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E Havlı́čková1, W Fundamenski1, D Tskhakaya2,4, G Manfredi3 and
D Moulton1

1 EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
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Abstract
Parallel transport associated with type I edge localized model (ELM) filaments in the
scrape-off layer (SOL) is studied by means of three computational approaches—fluid, Vlasov
and particle-in-cell (PIC). These techniques are benchmarked for convective transients by
analysing power fluxes at the target. In spite of kinetic effects due to fast electrons which are
not captured in the fluid code, the overall agreement between the codes is satisfactory. In
addition, the collisionless Vlasov model agrees well with an analytic free-streaming model.
The total peak energy flux at the target is comparable between the models, but the individual
fractions of the flux carried by ion and electron components are determined by kinetic effects
and processes in the sheath and the energy source in the fluid code is redistributed between
electrons and ions in order to obtain the best match with the PIC model. From results for
convective ELMs, approximate expressions for the energy fluence and the peak energy flux at
the target are derived. Additionally, conductive ELMs are studied.

(Some figures may appear in colour only in the online journal)

1. Introduction

Transient behaviour of plasma is found in the scrape-off layer
(SOL) both in L-mode regimes where dynamics is dominated
by turbulence and in H-mode regimes which are accompanied
by quasi-periodic edge localized modes (ELMs). Description
of dynamic effects in the SOL requires time-dependent
modelling opposed to more standard laminar models using
time-averaged plasma quantities [1]. In this study, parallel
transient transport in the SOL is investigated in response of
type I ELMs.

ELMs are MHD instabilities associated with H-mode
confinement and occurrence of steep pedestal gradients,
resulting in a collapse of the pedestal and transient ejection
of plasma from the pedestal region into the SOL. Investigated

4 Permanent address: Andronikashvili Institute of Physics, 0177 Tbilisi,
Georgia.

type I ELMs can expel up to 10% of stored plasma energy
which is then transported towards the wall and divertor targets.
Subsequent increase in incident power and particle loads on
plasma facing components (PFCs) has crucial consequences
for the design of future devices. To avoid degradation of PFCs
and reduction of their life times due to erosion and melting, it
is necessary to limit the peak and total power loads deposited
on divertor targets below a tolerable maximum. Moreover,
the main chamber wall is affected by the interaction with
ELMs which leads to increased impurity content and their
eventual penetration into the core. Typically, predictions of
deposited power for future devices are made by extrapolation
of experimental results from present-day tokamaks [3–5].
Alternatively, the amount of power transferred to the targets
can be estimated from numerical models. In JET experiments,
type I ELMs are typically depositing energies of 5–80 kJ m−2

with corresponding peak power loads 40–120 MW m−2 on
divertor plates [4–6]. These values will be much higher in
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ITER and the material limit estimated for ITER is 0.5 MJ m−2

per ELM (500 µs) as stated in [4].
The physical mechanism of the ELM cycle is not yet fully

explained and its investigation involves more complex MHD
physics and development of new theories. However, without
addressing the origin and driving mechanism of these events
in the pedestal, dynamics in the SOL during the ELM crash
can be modelled by SOL transport codes used in the time-
dependent fashion. In two-dimensional codes, radial transport
is amplified for the period of the ELM crash by increasing radial
diffusivities [2]. In one dimension, the sources representing
released ELM particles and energy from the pedestal into the
SOL must be prescribed. Predictions of target power loads can
then be obtained from energy balance in the SOL.

High temperatures in the pedestal resulting in very low
collisionalities present evidence of the kinetic nature of ELMs.
It is generally thought that kinetic effects play an important
role in the description of low-collisionality transients and
kinetic treatment of their dynamics in the SOL is required.
On the other hand, fluid models are extensively used as SOL
transport solvers, namely two-dimensional multi-fluid codes
such as EDGE2D or SOLPS which are widely used to interpret
experiments, guide design of devices and make predictions
for future machines. Kinetic effects cannot be resolved in
the fluid treatment, although it is possible to introduce kinetic
corrections on the macroscopic level, e.g. modifying transport
coefficient (in the form of flux limiting factors) or boundary
conditions. This is guided by comparison of fluid and kinetic
results. In the past, the present-day SOL transport codes
encountered difficulties when modelling ELM filaments [7].
Moreover, they are commonly used in steady-state and only
recent work is devoted to transients [2, 7–9]. Kinetic treatment
was used, e.g., in [10] or more recently in [3, 11] where parallel
transport in the JET SOL associated with type I ELMs has
been studied numerically by the BIT1 code and results were
successfully compared with experiment [12].

The objective of this study is to benchmark one-
dimensional codes based on particle-in-cell (PIC) method
(BIT1 code), Vlasov model and fluid model (SOLF1D code)
for simulating plasma transport parallel to the magnetic field
during the ELM crash of purely convective ELMs. We
benchmark the models by analysing target energy fluxes, in
order to compare the peak and total power loads on the
target and identify which features of parallel dynamics can
be described by the fluid technique and where the fluid codes
are likely to fail. An analytic free-streaming description is
also examined. Approximate fits for the peak energy flux at
the target and the total deposited energy during the transient
in terms of pedestal parameters are constructed from results of
the one-dimensional codes for JET and used with the density
and temperature expected on ITER.

2. Description of models

2.1. BIT1 code

BIT1 is an electrostatic PIC Monte Carlo code for one-
dimensional simulations of plasma edge [13]. Code follows

plasma, neutral and impurity particles. Particle trajectories are
calculated according to

dv

dt
= e

m
(E + v × B) + st (1)

where e and m are particle charge and mass and st is the
collision term, taking into account the elastic and inelastic
collisions between particles and the interaction with the
divertor plates. Coulomb collisions are treated via optimized
binary collision model [14], while charge–neutral and neutral–
neutral particle collisions are modelled via non-linear null
collision method [15]. All collision operations conserve
momentum and energy. The plasma–surface interaction model
is linear with prescribed secondary electron emission, plasma
recycling and impurity sputtering coefficients [16]. All these
coefficients depend on the energy and the incidence angle of
particles impinging on the divertor plates. The electric field
is obtained from the Poisson equation and the magnetic field
is fixed. The simulations presented here were performed via
serial version of the BIT1 code and correspond to the simplified
model without neutral and impurity particles. The simulation
region corresponds to the one-dimensional SOL with particle
source in the middle of the system. During the simulations, the
finest time and space scales are resolved (down to the particle
gyro-rotation and plasma oscillation). Further details can be
found in [13].

Simulations of the BIT1 code published in [3] represent
a baseline for this study. A series of simulations of parallel
transport during ELMs in the JET tokamak was performed
and a comparison with experiment was also provided, showing
sensivity to impurities and recycling [11, 12].

Recent studies also focused on the behaviour of kinetic
factors during transients, such as heat flux and viscosity
limiters and sheath energy transmission coefficients, proving
their complex and strong variations both in time and space
[12, 16, 17].

2.2. Vlasov code

The second modelling approach examined here is based on
the Vlasov equation [18]. We adopt a one-dimensional
geometry along the parallel direction, here denoted x, with
corresponding parallel velocity v‖. In the perpendicular plane,
the distribution function remains Maxwellian at all times,
so that the distribution in the four-dimensional phase space
(x, v) reads as Fj (x, v, t) = fj (x, v‖, t)M⊥,j (v⊥), where
M⊥,j (v⊥) = (mj/2πTped) exp(−mjv

2
⊥/2Tped), Tped is the

pedestal temperature and the label j = i, e stands for ions
and electrons, respectively.

Under these assumptions, the ion and electron evolutions
are described by the one-dimensional Vlasov equations for the
parallel distribution functions fj (x, v‖, t)

∂fj

∂t
+ v‖

∂fj

∂x
− qj

mj

∂φ

∂x

∂fj

∂v‖
= g(t)S(x)M‖,j (v‖) (2)

where qj = ±e. This collisionless approximation is
reasonable for the initial phase of high-energy transients such

2
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as ELMs, for which the thermal mean-free-path exceeds the
parallel connection length.

In the source term on the right-hand side of equation (2),
g(t) models the pulse temporal profile, S(x) is the spatial
profile of the source, and M‖,j is a Maxwellian distribution in
the parallel velocity. Finally, the electrostatic potential φ(x, t)

is computed self-consistently from the one-dimensional
Poisson equation.

The Vlasov equation (2) is solved using an Eulerian
method based on a uniform meshing of the parallel phase
space (x, v‖). For the time-stepping, a second-order splitting
scheme is used, which solves alternatively the advection in
real space and the advection in velocity space. Each advection
step is performed using a third-order positive flux-conservative
method, with a slope corrector that prevents the distribution
function from becoming negative [19].

In addition, a recently developed ‘asymptotic-preserving’
numerical scheme [20] allowed us to lift numerical constraints
on the time step and grid spacing, which are no longer limited
by, respectively, the electron plasma period and Debye length.
Typical resolution of the code is Nx = 4000 and Nv = 1000
grid points in real and velocity space and the time step is
�t = 0.001τ e

‖ , where τ e
‖ is the electron transit time. One

calculation takes about 15 h on a standard PC.

2.3. SOLF1D code

The SOLF1D model is based on the one-dimensional
Braginskii equations for the plasma density n, the parallel
ion velocity v‖, the electron temperature Te and the ion
temperature Ti

∂n

∂t
+

∂

∂x

(
nv‖

) = Sn, (3)

∂

∂t

(
minv‖

)
+

∂

∂x

(
minv2

‖ − η‖,i
∂v‖
∂x

)

= −∂pi

∂x
+ enE + Ri + miSv, (4)

∂

∂t

(
3

2
nkTe

)
+

∂

∂x

(
5

2
v‖nkTe + q‖,e

)
= −env‖E + v‖Re + Qe + SE,e, (5)

∂

∂t

(
3

2
nkTi +

1

2
minv2

‖

)
+

∂

∂x

(
5

2
v‖nkTi +

1

2
minv3

‖ + q‖,i

−v‖η‖,i
∂v‖
∂x

)
= env‖E + v‖Ri + Qi + SE,i, (6)

complemented by the generalized Ohm’s law for electron
momentum enE = −∂pe/∂x + Re. Sn, Sv , SE,e and SE,i

are sources of the density, momentum (here Sv = 0) and
energy due to cross-field transport. Re and Ri (Re = −Ri)
are the thermal and friction forces, Qe and Qi (Qe = −Qi)
are the heating due to electron–ion collisions. E is the parallel
electric field, pi and pe are the ion and electron static pressures,
η‖,i is the parallel ion viscosity, mi is the ion mass and
q‖,e = −κ‖,e ∂(kTe)/∂x and q‖,i = −κ‖,i ∂(kTi)/∂x are the
parallel thermal heat fluxes.

Figure 1. Spatial distribution of the source and its behaviour during
the ELM crash.

Recently, the equations were modified to take into account
∇‖B dependence. The model assumes ambipolar transport
of electrons and ions (no net current j‖ = 0) and the quasi-
neutrality condition. The parallel transport coefficients η‖,i,
κ‖,e and κ‖,i are classical and kinetic corrections are to a certain
extent incorporated through flux limiters. Boundary conditions
at the targets are the standard sheath boundary conditions
v‖ = cs, Q‖,i = δikTincs and Q‖,e = δekTencs with the sound
speed cs and using the energy transmission coefficients of the
sheath δi = 3.5 and δe = 5.0. The plasma model is coupled
with a fluid model of neutrals, which is not used here. Details
are described in [9]. The presented time-dependent runs were
performed with the spatial resolution of Nx = 400 and the
time step approximately �t ≈ 1 × 10−7 s. The real time of a
typical calculation is in the order of a few seconds.

Even though ELMs are considered to be kinetic
phenomena due to very low collisionalities found in the
pedestal and it is thought that fluid models cannot adequately
describe parallel dynamics associated with ELMs (at the very
least without employing kinetic corrections such as heat flux
limiters), we aim to compare PIC, Vlasov and fluid results in
order to identify limits and gaps of the fluid modelling. The
SOLF1D code has already been applied to model transient
parallel transport in [1, 9] with attention devoted to SOL plasma
fluctuations occurring due to turbulence and the associated
effect on plasma parameters at the target.

2.4. Simulation setup

The ELM crash is simulated in one dimension as a transient
source of plasma located at the midplane which is represented
by the centre of the computational domain (a symmetric
case is considered). The parallel extension of the source is
characterized by Ls in the domain of the size 2L‖ measured
between two targets (figure 1). The source in the parallel
direction x is prescribed as a cosine function

Sn(x) = Sn
0 cos

(
πx

Ls

)
(7)

in the interval 〈−Ls/2, Ls/2〉, which gives an integrated source
along the magnetic field 2Sn

0 Ls/π . The source is enhanced in
time for a period of the ELM crash duration tELM (rectangular
shape in time, different shapes examined in [12] and in the
fluid code, see in figure 12, showing only a little effect on the
time scale and the maximum target energy flux). The initial
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condition is a steady-state solution obtained for a pre-ELM
phase, neglecting dynamics of the pre-ELM plasma. The same
pre-ELM profile is used for all simulated JET ELMs in the PIC
code. The initial profiles can be slightly different in the fluid
and Vlasov codes, but it should not substantially influence the
results. The background profile is less important compared
with the rapid source of plasma due to the ELM crash. Both
BIT1 and SOLF1D show almost no sensitivity to the initial
profile, unless recycling at the targets is included. This effect
is shown later in section 5.

For the purpose of code comparison, only electrons and
deuterium ions are included and no plasma–neutral interactions
are taken into account. The reference kinetic simulations, we
are comparing the fluid model with, were performed without
neutrals and impurities. Additionally, benchmark of plasma
models separately is more essential, as nowadays fluid codes
are usually coupled with Monte Carlo neutral solvers. PIC
simulations with neutrals and impurities can be found in
[12, 16], showing even better agreement with experiment.

Since the model is only one-dimensional, the particle and
energy sources due to cross-field transport from the pedestal
into the SOL

Sn = ∂

∂r
(nv⊥), SE = ∂Q⊥

∂r
(8)

must be specified. Ideally, we would need to calculate the
sources self-consistently with the evolution of the pedestal
density and temperature profiles, but this would require more
complex modelling tools such as JOREK (a non-linear MHD
code) [21]. For benchmarking with PIC simulations in [3],
we repeat steps done previously and relate the source to
pedestal quantities. Particles of the source are at the pedestal
temperature Tped (the same pedestal temperature for electrons
and ions is assumed, Te,ped = Ti,ped = Tped) and the particle
source is estimated as

Sn ∼ npedcs,ped/Ls (9)

assuming the upstream density going up to nped and plasma of
the source flowing to the targets with the sound speed found in
the pedestal

cs,ped =
√

2kTped

mi
. (10)

This corresponds to a simplified balance

∇ · nv ≈ 0,
∂

∂x
(nv‖) ≈ Sn (11)

at the outboard midplane at the separatrix, assuming that the
pedestal density and temperature drops associated with the
source are governed by parallel losses on open field lines (see
[22]). The particle source Sn is linked to the pedestal density
and temperature, which is useful for comparison of resulting
target fluxes with experimental scalings (see section 4). The
proportionality is expressed by a coefficient A

Sn
0 ≈ Anpedcs,ped/Ls (12)

which is obtained from the inter-ELM PIC simulation.

Table 1. Summary of parameters used in the model.

Input parameters nped, Tped, tELM, L‖, Ls, R, Lpol

Derived quantities Sn, SE , �WELM/�RSOL, VSOL/�RSOL

Output quantities Q‖, ε‖, 
‖, N‖

Second, we assume that the ELM energy is transported
across the magnetic field to the SOL due to convection and the
total energy source can be written as

SE = 3

2
k(Te,ped + Ti,ped)Sn = 3kTpedSn. (13)

We have the same energy source for electrons and ions,
although in general different sources and temperatures can be
used.

Additionally, we can roughly estimate the total ELM
energy as is done in [3]. For convective ELMs, the total input
energy can be written as

�WELM ≈ 3kTpedSVSOLtELM

≈ 3kTped
2Sn

0

π
Lpol2πR�RSOLtELM. (14)

S is the particle source uniform over the poloidal extent Lpol,
i.e. S = 2Sn

0 /π , and VSOL is the volume in the SOL where the
energy is deposited

VSOL = Lpol2πR�RSOL (15)

with the radial extent �RSOL. The poloidal length of the source
is related to the parallel one as

Lpol = Ls sin αu. (16)

The angle between parallel and poloidal directions sin α =
Bpol/B varies along the magnetic field line, therefore αu here
expresses an average angle such that equation (16) is satisfied
(the index u denotes upstream where the source is located).
Because �WELM can be only estimated using the radial length
�RSOL, it is convenient to write equation (14) in the following
form:

�WELM

�RSOL
≈ 3kTped

2Anpedcs,ped

πLs
Lpol2πRtELM

= 6Appedcs,ped sin αuRtELM (17)

where the pedestal pressure is defined as pped = 2npedkTped.
See table 1 for a summary of the main input parameters

and derived quantities in the model. The pedestal density
nped, the pedestal temperature Tped and the duration of the
transient tELM are required together with the specification of
geometry—the distance of the target from the source centre L‖
and the parallel length of the source Ls. The main output of
the code is quantities at the target such as the energy flux Q‖
and ε‖ ≡ ∫

Q‖ dt and the particle flux 
‖ and N‖ ≡ ∫

‖ dt .

These quantities can be projected onto the poloidal plane as
Qpol = Q‖ sin αt , etc, using the local angle αt .
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Figure 2. Parallel target energy flux for the reference case calculated by (left) the PIC code, (middle) the Vlasov code and (right) the fluid
code. In the fluid model, the parallel ion viscosity is limited and the total energy source due to the ELM is prescribed to be shared by ions
and electrons as 3 : 1, see the discussion below.

3. Results and comparison

3.1. Reference simulation

An ELM crash described by a set of pedestal parameters typical
for JET type I ELMs is taken as a reference case (see [12], JET
shot number 62221):

nped = 5 × 1019 m−3, Tped = 1.5 keV, tELM = 200 µs.

Geometric parameters are

L‖ ≈ 40 m, Ls ≈ 25 m.

From (14), we can obtain corresponding ELM power
�WELM ≈ 0.4 MJ using the same values as in [3]: �RSOL =
10 cm, R = 3 m and Lpol = 2.6 m (Lpol = Ls sin αu with
αu = 6◦), but note that �RSOL is just a scaling parameter
for �WELM. In PIC simulations, the angle α is fixed (αu =
αt = 6◦), while in this paper, we generally distinguish between
target and upstream angles.

Figure 2 shows the main analysed quantity, the total
parallel energy flux at the target Q‖, electron and ion
components Q‖,e and Q‖,i and in the case of the fluid code
also thermal fractions q‖,e and q‖,i due to heat conduction.
Note that Q‖ is the energy flux deposited on the target in the
direction of the magnetic field, not the power load which is
referred to the flux perpendicular to the surface.

The ELM energy is transported along the magnetic field
preferentially by convection in all cases (low-collisionality
case, no plasma–neutral interactions present). In the fluid
model (figure 2 right and more details in the appendix),
we observe two main time scales of the parallel transport
corresponding to conduction (the structure appearing between
t ≈ 10–80 µs) and convection (the main maximum, the time
scale can be estimated as τ‖ ≈ L‖/cs,ped ≈ 104 µs). The
first structure does not appear so strongly in the PIC model
and could probably be modified or eliminated using heat flux
limiters. On the other hand, we do not see any response at
the target before 10 µs in comparison with the rise of the
energy flux at the target in the PIC and Vlasov simulations
in figure 2 (left and middle), which appears due to fast ELM
particles and a reaction of the background plasma (the time
scale is τ e

‖ ≈ L‖/ve
th,ped ≈ 2.4 µs, ve

th,ped is the electron thermal

speed in the pedestal). Such fast response is not observed in
kinetic simulations if the transient propagates in the vacuum.
These two features, clearly visible in log scale, define the main
differences in fluid and kinetic results.

The Vlasov and PIC simulations are in fair agreement
as far as the total energy flux is concerned, though the peak
value is slightly underestimated by the Vlasov model. In both
cases, the input energies are equally shared between ions and
electrons (unlike the fluid code where the energy source is
redistributed as SE,i/SE,e = 3, see section 3.3). In general, the
Vlasov code displays a lower energy flux for ions but a higher
one for electrons compared with PIC. It must be noted that the
Vlasov code is completely collisionless, whereas collisions are
included in the PIC simulation. The effect of collisions may
thus be to enhance the energy transfer from the electron to the
ion population. A simulation where collisions are removed
from the PIC code indeed produces results very similar to those
obtained with the Vlasov code, for both the ion and electron
energy fluxes [23].

It is worth mentioning that the power to the target
can also be described well by a free-streaming model [24]
(no collisions, no background plasma). Earlier, it was
demonstrated that the heat pulse shape at the target calculated
analytically agrees with the shape typically observed in
experiment [25]. Results from the free-streaming model (with
an ad hoc assumption that electrons transfer all of their parallel
energy to the ions so that both species are quickly accelerated
to the sound speed) show good agreement with both the Vlasov
and PIC codes. These comparisons will be published in [26].
To properly compare the free-streaming model with the kinetic
codes, the analytic impulse response must be numerically
convolved with the temporally and spatially distributed sources
that were used in the kinetic codes. However, in the case when
the source is localized in space at the distance L‖ from the
target and distributed in time as a step function with duration
tELM, an analytic solution for the parallel energy flux to one
target can be found as follows:

Q‖
εinp

= 1

3

τ‖
tELM

√
2π

1

t
exp

(
−1

2

(τ‖
t

)2
)

+
1

2tELM

(
1 − erf

(
τ‖√
2t

))
, if 0 < t � tELM,
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Figure 3. Parallel target energy flux calculated by the free-streaming model for different pulse durations with (left) fixed total input energy
εinp ≈ 2 MJ m−2 (the same as in the reference case with tELM = 200 µs in figure 2), (right) input energy εinp = tELM

∫
SE dx and constant

energy source SE . τ‖ ≈ 104 µs in all cases.

Figure 4. Parallel target energy flux modelled by the fluid code for three different ion viscosity limiters: β = 4/7 on the left (weaker
limiting), β = 0.3 in the middle and β = 0.1 on the right (stronger limiting). In this case, the electron and ion energy sources are equal,
SE,i/SE,e = 1.

Q‖
εinp

= 1

3

τ‖
tELM

√
2π

(
1

t
exp

(
−1

2

(τ‖
t

)2
)

− 1

t − tELM

× exp

(
−1

2

(
τ‖

t − tELM

)2
) )

+
1

2tELM

×
(

erf

(
τ‖√

2(t − tELM)

)
− erf

(
τ‖√
2t

))
,

if t > tELM. (18)

The energy flux Q‖ is normalized to the total input energy
during the transient εinp = tELM

∫
SEdx. Figure 3 shows

solutions for different pulse durations tELM.

3.2. Kinetic correction to parallel ion viscosity

During the ELM crash, it was necessary to apply an ion
viscous flux limit in the fluid code, because the results with the
classical value of ion viscosity looked unphysical (viscous part
of the ion energy flux at the target exceeding the total energy
flux controlled by the boundary condition by two orders of
magnitude). We use the limiter β = 0.1 in the reference case.
A kinetic simulation in [17] shows a decrease of the poloidally
averaged limiter during the early phase of the ELM crash from
β = 0.5 down to β = 0.1 and then a slow relaxation back to
the pre-ELM value. The influence of the viscosity limiter on
the time characteristics and the rise phase of the parallel target
energy flux is shown in figure 4, the right panel is for β = 0.1
as in the reference case. The energy transfer is first dominated

by diffusive processes (before 80 µs) and later by convection
accompanied by viscous friction. The convection time scale is
modified by viscous effects and the maximum energy flux at
the target is observed later when the viscosity is higher (figure 4
left); however, the energy flux amplitude is almost the same in
all cases. No heat flux limiters are employed and parallel heat
flux conductivities are of Spitzer–Härm form.

3.3. Electron versus ion power fractions

Another difference between the kinetic and fluid descriptions
is the ratio between electron and ion energy fluxes at the target.
The PIC simulation shows that the ELM energy is carried to
the targets mainly by the ion component (figure 2 left) for the
same initial energy source to electrons and ions, while in the
fluid model, the energy transport is shared more or less equally
by electrons and ions. Therefore, in SOLF1D, we prescribed
that the input energy goes to ion and electron channels as 3 : 1,
i.e. the ratio of the energy sources is SE,i/SE,e = 3 (see figure 5
for comparison). Nevertheless, this artificial modification of
power fractions does not have any substantial effect on the total
energy flux observed at the target and the amplitude remains
unchanged.

An explanation for the observed discrepancy lies in the
way the sheath is treated in the models. Kinetic modelling
follows the formation of the sheath and the establishment
of the sheath potential during the ELM crash, while in the
fluid model, the sheath is not resolved. It is represented
by a boundary condition described by fixed sheath energy
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Figure 5. Parallel target energy flux modelled by the fluid code for input power fractions to ions and electrons 1 : 1 (left) and 3:1 (right).

transmission coefficients which in reality evolve during the
energetic transient. The sheath potential drop in the kinetic
codes is modified due to faster ELM electrons in a way
the electron power to the divertor is reduced and the exact
resolution of the sheath is required to model this effect. The
reader is referred to [17] for more details about kinetic studies
of the sheath during an ELM crash.

3.4. ELM crash duration

Figures 6–8 show the evolution of target energy fluxes with
various ELM crash durations as simulated by PIC, Vlasov
and fluid models. Recall that by changing tELM for the same
pedestal density and temperature, we also change the total
ELM energy �WELM, see equation (14). In first 50 µs, only
plasma background contributes to the energy flux observed
at the target. In the PIC and Vlasov codes (figures 6–7),
it is the thermal background plasma that is pushed towards
the divertor in response to the ELM pulse. There is also an
early burst of fast ELM electrons which escape the attraction
of ions; however, their contribution is typically two orders of
magnitude smaller [18]. In the fluid code, it is the heat diffusion
that propagates on the plasma background. After 50 µs, the
energy flux rises due to convection. If the transient duration
tELM is long compared with τ‖ (figures 6–8 (right)), a plateau in
the profile of the target energy flux appears. The temperature
of plasma in front of the target increases to a certain maximum
(given by the temperature of hot ELM particles) and the energy
flux saturates, while there is almost no temperature gradient
along the field line.

In the fluid code, the first structure between 10 and 80 µs
is more pronounced when the transient is short (left panel in
figure 8) as the main peak energy flux is smaller. The fraction
of power deposited at the target by heat conduction is important
in the total balance, in contrast to the cases with the duration
of 200 or 400 µs. For even shorter transients, this fraction
becomes dominant and discrepancies between fluid and kinetic
results are expected.

4. Parametrization of simulation results

4.1. Energy fluence ε

A series of fluid and Vlasov runs were performed for various
pedestal parameters corresponding to PIC simulations of

parallel transport during JET ELMs referred to in [3]. From
results, we can obtain an expression for the energy flux at
the target integrated over time, ε‖ ≡ ∫

ELM Q‖ dt (the energy
fluence), in terms of the pedestal density, temperature and ELM
crash duration

ε‖ ≈ 0.56ppedcs,pedtELM (19)

where pped = 2npedkTped is the pedestal pressure and cs,ped =√
2kTped/mi is the pedestal sound speed. The fit can be derived

analytically, without using the simulation results, based on the
assumptions in section 2.4. Expression (19) results from the
energy conservation in the one-dimensional model where the
targets are the only loss channel, i.e. all input SOL energy due to
the ELM leaves the system at the targets, ε‖ = 1

2 tELM
∫

SE dx.
We use SE = 3kTpedSn, see equation (13), and approximate the
particle source by Sn

0 ≈ Anpedcs,ped/Ls, see equation (12). The
source scales with a constant A ≈ 1.2 which is calculated from
the inter-ELM PIC simulation. It is reflected in the coefficient
0.56 appearing in equation (19), which corresponds to 3A/2π .
Analogously, we could obtain

N‖ ≈ 0.38npedcs,pedtELM (20)

where N‖ ≡ ∫
ELM 
‖ dt is the time-integrated particle flux

at the target (the particle fluence) and the coefficient 0.38
corresponds to A/π .

Figure 9 shows our fit for several combinations of
the pedestal density and temperature defined in tables 2–4
according to simulations documented in [3]. On the left,
we can see ε‖ versus ppedcs,pedtELM resulting from the PIC,
fluid and Vlasov models and the linear dependence given by
equation (19). A good match of all codes in figure 9 on the
left is not surprising, ε‖ calculated in the codes should agree
with equation (19), which just reflects the energy conservation
in the codes along the field line. On the right, ε‖ is plotted as a
function of pped only, showing a spread for runs with different
tELM. The interval of time integration is tELM + 150 µs in all
cases.

For the simulated JET ELMs, we approximate �WELM as
a function of the particle source using a radial length �RSOL in
the SOL where the ELM power is deposited, see equation (14)
and (12). We can then write ε‖ from the expression (19) (the
prefactor 0.56 is equivalent to 3A/2π ) in the following way:

ε‖ ≈ 1

2

�WELM

2πR�RSOL sin αu
. (21)
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Figure 6. Parallel target energy flux calculated by the PIC code for the ELM crash duration 53 µs (left), 200 µs (middle) and
400 µs (right).

Figure 7. Parallel target energy flux calculated by the Vlasov code for the ELM crash duration 53 µs (left), 200 µs (middle) and 400 µs
(right).
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Figure 8. Parallel target energy flux calculated by the fluid code for the ELM crash duration 53 µs (left), 200 µs (middle) and 400 µs (right).
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Table 2. Summary of PIC simulations. Note that not all simulations from [3] were included, since some of them were too short to calculate
values of ε‖ at the target.

nped (1019 m−3) 5.0 1.5 2.0 5.0 1.5 5.0 5.0
Tped (keV) 0.5 1.5 2.5 1.5 5.0 2.5 5.0
�WELM (MJ) 0.078 0.122 0.345 0.400 0.750 0.795 2.460
tELM (µs) 200 200 200 200 200 200 200
Qmax

‖ (GW m−2) 1.01 1.46 4.10 5.16 9.20 9.83 31.14
ε‖ (MJ m−2) 0.22 0.33 0.81 1.02 1.82 1.90 6.41

Table 3. Summary of Vlasov simulations.

nped (1019 m−3) 1.5 5.0 5.0 5.0 5.0
Tped (keV) 1.5 1.5 5.0 1.5 1.5
�WELM (MJ) 0.122 0.400 2.460 0.110 0.810
tELM (µs) 200 200 200 53 400
Qmax

‖ (GW m−2) 1.37 3.96 27.12 1.91 4.59
ε‖ (MJ m−2) 0.31 0.87 5.81 0.23 1.80

Table 4. Summary of fluid runs.

nped (1019 m−3) 1.5 5.0 5.0 5.0 5.0 5.0
Tped (keV) 1.5 1.5 5.0 1.5 1.5 1.5
�WELM (MJ) 0.122 0.400 2.460 0.110 0.200 0.810
tELM (µs) 200 200 200 53 100 400
Qmax

‖ (GW m−2) 1.57 5.03 31.23 2.22 3.91 5.03
ε‖ (MJ m−2) 0.30 0.99 6.20 0.24 0.48 2.01

In the poloidal direction (εpol = ε‖ sin αt)

εpol ≈ 1

2

�WELM

Aw
. (22)

�RSOL is directly related to the wetted area Aw =
2πR�RSOLFX and the factor FX = sin αu/ sin αt measures
the flux expansion. The wetted area is defined as Aw ≡
EELM/εmax, EELM ≡ 2πR

∫
ε dr . If we assume an exponential

profile along the target ε(r) ∼ exp(−r/λ), where r is the radial
coordinate perpendicular to the poloidal direction (mapped to
the outer midplane), �RSOL is equivalent to λ.

4.2. Peak energy flux Qmax

An expression for the peak parallel energy flux at the target
in terms of the pedestal quantities is constructed, based on
simulations in figures 6–8 and runs specified in tables 2–4.
We can notice that a longer transient with the duration 400 µs
(meaning also larger ELM power �WELM) gives the same peak
energy flux compared with 200 µs ELM crash (both with the
same pedestal density and temperature). To capture ELMs with
various time durations into one fit, it is therefore reasonable
to assume two branches, the first one is the rise phase of the
energy flux and the second one is the plateau (representing
the maximum energy flux for given pedestal parameters). The
moment the maximum is reached is roughly defined by the
time scale of parallel particle advection τ‖ ≈ L‖/cs,ped. We
get an approximate expression based on code results

Qmax
‖ ≈ 0.55ppedcs,pedmin

{
1,

tELM

τ‖

}
, (23)

but practically, for the majority of investigated JET ELMs
for which 200 µs is assumed, the expression reduces to

Qmax
‖ ∼ ppedcs,ped dependence and Qmax

‖ ≈ ε‖/tELM. The heat
pulse shape and the peak value Qmax

‖ are slightly sensitive to
the parallel size of the source Ls, see below, while there is no
effect of Ls/L‖ on the energy fluence ε‖.

Figure 10 shows again our fit for a series of simulations
from tables 2–4. On the left, we can see Qmax

‖ from the
codes and Qmax

‖ calculated from equation (23) as a function
of ppedcs,pedmin{1, tELM/τ‖}. On the right, the same quantity
is plotted versus ppedcs,ped only, showing a strong departure
from the linear fit only for the shortest transient of 53 µs.

Similarly to equation (21), we can obtain an alternative
relation for Qmax

‖ displaying the energy balance in the SOL, if
we express it as a function of �WELM

Qmax
‖ ≈ 0.49

�WELM

2πR�RSOL sin αutELM
min

{
1,

tELM

τ‖

}
. (24)

The obtained fits (19) and (23) deserve several comments:

• Since the relation between the pedestal pressure drops, the
associated energy released into the SOL and the energy
source in the SOL due to the transient cannot be self-
consistently modelled here, the source is approximated by
equation (12), see section 2.4. This approximation could
be compared with a two-dimensional code [2] or an MHD
code such as JOREK. The relevance of the assumptions
(12) and (13) is important for the derived fits, even though
the PIC code shows good agreement with experiment in
many cases.

• For a direct comparison with experiment, the parallel
energy flux must be recalculated as the flux to the divertor
plate. For example, for the JET shot 74312, the pitch
angles are sin αu ≈ 0.25 and sin αt ≈ 0.08 and the
inclination angle of the target with respect to the field

9
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Figure 10. Qmax
‖ versus ppedcs,pedmin{1, tELM/τ‖} (left) and Qmax

‖ versus ppedcs,ped (right).

line in the poloidal cross section is 33◦. This would give
a field line angle at the target plate approximately 2.5◦.
In [3, 12], larger αt = 6◦ is assumed and the poloidal
flux, Qpol = Q‖ sin αt , would be a factor of ≈10 smaller
than the parallel flux. In addition, a radially non-uniform
profile of power loads is taken into account, since Qpol or
Q‖ are calculated at the position just behind separatrix.
In [12], an exponential profile Q(r) ∼ exp(−r/λ) is
assumed reducing the target energy flux with a factor
of 0.637 to the average value over the interval 〈0, λ〉
comparable to experimental data.

• Further, it is expected that the peak energy flux at the
target would be reduced in the presence of collisions with
neutrals and radiation cooling (see discussion in section 5).
The coefficient 0.55 in equation (23) represents in this
sense a certain maximum.

4.3. Predictions for ITER

The fits obtained for ε‖ and Qmax
‖ for JET ELMs are used for

conditions expected on ITER. We take

nped = 6 × 1019 m−3, Tped = 5 keV,

tELM = 200 µs, L‖ = 115 m

as representative ITER values, similarly as in [12], but in
deuterium plasma only. This gives pped ≈ 96 kPa, cs,ped ≈
7 × 105 ms−1 and τ‖ ≈ 166 µs. The scalings (19) and (23)
lead to

ε‖ ≈ 7.44 MJ m−2, Qmax
‖ ≈ 36.52 GW m−2.

The energy fluence and flux in the fitting expressions are
expressed as vectors parallel to the magnetic field and can be
recalculated to fluxes perpendicular to the target using local
angles of the magnetic field and target inclination. If we use
the same αt = 4◦ as in [12] (for further comparison with results
in [12]), the fluence and flux projected onto the poloidal plane
(Qmax

pol = Qmax
‖ sin αt , εpol = ∫

ELM
Qpol dt) are

εpol ≈ 0.52 MJ m−2, Qmax
pol ≈ 2.55 GW m−2,

just around the limit of 0.5 MJ m−2 mentioned in [4]. For
field line angle at the target α ≈ 2.5◦ reported elsewhere [27],
perpendicular fluence and flux would be

ε⊥ ≈ 0.32 MJ m−2, Qmax
⊥ ≈ 1.59 GW m−2.

The link between ε‖ and the pedestal parameters is imposed
by assuming convective ELMs (13) and a simplified balance
between losses from the pedestal (the radial ELM source) and
parallel losses in the SOL with the upstream density going up to
the pedestal value and the hot ELM plasma streaming towards
targets with the pedestal sound speed (12). The corresponding
ELM energy can be estimated from equation (17) if we assume
a certain radial size of the filament in the SOL �RSOL.
Using R = 6 m, Ls = 75 m and Lpol = 5.2 m, we get
�WELM ≈ 4 MJ for �RSOL = 10 cm or �WELM ≈ 1 MJ for
�RSOL = 2.5 cm. Recall that for convective ELMs, the simple
balance between parallel and perpendicular transport assumed
here results in �RSOL proportional to the radial width of the
ELM affected area �Rped, see the appendix.

A PIC simulation reported earlier in [12] gives Qmax
pol ≈

1.6 GW m−2, somewhat lower than the obtained value from
the fit Qmax

pol ≈ 2.55 GW m−2. For the purpose of a direct
comparison with PIC results, an additional extrapolation
is performed by the fluid code (neglecting neutrals and
impurities). A transient of 200 µs is modelled in the one-
dimensional geometry described by L‖ = 115 m and Ls =
75 m (this means the same poloidal angle where the power
from the pedestal is expelled into the SOL as in the previous
JET case and the same Ls/L‖ ratio). L‖ is taken from [12]
and corresponds to a flux tube just outside the separatrix.
The particle and energy sources into the SOL are calculated
as described in section 2.4. Pre-ELM upstream density and
temperatures are n ≈ 3 × 1019 m−3, Te ≈ 160 eV and
Ti ≈ 260 eV (similar to those in [12] which were obtained from
a SOLPS solution). As a result of the fluid code, we obtain
the energy fluence during the ELM crash ε‖ ≈ 7.15 MJ m−2

(integrating Q‖ over tELM+300 µs) and the peak energy flux
Qmax

‖ ≈ 31.11 GW m−2, confirming the values from fitting
expressions using nped and Tped directly. Corresponding
fluence and flux in the poloidal direction is εpol ≈ 0.5 MJ m−2

andQmax
pol ≈ 2.17 GW m−2, usingαt = 4◦. The angleα is again
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Figure 11. Impact of the parallel size of the source on the peak energy flux at the target. Three runs of the fluid code with different
distribution of the particle and energy sources along the field line (left) and corresponding parallel target energy flux (right). Compare with a
PIC simulation in [12].
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fixed in PIC simulations along the field line (i.e. αt = αu) and
αu has been calculated for ITER in [12] from an equilibrium
used by SOLPS as an average angle so that the total lengths
of the simulated flux tube in the parallel (Ltot

‖ = 2L‖) and
poloidal (Ltot

pol) directions and satisfy Ltot
pol = Ltot

‖ sin αu.
One of the reasons the PIC simulation predicts lower Qmax

pol
is the presence of tritium (50%) leading to 10% decrease in the
pedestal sound speed compared with deuterium plasma. The
second reason is a different profile of the source in the parallel
direction assumed in the fluid and PIC codes. The expressions
(19) and (23) were obtained with constant ratio Ls/L‖ ≈ 0.62
and the same ratio is used in the fluid run for ITER. While
the total input energy is the same in both codes, the PIC
model in [12] assumes twice broader source Ls ≈ 143 m with
lower amplitude. Figure 11 shows the impact of the source
broadening on the energy flux observed at the target. A source
with Ls = 143 m leads to 15% decrease of Qmax

‖ and Qmax
pol

compared with the one with Ls = 75 m assumed above. If
we combine the effect of tritium and the source extension,
we get a perfect quantitative match of Qmax

pol in the fluid and
PIC codes. In the studied range of Ls/L‖ ≈ 0.32–1.24, there
is an inverse dependence of Qmax

‖ on Ls and the energy flux
scales approximately as Qmax

‖ /Q0 ≈ 0.9(Ls/L‖)−0.2 where
Q0 = Qmax

‖ (Ls/L‖ ≈ 0.65). A similar test for JET ELM from
section 3.1 shows a similar trend, but with different powers,
Qmax

‖ /Q0 ≈ (Ls/L‖)−0.06, and the change of Qmax
‖ is not large,

approximately 4% decrease for twice broader source and 4%
increase for twice sharper source.

5. Conductive ELMs and additional questions

There are several effects coming into question, which are
not investigated here. In the previous sections, we assume
purely convective ELMs. This seems to be a reasonable
assumption for pedestal collisionalities at JET around ν∗

e ≈ 0.5
and larger (see [28], also for ν∗

e definition), while for lower
collisionalities, a large part of energy can be carried by heat
conduction (which could be the case for ITER). Secondly,
we could speculate about the effect of neutral recycling close
to the targets, which is not taken into account. H-mode is
often associated with low-collisional SOL plasma and the
presence of neutrals is thought not to influence the studied
phenomena dramatically, which was examined earlier by
the PIC code [12, 16] (a simulation shows 30% decrease of
Qmax

‖ and agreement with experiment improves when impurity
radiation and recycling are involved, and a small impact on
the time scale is observed). It would be worth looking at
the effect of collisions in operational conditions where ELMs
occur with high-recycling or detachment at the targets, a regime
envisaged for ITER. Figure 12 (results of the fluid code) is
studying the influence of time distribution of the source (left)
and the effect of neutrals (right) on the time scales observed at
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Figure 13. Parallel target energy flux modelled by the fluid code for (top) the reference convective ELM (left), a case when the radial source
is equally shared by convection and conduction (middle) and a purely conductive ELM (right). The same for the bottom panels, but applying
heat flux limiters αe = 0.5, αi = 1.0.

the target. Shaping of the source temporal profile influences
neither the time scale nor the maximum target flux if the source
amplitude and duration (and the total input energy) are the
same. Inclusion of recycling at the targets, in contrast, affects
the time scale. Figure 12 compares two solutions of the fluid
code. While the duration of the source translates well to the
duration of the increased target energy flux for the case without
neutrals, slowing down effect of neutrals leads to broadening
of the profile in time, which becomes more similar to what is
observed experimentally (typical decay on the time scale of
∼1000 µs, see [25]). The effect of neutrals is included via
a simple one-dimensional fluid model for deuterium atoms
(including charge exchange, ionization, recombination and
excitation processes). The essential effect results from the
background plasma that is matched to the pre-ELM profile
for the case without neutrals at the upstream position, but in
addition, it involves recycling and ionization zones close to the
targets, which interact with plasma of the ELM.

Further in this section, the SOLF1D code is used to
study transients which are not purely convective. Ideally,
we would like to estimate the energy source from the
energy conservation equation similarly as we approximated the
particle source using the continuity equation. It is, however,
not so straightforward to parametrize energy losses due to
conduction, see more in appendix. In this section we focus
on how the energy flux evolution at the target is influenced
if the ELM source is partly or, in the extreme case, fully
conductive, i.e. SE > 3kTpedSn, which is practically done by a
reduction of the particle source Sn for the same energy source
SE . Alternatively, we could investigate a situation with the
same particle source Sn while increasing SE . An extended
study for conductive ELMs follows in the appendix.

The reference case described in section 3.1 (nped =
5 × 1019 m−3, Tped = 1.5 keV, tELM = 200 µs) is used to
illustrate the effect. In addition to this case shown in figure 13
on the left in the top row (i), we consider two situations with
the same total energy input: (ii) a case when the ELM energy
is equally shared by convection and conduction (middle) and
(iii) a case of purely conductive ELM with no particle source
(right), Sn ≈ 0 (in fact Sn is equal to the pre-ELM value):

(i) Sn = Sref
n

(ii) Sn = 0.5Sref
n

(iii) Sn ≈ 0

and SE = Sref
E for all three cases, Sref

E = 3kTpedS
ref
n .

The convective (left) and half-conductive (middle) cases are
comparable in amplitudes of the energy flux and do not reveal
significant discrepancies, in addition to a slightly stronger
increase in the target energy flux in the first phase. In the
time trace of purely conductive transient (right), we note even
stronger modification of the early phase which is governed by
the heat conduction and we see a sharp immediate rise of the
energy flux, but only 10% change in amplitude. The bottom
panels show the effect of heat flux limiters for three studied
transients. Both electron and ion energy fluxes are suppressed
in the first period of transients when heat conduction occurs,
which is followed by peaks of the energy flux right after.
For conductive transients (middle and right), it is mainly a
modification of the electron energy flux causing the sharp
peaking of the total energy flux at the target. In the initial
phase, conductive transport dominates, while later ∇T is very
small and the conductive transport is reduced (see details in
figure 19). Additionaly, heat flux limiters have no effect if
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Figure 14. Parallel target energy flux modelled by the fluid code for: (top left) a convective 53 µs ELM, (top middle) a case when the radial
source is equally shared by convection and conduction, (top right) a purely conductive ELM. In the bottom row, the same with applied heat
flux limiters αe = 0.5, αi = 1.0.

∇T ≈ 0. This also implies that the importance of conduction
and heat flux limiters is bigger for shorter transients.

For a shorter (weaker) ELM (tELM < τ‖), introducing
a conductive source can result in a strong modification
of temporal profiles seen at the target. The conduction
contribution in the target energy flux is more important for
short transients (section 3.4) and it is even larger if we also
further assume that the transient source has both convection
and conduction components. This is demonstrated in figure 14,
again with an artificial case of a purely conductive ELM that
carries no source of particles and heats up the existing SOL
plasma only. Relative change in the energy flux amplitude
is again within 10% if the source is conductive. Bottom
panels show the effect of heat flux limiters as in the previous
case. In figure 14 (top), we can clearly identify two structures
on different time scales, the early one due to conduction
(weaker in PIC and Vlasov simulations, see figures 6–8)
and the second one due to convection, where we find a fair
agreement between the codes. Therefore, we would think
that to match results obtained by fluid and kinetic modelling
closer, it is desirable to use heat flux limiters which would
reduce heat conduction and eliminate the structure which is
observed at the target before 80 µs. One must be, however,
careful with limiting the heat conductivity and no universal
guide yet exists (see, e.g., [12, 17]). In figure 14 (bottom),
it appears that the application of the heat flux limiters reduces
the conductive transport substantially, but in contrast to kinetic
simulations also increases the peak energy flux. Switching on
the heat flux limiters leads to an increase in the energy flux
by 46% (convective ELM) up to 183% (conductive ELM). At
this stage, we do not have a PIC simulation for conductive
ELMs for comparison. The conductive source was not further

considered in BIT1 because a good quantitative agreement
with experiment was achieved for the convective source. It
is envisioned that the two techniques (kinetic and fluid) would
move apart more expressly if a non-negligible fraction of the
power is deposited at the target due to heat conduction. This
can be the case when the energy source into the SOL due to
the ELM is largely conductive and when the ELM crash is
short compared with the parallel transport time scale τ‖ (e.g.
represented as an impulse). Accurate models of heat flux
limiters would be required taking into account time evolution
and a benchmark with the PIC code would be beneficial.

Several additional cases (e.g. figures 15 and 16), for which
we have a comparison with the PIC code, were performed
with several values of heat flux limiters for electrons and ions
separately. In figures 15 and 16 (convective transients), we see
only a little influence of the electron heat flux limiter on the
electron energy flux. In contrast, the ion energy flux (but also
the electron energy flux) is sensitive to the change in the ion
heat flux limiter. In figure 15 (longer duration of the transient),
the best agreement with PIC is achieved when no heat flux
limiters are employed. In figure 16 (shorter transient), the
situation is different. We see again sharp peaks in the energy
flux as soon as the convective energy transfer appears, but
in addition, we can note, from comparing the energy fluence
between the PIC and fluid codes, that the total power arriving
at the target during the transient is larger in the PIC simulation.
This indicates that the contribution of the background plasma
in the total target energy flux (the first structure that appears in
the PIC code due to reaction of background plasma to fast ELM
particles) cannot be neglected, if the transient is short enough.
A general conclusion concerning heat flux limiters resulting
from performed simulations here is that spatially uniform and
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Figure 16. The same as in figure 15, but for a short transient of 53 µs where parallel conductive transport is important and the kinetic and
fluid techniques start to disagree. Note that in the PIC simulation, we observe larger total time-integrated flux ε‖ than in the fluid code by a
factor of 1.24. It is because the thermal background plasma in the PIC simulation contributes to the total target energy flux as the ELM pulse
pushes the plasma towards the divertor and in the case of a short (small) transient, this contribution is not negligible.

especially constant in time limiting factors do not improve
agreement with the PIC simulation and a systematic study
would be necessary. The temporal variation of the heat flux
limiting factors during a transient is demonstrated by a kinetic
simulation in [17].

Implications of one-dimensional results for conductive
ELMs (ITER case) could be summarized as follows.
Generally, the power response at the target is a function of
the upstream source. This source is linked to perpendicular
transport of particles and energy and to physics of the ELM
crash in the pedestal and its determination is not trivial.
However, for a given energy source, we observe the same peak
energy flux Qmax

‖ irrespective of the parallel transport process.
The main transport processes (convection/conduction) are
reflected in the profiles of target energy fluxes on different
time scales, which are clearly separated especially for short
transients. The role of transient duration is in affecting the
importance of parallel conduction. Further, a parameter that
influences Qmax

‖ in the fluid modelling is the heat flux limiter,
with a large effect during short transients, but a small effect
for long transients with tELM > τ‖ (i.e. in the case of ITER for
tELM > 200 s).

6. Conclusions

Parallel transport in the SOL in response to the ELM crash is
modelled and three numerical techniques are benchmarked.

Even though kinetic effects are evident in results of PIC
and Vlasov simulations, fluid modelling shows a satisfactory
agreement with the kinetic approach. It appears that an instant
response at the target due to fast ELM electrons, not captured
in the fluid code, does not contribute substantially to the total
deposited power. The main contribution is dominated by
ion dynamics and energy convection. For typical conditions
experimentally observed at JET, a fluid code (SOLF1D)
describes reasonably well the main features of the transient’s
parallel propagation and predicts approximately the same peak
energy flux at the target and similar time histories of the parallel
energy flux as a PIC model (BIT1) and a model based on the
Vlasov equation.

Assuming a one-dimensional problem and neglecting the
effect of neutrals or impurities, expressions for the energy
fluence parallel to the magnetic field ε‖ ≈ 0.56ppedcs,pedtELM

and the parallel peak energy flux at the target Qmax
‖ ≈

0.55ppedcs,pedmin{1, tELM/τ‖} are derived from simulation
results (at constant Ls/L‖) and compared between the codes.
These fits follow from assumptions of convective ELMs and
approximate link between parallel and perpendicular transport
resulting in an estimate of the source into the SOL, Sn ∼
npedcs,ped/Ls. All three codes show the same characteristics
of the obtained scalings. Only the Vlasov model gives
slightly lower Qmax

‖ which is proved in [23] to be caused
by no collisions included in the model and hence missing
collision-based diffusive heat transport. Finally, predictions
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for ITER are drawn from these fits, leading to the total
energy density deposited at the target in the parallel direction
ε‖ ≈ 7.44 MJ m−2 and the amplitude Qmax

‖ ≈ 36.52 GW m−2

for an ELM crash of 200 µs with nped = 6 × 1019 m−3 and
Tped = 5 keV. The corresponding poloidal fluence and flux are
εpol ≈ 0.52 MJ m−2 and Qmax

pol ≈ 2.55 GW m−2 for αt = 4◦

between parallel and poloidal directions or ε⊥ ≈ 0.32 MJ m−2

and Qmax
⊥ ≈ 1.59 GW m−2 for field line angle at the target

α = 2.5◦.
Additional questions such as the effect of heat conduction

in the energy source into the SOL during the ELM crash or
heat flux limiters are discussed on the basis of fluid results.
Qmax

‖ does not change for the same energy source distributed
differently between convection and conduction if tELM > τ‖.
For tELM < τ‖, Qmax

‖ is sensitive to application of heat
flux limiters and a comparison of fluid and kinetic codes for
conductive transients would be useful.

Few assumptions are made in the fluid code—fractions of
the input power carried by ions and electrons are modified, the
viscosity limiter is applied, while in contrast it turns out that
employing heat flux limiters does not necessarily give better
results (better match is obtained with no heat flux limiters than
with limiters constant in time). Only for largely conductive
(very low ν∗

e ) and short ELMs (tELM < τ‖), is a departure
between the codes anticipated. Results show that the validity
of the fluid model is disputable if the heat conduction plays the
major role in the power deposition at the target. These findings
can be considered in two-dimensional SOL transport solvers.

Earlier, results of the PIC model for JET type I ELMs
were successfully compared with measurements in [12, 16] and
a comparison in [25] demonstrated agreement between free-
streaming model and IR data for the shape of a heat pulse in
time. However, the derived expressions for ε‖ and Qmax

‖ , which
involve pedestal quantities, have to date not been compared
with experiment and a comparison with IR data from the AUG
and JET tokamaks is planned.

In the last paragraph, we present several results from
the appendix which separate the paper, with main aim to
compare fluid and kinetic models, from an additional analysis
carried out with the fluid model exclusively, focusing more
on description of conductive transients. The reader is referred
to the appendix for more details. Regarding the fact ELMs
are conductive for lower collisionalities (as in ITER), it is
interesting to see that a parametrization of ε‖ and Qmax

‖ with
upstream SOL quantities for both convective and conductive
transients shows a similar functional form as the fits above
for convective ELMs, however, with p and cs measured in
the upstream SOL instead of the pedestal (one-dimensional
situation only). Further, convective and conductive parallel
energy losses calculated by the fluid code reveal the same
collisionality dependence as experimental pedestal energy
losses. Finally, the ratio between the SOL size and the
size of the ELM affected area in the pedestal RSOL/Rped is
estimated from a simple one-dimensional analysis, credibility
of which should be proven/disproven by comparison with 2–
3D models including more complex transport. The ratio scales
as RSOL/Rped ≈ π2a

√
κ/(Ls sin αu) for convective ELMs and

for purely conductive ELMs (�nped ≈ 0), this is multiplied by
τn
‖ /τT

‖ , provided that ε‖ scales with ppedcs,pedtELM.
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Appendix

Parallel losses modelled by SOLF1D

Detailed analysis of parallel losses and fluxes for the reference
case from section 3.1 is presented in figures 17–20. A similar
study has been done in [9] for a transient in high-recycling
SOL corresponding to a typical turbulent blob. Figure 17
displays parallel particle and energy losses due to convective
and conductive processes (loss terms Sn

‖ and SE
‖ are evaluated

upstream at the outboard midplane) and the midplane density
and temperatures. The density goes up to n ≈ 5.5×1019 m−3,
about the pedestal density nped = 5 × 1019 m−3. For the
energy source distributed as SE,i/SE,e = 3 and calculated
as SE = 3kTpedSn with Tped = 1500 eV, the temperatures
upstream reach Ti ≈ 1125 eV and Te ≈ 251 eV at 200 µs
(lower than the temperature prescribed to the source).

Figures 18 and 19 show parallel fluxes at the target
(x = −L‖) and at the position corresponding to the source
end (x = −Ls/2). Parallel profiles of the density, velocity and
temperature during the transient are displayed in figure 20. The
temperatures show almost no gradients (sheath-limited regime
and flattening due to prompt heat diffusion), while the density
is governed by convective transport with gradient length scale
of the source size Ls, see peaking of the velocity (visible on
the red curve) and the density structure with two (less visible)
peaks (green curve) corresponding to the pulse location.

Although conductive energy losses are strong on very
short time scales (figure 17, blue), their total contribution to
parallel losses during the transient is for electrons comparable
to convective losses and for ions roughly four times smaller
than convective losses (small temperature gradients). For very
short transients, their total contribution would be dominant,
but in this case (and in general if tELM > τ‖), losses at
200 µs (almost steady state) are more relevant in describing
the total energy loss during the transient. Parallel fluxes
in figure 19 (calculated at the source edge) reveal the same
structure as parallel losses calculated at the midplane. A
similar picture is also obtained for half-conductive and fully
conductive transients from figure 13, though not surprisingly
with lower/higher convection/conduction contributions. The
target fluxes in figure 18 are governed by imposed boundary
conditions, that is why q‖,e = Qkin

‖,e. The particle flux at the
target, x = −L‖, copies the flux seen at the end of the source,
x = −Ls/2. The energy flux profile between these two
locations is modified along the distance L‖ (while the pulse
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Figure 17. Plasma parameters upstream (outboard midplane) during the transient—(top left) plasma density n, (top middle) plasma
temperature Te and Ti, (top right) parallel particle losses Sn

‖ = ∂/∂x(nv‖), (bottom left) parallel electron energy losses SE
‖ and individual

components Sconv
‖ = ∂/∂x(5/2nkTev‖), Scond

‖ = ∂/∂x[−κ‖,e∂/∂x(kTe)], (bottom right) parallel ion energy losses SE
‖ and components

Sconv
‖ = ∂/∂x(5/2nkTiv‖ + 1/2minv3

‖), Scond
‖ = ∂/∂x[−κ‖,i∂/∂x(kTi)], Svisc

‖ = ∂/∂x[−v‖η‖,i∂v‖/∂x], see equations (4)–(7). The dashed
purple line is the source.
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Figure 19. Particle and energy fluxes as in figure 18, now not at the target, but at the edge of the source.
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Figure 20. Snapshots of parallel profiles during the transient taken each 50 µs. The transient lasts for 200 µs.

travels towards the target, heat diffusion is removing energy
from the pulse and flattening the temperature gradients), but
the peak values are comparable.

Series of transients are analysed, with energy sources
including both convective and conductive components. One
scan is done over the particle source Sn, reducing Sn for a fixed
energy source SE and the second scan is with varying SE for a
fixed Sn (table 5). The duration is 200 µs in all cases. The aim
of the study is to investigate parallel transport for conductive
ELMs and look at dependences of target quantities similarly
as in the study of convective ELMs, equations (19) and (23).
Quantities in the following figures are displayed as functions
of plasma parameters upstream (midplane, separatrix) instead
of pedestal values, as the link between pedestal and upstream
locations is missing in the one-dimensional code. Therefore
the study provides an insight into the parallel transport
only.

Table 5. Particle and energy sources included in the scan. The first
transient is the reference convective case with Tped = 1500 eV,
nped = 5 × 1019 m−3, Sref

E = 3kTpedS
ref
n and Sref

n ≈ Anpedcs,ped/Ls.
SE,i/SE,e = 3 in all cases.

(1) Sn = Sref
n SE = Sref

E

(2) Sn = 0.5Sref
n SE = Sref

E

(3) Sn = 0.2Sref
n SE = Sref

E

(4) Sn ≈ 0 SE = Sref
E

(5) Sn = Sref
n SE = 1.5Sref

E

(6) Sn = Sref
n SE = 2.0Sref

E

(7) Sn = Sref
n SE = 3.0Sref

E

(8) Sn = Sref
n SE = 5.0Sref

E

In figure 21, normalized parallel density and temperature
losses Sn

‖ /n and ST
‖ /T are plotted as functions of upstream

parameters. These losses are calculated at t = 200 µs not
far from steady state, i.e. describe well the total losses over the
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Figure 22. Parallel losses as functions of upstream parameters as in figure 21, but with heat flux limiters αe = 0.5, αi = 1.0.

period of the transient because of tELM > τ‖. As a consequence
of long enough duration, parallel losses are related to radial
sources as Sn

‖ ≈ Sn and SE
‖ ≈ SE . Figure 21 (left) shows

that the factor ncs/Ls calculated upstream seems to be a good
measure of particle losses Sn

‖ and Sn
‖ ≈ 1.5ncs/Ls. There

are two points which deviate from the linear scaling. These
points correspond to cases 3 and 4 in table 5 and differ
from the others by effectively no particle source during the
transient, the upstream density is even decreasing during the
pulse (deviation of these points from the linear trend is not
visible if plotted as Sn

‖ over ncs/Ls). In figure 21 (right), there
is an ordering of the conductive temperature losses ST

‖ with
upstream 2χ‖T/3L2

‖, although not linear and absolute values
do not agree (χ‖ = κ‖/n and defined by Braginskii formula).
L‖ or Ls are smaller than the typical gradient temperature
length (almost no temperature gradients), while parallel heat
conductivities (∼ T 5/2) are very high (see figure 20). A scan
from table 5 is repeated with heat flux limiters and results are
shown in figure 22. The absolute values of parallel loss factors
are not changed much, because conductive losses are reduced
by the application of heat flux limiters only in very early phase
of the transient when there is still some temperature gradient
along the field line. However, quantitative agreement of the
parametrization is better than in the previous case without
limiters. The reason is that we plot data over modified heat
diffusivities χ lim

‖ taking into account the effect of heat flux
limit, χ lim

‖ = χ‖(1 + χ‖/αL‖vth)
−1.

The energy fluence at the target ε‖ (as well as the total
energy losses) scales with the upstream value of pcstELM

(figure 23) as
ε‖ ≈ 1.7pcstELM (25)

where p = nk(Te + Ti) and cs = √
k(Te + Ti)/mi. The

peak energy flux at the target is approximately Qmax
‖ ≈

ε‖/tELM. The second scan with heat flux limiters (magenta
crosses) shows similar trends as the scan without limiters
(black squares), only somewhat higher Qmax

‖ for the most
conductive pulses. The coefficient 1.7 is higher than in the
dependence found previously, equation (19). For the same
convective transient as in section 3.1, the temperatures in the
upstream SOL do not reach the pedestal temperature used in
section 3.1 to define the particle and energy sources, due to
cooling by conductive heat transport during the transient. That
is the reason why pcstELM evaluated upstream is a factor of 3
smaller than ppedcs,pedtELM used in equation (19). The fits for
ε‖ and Qmax

‖ call for a comparison with experiment or for a
similar study in two dimensions which would cover the link
between the pedestal and separatrix locations and include two-
dimensional processes in the SOL.

Figure 24 shows the dependence of parallel losses on
the upstream electron collisionality and τ‖ (left and middle)
and total parallel energy losses for electrons and ions with
convective part separately. The collisionality is defined as
ν∗ = L‖/λee with λee = 1.2 × 1016T 2

e /n. If Sn
‖ ≈

�nped/tELM and ST
‖ ≈ �Tped/tELM is assumed, �ε/ε from

figure 24 can be related to �WELM/W (see next section).
In figure 24, we see that the one-dimensional parallel
transport model reproduces typical dependences observed
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experimentally [28, 30]. Convective losses are less sensitive
to the collisionality than conductive losses and electron
conductive losses dominate over the ion ones due to faster
cooling.

Parallel and perpendicular balance during the ELM crash

The total energy lost from the pedestal into the SOL during the
ELM crash can be expressed from measurements as

�WELM =
∫

�

[
3

2
npedk(Te,ped + Ti,ped)

]
dV

≈ �(3npedkTped)Vped (26)

where Vped is the volume in the pedestal corresponding to the
ELM affected area, Vped ≈ 2πa

√
κ2πR�Rped and �Rped is

the corresponding characteristic pressure width in the pedestal.
Let us define the radial width as �Rped = ∫

�ppeddr/�pmax
ped ,

Tped�nped�Rn
ped + nped�Tped�RT

ped = �(npedTped)�Rped.
We distinguish between losses due to convection and

conduction given by pedestal density and temperature drops,
respectively

�WELM ≈ 3k(Tped�nped + nped�Tped)Vped. (27)

If the temperature drop is small, convective losses dominate
(though figure 9 in [28] shows it is often not the case) and we

can assume

�WELM ≈ 3kTped�npedVped

≈ 2πa
√

κ2πR�Rped3kTped�nped. (28)

One of the interpretations for explaining observed
dependences of �WELM on the pedestal collisionality is that
plasma in the pedestal connects with the targets during MHD
activity due to changes of the magnetic field structure. Then the
pedestal pressure is thought to be reduced by parallel transport
in the SOL. See, e.g., [28] or [29], where a crude approximation
linking radial transport with parallel losses is used

dnped

dt
≈ �nped

tELM
≈ Sn

‖ ≈ −nped

τn
‖

,

dTped

dt
≈ �Tped

tELM
≈ ST

‖ ≈ −Tped

τT
‖

(29)

describing the density and temperature drops by parallel loss
factors as

�nped

nped
≈ − tELM

τn
‖

,
�Tped

Tped
≈ − tELM

τT
‖

. (30)

Parallel loss times are often approximated as

τn
‖ ≈ L‖

cs,ped
, τ T

‖ ≈ 3L2
‖

2χ‖,e
, (31)
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see equations (4)–(7), χ‖,e = κ‖,e/ne. This approximation
is compared with experimental observations in [28] and it
appears that it works well for the temperature (even though
absolute values do not agree), while for convective losses, a
clear dependence predicted by the model is not observed in
experiment, figure 10 in [28]. If we compare the approximate
expressions for removal times, we can derive that convective
energy losses along the field line dominate over conductive
losses for higher values of pedestal collisionality ν∗

e ∼
L‖nped/T 2

ped. That is also confirmed by measurements in [28]
or seen in JOREK simulations [21]. The expressions (31)
can be compared with losses calculated in the fluid code
(see figure 21). It was shown that parallel particle losses
Sn

‖ can be parametrized by upstream ncs/Ls, i.e. rather using
the source length Ls instead of the connection length L‖ as
the typical parallel gradient length for the density. Parallel
temperature losses ST

‖ do not show a clear dependence on
upstream 2χ‖T/3L2

‖, mainly due to almost zero temperature
gradients along the field line during the transient (see figure 20).

The ELM energy from equation (27) can be equated to
energy arriving at the target. Previously, we related the released
energy �WELM for convective transients to the radial length
where the energy is expelled in the SOL �RSOL, equation (14).
�WELM in this relation is consistent with the energy deposited
at the target, equation (21). From equation (21) and using the
fit for ε‖ (19), we obtain

�WELM ≈ 2πR�RSOL sin αu2ε‖ (32)

≈ 2πR�RSOL sin αu × 0.56 × 4npedkTpedcs,pedtELM.

Comparison with �WELM estimated on the pedestal side,
equation (27), leads to a relation between the lengths �Rped

and �RSOL

�RSOL

�Rped
≈ 1

0.56
× 3

2

(
�nped

nped
+

�Tped

Tped

)
τpol

tELM

1

sin αu
(33)

where τpol is defined as τpol ≡ πa
√

κ/cs,ped.
Factors �nped/nped and �Tped/Tped can be estimated from

experiment or approximated by a parametric dependence, e.g.
(30). Experimental data in figure 3 in [28] show relative
pedestal density and temperature drops �nped/nped ≈ 0.3
and �Tped/Tped ≈ 0.5 for a typical JET ELM. We estimated
the radial size of the ELM affected area for this case as
�Rped ≈ 10 cm. The pedestal density and temperature drops
approximately translate to relative pedestal energy losses as

�WELM

W
≈

(
�nped

nped
+

�Tped

Tped

)
2�Rped

a
√

κ
, (34)

which gives convective losses of 4.6% and conductive losses
of 8% for the ELM from figure 3 in [28] (assuming the same
�Rped ≈ 10 cm for both). The ELM energy losses are
measured with respect to W = 3npedkTpedVplasma and in (34),
we approximated the plasma volume as Vplasma ≈ πa2κ2πR.
Convective and conductive components of normalized energy
losses �WELM/W for typical JET type I ELMs are shown
in figure 9 in [28]. A scan over the electron collisionality
gives a spread of conductive losses between 3% and 23% and

convective losses relatively insensitive to ν∗
ped in the range 2–

9%. From equation (33) and using tELM ≈ 200 µs, a ≈ 1 m,
κ ≈ 1.7 and sin αu ≈ 0.25, we get �RSOL/�Rped ≈ 0.58,
i.e. �RSOL ≈ 5.8 cm. �RSOL calculated from equation (33)
reflects broadening compared with the inter-ELM values 3–
7 mm reported in [4, 5], though it is larger than the typically
observed SOL power width during ELMs 7–18 mm. In order
to achieve comparable values of �RSOL based on the simple
estimate (33), the ELM crash duration tELM would have to be
longer or the prefactor in equation (19) would have to be larger.
Note that no neutrals or radiation is taken into account as well
as no in/out asymmetry, while in experiment the asymmetry is
in favour of the inner target. In addition, the energy fluence
at the target in equation (19) is calculated for convective
ELMs, i.e. the energy source in the SOL is approximated as
SE ≈ 3kTpednpedcs,ped/Ls, while from experiment, we took
into account both convective and conductive parts of pedestal
losses.

If we assume convective ELMs (�Tped ≈ 0) and replace
�nped/nped in equation (33) by tELM/τn

‖ according to (30), a
simple analytic model for convective parallel losses (31) leads
to mapping of the ELM affected area in the pedestal to the
target wetted area as

�RSOL

�Rped
≈ 1

0.56
× 3

2

τpol

τn
‖

1

sin αu

≈ 1

0.56
× 3πa

√
κ

2L‖ sin αu
. (35)

This gives an estimate �RSOL/�Rped ≈ 1.1 for JET (κ ≈ 1.7,
a ≈ 1 m, L‖ ≈ 40 m, sin αu ≈ 0.25) and �RSOL/�Rped ≈
0.6 for ITER (κ ≈ 1.7, a ≈ 2 m, L‖ ≈ 115 m, sin αu ≈ 0.33).
If we use the source width Ls instead of the connection length
L‖ in the approximation for the parallel loss time (31), we
obtain �RSOL/�Rped ≈ 1.8 for JET (using Ls ≈ 25 m) and
�RSOL/�Rped ≈ 0.9 for ITER (using Ls ≈ 75 m).

Although the scaling (19) was derived for convective
ELMs, it is interesting that even though parallel conductive
losses are difficult to parametrize (figure 21), the total energy
losses and also the energy fluence ε‖ at the target scale well with
pcstELM measured in the upstream SOL (midplane, separatrix)
both for conductive and convective ELMs (figure 23). This,
however, does not strictly reflect the same scaling with pcstELM

found in the pedestal. Nevertheless, if we adopt the scaling
of ε‖ with pedestal quantities (19) for conductive ELMs
and investigate equation (33) for the other extreme case
(�nped ≈ 0), the simple approximation of parallel loss time
τT
‖ , equation (31), leads to

�RSOL

�Rped
≈ 1

0.56
× 3

2

τpol

τT
‖

1

sin αu

≈ 1

0.56
× πa

√
κ

L2
‖ sin αu

χ‖,e
cs,ped

(36)

which is equivalent to the ratio estimated for convective ELMs
(35) multiplied by a factor of τn

‖ /τT
‖ . The approximation

(31) for τT
‖ and consequently the estimate (36) are likely to

fail in absolute values. The characteristic parallel particle
loss and electron cooling times (31) follow from convective
and conductive terms of fluid equations (3)–(6) simplified by
replacing gradients by characteristic gradient scales (∂/∂x ≈
1/L‖). Figure 20 shows that the gradient length for convective
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transport can indeed be L‖ or better Ls, while temperatures
between the target and the source location are quickly
equilibrated and L‖ underestimates the typical gradient scale
for the temperature along the field line. Regardless the absolute
values, it is useful to see the functional form of the SOL width
�RSOL based on such a simple one-dimensional parallel loss
model. The qualitative expression (36) reveals a dependence
on the electron collisionality as

�RSOL

�Rped
≈ 1

0.56
× 3.2πa

√
κ√

2L‖ sin αu

(
mi

me

) 1
2 1

ν∗
ped

(37)

using the Spitzer–Härm heat diffusivity χ‖,e = 3.2k

Tpedτe,ped/me and ν∗
ped = L‖/ve

th,pedτe,ped. Similarly, we obtain
an expression

�RSOL

�Rped
≈ 1

0.56
× 3.2πa

√
κ√

2L‖ sin αu

(
mi

me

) 1
2

× 1

ν∗
ped

(
1 +

3.2

αeν
∗
ped

)−1

, (38)

if we use a modified heat diffusivity χ lim
‖,e = χ‖,e(1 +

3.2/αeν
∗
ped)

−1 with the electron heat flux limiter αe (in the

flux-limited expression for χ lim
‖,e , we again approximated the

gradient as ∂T /∂x ≈ T/L‖). Quantitatively, the last
relation is a strong function of the heat flux limiter αe.
It gives approximately �RSOL/�Rped ≈ 3.1 for JET and
�RSOL/�Rped ≈ 1.7 for ITER in the case of αe = 0.1 (with the
following values used for JET: κ ≈ 1.7, a ≈ 1 m, L‖ ≈ 40 m,
sin αu ≈ 0.25, ν∗

ped ≈ 0.1; and for ITER: κ ≈ 1.7, a ≈ 2 m,
L‖ ≈ 115 m, sin αu ≈ 0.33, ν∗

ped ≈ 0.03), but it is one order
of magnitude lower for very strong limiting, αe = 0.01, and
three orders of magnitude higher without the heat flux limiter,
αe = ∞.

In the derivation of the relation (35), we assumed
that the pedestal density drop is caused by parallel losses,
�nped/tELM ≈ Sn

‖ , equation (29). Similarly in the SOL,
we estimated the source (governed by the pedestal losses
�nped/tELM) as Sn ≈ (∂/∂x)(nv‖), equation (11). This also
means that we effectively assume long enough transient so
that the solution at the midplane equilibrates, ∂n/∂t is small
compared with the parallel loss term Sn

‖ = (∂/∂x)(nv‖) and
the source is balanced by the loss term, Sn ≈ Sn

‖ (see figure 17).
Therefore when equating �WELM lost from the pedestal with
�WELM arriving at the target, Sn

‖ andSn cancel. Analogously, if
we apply the same to energy, without trying to parametrize the
energy source in the SOL, we obtain the same result as (35),
no matter what the ratio between convective and conductive
losses is. Equation (21) reads as

�WELM ≈ 2πR�RSOL sin αu2ε‖ = 4R�RSOL sin αutELMLsS
E
0

(39)

and ε‖ is related to the energy source in one dimension as
ε‖ = 1

2 tELM
∫

SEdx = tELMLsS
E
0 /π (cosine distribution of

the source SE along the magnetic field with the amplitude SE
0 ).

In the pedestal,

�WELM ≈ 3

2
�pped2πa

√
κ2πR�Rped

≈ 4π2Ra
√

κ�RpedtELMSE
‖ (40)

where we used

d

dt

(
3

2
pped

)
≈ 3

2

�pped

tELM
≈ SE

‖ , (41)

analogously to equation (29). If the energy loss from the
pedestal during the ELM crash translates to the energy source
in the SOL, from equating SE

‖ in (41) to SE
0 , we obtain

�RSOL

�Rped
≈ π2a

√
κ

Ls sin αu
, (42)

i.e. the same as (35) where 3A/2π ≈ 0.56, A is defined
in (12) (A ≈ 1), and where L‖ was used in (30) instead
of Ls. The relation (42) is the result of a simple model
equating pedestal energy losses to parallel loss factors in one-
dimensional picture.

Euratom © 2012
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[1] Havlı́čková E et al 2011 J. Nucl. Mater. 415 S471
[2] Wiesen S et al 2011 Plasma Phys. Control. Fusion 53 124039
[3] Pitts R A et al 2007 Nucl. Fusion 47 1437
[4] Thomsen H et al 2010 Proc. 23rd IAEA Fusion Energy Conf.

(Daejeon, Korea) EXD/6-6Rb
[5] Eich T et al 2011 J. Nucl. Mater. 415 S856
[6] Fundamenski W et al 2011 Nucl. Fusion 51 083028
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