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Probing quantum effects with classical stochastic analogs
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We propose a method to construct a classical analog of an open quantum system, namely, a single quantum
particle confined in a potential well and immersed in a thermal bath. The classical analog is made out of a
collection of identical wells where classical particles of mass m are trapped. The distribution n(x, ) of the

classical positions is used to reconstruct the quantum Bohm potential Vgonm =

2 AV

et which in turn acts on

the shape of the potential wells. As a result, the classical particles experience an effective “quantum” force.
This protocol is tested with numerical simulations using single- and double-well potentials, evidencing typical
quantum effects such as long-lasting correlations and quantum tunneling. For harmonic confinement, the analogy
is implemented experimentally using micron-sized dielectric beads optically trapped by a laser beam.
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I. INTRODUCTION

Analogies in physics constitute a powerful tool for the
understanding of complex phenomena. Not only do they
enable us to apply our knowledge and intuition of a spe-
cific domain to a different field but also offer the possibility
to transfer experimental results from one branch of physics to
another. For instance, tabletop experiments have been used to
get insight into complex—and experimentally unreachable—
domains such as quantum gravity and black holes using
acoustic [1] or optic [2] analogs. Of particular interest here
are classical analogs of quantum systems [3] based on optic
[4] or hydrodynamic [5,6] experiments. These analogs rely
on the Madelung representation of the wave function and
the corresponding “hydrodynamic” evolution equations for its
amplitude and phase, as in the de Broglie-Bohm version of
quantum mechanics [7-9].

When a quantum particle is immersed in a thermal bath
and taking the limit of vanishing mass, the hydrodynamic
model can be cast in the form of a quantum drift-diffusion
(QDD) equation [10,11], which is often used to describe
charge transport in semiconductor devices. Here, the QDD
equation will be the starting point of our quantum-classical
analogy. Indeed, the QDD model has the form of a classical
Fokker-Planck equation with the addition of an extra Bohm

. 2 . ..
potential Vgopm = —f—m A*f, which depends on the position

probability distribution n(x, t) of the particles and carries the
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information about quantum correlations. As is well known,
any Fokker-Planck equation is equivalent to a stochastic pro-
cess described by a Langevin equation.

Our goal here is to use such an underlying classical
stochastic process to emulate the evolution of a quantum
system. For the present case, the situation is somewhat more
complicated, because the Bohm potential depends on the posi-
tion probability distribution, making the process nonlinear, as
the random variable depends on its own probability density.
These types of stochastic processes are known as McKean-
Vlasov processes [12] and have been extensively studied in
the past [13].

Here we devise a classical analog of this process by recon-
structing the probability distribution by statistical means. Our
strategy is based on the possibility of simultaneously manip-
ulating many classical objects, whose ensemble distribution
n(x, t)1is used as an input to construct the Bohm potential, thus
recovering the results of the QDD model. This can be achieved
numerically by simulating A/ stochastic trajectories, but, most
importantly, can also be realized experimentally by means of
multiple optical trapping of micron-sized Brownian particles
[14], as illustrated schematically in Fig. 1. Experimentally, up
to a few thousand traps can be realized in practice [15,16].

In this work, we will focus on three configurations that
nicely capture some typical quantum effects: (i) A quantum
increase of the position autocorrelation time, (ii) an analog
of the quantum tunneling effect, and (iii) a departure from the
classical dynamics for out-of-equilibrium states. These effects
will be investigated with both numerical simulations, (i) and
(i), and optical experiments (iii).

II. MODEL

The dynamics of a quantum particle interacting with a
classical thermal environment can be described, in a first
approximation, by a Wigner-Boltzmann equation [17] (for a
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FIG. 1. Schematic view of a possible implementation of the
quantum-classical analogs in a multiple optical trapping system.
Each identical trap contains a single Brownian particle, and the trap-
ping potential, shared among all traps, is controllable. All the particle
positions are recorded and the information is collected at each time
step to build the quantum Bohm potential. The latter is then added to
the optical trapping potential, thereby acting on all trajectories. This
information transfer is represented by the black arrows in one chosen
trap.

single spatial dimension, which is relevant here):
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where xp =x £ A/2, f(x, p,t) is the Wigner phase-space
distribution, Vi (x) is the external potential, and Q(f) is a
collision operator that models the interaction with the thermal
bath. For instance, one could choose a relaxation operator
O(f) = (fu — f)/t, where fj; is an equilibrium Maxwellian
with bath temperature T and 7 is the thermalization time. Us-
ing a moment expansion of the Wigner-Boltzmann equation
[17-19] and assuming an ideal-gas equation of state for the
pressure P = kgT'n, one can arrive at a set of two quantum
hydrodynamic equations for the density n(x,7) = [ fdp and
the mean velocity u(x,1) = 1 [ £ fdp:
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where kg is Boltzmann’s constant, m is the mass of the quan-
tum object, and 7 is Planck’s constant. Quantum effects are

. . . 2 92
contained in the Bohm potential: Vgopm = —;—m ai‘[f .

It is natural to choose T = m/y, where y is the drag coeffi-
cient of the object in the fluid that makes up the thermal bath.
Finally, taking the limit T — 0 and m — 0, while m/t =y
remains finite, enables us to drop the inertial terms [left-hand
side of Eq. (3)] and to inject the expression for nu into the
continuity equation (2), leading to a single QDD equation for
the density [11]:

on 19
dt
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This equation has the structure of a classical Fokker-Planck
equation for Brownian motion and differs from it only by
the presence of the Bohm potential. This is an important

difference, however, as the Bohm potential Vgonm[#] is itself a
functional of the probability density n(x, t) and its derivatives.
The stochastic process underlying Eq. (4) belongs to the class
of McKean-Vlasov processes [12,13], describing random
variables whose trajectories depend on their own probability
distribution. The Langevin equation of the stochastic process
associated with Eq. (4) can be written as:

1 0V 1 0V 2kpT
dx, = - e g L OVbomln] o J2RT G sy
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where dW; is the Wiener increment due to white noise, with
zero mean (dW;) =0 and no memory (dW,dW;) =6 —
s)dt.

The stochastic/diffusive model of Egs. (4) and (5) de-
scribes a quantum system coupled to a classical thermal bath.
The coupling will induce some level of decoherence, leading
to the partial loss of the quantum character of our system.
Nevertheless, some quantum properties will persist in spite
of the decoherence, notably those encapsulated in the Bohm
potential. The aim of this work is to emulate such quantum
properties using a purely classical experimental setup.

In order to emulate Eq. (5), the key issue is to be able to
inject the probability distribution #n into the stochastic process
itself. This can be achieved with a classical system if one
can generate (numerically or experimentally) N simultane-
ous trajectories in order to reconstruct n(x, t), and hence the
Bohm potential, at each time step. Experimentally, this may
be implemented using a multiple optical trapping system (see
Fig. 1).

Equation (5) can be rewritten in a normalized form that
brings out a dimensionless parameter €, which plays the role
of a normalized Planck constant and governs the strength
of the quantum effects. The quantity €> can be interpreted
as the ratio between the quantum decoherence time and the
classical relaxation time (see Appendix A). In our classical
analog, € is no longer related to Planck’s constant, but can be
adjusted at will, within the practical limits of the experimental
or numerical realization. The classical case, i.e., the standard
Brownian motion, corresponds to € = 0, while when € = 1
“quantum” effects play a significant role.

III. NUMERICAL RESULTS

We use a quartic external potential Vey = ax® + ,8x4. We
consider two cases, with either & > 0 (anharmonic single
well) or o < O (bistable double-well potential), and focus on
the features of the equilibrium distribution. Transients will be
analyzed later using an experimental protocol. Simulations
are performed with a first-order Euler-Maruyama algorithm
[20,21] that solves the McKean-Vlasov equation (5) for N
trajectories x(f) simultaneously. At each time step, a smooth
distribution n(x, r) is constructed from the N trajectories by
softening the particle positions x(#) with a Gaussian kernel.
Details are given in Appendix B. We take as the initial condi-
tion the stationary distribution of a classical process (¢ = 0),
then turn on quantum effects (¢ > 0) and let the system evolve
to its new equilibrium.

In the o > O case, the confining potential is a single quar-
tic well. In Fig. 2 (top left), we represent some simulated
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FIG. 2. (Top left) Evolution of 100 simulated trajectories, ini-
tially distributed according to the classical stationary state in the
quartic potential Vi = ax? 4+ Bx*, where « = 0.6 and 8 =0.2,
computed with a total ' = 3000 trajectories with € = 4, for 300
time steps with df = 107!; (top right) Histograms of the initial
(classical, € = 0) and final (quantum, € = 4) equilibrium distribu-
tions, together with the average Bohm force (solid line); (bottom)
logarithmic plot of the normalized ensemble-averaged correlations
(x(7)x(ty))/(x*(tp)) as a function of the lag time T for trajectories
x(t) undergoing a quantum McKean-Vlasov (orange triangles) or
classical (blue circles) stochastic process.

trajectories. After a certain relaxation time, the system stabi-
lizes around a quantum equilibrium distribution, which differs
significantly from the initial classical Boltzmann equilibrium
n o e VBT (top right). This departure from the classical
result is due to the Bohm force, which works against the
external confinement, as detailed in Appendix C.

In Fig. 2 (bottom frame), we show the normalized au-
tocorrelation at equilibrium: (x(7)x(#))/ (x%(t)), where the
average is over all the trajectories, as a function of the lag-time
7. The initial time is set at an instant 7y, when the distri-
bution has already relaxed to its quantum equilibrium. We
note that the addition of the quantum Bohm potential induces
longer-lasting correlations compared with the classical case.
A straightforward interpretation is that the McKean-Vlasov
trajectories are correlated with one another through the action
of the Bohm force.
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FIG. 3. (Top left) Classical (¢ = 0, blue) and McKean-Vlasov
(e =2, orange) trajectories in a double-well potential (o« = —1,
B =0.1) and (top right) their respective probability distributions
for N' = 3000 trajectories simulated for 2000 time steps with dr =
10~"; (bottom) probability distribution of the residency times Tz for
the classical (blue circles) and quantum (orange triangles) cases. The
straight lines represent the corresponding Poisson distributions, with
(tg) = 42.9 for the classical and (tz) = 8.4 for the McKean-Vlasov
case.

We now turn to the case o < 0, for which the confining
potential is a bistable double well. Using the same numeri-
cal method, we simulate A/ = 3000 trajectories for both the
classical (¢ = 0) and the McKean-Vlasov (¢ = 2) stochastic
processes. In the classical case, the trajectories linger in one
of the wells for a relatively long residency time tz before
occasionally jumping to the second well due to thermal fluc-
tuations. In contrast, in the McKean-Vlasov case these jumps
occur much more frequently (Fig. 3, top left frame). The jump
events are correctly described by Poisson statistics [22,23] and
the probability distribution of the residency times obeys an ex-
ponential decay law [24] P(tz) = Ae ™, where A = 1/(tz).
The results shown in Fig. 3 (bottom frame) are in good agree-
ment with this Poissonian law, both for the classical and for
the McKean-Vlasov processes, albeit with different values of
A, the effect of the Bohm potential being to decrease the mean
residency time. The enhanced mobility between the two wells
is clearly seen in the probability distribution of the particle
positions (top right frame), which signals a decrease of the
effective potential barrier due to the quantum Bohm potential.
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This result can be interpreted as a manifestation of quantum
tunneling, which increases the frequency of barrier-crossing
events beyond the classical thermally induced probability. We
emphasize that this quantumlike property persists despite the
decoherence that is inherent to our model.

IV. EXPERIMENTAL REALIZATION

Next, we turn to the possibility of implementing experi-
mentally our classical-quantum analog. For this, we adopt a
harmonic confinement potential Vi = Kx? /2, which is easy
to realize with an optical trap and also allows us to circum-
vent the need for using many traps to implement the analog
process. This approach will be used to study the effect of the
Bohm potential in an out-of-equilibrium configuration.

First, we note [25] that a Gaussian probability dis-
tribution n(x, 1) = [27S(t)]"/2e=*/25®) where S(t) is the
time-dependent variance of the distribution, is an exact solu-
tion of the McKean-Vlasov process (5), provided the variance
obeys the following equation:

dS® _ 20 W L 2l
dt— y 2myS@) vy

(6)

Furthermore, for such Gaussian distribution the Bohm force
takes a simple analytical form: 0,Vgonm(x,?) = %S%). In
this case, both the external force and the Bohm force have
the same functional form, linear in the stochastic variable x;,

and can therefore be grouped together into a single harmonic
term with modified stiffness: k(1) =« (t) — #i(t)‘ Hence,
the quantum McKean-Vlasov process can be expressed as an
ordinary (Ornstein-Uhlenbeck) stochastic process:

—i(t 2kgT
dx, = <D gy [T gy )
y V oy

Despite this apparent mathematical simplicity, all the phys-
ical richness of the analog model is preserved, with the
modified stiffness i (¢) still depending on the ensemble vari-
ance S(t) as a consequence of the quantum nature of the
problem. Moreover, in this harmonic case, the dimension-
less parameter governing quantum effects takes the form:

2 . .
€ = 5ty = hap/2)%, i, half the ratio between the de

Broglie thermal wavelength Aqg = /i/+/mkpT and the classi-
cal width of the harmonic oscillator at thermal equilibrium
A = A/kgT /k. The specificity of the harmonic confinement
is that the variance need not be measured out of a collection of
trajectories taking place simultaneously in N identical traps,
as in Fig. 1. Instead, S(¢) can be computed from Eq. (6)
and then used to construct the Bohm potential or force, thus
avoiding the necessity of using many optical traps in the
experiment.

Our experimental setup—presented in detail in
Appendix D—is composed of a single 1um dielectric
bead optically trapped by a 785-nm Gaussian laser beam. The
optical potential created by the gradient forces at the waist of
the beam is harmonic, with a stiffness that is proportional to
the intensity of the laser and can thus be controlled precisely.
The bead is immersed in water at ambient temperature and
undergoes Brownian motion due to the thermal fluctuations.
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FIG. 4. Experimental variance of an ensemble of over N’ = 2 x
10* trajectories during the transient between two harmonic wells with
different stiffnesses. The parameter governing the strength of the
Bohm force is € = 1.8. We show results of the quantum McKean-
Vlasov (orange triangles) and classical Ornstein-Uhlenbeck (blue
circles) dynamics. The colored patches correspond to a 99.7% confi-
dence interval, taking into account both experimental and statistical
errors—see Appendix D. On each curve, we superimpose the result
of a numerical simulation performed by measuring at each instant
the ensemble variance of A simultaneous trajectories and using it
to compute the Bohm force (respectively, red and blue thin solid
lines). We also show the result of Eq. (6) for the variance (blue
and red dashed lines). The inset shows the evolution of the stiffness
i (t) (orange line) as well as the equivalent classical step &, (¢) (blue
dashed line).

The overall motion is consistent with an Ornstein-Uhlenbeck
process and is therefore suited to implement our model.

Here we use the above approach to study out-of-
equilibrium evolutions with a time-dependent stiffness « ().
The simplest possible out-of-equilibrium process is the
transient occurring when the stiffness «(¢) is suddenly
changed from an initial value «; to a final value «, (steplike
protocol). The system is at thermal equilibrium at the initial
and final times. The transient evolution of the variance can be
computed using Eq. (6), allowing us to construct the modified
stiffness i (t), which evolves from &; to ¢ in a nontrivial way
due to the influence of S(¢). One can argue that, since different
values of € lead to different values of i for the initial and final
equilibria, the classical (¢ = 0) and quantum (here, ¢ = 1.8)
transients are difficult to compare, as they do not begin and
end with the same values of the stiffness. With this in mind,
we also implemented an equivalent classical protocol i (t)
that goes from k; to iy in a steplike way, i.e., without the
dynamical influence of the Bohm force. These two protocols,
represented in the inset of Fig. 4, connect the same initial
and final equilibria and are thus well suited to compare the
classical and quantum dynamics out of equilibrium.

Finally, in order to obtain ensemble averages out of our
single trajectory, we rely on the ergodic hypothesis and use
a time series of trajectories instead of a statistical ensemble.
We send the same «(¢) protocol at a low enough repetition
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rate so that equilibrium is reached between two consecutive
events and then reconstruct a synchronized ensemble from this
time series. The result is an ensemble of over N’ =2 x 10*
trajectories experiencing a given protocol, either «(¢) in the
quantum case or i(¢) in the classical case.

The main observable of interest here is the time evolu-
tion of the ensemble variance, represented in Fig. 4 for both
the quantum and classical cases. Our measurements clearly
reveal the influence of the Bohm force on S(¢). Strikingly,
the addition of an effective quantum force accelerates its re-
laxation, and this for all selected values of ¢, as detailed in
Appendix D. Looking at & (¢) in the McKean-Vlasov process
(Fig. 4, inset), the acceleration appears as the result of a strong
and sudden reduction of the optical trapping volume under the
influence of the quantum Bohm force field. On each curve,
we also represent the result of numerical simulations, where
the evaluation of the Bohm term is not performed through
the solution of Eq. (6), but by actually computing the en-
semble variance of A" = 2 x 10* distinct trajectories at each
time step. The agreement of both the experimental and nu-
merical results with the analytical solution of Eq. (6) is quite
remarkable.

V. CONCLUSION

We highlighted an analogy between an open quantum sys-
tem immersed in a thermal bath and a classical nonlinear
stochastic process (McKean-Vlasov process). This correspon-
dence opened up the possibility to build a classical analog of
the quantum model by evolving many stochastic trajectories in
parallel and using their distribution to reconstruct the quantum
Bohm potential. This classical analog was realized both nu-
merically and experimentally, evidencing typical quantum ef-
fects such as long-lasting correlations and quantum tunneling.

The present work is a first step in the experimental im-
plementation of classical analogs of quantum systems using
optically trapped Brownian particles, which should provide
an original platform for probing the subtle connections be-
tween quantum mechanics and stochastic thermodynamics.
We emphasize that our approach is obviously not limited to
the QDD framework, whose validity is constrained by several
conditions. It can, for instance, be extended to classically
emulate fully quantum evolutions, described in the most gen-
eral scenario by the time-dependent Schrodinger equation.
This nontrivial generalization should lead to classical stochas-
tic systems specifically designed to access the controlled
exploration of many fundamental quantum effects, such as
quantum correlations, quantum decoherence, and quantum
chaos.
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APPENDIX A: NONDIMENSIONALIZATION
OF THE MCKEAN-VLASOV PROCESS

In order to derive a nondimensional description of the QDD
equation for n(x, t), we start with

on  kgT i V[ (Af

E:J/A 2y «/—)}4_ =V . (nVV),

(A1)
and make the following change of variables, focusing on a
quadratic external potential Vey = %K(l )x? for simplicity:
t = =1/Trelax
X = F=x/Ae, (A2)
V= %sz - V= %KXZ/IC,')Li.
Here, k; corresponds to the initial stiffness, Treax = ¥ /k; 1S

kBT

the corresponding relaxation time, and A, = is the clas-

sical width of the harmonic oscillator at thermal equilibrium
fixed by equipartition. This change of variables leads to

% = An—€*V. [”V(AT{,%)] + V[nk(®)%], (A3)
2 Rk

where € = 5 Top T is the dimensionless parameter described
in the main text. The nondimensional stochastic McKean-
Vlasov process then writes as:

o A N s
df, = —V Ve di + €2V< ﬁ)d: +24dW,.  (Ad)

n

As discussed in the main text, €2 can be written as half
the ratio between the de Broglie thermal length Agqg and the
classical width of the harmonic oscillator at thermal equi-
librium X,. Another possible interpretation can be given as
the ratio between the quantum decoherence time and the
thermal relaxation time Ty.x. Following Ref. [26], the loss
of quantum coherence is governed by a typical time scale
p = trelax(zmk:ﬁ), where Ax is a typical length scale of

motion. In our case, we take Ax = A, = /kgT /x. This gives
€2 = Tp/Tretax, i.€., the ratio between the decoherence time
and the relaxation time.

APPENDIX B: NUMERICAL METHOD

Our numerical approach is based on the Euler-Maruyama
stochastic algorithm [20,21]. It consists in a discrete approx-
imation of the stochastic differential equation up to order
O(8t'/?) in the time increment 8¢. For the stochastic equation

i, = —VWaudt + 9 2 Nar + 2aw,,
N
where all variables are nondimensional, it takes the form
/n(yi)
i1 = Vi — Ve )AL+ V At + A/261&;,
Yi+1 y ext (y ) ( W
(B1)
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FIG. 5. Histograms of the particles distributions and correspond-
ing smooth densities obtained as the sum of Gaussian kernels for

3000 trajectories. We note that the choice of the kernel width leads
to a flattening of the distribution.

where y; is the numerical approximation of x(¢), & is a nor-
mally distributed random variable, and &t is the time step.

Our numerical approach is the following: Like a classical
stochastic algorithm, we compute the positions at a certain
time step for A/ Brownian particles simultaneously and then
evaluate the forces for the next time step. The specificity of the
present case arises from the evaluation of the quantum force,
which requires the reconstruction of the density n(y;). We use
a particle-in-cell method to evaluate n: To each particle we
associate a Gaussian kernel of width o, and the sum of such
Gaussians will yield a reasonably smooth estimation of the
density n. From this reconstructed density n(y;) we are able to
compute the quantum force V(%), which in turn is used
to update the positions of the particles at the next time step.

One important parameter here is the width o of the Gaus-
sian kernel. Too small a width will lead to a noisy evaluation
of the density, which is dangerous because the quantum force
requires the computation of the third derivative of the density.
The problem mainly arises when we use few trajectories, as
we do in our work in order to stay close to the experiments.
In our case, where 3000 trajectories are employed, we made
a reasonable compromise between a kernel of width o ~ 0,
i.e., a sum of Dirac delta functions, and a width o ~ 1 (in
normalized units) which would amount to a Gaussian approx-
imation for the whole density. We use a value o = 0.8 which
is large enough to smooth out irregularities arising from the
small statistical sample, but small enough to account for de-
partures from a perfectly Gaussian density (as evidenced from
the skewness and kurtosis; see Appendix C). The histograms
of the particles distributions and the corresponding smooth
densities are shown in Fig. 5.

APPENDIX C: STATISTICAL ANALYSIS

In Fig. 6, we represent a logarithmic plot of the final
distribution of A/ = 3000 simultaneous trajectories for three
different cases: (i) Classical process in a confining quartic
potential, (ii) McKean-Vlasov process in a quartic potential,
and (iii) classical Ornstein-Uhlenbeck process in a quadratic
potential. We also show the fitting of the distribution with
two models: The Ornstein-Uhlenbeck final distribution is fit-
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FIG. 6. (a) Distributions for the three different processes: The
classical process in a confining quartic potential (blue circles),
McKean-Vlasov process in a quartic potential (orange triangles),
classical Ornstein-Uhlenbeck process in a quadratic potential (green
stars); (b) variances of the different processes (same color codes);
(c) skewness; and (d) kurtosis. The small skewness reveals the sym-
metry of the distributions. From the variance and the kurtosis, we
note that, despite the flattening of the distributions due to the kernel
size, the specificity of each case is still clearly visible.
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FIG. 7. Mean Bohm force in the case of a quartic external po-

tential, with a third-order polynomial fit. We also show the quadratic
limit, which is simply ~x/S>.

ted with a Gaussian distribution, while the other two cases
are fitted with a model of the form P = ple”2x2+f’3x4, which
is a classical Maxwell-Boltzmann distribution in a quartic
potential. We see that the McKean-Vlasov final distribution
also belongs to this category, which means that the Bohm
potential in this case takes the form of a quartic-type potential.
We also represent the first moments of the distributions in
order to obtain more detailed information. We note that the
quantum and classical cases in a quartic potential (orange and
blue lines) differ mostly by their respective variances, whereas
their kurtosis (describing their tailedness) are similar, depart-
ing noticeably from the Gaussian value. The skewnesses, as
expected, are zero since all distributions are symmetrical.

In Fig. 7 we represent the Bohm force in the quartic case,
along with a third-order polynomial fit and the Gaussian limit.
We see that the agreement of the fit is good, showing that in
this case again, the Bohm potential takes a form similar to the
external potential.

APPENDIX D: EXPERIMENTAL SETUP
AND CALIBRATION

Our experiment, schematized in Fig. 8, consists of trapping
a single Brownian object in the harmonic potential created by

Dichroic
mirror

785 nm

Gaussian beam Obj. 1 Obj. 2

1pm sphere

639 nm
Gaussian beam

Photodiode

FIG. 8. Schematic view of the experimental setup: A 1-um di-
electric bead immersed in water is harmonically trapped in the waist
of a focused 785-nm laser Gaussian beam. Its position along the
optical axis x is recorded with a 639-nm low-power probe laser.
Both beams are separated using a dichroic mirror and the probe
signal is recorded using a photodiode. The intensity signal is linearly
dependent on the bead displacement and can be calibrated in order to
obtain x(t)

First calibration: linearity
between k and P

L.

Send P[k(?)] and

Calibrate the stiffness k()
Deﬂutne ;(?’)and ds’,_( ® with the relaxation of
compute S {f) an photodiode signal (V2(f))

r P[&,(1)] in the system

Calibrate (V2(f))
| 0N S[Kypqs!
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FIG. 9. Schematic sequence of the different steps of our experi-
mental calibration procedure. P is the trapping laser power, « is the
stiffness of the harmonic potential, and & is the modiﬁed stiffness that
includes quantum effects through < (t) = «(t) — drh J4mS(t)?. iy is
the steplike protocol connecting the same initial and final stiffnesses,
V(t) is the voltage signal of the photodiode recording the beads
position along the optical axis x(), kpyeas 1S the stiffness obtained by
the relaxation calibration, and S|« s ] is the solution of the variance
ODE for () = Kmeas(t).

a focused laser beam. A linearly polarized Gaussian beam
(CW 785-nm diode) is focused by a water immersion ob-
jective (Nikon Plan-Apo VC, 60x numerical aperture 1.20
water immersion) into a fluidic cell of 120 um thickness
filled with deionized water with a monodispersed suspension
of polystyrene microspheres (Thermoscientific Fluoro-Max,
radius 500 nm). We make sure that only one single bead is
trapped at the waist of the focused beam using an interfero-
metric scattering microscopy system (not shown in the figure)
[27].

The position of the bead is recorded using a low-power
counter-propagating laser beam (639-nm diode) focused on
the bead using a second objective (Nikon Plan-fluo ELWD
60 x 0.70). The light scattered by the bead is recollected and
sent to a photodiode (Thorlabs Det10A). The signal recorded
(in V/s) is sent to a low noise amplifier (SR560) and then
acquired by an analog-to-digital card (NI PCI-6251). The
signal is filtered through a 0.3-Hz high-pass filter at 6 dB/oct
to remove the DC component and through a 100-kHz low-pass
filter at 6 dB/oct to prevent aliasing. The position of the bead
along the optical axis is, for small enough displacements,
linear with the scattered intensity. Furthermore, we work in
the linear regime of our photodiodes so that the signal remains
linear with the intensity. Finally, the resulting voltage trace is
also linear with the instantaneous position x(¢) of the trapped
bead.

In our experimental implementation, the optical potential
created by the focused laser beam is locally harmonic. The
stiffness of the harmonic potential x (¢) is proportional to the
laser power P(¢) and can be controlled by the experimentalist.
Our experimental method and calibration are based on the
theoretical results obtained in the harmonic and Gaussian
cases, mainly the relation between the stiffness «(¢) and the
variance S(¢) given by Eq. (6). It makes it possible to realize
the McKean-Vlasov process using one single trajectory and to
use this system to probe out-of-equilibrium states with a given
protocol x(¢). The method is the following: First, a protocol
Kk (t) is defined, and a value of the parameter € is chosen and
is transferred to an arbitrary Planck constant h2 M
Then the variance ODE is solved for this protocol and the
modified stiffness k(t) = k(t) — arb/4mS2(t) is injected as
a laser intensity protocol. The different steps of the procedure
including the calibration are summarized Fig. 9.
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FIG. 10. (a) Power spectral densities of the measured photodiode
voltages for different trapping stiffnesses with Lorentzian fit, (b) ex-
ponential decay fit of the “up” step from «; to k; (ky > k;), allowing
us to obtain a measure of s, and (c) exponential decay fit of the
“down” step from « to ;, allowing us to obtain a measure of ;.

This procedure, however, relies on a precise calibration of
the system: In order to use the variance differential equation,
we need to know with the best possible precision the stiffness
Kk (t) at play in the trap. In this section, we detail our method.

In order to predict the stiffness in the trap, we first calibrate
the linear relation between the trapping laser power P(¢) and
k(). We use the power spectral density (PSD) method [28].
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FIG. 11. Experimental results: We show the evolution of the
variance of an ensemble of over 2 x 10* trajectories during an out-
of-equilibrium transition between two harmonic confinements with
different stiffnesses. The corresponding values of the € parameter
governing the strength of the Bohm force are ¢ = 0 (a), € = 1.0558
(b), e = 1.4089 (c), and € = 1.801 (d). For all cases, we show the
result of the McKean-Vlasov dynamics (orange triangles) as well
as a classical equivalent Ornstein-Uhlenbeck dynamic (blue circles)
experiencing a transition between the same initial and final distri-
butions. On each curve, we superimpose the result of a numerical
simulation performed by measuring at each time step the ensemble
variance of N = 2 x 10* simultaneous trajectories and reinjecting it
in the next time step (respectively red and blue thin solid lines). We
also show the result of the variance differential equation (respectively
red and blue thick dashed lines).
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The Ornstein-Uhlenbeck process describes the Brownian mo-
tion in the trap,

dx, = —(k/y)xdt + /2kbT [y dW,,

where y is Stokes coefficient given by y = 6w nR, where 7 is
water viscosity and R is the beads radius. This process can be
spectrally analyzed with the position PSD:

D
(£ + 1)

where the roll-off frequency f. = « /27y separates the high-
frequency regime S,(f) ~ D/m%f? of free Brownian motion
from the low-frequency trapping regime S,(f) ~ D/n%f? =
4kpTy [k . By recording a trajectory with a certain laser power,
one can obtain the stiffness « from the roll-off f,, by a
Lorentzian fit of the spectrum. In Fig. 10 (left) we represent
the PSD and fit for different trapping strength that gives the
linear relation between k and the laser power. It is then possi-
ble to send a designed protocol of stiffness «(¢) by inverting
the relation.

In order to build an ensemble of synchronized trajectories
experiencing a defined protocol, we rely on the ergodic hy-
pothesis. From one long trajectory experiencing a series of
protocols, we build an ensemble of Nex, &~ 2 X 10* trajecto-
ries. We start by defining a steplike protocol, where « (¢) goes
abruptly from «; to k; and sends it as P(¢) to the trapping
laser. From the obtained ensemble of trajectories experienc-
ing a transient relaxation, we extract the photodiode signal
variance (V2(¢)) that follows an exponential decay (solution
of the classical Fokker-Planck equation). This decay ~e~*/!/¥
is fully characterizing the final stiffness. With an exponential
fit of both the “up” and “down” stiffness steps, we recover a
measurement of the stiffness performed in the time domain.
This allows us to measure, during the experiment, the actual
stiffness at play that can depart slightly from the expected
value due to small drifts or to fit errors of the Lorentzian
[28]. Since we double each McKean-Vlasov experiment with
an equivalent classical step, we can perform this dynamical
calibration for each experiment.

After the first steplike protocol experiment, we define a
value of ¢ and perform both the quantum and the classical
analog experiments. The dynamical calibration gives the val-

Se(f) = (D1)

ues of k; and k¢, that yield an € that can slightly differ from the
predicted value. These values correspond to the parameters
needed for the analytical results.

Furthermore, the variance S(¢) and the stiffness « (¢) are un-
ambiguously connected by the variance differential equation
% = —@S(r) + %TBT Hence, once we know the stiffness,
we can compute S(¢) and then calibrate our measured voltage
variance (V2(t)) to S(t). We fit the transformation by a lin-
ear relationship S(t) = a(V?(¢)) + B, which implies that the
position transforms according to x; = /aV (t) + /BN (0, 1),
where the first term represents the linear response of the
photodiode and the second term represents the sum of all
experimental noises (that we approximate as a resulting white
noise). This method allows a precise calibration of the vari-
ance, as seen in Fig. 11, which is our only observable here.
This method gives the position itself only up to the noise
therm, which is several orders of magnitude smaller than the
o term.

The error on the experimental variance essentially comes
from three main sources. One is the error on the experimen-
tal parameters such as the temperature or the radius of the
trapped bead through the viscous drag coefficient y. It is
dominated by the 2.8% uncertainties on the beads radius R
that results in a similar error on y = 6xnR, where 1 is the
water viscosity. Other sources of error (temperature) are also
taken into account, but their final influence is not significant.
Temperature in particular is controlled with a precision better
than 1 K. The error on the radius is simply taken into account
by carrying the whole analysis with the two “worst” values of
radius, yielding an error dparam ~ 3% between the two extreme
results. The second source of errors is the statistical reliability
of an estimator of the variance on an ensemble of finite size. It
is obtained following the x? teston N — 1 degree of freedom,
where N is the size of the ensemble. We carry the test with
30 = 99.7% confidence interval giving §,2. The third source
is the error arising from the fitting procedure in the calibration
of the decay to obtain the stiffness and to calibrate the variance
from V to m? giving 85,. The obtained variance is then defined
up to:

Sexp = (X)) £ (8,2(t) + Sparam (1) + 8e(1)).

These different error sources give the colored patch shown on
each plot of Fig. 11.
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