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Abstract

Using a variational approach based on a Lagrangian formulation and Gaussian
trial functions, we derive a simple dynamical system that captures the main
features of the time-dependent Schrodinger—-Newton equations. With little
analytical or numerical effort, the model furnishes information on the ground-
state density and energy eigenvalue, the linear frequencies, as well as the
nonlinear long-time behaviour. Our results are in good agreement with those
obtained through analytical estimates or numerical simulations of the full
Schrodinger—-Newton equations.

PACS numbers: 04.40.—b, 03.65.Ta

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, there has been a renewal of interest in the set of nonlinear equations known as
the Schrodinger—Newton (SN) equations. These consist of the ordinary Schrodinger equation

'haly i AV + mV (r, )WV (1)
ih— = —— mV (r, ,

ot 2m
where the gravitational potential V (r, ¢), in the Newtonian approximation, is obtained self-

consistently from Poisson’s equation
AV = 47 Gm|V|?, ()

where m is the mass of the system and G is the gravitational constant. The source term in
Poisson’s equation is provided by a matter density p(r, ) = m|W¥|? that is proportional to the
probability density as given by the wavefunction W(r, ¢). The resulting equations are therefore
nonlinear.

SN-type equations have been proposed in various areas of physics and astrophysics. For
instance, it has been suggested that gravitation, unlike other forces, may not be quantized at
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all [1]. In that case, the stress—energy tensor 7, in Einstein’s equations should be replaced
by its quantum-mechanical average (7,,,). The SN equations can thus be viewed as the
nonrelativistic (¢ — o0) and Newtonian (G — 0) limit of the modified Einstein’s equations
G = @nG/ ) (T,,,). More formally, Giulini and GroBardt [2] recently showed that the SN
equations can be derived in a WKB-like expansion in 1/c from the Einstein—KIlein—Gordon
and Einstein—Dirac system.

In another context, the SN equations have been proposed as a fundamental modification
of the Schrodinger equation due to gravitational effects. Penrose [3, 4] and Diosi [5] postulated
that gravity might be at the origin of the spontaneous collapse of the wavefunction and proposed
the (stationary) SN equations as a possible candidate for an approximate description of such
gravitationally induced collapse.

Finally, the SN equations have been used in an astrophysical context to study self-
gravitating objects such as boson stars [6, 7] or to describe dark matter by means of a scalar
field [8].

Whatever their present theoretical status and possible applications, the SN equations
represent a minimal model in which nonrelativistic quantum mechanics is coupled self-
consistently to Newtonian gravity. As such, they are worth investigating in some detail, both
for their static and their dynamical properties.

Many theoretical results on the SN equations were obtained in the past, using either
analytical or numerical approaches [9]. For instance, the energy eigenvalues (all negative)
have been determined numerically with good precision [10] and some analytical estimates
exist on the lower bound for the ground-state energy [11]. The linear stability properties of the
ground state were also investigated [10].

In the time-dependent and fully nonlinear regime, virtually all results are numerical, with
few exceptions whose validity is restricted to short timescales [12]. An unexpected result was
published a few years ago by Salzman and Carlip [13]. In numerical simulations of spherically
symmetric systems, these authors observed that, for masses above a certain critical value,
the wavefunction ‘collapsed’ at the origin, at least within the accuracy of their simulations’.
The most astonishing feature of these results was that the critical mass was far smaller than
what could be expected from simple order-of-magnitude calculations. However, more recent
calculations [12, 14] disagree with the results of Salzman and Carlip and set the critical mass
at a value that is several orders of magnitudes larger and consistent with analytical estimates.

In this work, we revisit the SN equations using a Lagrangian variational method [15, 16].
With this approach, one can arrive at a single ordinary differential equation that describes
the evolution of the width of the mass density. This method reproduces all the main results
of the ground state and linear dynamics derived previously. In addition, this approach is not
restricted to linear theory and can be used to investigate nonlinear oscillations or the long-time
dynamics. Finally, the mathematical simplicity of the governing equation makes it easy to
intuit at a glance the salient features of the solutions.

2. Derivation of the model

2.1. Normalization
Let us first rewrite the SN equations (1)—(2) in a dimensionless form, using the analogue
of atomic units for the gravitational interaction. Thus, lengths are measured in units of the

3 One should not mistake this gravitational collapse (whether it is real or not) with the quantum collapse of the
wavefunction during a measurement, which is a nonunitary process. The time-dependent SN equations are unitary
and thus cannot describe any such process.
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gravitational ‘Bohrradius’ ag = h?/(Gm?), energy is measured in units of Eg = m>G*/h? (the
gravitational equivalent of the Hartree) and time in units of t; = h/E¢. To ensure conservation
of the wavefunction norm, one also needs to normalize ¥ to a53/ 2. The dimensionless SN
equations then read as

o lA\II—i-V(r HWY (3)
l——=—7 DV,

ot 2
AV = 47 |W|?, )

with the normalization condition f |W|?dr = 1. Note that equations (3) and (4) are now free of
all parameters. The evolution of the system is then entirely determined by its initial condition.
For instance, if the initial condition is spherically symmetric and Gaussian (as will be the case
in the rest of this paper), the only relevant dimensionless parameter is the width of the initial
Gaussian measured in units of ag.

2.2. Lagrangian approach

In this section, we will follow the derivation described in [15, 16] in the context of atomic
or condensed matter physics, where the relevant interaction is Coulombian rather than
gravitational.

The SN equations (3) and (4) can be written in a hydrodynamical form by using the
Madelung transformation ¥ = ,/p exp(iS), where ,/p is the amplitude and S(r, t) is the
phase of the wavefunction [17]. The hydrodynamical continuity and momentum equations
read

0

P4V (pu) =0, )
dt

d 1 V2

M V= vy iy (VP , (6)
ot 2 NG

and the velocity is defined as the gradient of the phase, u = VS.
It can be shown that the above hydrodynamic equations (5) and (6), together with Poisson’s
equation (4), can be derived from the following Lagrangian density £ [16]:
s, (Vp)'  (VV)’

p 2
L(p,S,V)== (VS —
(p ) 2( )+pat+ 8p + o

So far, no approximation was made. The purpose is now to derive a set of evolution equations
for a small number of macroscopic quantities that characterize the matter density profile. With
this aim in mind, let us assume that the system is spherically symmetric and that the density
profile is Gaussian:

+ pV. 7)

_ 1 r2 g
p(r’t)_yﬁ/z—m(t)e)(p<_1€2_(t)>’ ®)

where r = |r| and R(¢) is the time-dependent size of the density. For the above density profile,
the exact solution of Poisson’s equation (4) is

1 r
V(r,t):—;erf(}m), (9)

where erf(x) is the error function. In addition, the continuity equation (5) is exactly solved by
the following velocity field: u = (R/R)r, which stems from the phase function S = (R/2R)r?.
The dot denotes derivation with respect to time.
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Figure 1. Radial profile of the pseudo-potential U (R) = 1/(2R*) — C/R.

We can now compute the Lagrangian by plugging equation (8) and the above solutions

for V and § into equation (7), and integrating over all space, i.e. L = —% [ L dr, where the
multiplicative factor was introduced for the convenience of notation. The result is
L(R,R) = R ! + ¢ (10)
U2 2R R

where C = 2/(3+/2m). The corresponding equations of motion are obtained from the Euler—
Lagrange equations

doL IL
—— - — =0, (11)
dr9R OR
which yield
PR 1 C
R R (12)

Equation (12) is equivalent to the Hamiltonian equation of motion of a point-like particle
evolving in the external potential U(R) = 1/ QR*») - C /R (see figure 1). The first term is
repulsive and represents kinetic energy due to velocity dispersion (uncertainty principle),
whereas the second term is attractive and represents self-gravity.

Note that this result was obtained from a rigorous development based on a Lagrangian
variational principle. In particular, no assumptions of linear response were made in the
derivation, so that equation (12) can be used to extract information on the nonlinear regime
of the time-dependent SN equations. We also stress that the evolution obtained with the
variational method is by construction unitary, since the trial Gaussian density (equation (8))
automatically satisfies [ pdr = [ |W|*dr = 1 for all times.

3. Results

The pseudo-potential U (R) is plotted in figure 1. It goes to infinity for R — 0 and goes to
zero as R~! for R — oo. It crosses the horizontal axis at a point Ry such that U (Ry) = 0 and
has a single minimum at R, where U’(R;) = 0. The values of these two points are easily
determined and yield

1
0 —_— =

3
= ¢ V27 ~ 1.88; Ry = 2Ry = Evzn ~ 3.76. (13)

3
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Figure 2. Ground-state density: the numerically computed profile (solid line) and the Gaussian
profile from equation (8) with R = R (dashed line).

3.1. Ground state

The matter density profile in the ground state is given by equation (8), with R = R;,
corresponding to the minimum of U. This profile is shown in figure 2 (dashed line), together
with the ground-state density obtained from a numerical solution of the stationary SN equations
(solid line). The agreement is very good.

Stationary solutions of the SN equations must satisfy the virial theorem, which states that
the potential energy (in absolute value) is twice the kinetic energy. We can verify that this is
the case using the wavefunction W = ,/p from equation (8) and the potential of equation (9).
The kinetic energy is

1 [ (dw\> 3
K=- — | dnrrdr=—, (14)
2 ) \dr 4R?

whereas the potential energy yields
1

V27R
It is readily checked that, when R = Ry, |P| = 2K = 1/3m, so that the virial theorem is
satisfied.

The energy eigenvalue of the ground state (lowest energy state) has been computed
numerically many times and an accepted value is £y = —0.163 [10, 18]. More accurate
solutions may be obtained using the methods outlined in [19]. In our notation, Ey = K +2P =
—3K = —1/2n =~ —0.159, which is rather close to the numerical value (the error is less than
3%).

Finally, we note that, when R = Ry, one obtains P = —K so that the total energy is zero.

1
P= 3 / pVarr?dr = — (15)

3.2. Dynamics

One can linearize the equation of motion (12) around the equilibrium by writing R = R + éR,
where §R(t) is a small perturbation. Substituting this into equation (12) and taking the Fourier
transform in the time variable (i.e. assuming 6R(t) ~ i) yield the following oscillation
frequency:

3 2C

2
Q| = | — — = — ~0.0707. (16)
R Ry 9
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Figure 3. Frequency spectrum of /(r2(¢)) for small oscillations around the ground-state
equilibrium, obtained from the full time-dependent SN equations.
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Figure 4. Evolution of the mean square radius +/(r2(¢)) for the full time-dependent SN equations
with a Gaussian initial condition given by equation (8) with R(0) = R;.

A perturbation analysis of the full time-dependent SN equations was performed by Harrison
et al [10]. The lowest oscillation frequency that these authors find (see figure 2 in [10]) is close
to Qe = 0.035, which is in very good agreement with equation (16). (The extra factor of 2
comes from the fact that Harrison et al perturb the wavefunction instead of the density |¥|%.)

In order to check this result, we solved the spherically symmetric time-dependent SN
equations, using a second-order Crank—Nicolson method with centred differences for the
spatial differentiation. The initial condition is the exact ground state computed numerically
(solid curve in figure 2), to which a very small perturbation was added. The root mean square
of the radius /(r2(¢)) is then computed using the standard quantum average. Its frequency
spectrum is shown in figure 3 which displays a clear peak around 2 = 0.067, which is again
very close to equation (16).

For an initial condition that is slightly farther from the exact ground state, we expect the
SN equations to display some nonlinear effects. This is apparent from figure 4, where the
Gaussian profile given by equation (8) with R(0) = R; (dashed line in figure 2) was used as
an initial condition. The time history of /(r2(¢)) clearly shows some nonlinear oscillations,
although their frequency is still close to the linear estimate given by equation (16).

It is also useful to monitor the evolution of the density p(r,?) in order to check that
it stays sufficiently close to a Gaussian function, which is required for the validity of the
variational approach. This is done in figure 5, where we plot the mass density obtained from
numerical simulations of the full SN equations (solid lines) and compare it to a Gaussian
density (equation (8)) with the same width (dashed lines). The left panel refers to the same
evolution as in figure 4 at¢ = 500. The right panel refers to a case where the density is initially

6
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Figure 5. Numerically computed density (solid line) and corresponding Gaussian density with the
same width (dashed line). Left panel: the same case as in figure 4 at time ¢+ = 500. Right panel:
expanding solution with initial width R(0) = 0.3R;, plotted at time ¢ = 200.

localized near the origin, so that R(0) < R;. In this case, the system expands almost freely
and at ¢t = 200 (corresponding to the plot of figure 5) it has attained a considerable size.
In both cases, the numerically computed density is reasonably close to a Gaussian profile,
thus strengthening our confidence in the present variational approach. We also stress that for
similar problems involving the Coulomb interaction and rather strong nonlinearities (quartic
confinement), the variational procedure appeared to work rather well [15].

Finally, we consider the long-time solutions of equation (12). From the shape of the
pseudo-potential U (R) (figure 1), it is clear that three different regimes are possible for an
initial condition R(0) > 0, R(0) = 0.

e If R(0) < Ry, then the total energy is positive, i.e. Kinetic energy dominates over
gravitational energy. In this case, the wavepacket expands indefinitely. Although the
expansion is slowed down initially by the gravitational attraction, the asymptotic evolution
(t — o0) is that of a free particle, i.e. R ~ 1.

e If R(0) > Ry, then the total energy is negative, i.e. gravitational energy dominates over
kinetic energy. The wavepacket oscillates at a nonlinear frequency that can in principle
be computed from the expression of U (R) (it reduces to the linear frequency €2 when
R(0) =~ R)).

e If R(0) = Ry, then the total energy is exactly zero. The wavepacket still expands, but at
a rate slower than R ~ ¢. The first term on the right-hand side of equation (12) becomes
negligible for long times. Matching the remaining two terms shows that the expansion
should go like R ~ t?/3.

The three regimes described above are neatly reproduced in numerical simulations of
equation (12), as shown in figure 6. It is also worth noting that in cosmology these regimes
correspond respectively to an open, closed and Einstein—de Sitter universe (which expands
as t2/3).

Of course, the full evolution of the wavefunction according to the SN equations can be
much richer than this simple picture. For large masses, the wavepacket can break down into
two parts, with some mass being ejected to infinity, while the rest remains confined [12, 14].
This behaviour cannot be captured by our variational approach, which postulates that the
density remains close to the Gaussian profile for all times. One could nevertheless extend
the present model by considering more complicated trial functions involving more than one
variational parameter. This would result in a set of coupled nonlinear differential equations
that generalize equation (12).
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Figure 6. Solutions of the equations of motion (12) for three initial conditions: R(0) < Ry (red
solid line), R(0) > Ry (blue line) and R(0) = Ry (black solid line). The dashed straight lines
represent the curves R ~ ¢ (red) and R ~ 12/3 (black).

4. Discussion

The main interest of the method outlined in this paper is that it relies on a rigorous development
based on a variational principle, while at the same time yielding results that are simple and
intuitive. The very shape of the pseudo-potential U (R) (figure 1) informs us on the type of
motions that are to be expected. For instance, it is clear that wavepacket dispersion occurs
if R < Ry, whereas it is inhibited if R > Ry. Furthermore, if R > R, &~ 3.76 h?/(Gm?>) the
wavepacket should start to contract right from the beginning of the evolution. (For clarity, we
restore dimensional units in this section.)

Now, we want to compare the above estimations with the numerical results of Giulini
et al [12], who considered a system of initial size R = 0.707 um (¢ = 0.5 um in their
notation). They observed a contracting wavepacket for masses greater than 7 x 10° amu
(atomic mass units), which is rather close to the value m = 5.74 x 10° amu predicted by our
formula Rm? = 3.76 K2 /G. The results of other simulations [14] are also consistent with these
findings.

It is clear that the importance of self-gravitational effects in the SN equations depends on
both the size R and the mass m of the object under consideration. Therefore, it is useful to
plot a mass—radius diagram on a log—log scale (figure 7), where these two quantities appear
explicitly. Gravitational effects should play a significant role for objects that fall in the region
above the curve defined by Rm?® = const. = 3.764%/G (solid line).

Experiments aimed at detecting the role of gravity on quantum decoherence will probably
involve studying the interference fringes of solid-state mesoscopic objects, which should be
light enough for quantum coherence to be observable but also heavy enough for gravitational
effects to play a measurable role. Interferometry experiments on small silica spheres [20] and
gold clusters [21] are possible candidates for such studies.

In order to fix ideas, let us focus on the case of gold or other metal clusters, for which
the number density is typically ngq & 5 x 10%® m~3. The dashed line in figure 7 represents
the curve at constant density m(amu) /R = ngold- The intersection of the dashed line with the
solid line Rm® = 3.76 h?/G yields the minimum mass and radius that gold clusters should
possess for gravitational effects to play a significant role. This turns out to be of the order of a
few microns in size and about 5 x 10° in atomic mass units. The same calculation performed
for other metal clusters or the silica spheres mentioned above yields similar results.

The experimental challenge will be to perform quantum interference experiments on such
massive objects and to control other non-gravitational sources of decoherence. In practice, one

8
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Figure 7. Mass-radius diagram. Gravitationally induced effects should be important in the region
above the solid line, which corresponds to the curve Rm® > 3.76 h?/G. The dashed curve
corresponds to a constant density: m(amu)/R3 = 5 x 10*28m~3 (typical solid-state density).

may perform different experiments for increasing values of the cluster mass, thus moving from
the left to the right on the dashed line in figure 7. When crossing the solid line, gravitational
effects should be detected, perhaps as a reduction in the contrast of the interference fringes.
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