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The problem of a two-component, collisionless plasma expansion into vacuum is investigated 
from the viewpoint of the Vlasov-Poisson model. The set of equations is treated both 
analytically (through the resealing transformations) and numerically, using a one-dimensional 
Eulerian code. In planar geometry, the resealing allows to conjecture the existence of a 
self-similar expansion over long times, Numerical results subsequently confirm the conjecture 
and show that the plasma becomes neutral over a smaller and smaller scale. A few 
thermodynamical properties are studied: the temperature is shown to decrease as t-*; the 
polytropic relation (d/c&) (pnwY) =0 (with y=3) is verified asymptotically via a 
semianalytical argument. Finally, the same problem is studied in a spherical one-dimensional 
geometry. The time-asymptotic solution is again self-similar. Numerical simulations 
show that a non-neutral, multiple-layer structure appears, which is proved to be stable over 
long times. 

1. INTRODUCTION 

The expansion of a plasma into vacuum plays an im- 
portant role in many areas of plasma physics, and it has 
received a great deal of attention since the early days of this 
discipline. The main phenomenon associated with plasma 
expansion is the acceleration of positive ions to supersonic 
velocities, a process that has been observed in laboratories 
since the 1930s by investigators working with vacuum arc 
experiments. ‘,2 In 1961, Plyutto” first recognized that the 
process of ion acceleration was a direct consequence of the 
plasma expansion into vacuum. According to Plyutto, the 
lighter and more mobile electrons tend to run ahead the 
bulk of the plasma, creating a self-consistent electric field 
that accelerates the ions to high velocities. The explanation 
given by Plyutto is important, because it interprets the 
process of ion acceleration in terms of exclusively electro- 
static phenomena. Since then, plasma expansions have 
been investigated theoretically and numerically using 
purely electrostatic models (Poisson’s law) associated to a 
set of hydrodynamic or kinetic equations. 

Plasma expansion has been proposed as an important 
phenomenon taking place in a great deal of areas, ranging 
from astrophysics to nuclear fusion. In 1969, plasma ex- 
pansion was suggested to be related to the problem of the 
interaction of terrestrial plasma with rapidly moving ob- 
jects such as satellites4 In the works of Singh and Schunk,’ 
an explanation of polar wind phenomena was given in 
terms of plasma expansion. 

In fusion technology, plasma expansion occurs in in- 
ertial confinement experiments. A laser beam heats and 
ionizes a solid pellet, generating a high-density plasma that 
rapidly expands outward.6*7 

During the last few years, a great deal of laboratory 
experiments have been devoted to the investigation of 
plasma expansion into n vat uum.s+’ Usuatiy, in such cxper- 
iments, the plasma expands along the magnetic field lines 
of an external uniform magnetic field directed along the z 
axis. The magnetic field prevents particles from expanding 

along the x and y directions; the experimental setup can be 
arranged in order to realize a realistic one-dimensional ex- 
pansion 

More recent experiments deal with particular non- 
Maxwellian velocity distribution for the electrons (Haira- 
petian and Stenzel”). 

The great majority of theoretical and numerical works 
on plasma expansion has been done in the framework of 
the hydrodynamic model.“-‘3 An excellent review on this 
subject has been published in 1987 by Sack and Schamel,14 
and, since, few new results have been achieved. In the fol- 
lowing, we shall briefly summarize the state of the art in 
the theoretical and numerical investigation of plasma ex- 
pansion. We shall postulate a one-dimensional, planar ge- 
ometry, with no magnetic field (either external or self- 
consistent ). The plasma consists of single charged ions of 
mass mi and charge +e and electrons of mass rn, and 
charge -e. Two assumptions on the dynamics of ions and 
electrons are made: (a) The ion temperature is negligible 
compared to the electron temperature ( TJT,-tO). Conse- 
quently, the ion pressure can be neglected. (b) The elec- 
tron mass is negligible compared to the ion mass 
(mJmi-O). Consequently, the electrons can be consid- 
ered in thermal equilibrium. 

The set of fluid equations reads as 

C3?Zi d 
x-E;ii;t (nivi) =O, 

ne=no exp(ef#/kT,). 

The potential 4 is given by the Poisson equation: 

a24 e 
ax2=g (&--nil. 
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Here, ni and n, are the densities of the two species, vi is the 
ion velocity, k is the Boltzmann constant, and e. is the 
dielectric constant in vacuum. 

Equation (lc) postulates a constant temperature for 
the electron population, which is a reasonable assumption 
when the’plasma is continuously generated at the source 
and its thermal conductivity is high. ’ - 

In more general- circumstances this may not be true, 
and some authors assume a polytropic equation of state, 

pe=cny f) ~. (3) 

where pe is the electron pressure, c is a constant, and y is 
the polytropic exponent (y= 1 in the isothermal case). 
When (3) holds, the electron density dependence on the 
potential is given by the following equation:14 

( 
y-1 e$ MY-l) 

ns=no 1+--- 
Y - kT, 1 

; Y#l. c lc’) 

Equations ( 1) and (2) form a closed set of evolution equa- 
tions that can be solved with suitable initial and boundary 
conditions. Unfortunately, analytic solutions are not avail- 
able for the most general case. Yet, if one makes the addi- 
tional assumption of charge neutrality ( ne= ni= n), the 
Poisson equation (2) is no more useful and the system ( 1) 
and (2) reduces to the following: 

an .'a ’ 
/ - 

x-F% (nv) -0, 1: ,. 

ai av 
at+=&= --3/n y-22 

(4) 
ax, 

where we have used normalized units. 
The system (4) possesses a self-similar solution, in 

which all the quantities are functions of the self-similar 
variable: . 

7=x/t. i: (5) 

The set of self-similar solutions reads, for v#l. (Sack and 
Schamel15) as 

( 
Y---l 

) 
2oy--1) n(7)== I- CT+ l/Y> , ‘.. 

_ _-. 
V(T) = & (7+ fi), 

(6, 

;_’ - 

and for y= 1 (Gurevich et al. ” and Allen et al. 12) i 

n(r) =exp-(r+ l), .- 

v(7) -7-t 1. (7) 

The range of r is restricted by the following inequality: 

- fi<r<z &($-a 

For r< -. fi; n is constant and equal to unity, while v is 
zero. For r>2 Jy/(r- 1) both n and v are zero. - 

The solutions (6) and (7) represent a rarefaction wave 
that propagates at sound speed from the interface’plasma- 
vacuum toward the bulk of the unperturbed plasma. : - ..= 
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When we abandon the assumption of quasineutrality 
and take into account charge separation effects, the Pois- 
son equation can no more be neglected and we have to 
solve the entire system ( 1) and (2). In this case, self- 
similar solutions are not possible and one has to resort to 
numerical calculations. 

Extensive numerical results are reported in Sack and 
Schamel,141’5 both for the charge separation case [system 
( 1) and (2)] and for the quasineutrality case [system (4)]. 
Each case was studied for different values of the polytropic 
exponent y. Their simulations show that the ion density 
soon develops a spikelike structure at its front. Such struc- 
ture quickly grows up, getting sharper and sharper, and 
eventually the numerical solution collapses. The authors 
exclude that such a collapse is due to numerical instabili- 
ties. 

Since the breaking down of the solution is observed for 
every value of y( l<y<2), both in the quasineutrality and 
charge separation cases, its occurrence should not be due 
to either the assumption of isothermality or charge neu- 
trality, but rather, in our opinion, to the more profound 
question of the validity of the hydrodynamic approxima- 
tion. 

From the previous results, it ,is quite clear that the 
hydrodynamic model is not adequate to describe the 
plasma expansion into vacuum. In fact, strictly speaking, a 
hydrodynamic treatment of a collisionless plasma is, in 
principle, impossible. This is due to the fact that the rela- 
tion pnly=const does not derive from the Vlasov equa- 
tion, but is imposed ad hoc in order to close the set of 
equations. For a general phase space distribution f(x,v,t), 
such a relation is by no means satisfied, except in a few 
very special cases. Our Vlasov treatment will tell us when 
and how the hydrodynamic approximation is a correct one. 
We.shall see that the polytropic relation must be written in 
the more general form:. 

;i- 

-$ (pn-Y) = &t v; (pn-Y) 4, 
( ) 

with, imperatively, y=3 (see Sec. V). 
The point of view adopted in this paper is to keep a 

collisionless regime, using a kinetic model to describe the 
dynamics of the plasma. In particular, we’shall treat both 
the ions and the electrons dynamics through two Vlasov 
equations, coupled ‘by the Poisson equation. Works con- 
cerned with the numerical solutionof Vlasov models of the 
plasma-vacuum system are still very limited in number 
(see Denavit16 and Galvez and Borowski”), and not com- 
pletely satisfactory. In particular, to our knowledge, no 
solutions over long times have ever been produced. This is 
due principally to two intrinsic difficulties of the numerical 
treatment, namely the following. 

( 1) Previous simulations have been performed using 
particle codes, which, as it is well known, exhibit consid- 
erable numerical noise at low densities. Since the interest- 
ing phenomena (such as the steepening of the ion density) 
occur precisely in a region of low density, such codes are 
not quite suited for this kind of problem. 
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(2) A true expansion-into-vacuum problem requires 
free boundary conditions. However, this is not trivial, since 
the region occupied by the plasma becomes larger and 
larger with time. In previous works, the authors have used 
either periodic or absorbing boundaries, in which a particle 
reaching the boundaries is simply removed from the sys- 
tem. Obviously, such a treatment alters the particle distri- 
bution at the plasma front and, eventually, corrupts the 
entire solution over long times. 

The aim of this work is to remove both the above- 
mentioned restrictions. 

As to point ( 1 ), we resort to codes solving the Vlasov 
equation by direct discretization of the phase space (Eul- 
erian codes). Such codes are certainly more time and mem- 
ory consuming than the ordinary particle codes, but ex- 
hibit much less numerical noise, and allow a fine resolution 
of phase space structures, even in regions of low density. In 
particular, for one-dimensional problems, the numerical ef- 
fort is not prohibitive (most of the calculations have been 
performed on Sun workstations), and the use of Eulerian 
codes is highly recommended. 

The second point is treated via the so-called resealing 
transformations,‘8-22 which will be analyzed in detail in the 
next sections. The philosophy of the resealing technique 
consists of introducing new space and time variables, so 
that the expansion term in the solution is automatically 
taken into account by the transformation. As a result, in 
the new variables, the plasma experiences no more expan- 
sion, and the free boundary conditions can be easily im- 
posed. 

It is important to point out that the resealing is not 
simply a numerical technique. In fact, it very often allows 
to conjecture the structure of the asymptotic solution. The 
numerical work subsequently checks whether the conjec- 
ture is right, and provides the details of the conjectured 
structure. This double aspect, analytical and numerical, 
seems to us important in developing new computational 
tools. To our knowledge, this paper is the first to introduce 
the numerical aspect of resealing in plasma physics. 

These methods allow us to obtain the solution over 
long times. In the one-dimensional planar case, we show 
that the neutral self-similar solution is approached asymp- 
totically. The plasma expands then freely as a neutral gas 
(ballistic motion). The phase portrait shows that the space 
and velocity variables are highly correlated by the relation 
v=x/t. We also show that the temperature of the plasma 
decreases, in the asymptotic regime, as t-*. Such a result 
invalidates a priori the hypothesis of isothermality, which 
is often assumed in the hydrodynamic models. Via a simple 
calculation in the resealed space, it will be shown that the 
latter are of some validity under very special conditions, 
including the existence of self-similar solutions. 

Subsequently, we shall study the plasma expansion in 
the case of a one-dimensional spherical geometry, which, 
to our knowledge, no author has so far investigated. It will 
turn out that, although the time-asymptotic solution is 
again self-similar, the plasma does not approach neutrality. 
Contrarily, a stable double-layers structure appears, indi- 
cating that the ions and the electrons are totally decoupled. 

This result contributes to confirm that double layers can be 
generated and persist, even in collisionless systems. 

II. MATHEMATICAL MODEL 

We consider a one-dimensional, collisionless, two- 
species plasma in planar geometry, which is freely expand- 
ing into vacuum, experiencing no external field. The two 
species have identical electric charge ( +q and -q) but 
different masses. The evolution of the plasma can be de- 
scribed by the Vlasov-Poisson system: 

afi afi E vi 
--$‘Vg--@7&=0, 

a2z 
ax= tfi-fe)dv, s 

where f,(x,v,t), fJx,v,t) are the phase space distribution 
functions for electrons and ions, respectively. To simplify 
the notations we have taken, 

qi= -qe=me=eO= 1; M=mi/Me. 
Initially the plasma is described by fi,e(X,V,t=O), having 
finite support in the phase space. Our purpose is to deter- 
mine the time-asymptotic solution of the system (8). In 
particular, we want to answer the following questions: (a) 
Does the plasma become progressively neutral over smaller 
and smaller distances? (b) Or contrarily, does it form com- 
pact sheets of alternatively negative and positive net 
charge? (c) Is the expansion law of the “Hubble form”: 
v-x/t? 

The system (8) is usually solved numerically, taking 
periodic or absorbing boundary conditions in the x coor- 
dinate. On the contrary, as it was pointed out before, one 
should use free boundary conditions, and then integrate 
(8) on an interval 0(x( L large enough to contain the 
plasma until it reaches the asymptotic solution. If we want 
to follow the evolution for relatively long times, we have to 
discretize large intervals with a great number of mesh 
points, and the numerical effort soon becomes prohibitive. 
In order to avoid this difficulty-and also to obtain some 
information on the structure of the asymptotic 
solution-we do some preliminary analytical work on the 
system (8). 

Ill. RESCALING METHODS 

In previous works, the resealing methods have been 
mostly used as an analytical tool in the study of nonlinear 
ordinary and partial differential equations. Although the 
method is somewhat of an extension of the self-similarity 
analysis,23 it does not introduce any limitation in the 
choice of the initial conditions, the transformed equations 
being strictly equivalent to the original ones. Some analyt- 
ical applications of resealing can be found in the study of 
nonlinear diffusion,‘* the Vlasov-Poisson system,” the 
Schriidinger equation,*’ and other evolution problems.2’*22 
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In the following paragraphs, we shall illustrate the advan- 
tages of the resealing technique as an analyticocomputa- 
tional tool. 

Let us introduce a “new resealed space time” (5;0), 
defined by 

x=C(t)& (99 

dt=A’(t)dO. 

We want to introduce a (‘new resealed phase space” (g,~). 
In order to do so, the “new velocity” q must be,defined, as 
usual, as the derivative of { with respect to 0,. with the 
following relation between the old and new velocity: -- : 

dx C . 
v=-&==q ;iZ’EC (10) 

(the overdot indicates derivation with respect to’ t) . 
Finally, we rescale also the dependent variables fj, f, 

and E: 

E(w) =H(MW). 
(119 

Taking into account (8)-( 11) we obtain a “new 
Vlasov-Poisson system” for the resealed quantities, 

i3Fi i3Fi 
~+lJjy2 

dFi E HA4 dFi A4e c3F, 
vp~y~-@qy 

.~. 

+$.A), 

* 2 
+TF.=O, 

ae cc2 - 
sg=zz I Vi-F,,dq. 

Though the system (12) is rather complicated, we still 
dispose of four arbitrary functions A (t), C(t), G(t), and 
H(t), subjected to the sole constraint to be regular and 
nonzero over [0, CO [. 
_v A first requirement is that the first and second equa- 
tions of (12) have the form of the Liouville equation for a 
system with friction, which reads as 

-$+q $+; Ij3q9Fl =O, (139 

where r is a force depending on the velocity q. Equation 
( 13) imposes that 

which is immediately integrated to give 

GC?/A’=const= 1. (149 
The relation ( 14) can be written, taking into account (9)- 
(119, I -. 

f i,e & dv= F,, dg 617 I- 
._ 

indicating the conservation of the number, of electrons and 
ions in the two spaces. Moreover, if we choose H=C/A4, 
the electric-field is left invariant: 

E(igj)=E(x,t), $ ’ : 

while the Poisson equation becomes 

I<f (15) 

We note that, in the rescalkd space, the factor H(t) plays 
the role of a “time-dependent dielectric constant.” 

- When (14) and (15) are satisfied, the force term l? in 
the resealed Vlasov equation ( 13) has the form I -I 

r=E 

A4ti 
-- 

d 

resealed field 

“transformation field” (16) 

k ti 
+u2 ]-c q, 

( ) 
friction. 

We note that some “unusual” terms appear in the resealed 
force; namely a linear “transformation field’ (confining for 
both species if C> 0, i.e., if C(t) goes to infinity faster than 
t) and a friction term. Let us underline that for A(t) 
= C( t) the friction disappears and ,we. have . . 

dx dv= d< dq, (179 

i.e., the phase space volume element is conserved. 
-.,The philosophy of the resealing methods consists. in 

interpreting the transformed Vlasov equations ( 13) and 
( 16) as describing a “new” physical system;:in’which the 
particles experience .an electrostatic interaction via the I~ :.,L: -I.. 
Poisson law, an external force (the transformation field), 
and a dissipative term- (friction). 

It should be stressed that the law &asymptotic evolu- 
tion is entirely described by the factor C(t). If we could 
guess the “right” law of expansion, then, owing to (9)) we 
would have ,$yconst: in other words, in the space (S;q) 
the plasma would experience no expansion. From a numer- 
ical point of view, this is an important result, since, with a 
suitable adjustment of the transformation parameters, we 
can “freeze” the support of F(&;71,0) in g on a finite inter- 
val’ [OJ]. It is easy to understand that a regular mesh Ag 
discretizing the fixed interval [O,L] is equivalent to a “mov- 
ing mesh” Ax= C( t) A( on the interval.. with .-moving 
boundary [O,C( t) L]. - 

Here, we formulate the conjecture that the asymptotic 
law of expansion is of the form x-t; in other words, we 
suppose that the plasma behaves asymptotically as a neu- 
tral gas. Numerical results will confirm our conjecture and 
precisely how the plasma approaches neutrality. 

Our conjecture imposes the following choice; 
-- :. 

&=1+nt, 
.-.. .~ 

t - (189 
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where fi is an arbitrary frequency, characterizing the 
transformation. 

The friction terms are numerically difficult to deal 
with, since they usually lead to Dirac’s delta functions in 
the solution. (This is because friction eventually brings all 
velocities to zero. Note that a friction term can sometimes 
be useful to infer intuitively an asymptotic solution,” just 
as one can easily predict the final state of a damped pen- 
dulum.) In order to avoid friction, we take 

A(t)=C(t)=l+ch. (19) 
Then the condition ( 14) requires G(t) = 1. 

The relation between the old and the new velocity be- 
comes, from Eq. ( lo), 

v=q/(l +m9 i-f-g. (209 
Finally, the resealed Vlasov-Poisson system reads as 

aFi aFi E aFi 
as+‘7q+z&y=o, 

aF@ aF, aFc 
-=o 

3Pq,gmE aq ) 

ae 1 
Fg=(i-aef J (Fi--Fe)dq. 

Integrating the second equation of (99, we obtain 

i-62e=(1+ot)-1, 

(21) 

(229 
which indicates that the time 8 is “renormalized” on a 
finite interval. In fact, 

oaec 1. 
The time 8= l/n is then a singular point on the right-hand 
side of the Poisson equation. This may cause numerical 
difficulties, requiring taking smaller and smaller time steps 
AB as 8 approaches l/R. Anyway, the use of a slightly 
different resealing scheme, which will be shown in the next 
paragraph, allows us to overcome this problem. 

First, let us give a physical interpretation of (2 1). It 
represents a system in which the “dielectric constant” 
tends to zero as ae+ 1. Consequently, also, the Debye 
length tends to zero in the resealed space, indicating that 
non-neutral regions can exist asymptotically on a smaller 
and smaller scale. Moreover, the time 8 being limited to 
the value l/Q, the system cannot experience an infinite 
displacement, and is then “frozen” on a finite interval. 

Numerical results (Sec. V) will subsequently confirm 
these conjectures. 

IV. RESCALING WITH “VARIABLE MASS” 

Let us introduce the new independent variable, 

rr=m,$l(t)rl=mi,,(C2/A2)~. (23) 

We shall call m,&(t) the (time-dependent) “mass” and r 
the “momentum” for obvious reasons of analogy with the 
relation p = mu. 

From Eq. (lo), one easily finds the relation between 
the old and the new momentum: 

p=mi,eV=7T/C+&%li,, . (24) 

Note that (24) does not depend anymore on A. The rela- 
tion (24) between p and 7~ is the same (apart from the 
constant factor mi,,9 as the relation ( IO) between v and 77, 
when A = C. 

In fact, the phase space element is now conserved for 
every choice of A and C: 

dn d&=dp dx. 

This is due to the fact that Eqs. (9)-(24) constitute a 
canonical transformation, which conserves the Hamil- 
tonian formalism. The old and the new Hamiltonians are 
given by (for electrons with me= 1): 

f4dX,PJ~ =$+ V(x,t); 
av 

E= -z, 

; 

The conservation of the number of particles now imposes 

F(&;,n;fJ9 =f kp,t9. 

Moreover, we now want to keep the form of the Poisson 
equation. In order to do so, we have to choose 

4&@ =E(x,t). 

Finally, the Vlasov equation in the space (5,~) reads 
as 

aF A2 aF aF 
~43 -IT Y$A’C(E-@) &=O, (25) 

while the Poisson equation is left invariant. The system 
being Hamiltonian, the friction term has disappeared. 

Dividing Eq. (25) by A2, and taking into account the 
second of (9)) we may come back to the “old” time vari- 
able t. The factor A (t) then disappears from Eq. (25). This 
operation shows that the roles of A(t) and C(t) are totally 
decoupled, and therefore they can be chosen indepen- 
dently. From a numerical point of view, we have gained 
one more degree of freedom in the choice of the functions 
characterizing the transformation. In particular, the factor 
C(t) determines the structure of the phase space (&r), 
while A(t) determines the time scale. We shall therefore 
take C(t) so as to absorb the asymptotic term of the ex- 
pansion. As it was done before, we choose for the case of a 
planar expansion: C(t) = 1 + tit. 

With this choice, Eq. (24) takes the following form: 

p=d(l+~t9+m&~. (26) 

On the other hand, A(t) must be selected according to 
the characteristic time scale of the problem, which is given 
by the plasma frequency I+, 

If we take A2(t)=$‘(t), we have 
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t= 60.6 

7-----l 

t= 27.2 

T--- 1 

t.=106.4 

16m 

t=164.5 

7-----T 

FIG. 1. Electron distribution function in the resealed phase space (planar 
geometry). Dark regions represent regions of high density. 

dt dt 
de=T=x. 

A @P 

With this choice, and taking constant time steps he in the 
numerical integration, the real time t is automatically sam- 
pled in units of w; ‘. Since oP a & tc C-t’*, n(x) being the 
spatial density, we have 

A4= C= 1 + iTIt. 

Integration of the second of (9) gives, for this choice of 
A(t), 

i +m= (1 +ae/2)*, 

and for t-+ or) also 8 + 03. 
Finally, the Vlasov-Poisson system for a two- 

component plasma becomes 

5+ 
ae 

ae 
g= (Fi-F,)dTs 

s 

(27) 

t= 27.2 

‘Ii-----l 

t=106.4 
4 

t= 6.1 

T------l 

t=164.5 

4 I------------ 

410 

FIG. 2. Electron distribution function in the real phase space (planar 
geometry). 

where 

V. NUMERICAL RESULTS (PLANAR GEOMETRY) 

Numerical results have been obtained both through 
system (21) and system (27). The numerical integration 
has been performed with the help of a standard Eulerian 
code, slightly modified in order to take into account the 
time-dependent coefficients appearing in the Vlasov equa- 
tions. The system (27) has turned out to be more advan- 
tageous, since it provides automatically (as we have seen) 
the most suitable value of the time step. With this method, 
a save of about 50% in computing time has been achieved. 

After solving numerically the system (27) in the vari- 
ables &and z-, we come back to the usual coordinates (x,Y) 
through (9) and (24). 

There are still two parameters left to our disposal; the 
mass ratio M and the transformation frequency a. Indeed, 
their roles are quite different: M is a physical quantity and 
determines the structure of the solution in the real phase 
space (x,Y); on the contrary, Sz is a parameter of the trans- 
formation and can only affect the structure of the (6,~) 
space. 
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The choice of R is important from a numerical point of 
view. In fact, for a=0 there is no transformation at all, 
and the plasma expands to infinity; on the contrary, for 
C&l the plasma may even experience a contraction in the 
({,7~) space. The optimum choice for Sz keeps the dimen- 
sions of the asymptotic state as close as possible to the 
dimensions of the initial state. All the points of the mesh 
are then exploited throughout the evolution. Empirically, 
it was found that s1 must be of the order of magnitude of 
the ions plasma frequency at the initial time. This is not 
surprising, since the rapidity with which the asymptotic 
solution is reached depends on the mobility of the ions. 

Besides, the mobility of the ions is determined by the 
mass ratio M. For realistic values of A4 (equal, for exam- 
ple, to the ratio between the mass of the proton and that of 
the electron) the movement of the ions is extremely slow. 
Since we are chiefly interested in the asymptotic solution, 
we have taken much smaller values for M, typically going 
from M=2 to M= 10. 

In the following paragraphs, we present the results of a 
typical simulation for which we have chosen 

R=0.35; M=4. 

(Note that we show only the part of the phase space with 
S;x > 0. For {,x < 0, the figures are symmetric. ) Space is 
measured in units of the electron Debye length, time in 
units of the electron plasma period (the inverse of the 
plasma frequency), and velocity in units of the electron 
thermal Velocity ?+h,e = /zo&&,. The initial condition is uni- 
form in x, over 12&, from x= - 6 to x= 6, both for ions 
and electrons (the plasma is then locally neutral at r=O). 
In the velocity space the distribution function is Maxwell- 
ian: 

exp( -mi,eg/2Ti,e), 
where Ti and 7’, are, respectively, the ions and electrons 
temperatures. In our simulation, we have taken 

Te=O.7; TizO.3. 

In Fig. 1 we show the electron distribution function in 
the transformed phase space (g,,a). The support of F(&;rr) 
experiences a slight contraction in 6, and then freezes when 
the asymptotic state is reached. We can see that F develops 
a finer and finer structure in & which ultimately leads to a 
loss of information on a local scale. This is a fundamental 
point: The resealing transformations, confining the plasma 
on a finite interval, allow us to preserve the global infor- 
mation; nevertheless, and this is rhe price to pay, local 
information is progressively lost. In other words, the dis- 
tribution function is smoothed over intervals of growing 
size hx(t)=C(f)A<. 

Despite these considerations, we have to stress that (a) 
we are interested in the global properties of the plasma. (b) 
We can reasonably assume that the information that has 
reached the scale AX at a certain time to (and is there- 
fore lost in our scheme), will not influence the phenomena 
at a scale larger than Ax( to) for times greater than t@ (c) 
Our results are supported by comparison with a simulation 
performed with an exact N body code. Point 
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FIG. 3. Ion distribution function in the real phase space (planar geom- 
etry). 

(b) has been numerically verified in Ref. 24 for an ordi- 
nary (nonrescaled) Vlasov-Poisson system. 

Figures 2 and 3 show the electrons and ions distribu- 
tion functions in the (x,Y) phase space (note that an in- 
creasing scale is used in the x coordinate). For short times 
(t=6. I), a layer of electrons runs ahead the buik of the 
plasma, destroying the initial neutrality. The unbalance of 
electric charge (see Fig. 4 at the same time) generates an 
ambipolar electric tield that accelerates the ions to high 
velocities. Eventually, the fast electrons are reabsorbed by 
the net positive charge left behind them. For large values of 
t, both distributions tend to assume the form 

f(X,Y,f) =n(x,t)S(v-X/f), (28) 

represented in the phase space by a straight line passing 
through the origin. 

The phase portrait of Figs. 2 and 3 clearly shows that 
the asymptotic solution is self-similar. The space and ve- 
locity variables are strongly correlated by the relation 
v=x/t, indicating ballistic motion, in accordance with our 
conjecture. 

In Fig. 4 we have shown the evolution of the net 
charge density in the resealed space: 
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space (planar geometry).  ken line) in the resealed space (planar geometry).  

n(g) = 
J- 

[Fj({,?T) --F,((,r) ldr=nii6> -ne(g)* 

W e  observe that charge neutrality is approached through 
the formation of alternatively positive and  negative layers, 
the dimensions of which tend to zero with time. As a  mat- 
ter of fact, one  still has to verify that the dimensions of the 
layers tend to zero faster than t in the resealed space. O th- 
erwise, their size would grow in the real space. This point 
will be  checked via a  semianalytical argument at the end  of 
this section. 

F igure 5  shows the ion density ni(~) (solid line) and  
electron density n,(g) (broken line) in the resealed space. 
For large values of the time, they tend to assume the same 
profile; the decay is approximately exponential. 

The  time  evolution of the kinetic and  potential energies 
is plotted in F ig. 6. The  kinetic energies of the two species 
are asymptotically constant, and  proportional to the re- 
spective masses. Consequently, the electrons and  the ions 
move asymptotically with the same velocity. The  potential 
energy is zero at t=O (we have prepared a  neutral initial 
condition), then reaches a  maximum and vanishes again 
for t-t 01. 

c 
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It m ight be  interesting to investigate some of the ther- 
modynamical  properties and  equations of state of the 
plasma expansion. This is an  important point in order to 
understand the possibility of using the hydrodynamical 
mode l in collisionless plasmas. Let us define the local tem- 
perature r(&t), pressure P(x,t>, and  density n(x,t) by the 

t ime 

FIG. 6. Evoluti6n of the kinetic and  potential energy with time (planar 
gmmetry) . 
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following relations: 

kT(x t) =n? SC- w>2fcv,wJ 
, Jf(X,wm ’ 

P(x,t) =m 
I 

(y-- (v))2f(X,*:t)dv, (29) 

n(x,t) = 
s f(X,~JW, 

where k is the Boltzmann constant. 
Referring to the resealing of Sec. III [see Eq. (20)], it 

is a matter of straightforward algebra to show that 

TM) = [l/( 1 +fit)21 P(&% 

P(W) = [ 1/t 1 +w31&m (30) 

n(x,t) = [l/( l+at) ln^(&Q), 
where the variables with an overcaret are calculated in the 
resealed space, namely 

k~(&o =rn s b- w)2m9;178)h 
.rw,rldw? ’ 

I’(Jc;e, =m I (rl- (~))2w,%w% (31) 

A(&@ = s wh8he. 

In Fig. 7 we have plotted the graph of the ion pressure 
&&0) for large values of the time, when the asymptotic 
solution ha: approximately been reached. It appears that 
eventually P doesnnot depend on 8 anymore, neither do ti 
(see Fig. 5) and T, which is the ratio between the pressure 
and the density. 

A first result arising from Eq. (31) is that the local 
temperature decreases in time as tF2. This is a crucial 
point, since it invalidates those hydrodynamic models that 
are based on the assumption of isothermality. During the 
expansion, the initial thermal energy of the plasma is pro- 
gressively transformed into drift energy. Asymptotically 
the plasma is cold and all its energy derives from the drift, 
ballistic velocity, while the potential energy goes to zero. 

As a matter of fact, the relation (31) is even more 
profound, and can be used to check the thermodynamics of 
the system. Let us suppose that the plasma obeys a poly- 
tropic equation of state: 

where y is the polytropic coefficient. 
If one chooses y=3, the ratio P/n3 becomes 

This result strongly claims that the oniy reasonable value 
of the polytropic coefficient (at least for this one- 
dimensional problem) is y= 3. On the other hand, it shows 
that the polytropic relation must be imperatively written in 
its most general form (32), rather than in the (more 
usual) form,‘4*‘5 

(Pd) (X,?) =(&-3) g,, 

he3 = const, (34) 
which implies that the ratio is constant both with respect 
to x and to i, 

which is not dependent on 6. Moreover, we must use two pressures: one connected 
Since, asymptotically, c=x/(CXt), the ratio P/n3 be- to the electron density and the other connected to the ion 

comes a function of x/t only, and its total derivative is density (partial pressures of each specie). We shall there- 
therefore equal to zero. We have, in fact, fore have two polytropic equations, and in each momen- 
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FIG. 7. Ion pressure b= .f(q-- (q))2F(&~,Wrl in the resealed space 
(planar geometry). 

(+2; p=- xa d 18 
zz$ a,=mp (33) 

and therefore 

(;+w 2) [br3(()] =o. 
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turn (Euler) equation we must use only ‘the partial pres- 
sure of each single specie. This expresses the fact that all 
exchanges of momentum between the two species take 
place only through the electric field. ” : :,z. 

The previous results have confirmed that the assump- 
tion of the hydrodynamic model are verified only in very 
special cases. It turns out that, when the evolution of the 
plasma is self-similar (as it is our case), such an assump- 
tion holds, and the hydrodynamic model is quite accurate, 
provided that y is chosen equal to 3 (for one-dimensional 
systems). From this point of view, the *existence of self- 
similar solutions is not a consequence of the hydrodynam- 
ics equations, but rather a condition for the validity of the 
model. 

We are now in a position to check whether the size of 
the charged layers observed in Fig. 4 goes to zero with time 
also in the real space. Let us calculate the Debye length: 

AD= ( q&T/ne2) 1’2. 
Since we have shown that the temperature varies as- 

ymptotically as ts2 and the density as t’l, it turns out that 
/2,-t- I”. The Debye length then goes to zero, even in the 
real space, indicating that, asymptotically, no region of 
non-neutrality can subsist on a finite scale. 

VI. EXPANSION IN SPHERICAL GEOMETRY 

In spherical coordinates, the Vlasov equation reads 
(details can be found in Ref. 25) as 

af -w+R af+?df+ 
ai- r a0 

( Rip 04 1 
1 

af --m 
- r+- r tge ---EJI %=O’ 

., .: (35) 

where r, 8, $ are the spatial coordinates, and R, 0, ‘4 the 
respective components of the velbcity. 

If we assume radial symmetry, 

af-af,, =+Q, 
ae-a$- e 

then f depends only on t, r, R, and T = O2 + $2, and we can 
write 

f(t,r,R,@,~)=(l/n)~(t,r;RgT).::~ - ._.le -~ 
(the factor. rr is -introduced for. notation convenience). A 
little algebra shows. that, in the case of,radial. symmetry, 
Eq. (35) becomes 

. .- ‘.: 

a(36) 

A further simplification consists in taking the tangen- 
tial velocities T equal to zero..This is ‘done by imposing the 
following condition: ’ : .- =* -li>-l 

hRn =g(t,r,R) ‘S(n, (37) 
where S is. the,Dirac delta function. 

Integrating (36) with respect to T, we obtain 

ag ag ;?i+R s+Erg+$ g=“* (38) 

Finally, we perform the transformation 

p(t,r,R) =&W,R). 
Note that g? dr dR=cy, dr dR represents the normalized 
number of particles contained in a shell of thickness dr, 
with radial velocity ranging from R to R + dti: it is, in fact, 
this quantity that is conserved, and not simply g dr dR. 
The resulting Vlasov-Poisson system for a two-component 
plasma then reads as 

%i api Er aa- . at+R ar+ii?aR=O, 

8% at+R $-&g=O, 

- $ (J-E,)= J (qi-qe)dR* 
The first and second equations of (39) are identical to the 
one-dimensional planar Vlasov equation, with the usual 
normalization: 

J- qi,edrdR=l. 

The approximation (37) allows us to work in a bidimen- 
sional phase space (r,R) by neglecting all tangential veloc- 
ities. The price we have to pay for this simplification is that 
the point r~=O becomes singular: in fact,_nothing prevents 
particles with negative radialvelocities (inward bound> to 
arrive at the origin, and consequently generating an infinite 
electric field. This will restrict the number of initial condi- 
tions that can be treated by our model. 

Resealing. We use the “variable mass” resealing tech- 
nique, as we have done in the plane geometry problem. The 
transformation relations are, in the spherical case, 

.. 
r=C(tX, 

‘ .Z). / 1~ ; 

dt=A2(t)d0, 

mR=?r/C+m& (40) 

E,(r,t) =4&O). 
_’ 

In the choice of the expansion factor C(t), we are guided 
by the results obtained in the planar problem. The only 
difference lies in the form of the Poisson equation, which 
expresses,the fact that the electric field now vanishes as rL2 
for r--t a. Consequently, we can again expect ‘a ballistic 
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FIG. 8. Electron distribution function in the real phase space (spherical 
geometry). 

FIG. 9. Ion distribution function in the real phase space (spherical ge- 
ometry 1. 

asymptotic expansion, although not necessarily local neu- 
trahzation. Let us make therefore the following choice: 

C(r)=l+fk 

Moreover, we want to choose A(t), so that 

A’(t) =w,-‘(r). 

Now the density n(r) = JqdR decreases as l/g; thus we 
have 

dFi rr dFi aFi 
~+~~Sp~s~Ea?T ' -=o 

ac B aF, 
s+-- w p~e) ag -P(e)e dp=O, 

$ (!!j2E) = J (Fj-17,)dn; 

(41) 

where 

p(S) = (l-ne/z) -1. iopa nar-3’2aC-33/2, d- 
and finally VII. NUMERICAL RESULTS (SPHERICAL GEOMETRY) 

A(t)=C3’4(t)=(1+.t,3’4, 

Integrating the second of (40), we obtain 

l+nt=(l-ne/z>-2, 
the new time 8 being now renormalized between 
0<8<2/Q. 

With these choices, the system (39) is transformed 
into the following one: 

We have solved numerically the system (41). The 
same considerations on the roles of the parameters M and 
St can be done, as in the planar geometry problem. In the 
following, we shall present a simulation for which we have 
chosen M=4 and n=O,5. 

In order to prevent particles from arriving at the ori- 
gin, we have prepared an initial condition where all the 
particles are situated outside a sphere of radius r. and have 
positive (outward bound) velocities. In particular, the ini- 
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FIG: 10. Net charge density in the resealed space (spherical geometry). 

tial distribution function is uniform in r between r=3 and 
r=7, and zero elsewhere. In the velocity space, it has the 
following profile: 

W -R012 exp[--m ,,,(R--Ro)2/2Ti,el, 
0, 

where R,=0.4, Ti=0.2, and T,=O.6. 

R>O, 
R-CO, 

The phase portrait for electrons and ,ions is represented 
in Figs. 8 and 9, respectively. As in the planar ‘case, a 
strong correlation is found between the space and velocity 
variable (R = r/t). The solution is asymptotically’ self- 
similar and again corresponds to ballistic motion. 

Figure 10 shows the evolution of the net charge density 
in the resealed space, and Pig. 11 shows the number den- 
sities of electrons and ions. A multiple layer, non-neutral 
structure is soon created, which seems to be very stable 
over long times. The phenomenon of local neutralization 
found in planar geometry no longer takes place. The evo- 
lution of the root mean square of the radius shows that the 
motion of the ions and the electrons is completely decou- 
pled (Fig. 12). The two species move asymptotically with 
constant but different velocities. 

From the previous results, it is clear that the asymp- 
totic behavior of the plasma expansion into vacuum 
strongly depends on the dimensionality of the system. The 
essential point, differentiating the planar problem from the 
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FIG. 11. Number density for the ions (solid line) and the electrons 
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spherical one, lies in the form of the Poisson equation. In a 
planar one-dimensional geometry,. the electric field gener- 
ated by one “particle” (in fact, a charged sheet) is uni- 
form, and does not vanish for x-+ * 0~). Such a field does 
not admit an “escape velocity,” and therefore even the 
fastest electrons are eventually reabsorbed by the plasma. 
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FIG. 12. Evolution of the root mean square of the radius for the ions 
(broken line) and the electrons (solid line) (spherical geometry). 
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On the other hand, in the one-dimensional spherical 
geometry, the field created by a charged sphere falls down 
as r-‘: consequently, an escape velocity exists, just as in a 
gravitational system, and a cloud of fast electrons is able to 
escape from the bulk of the plasma. 

The stability of the non-neutral structure seen in Fig. 
10 can be justified by means of an easy calculation in the 
transformed space. 

From a Lagrangian point of view, the equations of 
motion corresponding to system (41) are the following 
(again for electrons of unitary mass): 

dn- 
~=pmkw, 

(42) 

wherep(@=(l-0) ‘. We have taken a=2 for conve- 
nience of notation; 8 is then normalized on [O,l[. 

Let us suppose that, at the time 0=&,, the multiple 
layer structure has already formed, giving rise to a field 
e(&eo), which is finite for every g. From the last of Eqs. 
(40), we know that •(.!$~o)=E(x,to), to being the time 
corresponding to &. There is no physical reason for the 
real field E to diverge for t> to; thus E will also remain 
finite for 0> f&,. On this basis, we can assume that the 
variations if e with 8 are small compared to the variations 
ofw. 

Integrating the second of (42), we obtain 

I 
6 i-e 

72(e) =E 
$0 

p(e)de= --E log 1-e,. 

Hence, r diverges for 8 -. 1. 
The displacement AC between 0, and 1 is 

s 

1 i-e 
Al=-E 

$0 
(I-e)lOgmde. 0 (44) 

Evaluating the integral in Eq. (44) gives 

A&=e[ (l--8,)/4]. (45) 
Equation (45) shows that the displacement tends to zero 
for e,-+ 1. In other words, even if between e=e,,=: 1 and 
Q= 1 an infinite time has elapsed, the particles have been 
moving on a negligible distance At. The non-neutral struc- 
ture seen in Figs. ( 10) and ( 11) is then completely stable 
over arbitrarily long times. Moreover, this result confirms 
a posteriori our previous assumption that e(e) varies 
slowly with respect to p (0) : the proof is then self-coherent. 

One could be tempted to interpret such a structure as 
an indication of a Debye length growing as t in the real 
space. In fact, this is not the case, as it can be shown by a 
calculation similar to the one performed at the end of Sec. 
V. 

Now the density decreases as t-‘, whereas the temper- 
ature varies as te2. Consequently, the Debye length should 
vary as P2 in the real space, and as t-1’2 in the resealed 
space. This result is apparently not in agreement with what 
we observe in Fig. 10, where the region of non-neutrality is 

clearly fixed in the resealed space, and therefore grows as f 
in the real space. In fact, there is no paradox, for the sep- 
aration distance observed in Fig. 10 is not a Debye length. 
The separation of the two species is due to the fact that, 
because of the radial symmetry, particles situated far away 
from the origin virtually behave as free particles, their 
Coulomb interaction being negligible. Had the two species 
been two neutral gases, we would have observed a similar 
decoupling, which is essentially due to the different initial 
conditions, and by no means to electrostatic phenomena., 
In this sense, we cannot speak of a Debye length. 

On the other hand, electrostatic effects could be im- 
portant in the central region of the plasma, which we have 
ignored in order to keep a bidimensional phase space. A 
further investigation, using a 3-D phase space code, should 
verify if, in the central region, the Debye length actually 
behaves as predicted by the above calculations. 

VIII. CONCLUSIONS AND OPEN PROBLEMS 

The results obtained in this paper present a double 
interest. 

From a mathematical and computational point of 
view, we have given an example of how the resealing meth- 
ods can be applied to an expansion problem. The interest of 
these methods lies in the combination of analytical and 
numerical tools. In a few special cases semianalytical solu- 
tions can be easily obtained (see, for example, Ref. 19). 
More generally, the resealing suggests reasonable conjec- 
tures on the structure of the time asymptotic solution and 
provides an intelligent, easily implementable numerical 
scheme. In our case, the time asymptotic solution is the 
ballistic expansion, and it is automatically (i.e., analyti- 
cally) taken into account by the resealing transformation. 

From a physical point of view, we have investigated 
the long-standing problem of plasma expansion into vac- 
uum. Most previous works on this subject, which have 
been summarized in the Introduction, are based on the 
hydrodynamic model, and lead, in some special cases, to a 
set of self-similar solutions. However, their numerical so- 
lution shows an anomalous behavior (collapse of the ion 
front) after a relatively brief time, indicating that the 
model is not accurate to treat this problem. 

In this work, the plasma expansion was treated 
through a kinetic, collisionless model (the Vlasov-Poisson 
system). in the case of a one-dimensional planar expan- 
sion, we found numerically that, for large values of the 
time, the solution is indeed self-similar and characterized 
by the relation v=x/t. The plasma becomes locally neutral 
and consequently exhibits ballistic motion. 

One of the aims of this paper was to check the domain 
in which the hydrodynamic model is suited to treat a 
plasma expansion into vacuum. In particular, one has to 
verify whether the polytropic relation (d/dr) (pa-?‘) =O 
holds, and which value of y has to be used. The numerical 
results suggest that such relation is not satisfied during the 
first instants of the expansion, when the asymptotic solu- 
tion has not yet been reached. In this case, the kinetic 
treatment is necessary to take into account all the details of 
the phase space distribution function. Nevertheless, we 
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showed that, over long times, when the self-similar solu- 
tion is well established, the poytropic relation holds within 
a good approximation. Our analytical and numerical cal- 
culations clearly showed that the polytropic coefficient 
must assume the value y=3 for a one-dimensional planar 
expansion. The previous result is, in fact, quite general and 
proves that the polytropic relation is verified for every self- 
similar expansion. 

Another important result arose from the study of the 
expansion in a spherical, one-dimensional geometry. Once 
again, the solution over long times is self-similar (ballistic 
motion). Yet, the process of local neutralization found in 
the planar geometry case does not take place; contrarily, 
we observed the formation of charged layers of finite di- 
mension with respect to the total length of the system. The 
different behavior in the planar and spherical cases was 
interpreted in terms of the different form of the Poisson 
equation in the two geometries. Finally, we proved that 
such multiple layer structure is stable over long times. 
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A further insight into the spherical expansion could be 
achieved by taking into account tangential velocities T, 
and then working in ‘a three-dimensional phase space 
(r&T). More general initial conditions could thus be 
treated, but the requested numerical effort would be con- 
siderably stronger. 

The analog quantum-mechanical problem 
(Schriidinger-Poisson system) is also of interest: an open 
question is whether quantum effects can corrupt the clas- 
sical solution. Both problems are, at present, under study. 
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