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Abstract – The concept of Logical Entropy, SL ¼ 1�Pn
i¼1p

2
i , where the pi are normalized probabilities, was

introduced by David Ellerman in a series of recent papers. Although the mathematical formula itself is not new,
Ellerman provided a sound probabilistic interpretation of SL as a measure of the distinctions of a partition on a
given set. The same formula comes across as a useful definition of entropy in quantum mechanics, where it is
linked to the notion of purity of a quantum state. The quadratic form of the logical entropy lends itself to a
generalization of the probabilities that include negative values, an idea that goes back to Feynman and Wigner.
Here, we analyze and reinterpret negative probabilities in the light of the concept of logical entropy. Several
intriguing quantum-like properties of the logical entropy are derived and discussed in finite dimensional spaces.
For infinite-dimensional spaces (continuum), we show that, under the sole hypothesis that the logical entropy
and the total probability are preserved in time, one obtains an evolution equation for the probability density
that is basically identical to the quantum evolution of the Wigner function in phase space, at least when one
considers only the momentum variable. This result suggest that the logical entropy plays a profound role in
establishing the peculiar rules of quantum physics.
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1 Introduction

As its title suggests, this work sits at the crossroad of three different topics: (a) an alternative definition of entropy,
(b) the extension of standard probabilities to negative values, and (c) the relevance of the first two items to our understand-
ing of quantum mechanics. Here, we will introduce each topic separately, before bringing them together in the following
sections.

1.1 Logical entropy

“Logical entropy” is a concept introduced by David Ellerman in a series of works spanning the last decade [1, 2]; see also
Ellerman’s paper in this Special Issue. Succinctly, logical entropy is based on the concept of distinctions. If a certain set U is
partitioned into a number n of subsets Bi (such that [n

i¼1Bi ¼ U), each endowed with a probability pi of finding an element
of U in that subset, then the probability that in two independent draws one will obtain elements in distinct subsets Bi and
Bj6¼i is: pi(1 � pi). This is precisely the concept of distinction, i.e., the ability establish that two independent draws are
different from one another.

Summing over all n subsets, we obtain the total number of distinctions, which is the definition of the logical entropy SL:

SL ¼
Xn
i¼1

pi 1� pið Þ ¼ 1�
Xn
i¼1

p2i ; ð1Þ

where we used the fact that
P

ipi = 1. The subsets Bi can possibly contain one single element, in which case SL represents
the probability that two consecutive draws yield different elements of U. In this work, we will mainly consider this case,
unless otherwise stated. It is clear that 0 � SL � 1. The lower bound is reached when one element has probability pi = 1,
while for all others pj 6¼i = 0. For equal probabilities (pi ¼ 1

n, "i), one gets: SL ¼ 1 � 1
n ! 1, when n ? 1.
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Following [3, 4], one can also define the information I as the complement of the entropy to unity:

I ¼ 1� SL ¼
Xn
i¼1

p2i : ð2Þ

This quantity reflects the knowledge we have of the state of a physical system, being maximum when we know its state
with certainty, and minimum when all states are equally probable.1 The information I has the nice property of being
the square of a norm in Rn, actually the Euclidean norm. This connection to Euclidean geometry allows one to use standard
geometrical concepts when making use of the logical entropy. For instance, one can define the scalar product:
p � q ¼Pn

i¼1piqi between two probability distributions {pi}, {qi}, and their Euclidean distance d(p, q) as:

d2ðp; qÞ ¼
Xn
i¼1

ðpi � qiÞ2: ð3Þ

Of course, the logical entropy definition (1) implies very different properties from the standard Shannon–Von Neumann
entropy

SVN ¼ �
Xn
i¼1

pi log pi: ð4Þ

In particular SVN is additive, while SL is not, at least not in the standard fashion, see [4, 5]. For a system known with
certainty, both entropies yield, SVN = SL = 0, but for maximal uncertainty SVN = logn, whereas SL ¼ 1� 1

n.
Again we emphasize that, in contrast to the Shannon–Von Neumann entropy, the logical entropy SL represents both a

probability (of obtaining different results in two consecutive draws, as mentioned above) and a norm in the Euclidean space
Rn. These facts have important consequences, as we will see in the next section.

Although Ellerman [1, 2] provided a solid and fruitful probabilistic interpretation of this definition of entropy, the
formulae (1) and (2) are not new. Quite the contrary, they have been discovered and rediscovered many times in the past,
in very different areas of research. In biology and ecology, SL is known as the Gini–Simpson index [6–8], which quantifies the
diversity of species in an ecosystem. It was used by Polish mathematicians (and then by Alan Turing himself) to find
patterns in messages generated by the Enigma machine during World War 2 [9]. In statistical mechanics, SL is a special
case of the Tsallis entropy [10] with index q = 2. In quantum physics, a version of SL was used to quantify our knowledge
of the state of a quantum system [3, 11]. It was also shown to be particularly adapted to the Wigner phase-space
representation of quantum mechanics [4].

1.2 Negative probabilities

The very definitions of SL and I lend themselves to the natural generalization whereby the probabilities pi can take
negative values. This is in analogy with vectors in Rn, which can indeed have negative components, although their norm
remains positive.

Negative probabilities have a long history of interest, especially among physicists struggling to make sense of some of the
weird properties of quantum mechanics. Feynman [12] was one of the first to ponder the meaning of negative probabilities in
a quantum context (although he published his ideas in 1987 in a volume in honor of David Bohm, he states there that he
developed these reflections some twenty years earlier). For Feynman, negative probabilities should be considered as a useful
bookkeeping tool just like negative numbers.2 As an example, he mentions a man starting a day with five apples, giving
away ten at midday and earning eight in the evening. The initial (5) and final (3) numbers of apples owned by the man
are both positive and thus unambiguous to interpret. But if we take the numbers at face value, the man will have �5 apples
some time in the afternoon, which does not quite make sense unless we postulate that one is allowed to count the number of
apples only in the morning and in the evening, but not in the middle of the day. Hence, negative probabilities are allowed as
long as they intervene in contexts where they cannot be observed directly. All this is reminiscent of the limitations on
measuring some quantities, which are intrinsic to quantum physics [13, 14].

Of course, negative probabilities had appeared in quantum mechanics even earlier, when Wigner [15] introduced his
celebrated pseudo-probability distribution in the classical phase space (“Wigner function”), which almost always takes
negative values. Indeed, the negativity of a Wigner function can be used as a tool to quantify the degree of quantumness
of a particular state, as was done even experimentally [16].

1 As an aside, we note that the idea of information as distinctions (differences, distinguishability, and diversity) would take the higher
logical entropy states as making more distinctions or showing more diversity and distinguishability between the outcomes. In that
sense, higher logical entropy states may be thought as havingmore, rather than less, information. But here we stick to the definition of
information as presented in the main text, which is the way it is usually interpreted in physics.
2 The need for negative numbers can be circumvented through the trick of double-entry bookkeeping, see [33].
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Negative probabilities have also been studied in a fundamental mathematical context [17–20] and for applications to
financial modeling [21]. A thorough, if not very recent, review on the topic of negative probabilities in physics was published
in 1986 [22], and contains quotations from several eminent scientists on this somewhat controversioal problem.

1.3 Quantum mechanics

The earliest relationship between negative probabilities and quantum mechanics dates back to Wigner [15], who in
1932 introduced a pseudo-probability distribution in the phase space (x, p) which possesses many of the properties of
classical probability distributions (for instance, it can be used to compute averages using the classical formula), except
non-negativity. The Wigner function w(x, p, t) can describe both pure and mixed quantum states and evolves in time
according to an integro-differential equation similar to the classical Liouville equation. Wigner functions have proven
exceedingly useful in a variety of domains, ranging from condensed matter and nanophysics, to quantum plasmas and
quantum optics (see [23] for a review).

The Wigner equation conserves in time not only the total probability
R R

w(x, p, t)dx dp, but also the integral of the
square of the Wigner function:

R R
w2(x, p, t)dx dp. Note that higher powers

R R
wrdx dp, with r > 2, are not conserved, in

contrast to the classical Liouville equation, for which the conservation property is valid for any value of r. Some time
ago, the present author suggested that one uses

SL ¼ 1� I ¼ 1� h
ZZ

w2dx dp ð5Þ

as the definitions of entropy and information [4], where h is Planck’s constant (this is necessary to render the
integral term in the above expression non-dimensional). Equation (5) can be viewed as the continuous counterpart of
equation (1), i.e., its extension to an infinite dimensional space. Also note that the logical entropy can be expressed
in terms of the trace of the density operator, as SL ¼ 1� Trðq̂2Þ.

More recently, negative probabilities have been explored in various quantum mechanical contexts, such as indistiguisha-
bility [24], quantum computation [25], and contextuality [26]. Besides, an operational interpretation of negative probabilities
has been proposed by Abramsky and Brandenburger [27, 28]. In [28], they propose a simple scenario to illustrate pedagog-
ically the use of negative probabilities in quantum mechanics, by considering a system comprising two-bit registers.

The rest of this work is devoted to the study of the properties of the logical entropy (1) and information (2) when one
relaxes the requirement that pi � 0, "i. It will be claimed that the logical entropy constitutes the natural framework for the
introduction of negative probabilities. Interestingly, by combining the definition of logical entropy with negative probabil-
ities, one can recover many properties that are typical of quantum systems.

The main result obtained here is that, simply by requiring the logical entropy to be conserved in time, one obtains an
evolution equation for the probability density that is virtually identical to the evolution equation of the Wigner function in
physics, at least when one considers only the momentum variable. This remarkable result suggest that the logical entropy
plays a profound role in establishing the peculiar rules of quantum physics.

2 Finite-dimensional spaces

We consider a set of n outcomes, each endowed with probability pi. The probabilities satisfy

Xn
i¼1

pi ¼ 1; ð6Þ

Xn
i¼1

p2i ¼ R2; ð7Þ

where 0 � R � 1. Then the logical entropy and information are, respectively, SL = 1 � R2 and I = R2. The number R can
be interpreted as the Euclidean norm of the vector p = (p1, . . . pn) in Rn: ||p|| = R. Geometrically, equations (6) and (7)
represent respectively a hyperplane and a hypersphere of radius R in Rn, and their intersection yields the probability
distributions {pi} satisfying those equations.

In analogy with quantum physics, we shall call pure states the probability distributions for which R = 1 (corresponding
to maximum information and minimum entropy) andmixed states those for which R < 1. Indeed, Wigner functions for pure
and mixed quantum states satisfy precisely these properties, when the entropy is defined as in equation (5). If we request all
probabilities to be nonnegative, then the only pure states are those for which pi = 1 and pj6¼i= 0, that is, the ith outcome can
be predicted with certainty. However, if we admit negative probabilities, there exist other pure states with some pi < 0
which still satisfy equations (6) and (7) with R = 1.
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To dissipate all ambiguities, here we are not dealing with “probability amplitudes” as in quantum mechanics. Probability
amplitudes are complex quantities, while our pis are real numbers, albeit potentially negative. Our approach is the same as
the one based on Wigner functions (also real quantities), which represent quantum states with real, but signed, numbers.

In the rest of the present section, we will focus on the cases n = 2, which is trivial and does not admit negative prob-
abilities, and n = 3, which is much richer. The infinite-dimensional case will be treated in Section 3.

2.1 General properties for n = 2 and n = 3

For n = 2, the solution is given by the intersection of the straight line and the circle shown in Figure 1. It is clear that for

R � 1, only positive solutions are allowed. Solving equations (6) and (7) yields p1;2 ¼ 1�
ffiffiffiffiffiffiffiffiffi
2R2�1

p
2 . No solutions exist for

R <
ffiffiffi
2

p
=2 (dashed straight line tangent to the circle). For this value of R, one obtains p1 = p2 = 1/2, which is the maximally

mixed state (with largest entropy SL = 1/2).
The case n = 3 is depicted schematically in Figure 2a for the special case R = 1 (pure states). It is evident that there are

three pure states with nonnegative probabilities: (1, 0, 0), (0, 1, 0) and (0, 0, 1), which represent certainty for one of the
three possible outcomes. These states form an orthonormal basis which we denote by ei. However, there exist an infinity
of other pure states with negative probabilities. These are the states that lie on the circle given by the intersection between
the sphere of radius R and the plane p defined by the three vectors ei. Actually, all pure states, except e1, e2 and e3, feature
some negative probabilities. A simple example is the state: p = (2/3, 2/3, �1/3).

A view of the plane p is shown in Figure 2b. The circles represent the intersections of the plane and the sphere, for
different values of the radius R. Points that lie outside the equilateral triangle ABC (with sides a ¼ ffiffiffi

2
p

) have negative
probabilities. The circumscribed circle, corresponding to R = 1, has radius re ¼ a=

ffiffiffi
3

p ¼ ffiffiffiffiffiffiffiffi
2=3

p
.

For information I = R2 smaller than unity, i.e. for mixed states, there are some positive and negative solutions (thin red
circle in Fig. 2b). Further decreasing R, we reach the situation of the inner circle of radius ri ¼ re=2 ¼ ffiffiffi

6
p

=6, for which all
probabilities are positive. To determine the value of R corresponding to ri, we consider the cone of vertex O and base radius
ri (see Fig. 2c). The height k of the cone is the distance between the origin O and the plane p, which turns out to be
k ¼ 1=

ffiffiffi
3

p
. From this, we deduce that the radius R corresponding to the inner circle in Figure 2b is R ¼ 1=

ffiffiffi
2

p
. Finally,

for R ¼ k ¼ 1=
ffiffiffi
3

p
, the sphere is tangent to the plane p, and the only solution is p1 = p2 = p3 = 1/3, corresponding to max-

imum entropy SL = 2/3. For smaller R, there are no solutions.
In summary, defining the radii Rmax = 1, Rpos ¼ 1=

ffiffiffi
2

p
, and Rmin ¼ 1=

ffiffiffi
3

p
, we obtain that:

� For Rpos < R � Rmax, there exist some negative-probability solutions;
� For Rmin � R � Rpos, there exist only positive-probability solutions;
� For R = Rmin: maximum entropy solution p1 = p2 = p3 = 1/3;
� For R < Rmin, there exist no solutions.

The above considerations can be easily extended to n > 3, yielding: Rmax = 1, Rpos ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, and Rmin ¼ 1=

ffiffiffi
n

p
, with

maximum entropy solution: pi = 1/n, "i. We note that for large n, one has Rmin � Rpos 	 1=
ffiffiffi
n

p
. Therefore, almost all exist-

ing solutions will display some negative values.

Figure 1. Schematic representation of the case n = 2. The total probability constraint (6) is represented by the dashed straight line,
while the entropy constraint (7) is represented by the blue quarter circle of radius R. Solutions are given by their intersections.
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From Figure 2, it is evident that, for pure states, the most negative value of pi is reached when two probabilities are
identical and positive, and the third one is negative, i.e., p1 = p2 = p and p2 = �q. Direct computation yields the result
p = 2/3 and q = 1/3. The three vectors: u1 
 (2/3, 2/3, �1/3), u2 
 (2/3, �1/3, 2/3) and u3 
 (�1/3, 2/3, 2/3) also
constitute an orthonormal basis in R3.

This reasoning can be extended to n dimensions, yielding p1 = . . . = pn – 1 = 2/n and pn = (2� n)/n. From this, one can
construct an orthonormal basis {u1. . .un}. For instance, for n = 4 one gets p1 = p2 = p3 = 1/2 and p4 = �1/2.

Finally, we stress that, from this simple example with n = 3, negative probabilities arise very naturally if the pi are
requested to satisfy the two equations (6) and (7), which fix the total probability and total entropy (or information) of
the system. Indeed, for a mixed state such as described by the thin red circle in Figure 2b, it would be odd to retain only
the positive-probability solutions (inside the triangle) and discard the negative ones (outside the triangle). Hence, the
entropy definition (7) calls for the acceptance of negative probabilities on the same footing as positive ones.

2.2 Maximization with constraints

We would like to maximize the entropy SL (minimize the information) with a constraint. This is analogous to the
statistical mechanics problem of finding the equilibrium probability distribution that maximizes entropy for given energy,
which yields the Maxwellian distribution if one uses the Shannon–Von Neumann entropy. Let us call X our constraint,
which has the mean value m 
 hXi =PipiXi. The functional F to be minimized is given by the information I augmented
by two constraints on the total probability and the average of X:

F ¼
X
i

p2i � k
X
i

pi þ l
X
i

piX i; ð8Þ

where k and l are Lagrange multipliers. Setting the variation of F to zero, i.e.:

dF ¼ 2
X
i

pidpi � k
X
i

dpi þ l
X
i

X idpi ¼ 0;

one gets

pi ¼
k� lX i

2
: ð9Þ

The Lagrange multipliers are determined by using the constraints:
P

ipi = 1 and
P

ipiXi = m.
As an example, we take again n = 3 and Xi = (�1, 0, 1). This choice yields k = 2/3, l = �m, and the “equilibrium”

probability distribution:

p ¼ 1
3
� m

2
;
1
3
;
1
3
þ m

2

� �
: ð10Þ

Figure 2. Schematic representation of the case n = 3. (a) The solutions of equations (6) and (7) lie on the circle given by the
intersection of the sphere of radius R (here represented for the pure state with R = 1) and the plane p passing through the points A, B
and C. The dashed triangle ABC, lying on the plane p, has all sides equal to a ¼ ffiffiffi

2
p

. The inner circle is inscribed into the triangle.
(b) View of the plane p with the circumscribed and inscribed circles of radii re and ri, which correspond, respectively, to values R = 1
and R ¼ 1=

ffiffiffi
2

p
. The thin red circle is an intermediate case where positive and negative probabilities coexist (the latter lie outside the

triangle). (c) Circular cone with apex at the origin O and basis circle of radius ri. The height k of the cone is the distance between the
origin and the plane p.
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The total information is I ¼ R2 ¼ 1
3 þ m2

2 . As it must be smaller or equal to unity, we have a constraint on the maximum
mean value allowed for the variable X: m � 2ffiffi

3
p 
 mmax � 1:15. For m = mmax, we obtain the pure state

p ¼ 1�
ffiffiffi
3

p

3
;
1
3
;
1þ ffiffiffi

3
p

3

� �
; ð11Þ

for which p1 < 0. Indeed, p1 is negative whenever 2/3 < m < mmax. For m < 2/3 all probabilities become positive and for
m = 0 we recover the maximally mixed state with all probabilities equal to 1/3. Similar considerations apply for the
symmetric cases with negative m.

The above situation can be viewed as that of a die with three faces. For m = 0 the die is even, and all faces are equally
probable. Hence, |m| may be interpreted as an index of unevenness of the die. Classically, i.e. only allowing positive
probabilities, the most uneven die is obtained for m = 2/3, yielding the state p = (0, 1/3, 2/3) (for m = �2/3 the roles
of p1 and p3 are interchanged), which has information I = 5/9. But if we admit negative probabilities, m can be increased
up to mmax ¼ 2ffiffi

3
p , which gives the state of equation (11), with information I = 1.

2.3 Interpretation

The existence of negative probabilities induces some nonstandard properties that are reminiscent of the paradoxes
encountered in quantum physics. For example, let us consider a pure state p with n = 3 and assimilate the three possible
outcomes to the colors of marbles drawn from a bag: red (R), blue (B) and green (G). Like for all pure states, the probability
to get the same color in two consecutive draws is I = 1, while the probability to get different colors is SL = 0. Let us suppose
that we draw a number of marbles, but do not look at their colors for the moment (Fig. 3a). Then we look at the second
and third marble and observe that they have the same color (as they should), namely red. Subsequently, we look at the
sixth and seventh marble and notice they are both blue (Fig. 3b).

So far, all is in agreement with our expectations. But what would have happened if we had first looked at marbles
number 3 and 6 (Fig. 3c)? According to the previous “experiment”, they should be of different colors (red and blue), but
this is not allowed by the probability distribution of a pure state. Hence, we should find that they have the same color, which
is in contradiction with the experiment (b) on the figure. We are forced to conclude that the marbles do not have a prede-
fined color prior to the observation, something that is typical for quantum objects [29–31].

As a second example, let us consider two probability distributions p ¼ 2
3 ;

2
3 ; � 1

3

� �
and q ¼ � 1

3 ;
2
3 ;

2
3

� �
, which we can be

visualized as two different bags containing, respectively, red (R), blue (B) and green (G) marbles in different proportions.
They are both pure states and orthogonal to each other, p�q =

P
ipiqi = 0. The latter property means that the outcomes

of the two bags are perfectly anticorrelated, i.e. if the outcome of the first bag is R then that of the second bag must be not
R (denoted R). We draw pairs of marbles from each bag. From the second bag, the probability of drawing a pair of red
marbles is: ProbqðRRÞ ¼ q21 ¼ 1

9. Since the outcome of the first bag is perfectly anticorrelated with that of the second
bag, this number should also represent the probability of not drawing a pair of red marbles from the first bag. However,
if we compute the same probability using the distribution p of the first bag, we obtain: ProbpðRRÞ ¼
ProbpðBBÞ þ ProbpðGGÞ ¼ p22 þ p23 ¼ 5

9, which is manifestly different.

Figure 3. (a) Nine particles are drawn from a probability distribution p, corresponding to a pure state, but they are not yet observed.
(b) We look at particles 2–3, which turn out to be both red, and then look at particles 6–7, which turn out to be both blue. (c) Had we
drawn particles 3–6, we would have expected them to be of same color, but this is in contradiction with the “experiment” of row (b).
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This example shows that the following two procedures are mutually exclusive: (i) drawing one marble from bag 1 and
another from bag 2, which gives perfectly anticorrelated results; (ii) drawing two marbles from either bag, which yields
perfectly correlated results. If two experimentalists draw a marble from each bag and then communicate their results, they
always observe anticorrelation. However, once they have done so, they cannot use this knowledge to predict their next draw
by using the correlation property of each bag, because the latter is valid only if pairs of marbles are observed together.
(Remember that the logical entropy quantifies distinctions between two draws, but says nothing about single draws. Indeed
the outcome of a single draw is meaningless, as its probability can be negative; only pairs of consecutive draws are
meaningful.) Similarly, if one experimenter observes BB in one bag and communicates this result to the second experimen-
talists, the latter cannot use it to predict that her next draw will be BB, because the anticorrelation property holds only as
long as both elements of the draw are still unknown.

2.4 Dynamics

The probability distribution p(t) should evolve in a way that preserves both the total probability (of course) and the
total information or entropy. In 3D this is possible only if the vector p performs a rotation around the axis perpendicular
to the plane p and going through the origin O (see Fig. 2a). This can be viewed as a rotation around the vector
v ¼ ð1= ffiffiffi

3
p

; 1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p Þ, which yields the evolution equation

dp
dt

¼ v � p tð Þ;

where � denotes the standard 3D cross product. However, the representation using the vector product cannot be readily
extended to dimensions n > 3, so it is more useful to write the above equation in matrix form:

dpi
dt

¼
ffiffiffi
3

p

3

Xn
j¼1

Mij pj; ð12Þ

where M = {Mij} is the antisymmetric matrix

M ¼
0 �1 þ1

þ1 0 �1

�1 þ1 0;

0
B@

1
CA ð13Þ

satisfying Mij = �Mji and
P

iMi j =
P

jMij = 0. The latter conditions guarantee that the total probability and the total
information are indeed conserved during the evolution.

The above matrix form of the evolution equation (13) is readily adapted to higher dimensions, and will be generalized to
infinite dimensional systems (continuum) in the next section.

3 Infinite-dimensional spaces (continuum)
3.1 Generalities

The logical entropy and information can be generalized to an infinite-dimensional system, i.e. in the continuum.

We define the probability density f(z), with z 2 R, normalized so that
Z 1

�1
f ðzÞ dz ¼ 1. Then the logical entropy and

the information are defined as follows [4]:

SL ¼ 1� I ¼ 1� h
Z 1

�1
f 2 zð Þdz; ð14Þ

where the constant h has the same dimensions as z, and f has the dimensions of h�1. The so-defined information is
basically the L2 norm in the space of real square-integrable functions.

Given the arbitrariness of the constant h, it is not automatic that 0 � SL � 1: some very peaked functions of zmay yield
an entropy that is negative, or equivalently an information greater than unity. Hence, we require that 0 � SL � 1, and
restrict the space of allowed probability densities to those whose entropy satisfies this condition.

A useful bound on f(z), which is reminiscent of the bound on Wigner functions [23], can be obtained as follows. Let us
consider pure states (I = 1) and write

h
Z

f 2 zð Þdz ¼ 1 ¼
Z

f zð Þdz
� �2

¼
ZZ

f xð Þf yð Þdxdy ¼
ZZ

f z� k
2

� �
f zþ k

2

� �
dzdk:
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This can be reformulated as Z
dz hf 2ðzÞ �

Z
f z� k

2

� �
f zþ k

2

� �
dk

� �
¼ 0:

Setting the integrand equal to zero yields:

hf 2ðzÞ ¼
Z

f z� k
2

� �
f zþ k

2

� �
dk;

which is an integral equation for f(z). Finally, using the Cauchy–Schwartz inequality, we get

hf 2 �
Z

f z� k
2

� �				
				
2

dk

 !1=2 Z
f zþ k

2

� �				
				
2

dk

 !1=2

¼ 2
Z

f 2ðzÞdz ¼ 2
h
;

from which we deduce the bound

max
z

f zð Þj j ¼
ffiffiffi
2

p

h
: ð15Þ

Obviously, the above bound limits the peakedness of f(z) for a given value of h. For a mixed state with information I< 1, the
bound becomes: max jf j ¼ ffiffiffiffiffi

2I
p

=h.
For instance, if the probability density is a Gaussian with standard deviation r: f ðzÞ ¼ e�z2=2r2=ð ffiffiffiffiffiffi

2p
p

rÞ and we require
that I = 1, we obtain

r ¼ h
2
ffiffiffi
p

p :

This value yields exactly the maximum of equation (15), showing that the bound is saturated for a Gaussian distribution of
unit information (pure state). For r > h

2
ffiffi
p

p , we have I < 1, i.e. a mixed state.
All this is similar to a bound that can be obtained on the quantum Wigner function w(x, p) [23], where x and p are

respectively position and momentum: maxx,p|w(x, p)| = 2/h, where here h is Planck’s constant. The additional factor
ffiffiffi
2

p
is due to the fact that the maximization is done in the 2D phase space (x, p) instead of the 1D space (z) considered above.
These considerations establish a suggestive link between the present results and the properties of quantum mechanics, on
which we will further elaborate in the forthcoming subsections.

3.2 Dynamics

The time evolution of the probability density f(z, t) must preserve both the total probability and the entropy, hence it
has to be a rotation in the appropriate functional space. In analogy with the finite-dimensional case, see equations (12) and
(13), we write the general evolution equation for f(z, t) as

of
ot

¼ 1
h

Z
M z; z0ð Þf z0; tð Þdz0; ð16Þ

where M must be antisymmetric: M(z, z0) = �M(z0, z). In order to preserve the total probability in time, one should also
have:

R
M(z, z0)dz = 0 =

R
M(z, z0)dz0, which follows immediately upon integrating (16) over z. Further, by multiplying

equation (16) by f(z, t) and integrating, we obtain

d
dt

Z
f 2ðz; tÞdz ¼ 2

h

ZZ
f ðz; tÞMðz; z0Þf ðz0; tÞdz0dz ¼ 0:

The last equality follows because the function u(z, z0) 
 f(z, t)M(z, z 0)f(z 0,t) is such that uðz; z0Þ ¼ �uðz0; zÞ, hence it is odd
with respect to the diagonal of the (z, z 0) plane, and integration over all such planes yields zero.

The two-variable function M(z, z 0) can be conveniently written as M(z, z 0) = m(z – z 0), where m(f) is a single-variable
odd function:m(f) = �m(�f). The so-constructedM(z, z0) satisfies all the properties mentioned in the preceding paragraph.
Hence, we rewrite:

of
ot

¼ 1
h

Z
mðz� z0Þf ðz0; tÞ dz0: ð17Þ
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We have included explicitly the constant h in the evolution equation for further comparison with Wigner functions. With
this choice, m has the dimensions of an inverse time.

We now write m(f) in terms of its Fourier transform

mðfÞ ¼ i
Z

dk m̂ðkÞ exp 2pifk
h

� �
: ð18Þ

If m̂ðkÞ ¼ �m̂ð�kÞ then it follows that m(f) is indeed an odd function. As the Fourier transform of an odd real function is
purely imaginary, we also have thatm(f) is real, as intended. Note that k is dimensionless. Let us now write the odd function
m̂ðkÞ as follows, without loss of generality:

m̂ðkÞ ¼ X aþ k
2

� �
� X a� k

2

� �
;

where a is a constant. Inserting all these definitions into the evolution equation (17), one gets

of
ot

¼ i
h

ZZ
X aþ k

2

� �
� X a� k

2

� �� �
exp

2pi z� z0ð Þk
h

� �
f z0; tð Þdz0dk: ð19Þ

In the next section we will show that this equation is basically identical to the quantum evolution equation of the Wigner
function.

4 Relationship to quantum mechanics

Equation (19) was built purely on the two assumptions that the total probability and the logical entropy should be
conserved in time. It is therefore striking that this equation bears a close resemblance to the evolution equation for the
Wigner function w in quantum mechanics [15, 23], as will be discussed shortly.

The Wigner formalism is a representation of quantum mechanics in the classical position-momentum phase space (x, p),
which is strictly equivalent to the more usual Schrödinger or Heisenberg pictures. The state of a quantum system,
either pure or mixed, is defined by a real function w(x, p, t). The Wigner function is constructed from the wave function
for a pure quantum state or from the density matrix for a mixed state. TheWigner function possesses many of the properties
of standard probability distributions. For instance, it can be used to compute the average of a phase-space variable A(x, p)
as: hAi =

R R
w(x, p)A(x, p)dx dp, where we have assumed the normalization

R R
w(x, p)dx dp = 1. However, w can take

negative values, which precludes the possibility of interpreting it as a true probability density.
The Wigner function evolves in time according to an integro-differential equation that reads as:

ow
ot

þ p
m

ow
ox

¼ 2pi
h2

ZZ
V xþ k

2

� �
� V x� k

2

� �� �
exp

2piðp � p0Þk
h

� �
wðx; p0; tÞ dp0dk; ð20Þ

where V(x) is the potential energy. Interestingly, the above evolution equation preserves in time both
R R

wdx dp andR R
w2dx dp, but not higher powers of w. This fact has motivated choosing the logical entropy as the natural definition

of entropy in Wigner’s quantum mechanics [4].
Now, we consider a Wigner function concentrated near a position x = a and write: wðx; p; tÞ ¼ wðp; tÞdðx� aÞ, where d is

the Dirac delta function. We also define X(x) 
 2pV(x)/h, which has the dimensions of an inverse time. Substituting into
equation (20) and integrating over x yields

ow
ot

¼ i
h

ZZ
X aþ k

2

� �
� X a� k

2

� �� �
exp

2piðp � p0Þk
h

� �
wðp0; tÞ dp0dk; ð21Þ

which is identical to equation (19) with the correspondence z M p.
It is quite remarkable that, based on the sole assumption that the probability density f(z, t) preserves the total

probability and the information (or entropy), we were able to construct an evolution equation (19) that is identical to
the evolution equation of the Wigner function. In other words, the quantum evolution appears to stem uniquely from
the property of conservation of the logical entropy (apart from the trivial conservation of total probability). This fundamen-
tal role played by the quantity

R R
w2dx dp had already been noticed in earlier works [4, 32].

An important caveat is that the probability density f(z, t) depends only the only variable z (plus time), whereas the
Wigner function depends on the two phase-space variables x and p. For that reason, we had to consider a Wigner function
that is localized in space (Dirac delta function) in order to establish the equivalence with the Wigner evolution equation.
This is a significant difference, because it means overlooking a crucial feature of quantum physics, namely the existence
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of conjugate variables like position and momentum, whose simultaneous measurement is forbidden by the Heisenberg uncer-
tainty principle.

In order to recover the full Wigner equation, we should work with probability distributions which, in the finite-
dimensional case, depend on two indexes, such as pij, i.e., a matrix or tensor. The appropriate norm here appears to be

the Frobenius norm j pj jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jp
2
ij

q
, with the information defined as I = j pj jj2. Then, in order to establish an evolution

equation that preserves the norm, one would need to define a rotation of the tensor pij in the appropriate space. The
generalization to an infinite dimensional space should lead to an evolution equation for a two-variable probability density
f(z1, z2, tÞ, which will have to be compared to the full Wigner equation (20) for w(x, p, t). This extension is left for future
work.

5 Conclusions

In this work, we made use of the definition of logical entropy and information to extend the notion of probability to
negative values. Although negative probabilities have been considered extensively in the past (and often dismissed as
unphysical), we argued that they fit nicely within the framework of the logical entropy. Indeed, rejecting negative
probabilities would appear as rather arbitrary and odd if one trusts the definition of logical entropy.

Our strategy was to posit that all normalized probability distributions {pi} for which the logical entropy lies in the
interval [0, 1] are allowed, irrespective of the sign of the pis. Of course, the constraint on the entropy limits the absolute
negative values that can be taken by the probabilities.

We also pointed out that the logical information has a straightforward interpretation as the square of the Euclidean
norm of the probability vector in Rn, or the L2 norm in the case of a continuous probability density. This simple geometric
property is extremely fruitful to derive various interesting properties. In particular, the set of allowed probability distribu-
tions may be seen as the intersection of a hypersphere and a hyperplane in Rn.

In order for the total probability and entropy to be conserved in time, the probability vector must rotate in the
appropriate space, and this rotation is defined by an antisymmetric matrix. We next generalized this rotation to the infinite
dimensional case (continuum). Quite remarkably, this leads to an evolution equation for the probability density f(z, t) that
is virtually identical to the Wigner equation for a quantum system, at least when one considers only the momentum
variable. These findings highlight the fundamental role played by the logical entropy in the mathematical structure of
quantum mechanics.

Our future program is to prove that the full Wigner formulation of nonrelativistic quantum mechanics may be
deduced from just two simple postulates: (i) conservation of the total probability

R R
w(x, p, t)dx dp and (ii) conservation

of the logical information h
R R

w2(x, p, t)dx dp. For this, one should extend the present derivation to probability densities
that depend on two variables, namely position and momentum. Once realized, this program would establish an alternative
axiomatic foundation to nonrelativistic quantum mechanics.
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