relation, which
yields £ = w,, for long wavelengths.

The above analytical results were compared to numerical simulations of the full
Wigner—Poisson equations. The results of the simulations, also plotted in Fig. 3,
agree very well with the theoretical curve based on the Lagrangian approach. The
agreement slightly deteriorates for larger values of A, because the electron density
deviates from the Gaussian profile due to strong Coulomb repulsion.

In summary, the variational method described here enabled us to obtain analyt-
ically the frequency of the breathing mode oscillations in the linear regime, with
excellent agreement in comparison with “exact” Wigner—Poisson simulations. Nev-
ertheless, the method is not restricted to the linear response and can be used for
large perturbations as well. The only requirement is that the density ansatz (116) is
approximately verified.

6.3 Application lI: Chaotic electron motion in a 3D nonparabolic anisotropic well

The same approach was later extended to the case of nonparabolic and anisotropic
wells (Hurst et al. 2016). The confining potential is the sum of a harmonic and an
anharmonic (but isotropic) part:
1 2
Vent = E(kXx2+kyy2+kzz2) +C(2 4y +2), (121)
where k; > 0 is the stiffness in the i-th direction and { > 0 measures the relative
strength of the anharmonic part of the potential.
The algebra is much more convoluted than in the preceding 1D case, but it is

still possible to obtain a Lagrangian function L that depends on the six variables
{d;(1), 0;()} and their time derivatives, where i = x, y, z denotes the Cartesian axes:

@ Springer



7 Page 32 of 38 Reviews of Modern Plasma Physics (2021) 5:7

o1 1 _ 1 22 52
Lld;, 0;,d;,6;] = N / Ldr = 5 Z <5i +d; > - Uld;, 0, (122)

where N is the total number of electrons and U(d;, 6;) = U,(d;) + U (0;) + U, (d;, 0;).
The different potential terms read as:

1 )
=3 2k} (123)

1/3
1 1 1 1/3 0,0,0,
Uo_ =§ Zk’62+<z ;)(g+a1N[6xO—),6z] — a2ﬁ|: ]\;} Z:I >

2/3 1/3
ral] el

0,0,0, 0,0,0,

(124)

U, :;[2 (30 +6a2? +d*) + Y(o2 + ) (o + )| (12)
i i#k

and represent, respectively, the dipole motion (U,), the breathing motion (U,), and

the coupling between the dipole and breathing dynamics (U,,). Note that such cou-

pling disappears for purely harmonic confinement ({ = 0). The ; are dimensionless

coefficients. The equations of motion obtained from the Euler—Lagrangc equations

read as:

ou, oU, . _ oU, aU,

G=%a T ed, 0 T e, Tas (126)

A L L

Figure 4 shows the Poincaré maps in the (d,, d,) plane for increasing values of the
initial excitation § [d; = 6, d, = —d =g§andd, =0, at7 = 0]. At low excitation, the
motion is periodic. When ¢ is mcreased the phase space area progressively fills up,
first in a regular way (up to 6 = 1), and then in an irregular ergodic way. The latter
behavior clearly indicates the presence of chaotic motion.

7 Conclusions and perspectives

The aim of this short review was to present the results on quantum fluid mod-
els obtained in our research group at the University of Strasbourg during the last
2 decades. We covered the basics of quantum fluid models for systems of spin-
less particles, then extended the models to include the spin degrees of freedom,
as well as semirelativistic corrections. In the last part, we outlined the bases of
a variational approach which enables one to reduce the complexity of the fluid
models to a set of simple ordinary differential equations for macroscopic quan-
tities such as the center of mass and the width of the electron density. Several
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Fig.4 Poincaré sections in the plane (d,, d,) for different values of the initial excitation: 6 = 0.01 (a), 0.1
(b), 1 (¢), and 3 (d). The simulations were performed for an anisotropic well with k., =k, =5, k. =1,
N =50, and ¢ = 0.01; a* is a reference length. Reprinted with permission from Hurst et al. (2016). Cop-
yright (2016) by the American Physical Society

examples taken from past works illustrated the applications of quantum fluid the-
ory to various physical systems, mainly issued from condensed matter and nano-
physics. Other areas of possible interest for these methods include laser—plasma
interactions (Crouseilles et al. 2021) and warm dense matter (Dornheim et al.
2018; Fourment et al. 2014). Applications to the astrophysics of compact objects
(Uzdensky and Rightley 2014) were not addressed here, but are surely an impor-
tant area for future research.

Some care was devoted to establish the validity of the quantum fluid models
under consideration (see Sect. 3). This was done by comparing the dispersion
relations obtained from the fluid models to those derived from a fully kinetic
mean-field approach (Vlasov or Wigner). We analyzed in particular the limiting
cases of high-frequency (Langmuir) and low-frequency (acoustic) waves. Check-
ing the validity and limits of applicability of the various quantum fluid models is
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an issue that is unfortunately often neglected in the literature (Bonitz et al. 2019),
and we encourage future investigators on these topics to do so systematically.

From a fundamental point of view, the relationships of the quantum fluid methods
to the time-dependent density functional theory (TDDFT) (Moldabekov et al. 2018;
Manfredi et al. 2019) and Thomas—Fermi theory (Michta et al. 2015) were high-
lighted in several past works. Much less explored is the close link to the so-called
orbital-free density functional theory (Witt et al. 2018), which appears to be closely
related to the present fluid theory. More work is needed to clarify the similarities
and differences between the two approaches.

Finally, some effort should be directed to generalize the quantum fluid models
to include non-ideal effects, such as dynamical correlations that lead to dissipation
and damping. These effects are important on timescales going beyond the electron
coherence time, which for standard metallic nano-objects is of the order of 100 fs. In
nanophysics, estimating the viscosity of a quantum electron gas is an open and inter-
esting problem, with applications to graphene and other low dimensional materials
(Levitov and Falkovich 2016).

There have been some attempts to include potentially dissipative effects in
TDDFT. The most accomplished of such attempts is the so-called time-dependent
current-density-functional theory developed by Vignale and Kohn (1996), which
uses the electron current density j(r,f) as the basic building block, instead of the
density n(r, t). However, the relevant equations are mathematically very complicated
and not easy to implement in practical situations. Recently, using the Vignale and
Kohn approach, Ciraci incorporated some viscosity terms in the quantum fluid equa-
tions (Ciraci 2017).

For phase-space methods, the construction of dissipative terms can rely on the
experience acquired in plasma physics, and some examples have been given in our
earlier review (Manfredi et al. 2019). How to include such dissipative effects in
quantum fluid models, both spinless and spin-dependent, is another important ave-
nue for future research.
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