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A: SETUP, CALIBRATION, UNCERTAINTIES
Optical trap setup

All experiments are performed on single optically trapped
polystyrene spheres (radius R = 500 nm) taken from a
monodisperse (OR/R = 0.028) solution (ThermoFisher, Flu-
oSpheres) and enclosed inside a fluidic cell filled with dion-
ized water. The microfluidic cell is made with a microscope
slide and a 170 um thick glass coverslip, sealed with a 120
um thick spacer.

The optical trap, described in details in Fig. 1, is an evo-
lution of the setup described in our previous work [1]. It
uses a CW near-infrared (A =785 nm) laser whose intensity
— hence the trap stiffness — can be modulated externally us-
ing a waveform generator. Any trapping protocol can then be
implemented by computer-programming the waveform gener-
ator so that the time-evolution of the trap stiffness follows the
desired profile.

Under such trapping laser modulation, the instantaneous
axial motion x(¢) of the bead is monitored using an auxiliary
laser propagating in the opposite direction of the trapping laser
(see Fig. 1). We checked that this low-power probe beam, in-
jected in the fluidic cell from its back-side, does not exerts
any spurious optical force of the trapped bead. The signal col-
lected by the photodiode and the output voltage of the wave-
form generator are simultaneously registered by a multichan-
nel acquisition card (National Instruments, NI-6251) with a
sampling rate f; = 262 kHz. In order to span the signal in
the full dynamic range of the acquisition card, the generator
output voltage was re-scaled using a scaling amplifier (Stan-
ford Research Systems, SIM983) and the voltage time series
of the photodiode was amplified and filtered using low-noise
pre-amplifiers (Stanford Research Systems, SR560).

Stiffness modulation calibration

The trapping laser is modulated according to a given proto-
col x(t), defined and calculated with chosen transition param-
eters (k;, K, Ar). In order to convert this protocol k(r) into a
modulating voltage Vyoq(2) for the waveform generator, a cal-
ibration procedure is performed. This procedure consists in
measuring the trap stiffnesses associated with a series of con-
secutive values of DC voltages, i.e. consecutive trapping laser
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FIG. 1. The trapping laser (Ar = 785 nm, 100 mW, TEMyy, CW,
Coherent, OBIS LX785) is modulated externally using a waveform
generator (Agilent, 33220A). Linearly polarized along the z—axis,
the beam is sent to a water-immersion objective (O1, 100x, 1.2 nu-
merical aperture (NA)) through a polarizing beam splitter (PBS) and
a quarter-wave plate (A /4). The intensity /() partially reflected by
the end-surface of the fluidic cell varies linearly with the displace-
ment x(z) of the polystyrene microsphere inside the trap. This inten-
sity (r) is collected and recorded by a p-i-n photodiode (Thorlabs,
DET10A), while a CCD camera is used in the other port of the non
polarizing beam splitter (NPBS) for imaging. The probe beam con-
sists of a second laser (639 nm, 70 mW Thorlabs laser diode, lin-
early polarized) of low power (400 uW). It is injected inside the trap
collinearly with the trapping beam but from behind the fluidic cell
using a dry objective (02, 60x, NA 0.7). This second beam is sep-
arated from the trapping beam using a dichroic mirror (DM) and the
interference between the transmitted beam and the diffracted light
by the bead is recorded using a second p-i-n photodiode (Thorlabs,
DET10A) placed in a plane conjugated to the back focal plane of the
trapping objective. In order to ensure that a single bead is trapped
without other beads in its vicinity, potentially perturbing the dynam-
ics, the optical trap is equipped with an interferometric scattering
microscope not shown here but described in details in our previous
work [2].

intensities. Each stiffness is extracted from a Lorentzian fit
of the corresponding motional power spectral density (PSD)
of the trapped bead. Associated error bars are obtained from
the uncertainties of the Lorentzian fits (MATLAB Levenberg-
Marquardt algorithm). The calibration curve shown in Fig. 2
corresponds to a linear fit of the evolution of such measured
stiffnesses (including their error bars) as a function of the DC
voltages.
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FIG. 2. Evolution of the trap stiffnesses as a function of DC wave-
form generator voltages. The red dots represent the stiffness val-
ues extracted from the motional PSD, with error bars for each point
combining the uncertainties of the Lorentzian fit of each PSD and
the error made on the Stokes drag Yy = 67R1” due to the polystyrene
sphere radius dispersion R/R. The solid line is the linear fit and the
shaded area represents a 95 % confidence interval for the estimated
linear regression parameters taking into account the weights of the
data points. The (normalized) evolution of the trapping beam profile
at the waist inside the trap is displayed in the inset through a ramp-
ing of the modulation voltage, corresponding to successive trapping
laser intensities. These measurements demonstrate the stability of
the trapping laser profile at the waist throughout intensity modula-
tion protocols.

Monitoring Brownian dynamics

The time evolution of the Brownian system is monitored
by recording the stochastic trajectory of the trapped bead over
2 x 10* cycles of the protocol k(t). Each cycle lasts 50 ms,
where the first 30 ms correspond to the initial thermal equilib-
rium with x; and the remaining (20 — A¢) ms correspond to the
final thermal equilibrium at k. Each stationary region of the
full trajectory, i.e. corresponding to a constant K (k; or Ky ),
is sectioned and concatenated with all the other sliced trajec-
tories under the same stiffness. The PSD of this concatenated
trajectory is computed and a Lorentzian fit yields the ensem-
ble average k. Figs. 3 (a) and (b) respectively show the PSD
of the concatenated trajectories for the equilibria k; and k for
the case At ~ Tyeax/ 10 described in the main text.

Implementing the same procedure, the full temporal trace
of the particle positions undergoing 2 x 10* cycles is chopped
into trajectories that correspond to a single cycle of the pro-
tocol k(7). The ensemble of traces then consists of all the
sub-trajectories superimposed within the same time interval,
in such a way that they all start t = —30 ms with k;, as dis-
played in Fig. 4 below.

The instantaneous ensemble variance s(¢;) at a time t =
(j=1,---,T x f,), with T =50 ms and f; = 2'® Hz) is
obtained by a vertical cross-cut of the ensemble of trajec-
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FIG. 3. Power spectral density of the concatenated trajectories corre-
sponding to the sections of the cycles for which k is fixed to k; is dis-
played in greeen. The best-fitted roll-off frequency f, = 52.63+0.01
Hz (vertical red line) yields x; = 2.78 +0.08 pN/um, and the posi-

tion sensitivity parameter is B = /kgT /YDy = 1.21£0.02 um/V
-see below. The blue curve is the power spectral density of the
concatenated trajectories corresponding to the sections of the cy-
cles for which x is fixed to ky. The best-fitted roll-off frequency
is fo =98.98 +0.02 Hz (vertical purple line) gives ky = 5.224+0.15
pN/umfor this case. Here, the positional calibration factor is f =
1.31 +0.02 um/V. Lorentzian fits (continuous red and purple lines
superimposed to the PSDs) are calculated by implementing a MAT-
LAB Levenberg-Marquardt algorithm for non-linear leasts squares.

tories plotted in Fig. 4. The resulting distribution of po-
sitions p(x,7;) is a Gaussian of zero mean [L(¢;) and vari-
ance s(t;). Fig. 5 displays the position distribution func-
tions (PDF) before (equilibrium at x;) and after (equilibrium
at Ky) the change in trapping stiffness imposed by the proto-
col k(t). The corresponding trapping potentials calculated as
U(x,tj) = —kpTlog(p(x,t;)) + cst are also shown and com-
pared to the expected harmonic profiles U = %sz evaluated
from the stiffnesses k;, K that were extracted from the mea-
sured PSD shown in Fig 3.

Proceeding in the same manner but for all times #;, we can
obtain the temporal evolution of the ensemble variance s(7)
over the full protocol x(¢). Note here that Figs. ?? are built
from the same data collected during the same protocol of du-
ration At = 3.47 x 10~ %s.

From Brownian positions to variances

We remind here a classical result of correlation in the
Langevin theory of overdamped Brownian motion -see for
instance [3]. Starting from the Brownian positions x(¢) of
the trapped particle that evolve according the overdamped
Langevin equation

)

o = —Kx(t) + Fa(t), (1)



time [ms]

FIG. 4. Ensemble of trajectories corresponding to one cycle. Top: A
single cycle of the control parameter k(¢) normalized to k;. Bottom:
Position fluctuations of the bead in the trap of modulated stiffness.
The solid vertical lines indicate At = 3.47 x 10~*s. The position
distribution functions calculated at the two times indicated by the
dashed vertical lines in the lower panel are displayed in Fig. 5 below
(top panel).
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FIG. 5. Top-left panel: Position distribution functions (PDF) built
from the ensemble of trajectories at the two different times ¢; < 79 and
tj >ty indicated by the two dashed vertical lines in Fig. 4 above (bot-
tom panel), with associated trap stiffnesses k; and Ky respectively.
Top-right panel: Associated trapping potentials extracted from the
PDF as U(x,t;) = —kgTlog(p(x,t;)) +cst. The solid lines corre-
spond to U = %sz with k¥ = k; and k = Ky extracted from the PSD
shown in Fig. 3. Bottom panel: Kurtosis of each PDF for all times
1.

where Y = 67R1 is the Stokes drag coefficient, which depends
on the radius of the particle R = 500 nm and the dynamic
viscosity of the fluid n ~ 1073 Pas at room temperature,
and D = kgT /7y ~ 0.4 um? /s the Brownian diffusion coeffi-
cient fixed by the temperature 7 of water (room temperature)
and the Boltzmann constant kg and Fi(t) = /2kgTYE (¢) is

the stochastic Langevin force modeled with a Wiener process
with (£(r)) =0and (& (£)&(¢')) = (¢ —1'), where (- - -) stands
for an ensemble average performed over all the realizations of
the stochastic process.

Considering an initial position xgp, the solution of Eq. (1)
writes as:

1 t
x(t) =xg e ¥/7 4 )7/ dt Fy(t) <F0/7, )
0

The dynamical equation for the variance s(t) = (x(¢)?) is
obtained by multiplying both sides of Eq. (1) by x(¢) and
by taking the ensemble average. This operation points to
determining the correlation (x(¢)Fy(r)) calculated with a
(Stratonovich) stochastic integral as [4]

(x(0)Fin (1)) = kg, 3)

from which the dynamical equation for the variance is simply
given:

7/ds(t)

el —2xks(t) +2Dy. )

Normality tests

To confirm that all PDF remain Gaussian for all times,
we calculate their kurtosis and verify, for the same Ar =
3.47 x 10~*s protocol -see Fig. 5, bottom panel- that all-
time kurtosis remains very close to 3 throughout the entire
protocol. This test is more critical for the shortest protocol
of duration Ar = 1.22 x 10~*s which is shown in Fig. 6, up-
per panel. As seen in the lower panel, the kurtosis remains
here too very close to 3 throughout the entire protocol. We
supplement this kurtosis-based test of normality by showing
the normalized PDF constructed from all positions recorded
at different #,#,#, times within the protocols, #y,#,#; and at
thermal equilibrium 4 after the Az = 1.22 x 10~*s protocol.
These selected times are shown as vertical lines in Fig. 6.
As clearly seen in Fig. 7, the PDF can be well fitted by zero
mean Gaussian distribution -with larger deviations on the PDf
tails due to a reduction in statistics. Finally, in order to fur-
ther assess the normal character of our PDF, we draw in Fig.
8 a quantile-quantile diagram that clearly show the expected
proximity of our experimental PDF with a normal law. This
diagrammatic analysis is also performed within the protocol
-see inset of Fig. 8.

Statistical uncertainties

The uncertainties for the instantaneous ensemble variances
are obtained following a > law with N — 1 degrees of freedom
where N = N_y¢jes is the number of independent trajectories
x;(¢) undergoing one cycle of the protocol k(z).
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FIG. 6. Top panel: Single cycle of the control parameter k() nor-
malized to &; for the shortest duration Ar = 1.22 x 10~*s protocol.
Middle panel: Corresponding time-evolution of the ensemble vari-
ance s(r) extracted from the PDF of the ensemble of trajectories,
normalized to s 7. The red dashed line, superimposed to s(r) between
the transition points, corresponds to the variance extracted from the
slopes of the quantile-quantile plots extracted throughout the proto-
col and shown in the inset of Fig. 8. Bottom panel: Kurtosis eval-
uated throughout the protocol. The vertical lines represent the four
times chosen for the analysis of normality.
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FIG. 7. Normalized PDF represented in log-scale for the four times
shown in figure 6. The solid lines represent the results of Gaussian
fits.

PSD calibration uncertainties

Under a trapping laser intensity, the registered p-i-n volt-
age values V (¢) that correspond to the position fluctuations
of the trapped bead are converted into displacement units us-
ing the best-fit parameter of the Lorentzian fit of the PSD
of the trajectory (at constant k). The fit parameter Dy, is
compared to the diffusion coefficient D = kgT /y expected
from the Fluctuation-Dissipation Theorem, assuming known
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FIG. 8. Quantiles of the PDF at four different times of the proto-
col as a function of the theoretical quantiles of a standard .4#(0,1)
normal distribution. The intersection of all curves coincides with the
2-quantile, indicating that all distributions are of zero mean, the slope
indicates the variance of the distribution, which, as expected, evolves
over time through the protocol. The same analysis is detailed in the
inset within the protocol, for times #; <t < #. The associated slopes
are then superimposed in Fig. 6, middle panel.

temperature and viscosity. This gives a conversion factor
B = +/D/Dg; from p-i-n voltages to meters. The uncertainty
on the position sensitivity is obtained from standard error
propagation including the uncertainty on the viscosity result-
ing from the 0R/R = 2.8% size dispersion deviation of the
trapped beads.

Instantaneous positions are thus given from the conversion
factor as x(¢) = (B = 6B)V(¢), and therefore the variance, up
to first-order in uncertainty, x*(t) = (82 £2B3B)V?(t), (since
W (f) = 0). The total error of the variance writes as:

s(ty) = 07 (1)) £ (862 (1) + BB (1)), ©)

8s(1))

where 62(t;) = YN, |xi(t;) — p(t;) /(N — 1) is the estimator
of the instantaneous ensemble variance over N cycles, & 652
corresponds to the statistical uncertainty in the motional vari-
ance determination (see above) and 6 3 O'X2 the PSD calibration
uncertainty just discussed.

The temporal average variances related to the initial an final
stiffness s; and s are obtained from temporal average. As-
suming Az as the interval over which x(¢) remains constant
(either at k; or k), the temporal average -~ of the correspond-
ing variance is:

__ 1 ¥
5= Ktjzzls(‘f)’ (©6)

taking Ar as the interval over which k() remains constant (ei-
ther at k; or k¢) and n = At - f; with f; =262 kHz, the sampling



frequency. The standard deviation of the temporal average is
simply evaluated as:

_ 1 &
05 = \/Atjzz,l |s(2;) = (s)]? (7

The stationary variances s; and sy and their uncertainties
are thus simply given by:

sip =5+ (&H& + 5&) : ®)
| —
Osi g
where s = 1/At Y1 0s(t)).

Energetics uncertainties

The confidence interval of the mean cumulative work are
computed taking into account the uncertainties related to both
variances and stiffnesses. They are displayed on all energetic
figures at a 95% confidence level.

B: COMPARING OPTIMAL, STEP-LIKE AND ESE
PROTOCOLS

We compare here three protocols that transfer the bead be-
tween two equilibria, going from an initial stiffness k; to a
final one xy with, for all protocols, fixed and identical k¢, k;
values given in the main text.

The first protocol consists of a sudden step-like change of
the optical trap stiffness — see Fig. 9, green trace. The second
protocol is the “engineered swift equilibriation” (ESE) pro-
tocol recently proposed and implemented by Martinez, et al.
[5]. We calculate xgsg(#) following [5] for a transfer duration
of At =3.47 x 10~* 5. Over the same transfer duration, we
also implement our optimal protocol Kop(¢). All protocols are
displayed in Fig. 9.

Fig. 10 gathers the time evolutions of the motional vari-
ances associated with each protocol. As expected, the step-
like protocol displays the longest equilibration time when
compared to the ESE and optimal protocols. From an ener-
getic point of view, the comparison between the two latter
protocols, shown in Fig. 11, clearly reveals the non-optimal
character of the ESE protocol with a cumulated work expense
larger than for the the optimal protocol. This can also be seen
in the inset of Fig. 11 where the excess work expended during
the ESE protocol lies clearly above the optimal lower bound
discussed in the main text.

C: SMOOTH PROTOCOLS

The optimal protocol obtained in this work [Eq. (6) in the
main text] was derived using the Lagrangian density
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FIG. 9. Calibrated signal of the function generator, for a step-like
(green), ESE (pink), and optimal (blue) protocols. The stiffness x(r)
is normalized to the initial stiffness k;. The jump for the transition
K; — K starts at 1o = 0 s and, for the case of ESE and optimal ends at
At =3.47%x107* s, with k; = 2.77 £0.08, Kf=15.2240.15 pNum.
The ESE protocol kzseg was computed based on Eq. (8) in [5].
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FIG. 10. Temporal evolution of the variance s(z), after 7y = 0 s for
the step-like protocol (in green), and the ESE (in purple) and optimal
(in blue) protocols. The variances are normalized to the final equili-
brated variance sy. The data points represent ensemble mean values
of the variance s(¢) for each protocol. The shaded areas show the re-
spective 95% confidence intervals. Both ESE and optimal protocols
reach an equilibrium regime s at Ar = 3.47 x 107 s ~ Trerax /10 by
construction. Inset: The control parameter K(s) as a function of the
variance s, with the same color codes as in the main figure.

A peculiar feature of L[s, K(s)] is that the corresponding Euler-
Lagrange equation is purely algebraic (as opposed to a differ-
ential equation). Hence, it is not possible to impose the de-
sired boundary conditions on the control parameter & (s) (i.e.
siK; = sy Ky = DYy) and two jumps have to be added “by hand”
at the beginning and the end of the protocol, as explained in
the main text.
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FIG. 11. Temporal evolution of the mean cumulative energetics of
the different protocols, step-like (lower inset), ESE and optimal. The
mean cumulative work for the optimal protocol is displayed in blue,
with total work W (t)ope = 0.981 £0.059 kgT. The mean cumula-
tive work for the ESE protocol is displayed in pink, with total work
W (t)gsg = 1.142+£0.075 kgT. The mean cumulative heat gener-
ated through the optimal protocol is displayed in orange and the ESE
protocol in yellow. Both are superimposed to the work, with total
heat Q(t)opt = 0.9834+0.060 kg T and Q(t)gsg = 1.142+0.076 kg T.
Shaded areas represent 95% confidence levels. Lower inset: Ener-
getics for the step-like protocol. As expected, the mean cumulative
work (in green) reaches immediately Wyiep = 0.45£0.04 kgT. In
brown, the heat, in contrast, achieves the equilibrium value W = Q
with Qgtep = 0.45£0.04 kgT only after Trejax. Upper inset: Com-
parison between the excess work values of the ESE protocol (pink)
and the optimal one (blue) for the transfer duration of duration
Ar =1ty =34Tx 10~* 5. The non-optimal character of the ESE pro-
tocol is directly measured with AWgsg = 0.8110.08 kg T larger than
the optimal value AWy = 0.65£0.07 kgT. The universal bound
AW = y(\/5i — \/ﬁ)2/At discussed in the main text is shown by the
continuous line.

Although these jumps can be realized without much trouble
in the experiments, it is interesting to develop a theoretical
procedure capable of furnishing a suboptimal protocol k(s)
that is continuous in the variable s and converges towards the
optimal protocol as some parameter tends to zero. To do this,
we need to limit the gradient of & (s) by adding a further term
to the Lagrangian density (9), which becomes:

Lis, k(s)] !

o 1z Al 2
77D7—sfc(s) Ak(s)+ €|k (s)], (10)

where € is an additional Lagrange multiplier. The above La-
grangian density yields the Euler-Lagrange equation:

d’k Ys

As a second-order differential equation, Eq. (11) needs two
independent boundary conditions, thus enabling us to set
s;K; = s K¢ = DY, as requested for our protocols. When € — 0,
we obtain the correct limit case of Eq. (6) in the main text, i.e.,

the optimal protocol containing two points of infinite deriva-
tive (jumps) for the function K(s) at s; and s;. Through the
Lagrange multiplier €, one can limit the value of such deriva-
tive, so that the protocol becomes smoother and smoother as
€ increases.

Equation (11) can be solved numerically by successive iter-
ations. We used the following scheme:

a’2f< n+1 ¥si

—ak" ! 42e | — =" A—ak, (12
1 dS2 ; (D,y_sik.in)z 10 ( )
where the superscript n denotes the n-th iteration, while the
subscript i refers to the discrete grid s; = ids, with spacing
equal to Js. The second derivative is then approximated with
the standard finite-difference formula:

d*R\ R 2K+ K
ds? ; 552 ’

The parameter o > 0 is needed to ensure the convergence of
the iterative procedure, but does not affect the final result (in-
deed it disappears from Eq. (12) when fc{”l =K.

As an example, we have solved Eq. (11) with physical pa-
rameters D = Yy =1 and A = 0.81, corresponding to a total
duration for the optimal protocol Afop ~ Trelax /6 according to
Eq. (8) in the main text. The boundary values are s; = 1 and
sy =20.5, K, = 1 and Ky = 2. The smoothness parameter is
€ =107, The numerical convergence parameter is set to ot =
0.3. The result of the numerical integration is given in Figs.
12 and 13, for both the optimal (black lines) and smooth (red
lines) protocols. As expected, the smoothed protocol follows
closely the optimal one, except near the extremities where it
reaches its boundary values smoothly and without jumps. The
total time of the smoothed protocol is 0.182 X Tyjax, longer
than that of the optimal one. But the total work is smaller
Wemooth = 1.32 < W = 1.38. The time-energy product is
(A AW )smooth = 0.356 > (At AW )op = 0.343, in agreement
with the theoretical considerations detailed in the main text.
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(red lines) and corresponding optimal protocol with same value of A
(black lines) . Top panel: Variance s(¢) as a function of time. Bottom
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