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Abstract. We derive a four-component Vlasov equation for a system composed of spin-1/2 fermions (typi-
cally electrons). The orbital part of the motion is classical, whereas the spin degrees of freedom are treated
in a completely quantum-mechanical way. The corresponding hydrodynamic equations are derived by tak-
ing velocity moments of the phase-space distribution function. This hydrodynamic model is closed using
a maximum entropy principle in the case of three or four constraints on the fluid moments, both for
Maxwell-Boltzmann and Fermi-Dirac statistics.

1 Introduction

The coupling between the electronic dynamics and the
spin degrees of freedom in nanometric objects has stim-
ulated a great deal of interest, both theoretical and ex-
perimental, over the last few decades. Many experimen-
tal studies have concentrated on the charge dynamics
of an electron gas confined in metallic nanostructures
such as thin films [1,2], nanotubes [3], metal clusters [4,5]
and nanoparticles [6–8]. From the theoretical point of
view, earlier works were based on phenomenological mod-
els [9–11] that employed Boltzmann-type equations within
the framework of Fermi-liquid theory [12]. Studies based
on microscopic models (either classical or quantum) are
more recent and limited to relatively small systems, due
to their considerable computational cost. In the quantum
regime, the ultrafast electron dynamics in metallic clusters
and nanopatricles was studied by Calvayrac et al. [13] and
more recently Teperik et al. [14] using the time-dependent
density functional theory (DFT). The many-particle quan-
tum dynamics of the electron gas in a thin metal film
was studied by Schwengelbeck et al. [15] within the time-
dependent Hartree-Fock (HF) approximation.

The semiclassical limit of the above quantum mod-
els (DFT and HF) is the self-consistent Vlasov-Poisson
system. The Vlasov-Poisson model was used to perform
particle-in-cell (PIC) simulations of the electron dynamics
in metal clusters [13,16], and to obtain analytical results in
the linear regime for metal clusters [17] and thin films [18].
The nonlinear electron response of thin metal films was
studied by Manfredi and Hervieux [19], who identified a
ballistic electronic modes generated by bunches of elec-
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trons bouncing back and forth on the film surfaces. These
works were later extended to the quantum domain using
Wigner transforms [20].

The above studies included the charge, but not the
spin degrees of freedom. However, it is well known that
spin effects (particularly the Zeeman splitting and the
spin-orbit coupling) can play a decisive role in nanomet-
ric systems such as semiconductor quantum dots [21,22]
and diluted magnetic semiconductors [23,24]. Early ex-
periments on magnetic films [25] showed that the electron
spins respond to an external optical excitation on a sub-
picosecond timescale, which is the typical timescale for
the electrons to equilibrate thermally with the lattice in a
metallic nanostructure. From a fundamental point of view,
several mechanisms have been proposed for the modifica-
tion of the magnetic order of nanostructures subject to an
ultrafast external field, ranging from the spin-orbit cou-
pling [26] to the spin-lattice interactions [27]. More recent
experiments [28] have shown the existence of a coherent
coupling between a femtosecond laser pulse and the mag-
netization of a ferromagnetic thin film. A recent review of
the state of the art in the field of ultrafast magnetization
dynamics in nanostructures can be found in reference [29].

In the present work, we propose a semiclassical mean-
field model, based on the Vlasov equation, which includes
the orbital motion in a classical fashion but incorpo-
rates spin effects in a fully quantum-mechanical way. The
Vlasov model is derived using the phase-space formulation
of quantum mechanics due to Wigner [30]. The spin enters
the model via the Zeeman effect (coupling of the spin with
a magnetic field, either external or self-consistent), which
is the first non-relativistic correction to the spinless dy-
namics. The spin-orbit coupling is a second-order (in 1/c)
correction that will be neglected here, although it could
be included with relative ease in our model. Recent results
on this and other relativistic corrections may be found in
references [31,32].
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Subsequently, we will derive the corresponding hydro-
dynamic (or fluid) equations by taking velocity moments
of the Vlasov equation. Spinless hydrodynamic methods
have been successfully used in the past to model the elec-
tron dynamics in molecular systems [33], metal clusters
and nanoparticles [34–36], thin metal films [37], quantum
plasmas [38,39] and semiconductors [40]. Hydrodynamic
equations including the spin degrees of freedom were de-
rived by Brodin and Marklund [41] using the Madelung
transformation of the wave function [42]. More recently, a
relativistic hydrodynamic model was obtained by Asenjo
et al. [43] from the Dirac equation. These approaches
based on the Madelung transformation usually lead to
cumbersome equations that are in practice very hard to
solve, either analytically or numerically, even in the non-
relativistic limit. Our technique, which separates clearly
the (classical) orbital motion from the (quantum) spin
dynamics, leads to a simpler and more transparent fluid
model, where the meaning of each term in the equations
is more intuitive.

The fluid equations derived from the Vlasov model
constitute an infinite hierarchy of equations that need to
be closed using some additional physical hypotheses. Al-
though this is relatively easy for spinless systems (where
the closure can be obtained by a assuming a suitable equa-
tion of state), things are far subtler when the spin de-
grees of freedom are included. Here, we shall employ a
general procedure based on the maximization of entropy.
Using this approach, we obtain a closed set of fluid equa-
tions for both Maxwell-Boltzmann and the Fermi-Dirac
statistics, keeping up to four fluid moments of the Vlasov
distribution function.

2 Derivation of the spin Vlasov model

We consider an ensemble of spin-1/2 particles (electrons)
in the presence of a magnetic field B and a electric poten-
tial V . We denote the Schrödinger wave function of the
μth particle state by:

Ψμ(r, t) = Ψ↑
μ(r, t) |↑〉 + Ψ↓

μ(r, t) |↓〉 , (1)

where Ψ↑
μ(r, t) and Ψ↓

μ(r, t) are respectively the spin-up
and spin-down components of the wave function, r denotes
the spatial position, and t the time. The evolution of the
system is governed by the Pauli-Schrödinger equation

i�
∂Ψμ(r, t)

∂t
=
[(

− �
2

2m
∇2+V (r, t)

)
σ0 + μBσ · B(r, t)

]
× Ψμ(r, t). (2)

Here, μB = e�/2m is the Bohr magneton, σ is the vector
of the 2×2 Pauli matrices, and σ0 is the 2×2 identity ma-
trix. In equation (2) the electromagnetic fields can be ei-
ther external or self-consistently generated by the particle
charge density and current.

When the fields are self-consistent, the system com-
posed of equation (2) together with Maxwell’s equations
(or an appropriate nonrelativistic limit thereof [31,44])

constitute a mean-field approximation to the exact
N -body dynamics. This mean-field approach can also be
extended, in the spirit of density functional theory (DFT),
to include exchange and correlation effects by adding suit-
able potentials and fields that are functionals of the elec-
tron density [45]. The resulting equations are potentially
equivalent to the exact N -body treatment, although the
exchange-correlations functionals are not known and need
to be somehow approximated.

As an alternative to the Schrödinger framework, a
statistical ensemble of quantum particles is more conve-
niently described by a density matrix formalism. Here, we
will make use of the phase-space formulation of the quan-
tum dynamics due to Wigner [30], which is equivalent to
the density matrix approach and provides the considerable
advantage that the equation of motion bears a strong sim-
ilarity with the classical Vlasov description. Furthermore,
in the Wigner formalism, the classical limit can be eas-
ily evaluated and the quantum corrections to the Vlasov
equation are obtained in a natural way.

The Wigner description is based on the “pseudo-
distribution function”, defined as:

F (r, v, t)=
( m

2π�

)3
∫

ρ(r−λ/2, r+λ/2, t) exp
[
imv · λ

�

]
dλ,

(3)
where, for particles with spin 1/2, F is a 2×2 matrix and
ρ is the density matrix of the system. The matrix com-
ponents of the density matrix ρηη′

(r, r′, t) where η =↑, ↓,
are given by:

ρηη′
(r, r′) =

∑
μ

Ψη
μ(r, t)Ψη′∗

μ (r′, t). (4)

In order to study the macroscopic properties of the system,
it is convenient to project F onto the Pauli basis set [46,47]

F =
1
2
σ0f0 +

1
�
f · σ, (5)

where

f0 = tr {F} = f↑↑ + f↓↓, f =
�

2
tr (Fσ) (6)

and tr denotes the trace. With this definition, the par-
ticle density n and the spin polarization S of the elec-
tron gas are easily expressed by the moments of the
pseudo-distribution functions f0 and f :

n(r, t) =
∑

μ

∣∣Ψ †
μ(r, t)

∣∣2 =
∫

f0(r, v, t)dv, (7)

S(r, t) =
�

2

∑
μ

Ψ †
μ(r, t)σΨμ(r, t) =

∫
f(r, v, t)dv. (8)

In this representation, the Wigner functions have a clear
physical interpretation: f0 is related to the total electron
density (in phase space), whereas fi (i = x, y, z) is related
to the spin polarization in the direction i. In other words,
f0 represents the probability to find an electron at one
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point of the phase space at a given time, while fi repre-
sents the probability to have a spin-polarization probabil-
ity in the direction i for this electron. Using equation (2),
some straightforward calculations lead to the quantum
evolution equations for the Wigner functions

∂f0

∂t
+ v · ∇rf0 + QV [f0] + μBQBi [fi] = 0, (9)

∂fi

∂t
+ v · ∇rfi + QV [fi] + μBQBi [f0]

+ μBεijkQBj [fk] = 0. (10)

Here, εirl is the Levi-Civita symbol, and we used the
Einstein summation convention on repeated indices.
Further, we defined the pseudo-differential operator

QR[f ] =
( m

2π�

)3
∫

R(r + λ/2, t) − R(r − λ/2, t)
i�

× f(r, v′, t) exp
[
im (v − v′) · λ

�

]
dλ dv′, (11)

where R can be either the scalar potential V or one of
the components of the magnetic field Bi. Equations (9)
and (10) describe the particle motion in a fully quantum-
mechanical fashion. The integral form of the operator Q,
which generalizes the classical force operator, makes the
study of such a system particularly challenging [48–51].

In order to obtain a semiclassical approximation, we
take the classical limit of equations (9) and (10) and only
keep the first the correction to the Vlasov motion induced
by the Zeeman-like interaction between the spin and the
magnetic field. A simple approach to derive the classical
limit is to expand the operator Q in a power series of �. At
zeroth order, the equations for f0 and fi decouple, so that
one can study the particle motion irrespective from the
spin degrees of freedom, and the equation for f0 becomes
identical to the classical Vlasov equation. Up to first order
in �, we obtain

∂f0

∂t
+ v · ∇rf0 − e

m
(E + v × B)

× ∇vf0 − e

m2

∑
i

∇rBi · ∇vfi = 0, (12)

∂fi

∂t
+ v · ∇rfi − e

m
[(E + v × B) · ∇vfi − (f × B)i]

− μB�

2m
∇rBi · ∇vf0 = 0, (13)

where the electric field E is given by ∇V = eE.
We note that the � → 0 limit of the quantum sys-

tem (9) and (10) does not yield the Lorentz force v × B.
This is because in the Schrödinger-Pauli equation (2) we
defined, for simplicity, the kinetic energy as p̂2/2m, in-
stead of the correct expression (p̂ + eA)2/2m, where A is
the vector potential such that B = ∇×A (this is an often-
used approximation in condensed matter physics, which
amounts to neglecting the effect of the magnetic field on
the orbital motion). Using the correct expression (and re-
placing v with p in Eq. (3)) leads to considerably more
complicated forms for the Wigner evolution equations (9)

and (10). Nevertheless, it can be proven [52] that in the
limit � → 0, one does obtain the Vlasov equations (12)
and (13).

Equations (12) and (13) constitute the Vlasov model
that we will use throughout the rest of this paper. Com-
pared to a particle without spin, the evolution is described
by a 2 × 2 matrix of phase-space functions. This reflects
the quantum nature of the spin variable, which is a two-
component vector in a Hilbert space. In contrast, the
orbital degrees of freedom are treated in a completely
classical way.

According to equation (7), the scalar distribution f0

provides the particle density, whereas the vector dis-
tribution f yields the spin polarization as defined in
equation (8). One can prove the following bound:

|S(r, t)| ≤ n(r, t)
�

2
. (14)

Equation (14) is a direct consequence of the following
property of the density matrix: tr

(
ρ2
) ≤ 1. The equality

holds true for a pure state or for a fluid where all the spins
are aligned along the same direction (fully spin-polarized
state).

The term f × B in equation (13) represents the spin
precession operator (rotation of the spin phase-space den-
sity f around the magnetic field). The remaining terms
couple the equations for f0 and f . Such coupling exists
only in the presence of an inhomogeneous magnetic field
(∇rBi �= 0) and is a truly quantum effect. These terms
reflect the force exerted on a magnetic dipole by an inho-
mogeneous magnetic field, which is at the basis of Stern-
Gerlach-type experiments.

The Vlasov equations (12) and (13) should also be
compared to the kinetic model proposed by Zamanian
et al. [53], where the spin is introduced as a classical inde-
pendent variable on a par with the position and the veloc-
ity of a particle. Thus, the distribution function evolves
in an extended phase space (r, v, s). This is in contrast
with our approach, where the spin is treated as a fully
quantum variable (evolving in a two-dimensional Hilbert
space). Nevertheless, it can be proven that the two sets of
equations are equivalent. This can be done by integrating
the equations of reference [53] in the spin variable s 1,
and using the correspondence relations between our dis-
tribution functions f0(r, v, t) and fi(r, v, t) and the scalar
distribution used by Zamanian et al. [53] fZ(r, v, s, t),
namely:

f0 =
∫

fZd2s, fi = 3
∫

sifZd2s.

1 Such an equivalence may seem surprising, as by integrat-
ing in the spin variable some information should invariably
be lost. However, the distribution functions used by Zamanian
et al. constitute only a subset of all possible functions in the
extended phase space, as is apparent from equation (27) in ref-
erence [53]. Within this subset, our (2× 2 matrix) f(r, v) and
their (scalar) fZ(r, v,s) contain the same information and the
two models are indeed equivalent.
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3 Hydrodynamic model with spin

In this section, starting from equations (12) and (13), we
derive the hydrodynamic evolution equations by taking ve-
locity moments of the phase-space distribution functions.
In addition to the particle density and spin polarization
(Eqs. (7) and (8)), we define the following macroscopic
quantities

u =
1
n

∫
vf0dv, (15)

JS
iα =

∫
vifαdv, (16)

Pij = m

∫
wiwjf0dv, (17)

Πijα = m

∫
vivjfαdv, (18)

Qijk = m

∫
wiwjwkf0dv, (19)

where we separated the mean fluid velocity u from the
velocity fluctuations w ≡ v − u. Here, Pij and Qijk are,
respectively, the pressure and the generalized energy flux
tensors. They coincide with the analogous definitions for
spinless fluids with probability distribution function f0.
The spin-velocity tensor JS

iα represents the mean fluid ve-
locity along the ith direction of the αth spin polariza-
tion vector, while Πijα represents the corresponding spin-
pressure tensor2.

The evolution equations for the above fluid quantities
are easily obtained by the straightforward integration of
equations (12) and (13) with respect to the velocity vari-
able. We obtain (here and in the following, we again use
Einstein’s summation convention):

∂n

∂t
+ ∇r · (nu) = 0, (20)

∂Sα

∂t
+ ∂iJ

S
iα +

e

m
(S × B)α = 0, (21)

∂ui

∂t
+ uj(∇jui) +

1
nm

∇jPij +
e

m
[Ei + (u × B)i]

+
e

nm2
Sα (∂iBα) = 0, (22)

∂JS
iα

∂t
+ ∂jΠijα +

eEi

m
Sα +

e

m
εjkiBkJS

jα

+
e

m
εjkαBkJS

ij +
μB�

2m
(∂iBα)n = 0, (23)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk + ∂kQijk

+
e

m
[εlkiBkPjl + εlkjBkPil]

+
e

m2

∑
α

[
∂iBα

(
JS

jα − Sαuj

)
+ ∂jBα

(
JS

iα − Sαui

)]
= 0.

(24)

Other sets of hydrodynamic equations for spin-1/2 par-
ticles were derived by Brodin and Marklund [41] using a

2 Strictly speaking a pressure tensor should be defined in
terms of the velocity fluctuations wiwj , but this would unduly
complicate the notation. Thus, we stick to the above definition
of Πijα while still using the term “pressure” for this quantity.

Madelung transformation on the Pauli wave function. The
resulting model is much more cumbersome than the above
system (20)–(24), and it is hard to identify the physical
meaning of each term in their equations. A different hy-
drodynamic theory was derived by Zamanian et al. [54]
from a Vlasov equation that includes the spin as an in-
dependent variable [53]. Their equations are very simi-
lar to ours. The main difference is that, in the equations
of reference [54], each quantity (including the spin polar-
ization) is transported by a fluid element traveling with
the mean fluid velocity u. In other words, the convective
derivative is always Dt = ∂t + u · ∇. In contrast, in our
equations (20)–(24), only the spinless quantities (velocity,
pressure) are transported by the fluid velocity, whereas
the spin quantities (Sα, JS

iα) are not. However, it can be
shown that our fluid equations (20)–(24) are equivalent to
those of reference [54]. The apparent discrepancy in the
two sets of fluid equations arises mainly from the different
definitions of the velocity moments in the two approaches.

As is always the case for hydrodynamic models, some
further hypothesis is needed to close the above set of equa-
tions (20)–(24). In the next Section, we will deal with
the closure problem by resorting to a maximum entropy
principle (MEP) – an approach that has been developed
for spinless systems and that can be straightforwardly
generalized to our case of a fluid with spin.

In order to fix the ideas before addressing the general
framework of the MEP, we discuss an intuitive closure
relation that arises naturally from the equations. In Sec-
tion 5, this intuitive approach will be justified rigourously
on the basis of the MEP, and then overcome in Section 6.
We first note that, by definition, the following equation is
always satisfied:

∫
wif0dv = 0. The same is not true, how-

ever, for the expression obtained by replacing f0 with fα

in the preceding integral. If we assume that such a quan-
tity indeed vanishes, i.e.

∫
wifαdv = 0, we immediately

obtain that

JS
iα = uiSα. (25)

The physical interpretation of the above equation is that
the spin of a particle is simply transported along the mean
fluid velocity. This is of course an approximation that
amounts to neglecting some spin-velocity correlations [54].

With this assumption, equation (23) and the defini-
tion of the spin-pressure Πijα are no longer necessary. The
system of fluid equations simplifies to:

∂n

∂t
+ ∇r · (un) = 0, (26)

∂Sα

∂t
+ ∂i (uiSα) +

e

m
(S × B)α = 0, (27)

∂ui

∂t
+ uj(∇jui) +

1
nm

∇jPij +
e

m
[Ei + (u × B)i]

+
e

nm2
Sα (∂iBα) = 0, (28)

∂Pij

∂t
+ uk∂kPij + Pjk∂kui + Pik∂kuj + Pij∂kuk

+ ∂kQijk +
e

m
[εlkiBkPjl + εlkjBkPil] = 0, (29)
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Interestingly, in equation (27) the spin polarization is now
transported by the fluid velocity u, as in the model of
Zamanian et al. [54].

We note that in equations (26)–(29) we have already
closed (thanks to Eq. (25)) the spin-dependent part of the
equations. In order to complete the closure procedure, one
can proceed in the same way as is usually done for spin-
less fluids, for instance by supposing that the system is
isotropic and adiabatic. The isotropy condition imposes
that Pij = (P/3)δij where δij is the Kronecker delta,
while the adiabatic condition requires that the heat flux
Qth

i = m
∫

w2wif0dv vanish. In this case, one can prove
that the pressure takes the usual form for the equation of
state of an adiabatic system, i.e., P = const. × n

D+2
D (D

is the dimensionality of the system), which replaces equa-
tion (29). In summary (Eqs. (26)–(28)), together with the
preceding expression for the pressure, constitute a closed
system of hydrodynamic equations with spin.

4 Fluid closure: maximum entropy principle

The maximum entropy principle is a well-developed the-
ory that has been successfully applied to various areas of
gas, fluid, and solid-state physics [55–58]. The underlying
assumption of the MEP is that, at equilibrium, the prob-
ability distribution function is given by the most probable
microscopic distribution (i.e., the one that maximizes the
entropy) compatible with some macroscopic constraints.
The constraints are generally given by the various veloc-
ity moments, i.e., the local density, mean velocity, and
temperature. From a mathematical point of view, this
procedure leads to a constrained maximization problem.

In order to illustrate the application of the MEP theory
to a spin system, we write the Hamiltonian in a more
general way

H = h0(r, v)σ0 + h(r, v) · σ, (30)

where h0 and h are functions of the particle position r
and velocity v ≡ (p + eA)/m. In our case

h0 = m
|v|2
2

+ V, (31)

h = μBB. (32)

In order to simplify the notation, we denote the fluid
moments by:

mi(r) = tr
∫

χiFdv, (33)

where χi is the function associated with the ith moment.
Thus, the definitions (7) and (8) and (15)–(19) corre-
spond to:

m =

⎛⎜⎜⎜⎜⎝
n
S
u

JS
iα
...

⎞⎟⎟⎟⎟⎠ ; χ =

⎛⎜⎜⎜⎜⎝
1
σ
v

viσα

...

⎞⎟⎟⎟⎟⎠ . (34)

The relevant entropy density is:

s(F ) =
{

kB tr {F log F − F} (M-B)
kB tr {F log F + (1 − F ) log(1 − F )} (F-D),

(35)
where we distinguished between Maxwell-Boltzmann
(M-B) and Fermi-Dirac (F-D) statistics. The MEP as-
sumes that the phase-space distribution function F is the
extremum of the free-energy functional

E = tr
∫

[Ts(F ) + H′F ]dvdr −
∫

λi(r)mi(r)dr, (36)

where we defined H′ = H+λi(r)χi, T is the temperature
and the functions λi are the Lagrange multipliers. The λi

constitute a set of independent functions that are used to
parameterize the equilibrium distribution F eq . A major
technical difficulty of the MEP method is to express the
λi set in terms of m in a closed form. This point will
be illustrated in details in the following paragraphs. The
total variation (Lie derivative) of E gives

δE = δλi
δ

δλi
E + δF

δ

δF
E . (37)

The local equilibrium distribution F eq corresponds to the
extremum δE(F eq) = 0. It is easy to verify that the varia-
tion with respect the Lagrange multipliers (the first term
of the right hand side of Eq. (37)) gives equation (33).

The equilibrium distribution is formally obtained by
taking the variation of E with respect to F

δF
δE
δF

= tr
∫ [

T
δs

δF
+ H′

]
δFdvdr. (38)

Setting δE/δF = 0, yields

F eq =
{

a exp (−βH′) (M-B)
a [exp (βH′) + 1]−1 (F-D),

(39)

where a is a constant and β = 1/(kBT ). Equation (39) is a
very general result that holds irrespectively of the number
and the type of moments that are being considered. For
every specific choice of the moments to be preserved, the
explicit form of the local equilibrium function F eq can
be constructed from equation (39). In order to illustrate
the results for a fluid with spin, in the next sections we
shall consider various models characterized by a different
number of fluid moments (three or four) and by the use
of the M-B or F-D statistics.

5 Three-moment closure

To begin with, we consider a simplified situation where
only three fluid moments (density n, mean velocity u, and
spin polarization S) are kept, that is:

m =

⎛⎝ n
S
u

⎞⎠ . (40)
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It is convenient to write the hamiltonian H′ in the
following way

H′ = h′
0 + h′ · σ =

m

2
(v − v0)2 + λ0 + λS · σ, (41)

where the Lagrange multipliers λ0, λS and v0 (seven
scalar quantities in total) are associated respectively to
the density, the spin polarization vector, and the mean
velocity. We then evaluate the equilibrium distribution for
the M-B and F-D statistics.

5.1 Maxwell-Boltzmann statistics

We fix the normalization constant a0 =
(

m
2π�

)3.
Equation (39) (for M-B statistics) gives

F eq = a0 σ0e
−βh′

0 exp (−βh′ · σ)

= a0

[
σ0 cosh (−β|h′|) +

h′ · σ
|h′| sinh (−β|h′|)

]
e−βh′

0.

(42)

By calculating the moments of F eq, we can express the
fluid moments in terms of the Lagrangian multipliers. We
find

n = 2a0Γ (T ) exp (−βλ0) cosh (−β|λS|) ,

S = � a0
λS

|λS| Γ (T ) exp (−βλ0) sinh (−β|λS|) ,

u = v0,

where Γ (T ) = (2πkBT/m)3/2. The previous equations can
be inverted:

exp (−βλ0) = a0
1

2Γ (T )

√(
n2 − 4|S|2

�2

)
, (43)

λS =
S

|S|
kBT

2
ln

(
n − 2|S|

�

n + 2|S|
�

)
. (44)

Note that the quantities on the right-hand side of the
above expressions are real, thanks to equation (14).

Finally, the equilibrium distribution can be expressed
in terms of the fluid moments in a simple form

F eq = (σ0n + σ · S)
1

Γ (T )
exp

(
−β

m (v − u)2

2

)
. (45)

The pressure and the spin current at equilibrium are thus
given by:

Pij = m tr
(∫

vivjF
eqdv

)
− mnu2 = nkBTδij (46)

JS
iα = Sαui. (47)

Thus, considering three fluid moments and M-B statistics,
leads to the standard expression for the isotropic pres-
sure of an ideal gas, together with the “intuitive” closure
condition (25) for the spin current tensor.

5.2 Fermi-Dirac statistics

We now consider the F-D case. After some tedious but
straightforward calculations (details can be found in
Appendix A), equation (39) gives

F eq =
a0

2

(
cosh (β|h′|) + exp−βh′

0

)
σ0 − sinh (βh′

0)
h′·σ
|h′|

[cosh (βh′
0) + cosh (β|h′|)] .

(48)
In the case of the F-D statistics, it is no longer possible to
obtain a closed expression of F eq when T > 0. However,
for many applications of the hydrodynamic model, the
assumption that the particle have zero temperature is not
too restrictive. Indeed, for solid-state metallic densities,
the Fermi temperature is of the order TF ≈ 5 × 104 K,
so that in the vast majority of conceivable situations T �
TF , and the zero-temperature approximation is sufficiently
accurate.

We have evaluated the macroscopic moment of F eq in
the case T = 0. We obtain (details of the calculations are
given in Appendix A):

n=
4π

3
a0

([
2
m

(|λS| + |λ0|)
]3/2

+
[

2
m

(|λ0| − |λS|)
]3/2

)
,

(49)

S = −�

2
a0

λS

|λs|
4π

3

([
2
m

(|λS| + |λ0|
)]3/2

−
[

2
m

(|λ0| − |λS|)]3/2
)

, (50)

u = v0. (51)

Note that, in the above expressions, the quantities under
square root are nonnegative for all physically admissible
states, as is shown in Appendix A.

As in the case of M-B statistics, we find that JS
iα =

uiSα. For the pressure, we obtain

P =
�

2

5m

(
6π2
)2/3

25/3

[(
n − 2

�
|S|
)5/3

+
(

n +
2
�
|S|
)5/3

]
.

(52)

When the spin polarization vanishes, equation (52) re-
duces to the usual expression of the zero-temperature pres-
sure of a spinless Fermi gas: P = �

2

5m

(
3π2
)2/3

n5/3. The
modification of the spin pressure induced by the spin has
a simple physical interpretation. Equation (52) can be in-
terpreted as the total pressure of a plasma composed by
two populations, the spin-up and the spin-down particles.
Due to the Zeeman splitting, the density of the parti-
cles whose spin is parallel to the magnetic field is lower
than the energy of the particles whose spin is antiparallel.
Equation (52) shows that the two populations provide a
separate contribution to the total fluid pressure.
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Pij = eβγ2/m

{
nkBTδi,j + mn

(
�

2n2uiuj + 4Js
i Js

j

�2n2 + 4S2
z

)
+ 8mnSz

×
[(

JS
i − Szui

) (
�

2n2uj + 4SzJs
j

)
+
(
JS

j − Szuj

) (
�

2n2ui + 4SzJs
i

)
(�2n2 + 4S2

z )2

]}
− mnuiuj (63)

Πijz = eβγ2/m

{
SzkBTδi,j + mSz

(
�

2n2uiuj + 4Js
i Js

j

�2n2 + 4S2
z

)
+ 2mn2

�
2

×
[(

JS
i − Szui

) (
�

2n2uj + 4SzJs
j

)
+
(
JS

j − Szuj

) (
�

2n2ui + 4SzJs
i

)
(�2n2 + 4S2

z )2

]}
(64)

6 Four-moment closure

As a final example, we consider the complete four-moment
model:

m =

⎛⎜⎝ n
S
u

JS
iα

⎞⎟⎠ and χ =

⎛⎜⎝ λ0

λS

v0

λJ
iα

⎞⎟⎠ . (53)

In this case, the Hamiltonian H′ becomes

H′ =
m (v − v0)2

2
+ λ0 +

(
λS

α + λJ
iαvi

)
σα. (54)

Here, we consider a particular situation where the evalu-
ation of the closure expressions can be obtained analyti-
cally, namely the collinear case with Maxwell-Boltzmann
statistics. With the term “collinear” we denote a fluid
whose spin polarization is parallel to a fixed direc-
tion (here, the z direction). In the collinear case, the
Hamiltonian reduces to Hcol = m

2 v2 + μBBzσz . The equi-
librium distribution F eq is given by equation (42) with

h′
0 = m (v − v0)2 /2 + λ0, (55)

h′
z = λS

z + λJ
xzvx + λJ

yzvy + λJ
zzvz, (56)

h′
x = h′

y = 0. (57)

Proceeding as before, we obtain the relations between the
moments and the Lagrange multipliers. The details of the
calculations are given in Appendix B. We obtain

γ =
2n�m

�2n2 + 4S2
z

(
Szu − JS

)
, (58)

v0 =
1

�2n2 + 4S2
z

(
�

2n2u + 4SzJ
S
)
, (59)

e−βλ0 =
eβγ2/2m

Γ (T )

√(n

2

)2

−
(

Sz

�

)2

, (60)

λS
z =

kBT

2
ln

(
n − 2|S|

�

n + 2|S|
�

)
− γ · v0. (61)

In order to simplify the notation, we defined γi = λJ
iz and

JS
iz = JS

i .

We can now calculate the equilibrium distribution
function:

F eq =
eβγ2/2m

Γ (T )
e−βm(v−v0)2/2

×
{

σ0

[
n cosh (βγ · (v − v0))

− 2Sz

�
sinh (βγ · (v − v0))

]
+ σz

[
�

2
n sinh (−βγ · (v − v0))

+ Sz cosh (βγ · (v − v0))
]}

. (62)

Finally, we calculate the pressure tensor Pij and the spin
pressure tensor Πijz (details are given in the Appendix B).
We obtain

see equations (63) and (64) above.
It is easy to verify that equation (63) is consistent with
equation (47) in the limit γ → 0. Finally, we can write
a four-moment model with collinear spin and Maxwell-
Boltzmannn statistics at zero temperature:

∂n

∂t
+ ∇r · (nu) = 0,

∂Sz

∂t
+ ∂iJ

S
iz = 0,

∂ui

∂t
+ uj∂jui +

1
nm

∂jPij +
e

m
(Ei + εjkiujBk)

+
e

nm2
Sz (∂iBz) = 0,

∂JS
iz

∂t
+ ∂jΠijz +

eEi

m
Sz +

e�
2

4m2
(∂iBz)n = 0 (65)

The above fluid equations, together with equations (63)
and (64), constitute a closed system.

7 Conclusions

The dynamics of a system of spin-1/2 fermions is
an important issue in many areas of physics, ranging
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Page 8 of 11 Eur. Phys. J. D (2014) 68: 176

from condensed matter (electrons in bulk metals), to
nanophysics (electron transport in metallic and semicon-
ductor nanostructures) and even astrophysics (interior of
white dwarfs and neutron stars).

In particular, in ultrafast spectroscopy experiments
carried out on nanometric objects, the electron spin can
play a crucial role, as it interacts not only with the mag-
netic and electric fields of the incident laser pulse, but also
with the self-consistent fields generated by the electrons
themselves. In view of this complex variety of possible
physical mechanisms, it is necessary to develop appropri-
ate models that take into account the spin degrees of free-
dom in the dynamics of the electron gas. Further, these
models should not be limited to the linear response, as
nonlinear effects are often important, especially for large
incident laser powers.

Most existing models for the quantum electron dynam-
ics are variations on the mean-field approximation (time-
dependent Hartree equations), with various upgrades
that allow one to describe electron exchange (Hartree-
Fock) and correlations [density functional theory, local-
density approximation (LDA)], spin effects (spin LDA),
and relativistic effects (Dirac-Hartree and Dirac-Kohn-
Sham equations).

The use of phase-space models is less widespread, al-
though both the Vlasov and Wigner equations have been
used in the past to study the electron dynamics in metallic
nansotructures [13,20,45]. Some authors [53,54] used the
Vlasov or Wigner equations in an extended phase space
that includes a “classical” spin variable.

In this paper, we derived a a four-component Vlasov
equation for a system composed of spin-1/2 fermions (typ-
ically electrons). The orbital part of the motion was as-
sumed to be classical and therefore described by phase-
space trajectories that represent the characteristics of he
corresponding Vlasov equation. In contrast, the spin de-
grees of freedom were treated in a completely quantum-
mechanical way (two-dimensional Hilbert space). The
corresponding hydrodynamic equations were derived by
taking velocity moments of the phase-space distribution
function. The hydrodynamic equations form an infinite
hierarchy that needs to be closed on the basis of some
physical hypothesis. Here, we showed that the hydrody-
namics system can be closed using a maximum entropy
principle. We performed the detailed calculations for a
closure with either three or four constraints on the fluid
moments, for both Maxwell-Boltzmann and Fermi-Dirac
statistics.

The Vlasov and fluid models that we derived in this
work should be useful, for instance, for applications to
the electron dynamics in metallic nanoparticles excited
with intense laser pulses, where spin and charge effects
are closely intertwined.

We thank the Agence Nationale de la Recherche, project Labex
“Nanostructures in Interaction with their Environment”, for
financial support.

Appendix A: Three-moment Fermi-Dirac
closure

We begin by demonstrating the relation (48) between
the equilibrium distribution F eq and the component of
the Hamiltonian H′ = h′

0σ0 + h′ · σ′, where h′
0 =

m (v − v0)2 /2 + λ0 and h′ = λS. Developing the ex-
ponential as a power series in equation (39) (F-D) and
inverting the associated matrix, we obtain

F eq = a0[exp (βH′) + 1]−1
,

=
( m

2π�

)3

exp (βh′
0)
[
cosh (βh′

0)σ0+cosh (β|h′|) h′ · σ
|h′|

]−1

,

=
a0

2

(
cosh (β|h′|)+exp−βh′

0

)
σ0−sinh (βh′

0) (h′ · σ) /|h′|
[cosh (βh′

0)+cosh (β|h′|)] .

In this case, we obtain the following expression for f eq
0

and f eq
i :

f eq
0 = a0

cosh (β|h′|) + exp−βh′
0

cosh (βh′
0) + cosh (β|h′|)

and

f eq
i = −a0 �

2
sinh (β|h′|)h′

i/|h′|
cosh (βh′

0) + cosh (β|h′|) .

These expressions cannot be integrated analytically over
the velocity space. To obtain a treatable model, we assume
that the electron gas is at zero temperature, i.e. β → ∞.
We start by calculating the density

n = lim
β→∞

∫
feq
0 dv = a0 lim

β→∞

∫
eβ|h′| + 2e−βh′

0

eβh′
0 + e−βh′

0 + eβ|h′| dv

= a0 lim
β→∞

[∫
1

1 + eβ(h′
0−|h′|) + e−β(h′

0+|h′|)
dv

+ 2
∫

1

1 + e2βh′
0 + eβ(h′

0+|h′|)
dv

]
.

We call n1 and n2 respectively the limit for β → ∞ of the
first and the second integral in the above expression, such
that n = n1 + n2. One can show that

see equations next page.

For S we obtain

Si = lim
β→∞

∫
fidv

= −�

2
a0

λS
i

|λS| lim
β→∞

∫
eβ|h′|

eβh′
0 + e−βh′

0 + eβ|h′| dv

= −�

2
a0

λS
i

|λS|n1.

In the case where λ0 > −|λS|, we have the following rela-
tion between S and n: |S| = �

2n. Comparing with equa-
tion (14), we notice that we are in the limit of pure states.
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n1 = 4πa0 lim
β→∞

∫ +∞

0

v2

1 + exp[β
(

m
2

v2 + λ0 − |λS |)] + exp[−β
(

m
2

v2 + λ0 − |λS |)]dv

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4π
3

a0

[
2
m

(|λS | − |λ0|
)]3/2

if 0 < λ0 < |λS |
0 if λ0 > |λS |
4π
3

a0

[
2
m

(|λS | + |λ0|
)]3/2

if − |λS | < λ0 < 0
4π
3

a0

([
2
m

(|λS | + |λ0|
)]3/2 − [ 2

m

(|λ0| − |λS |)]3/2
)

if λ0 < −|λS |

n2 = 8πa0 lim
β→∞

∫ +∞

0

v2

1 + exp2β(m
2 v2+λ0) + expβ(m

2 v2+λ0+|λS |)
dv

=

{
0 if λ0 > −|λS |
8π
3

a0

[
2
m

(|λ0| − |λS |)]3/2
if λ0 < −|λS |

P =
m

3

∫
v2feq

0 dv − mnu2

=
4πm

3
a0

[
lim

β→∞

∫ +∞

0

v4

1 + exp[β
(

m
2

v2 + λ0 − |λS |)] + exp[−β
(

m
2

v2 + λ0 − |λS |)]dv

+ 2 lim
β→∞

∫ +∞

0

v2

1 + exp[2β
(

m
2

v2 + λ0

)
] + exp[β

(
m
2

v2 + λ0 + |λS |)]dv

]

=
4πm

3

a0

5

([
2

m

(
|λS | + |λ0|

)]5/2

+

[
2

m

(
|λ0| − |λS |

)]5/2
)

=
�

2

5m

(
3π2
)2/3

2

[(
n − 2

�
|S|
)5/3

+

(
n +

2

�
|S|
)5/3

]

If we consider the case where λ0 < −|λS|, we obtain

n =
4π

3
a0

([
2
m

(|λS| + |λ0|
)]3/2

+
[

2
m

(|λ0| − |λS|)]3/2
)

,

S = −�

2
a0

λS

|λs|
4π

3

([
2
m

(|λS| + |λ0|
)]3/2

−
[

2
m

(|λ0| − |λS|)]3/2
)

,

u = v0.

It is obvious that in this case we have |S| ≤ �

2n, which
is in agreement with equation (14) and corresponds to
admissible physical solutions (quantum mixed states). We
are now able to extract the following relation between the
Lagrange multipliers and the fluid moments:

|λ0| ± |λS| =
(

2π�

m

)2
m

2

(
3
8π

)2/3 (
n ∓ 2

�
|S|
)2/3

.

The next step is to calculate the pressure Pij =
m
∫

vivjf
eq
0 dv − mnuiuj. By using parity arguments, we

deduce that the pressure must be isotropic. Thus, we
obtain

see equation above.

As to the spin current JS
iα =

∫
vifαdv, we notice directly,

again by parity arguments, that it factorizes as JS
iα =

uiSα.

Appendix B: Four-moments
Maxwell-Boltzmann collinear closure

In this Appendix, we provide a proof of the rela-
tions (58)–(61) between the fluid moments and the
Lagrange multipliers in the case of a Maxwell-Boltzmann
distributions with four constraints of the moments, in the
collinear approximation.

The equilibrium distribution function is given by
equations (39) and (54). We have:

F eq = exp (−βH′)

= exp (−βh′
0) [cosh (−βh′

z)σ0 + σz sinh (−βh′
z)] ,
(B.1)

where h′
0 and h′

z are given by equations (55) and (56). In
order to simplify the notation, we introduce the following
definitions: γi = λJ

iz and JS
iz = JS

i . We first compute the
density

n = 2
∫

exp (−βh′
0) cosh (−βh′) dv

= e−β(λ0+λS
z )
∫

e−
βm
2 (v−v0)2e−βγ·vdv

+ e−β(λ0−λS
z )
∫

e−
βm
2 (v−v0)2eβγ·vdv.
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Let us first define with I the following integral

I0
±(v0i , γi) =

∫
e−

βm
2 (vi−v0i)

2

e±βγividvi

= Γ 1/3(T )e±βγiv0i e−βγ2
i /2m.

Therefore, we have:

n = e−β(λ0+λS
z )I0

−(v0x , γx)I0
−(v0y , γy)I0

−(v0z , γz)

+ e−β(λ0−λS
z )I0

+(v0x , γx)I0
+(v0y , γy)I0

+(v0z , γz)

= 2Γ (T ) exp (−βλ0) exp
(
−βγ2

2m

)
× cosh

[
β
(
λS

z + γ · v0

)]
. (B.2)

The calculation for Sz is quite similar, and we obtain

Sz = �Γ (T ) exp (−βλ0) exp
(
−βγ2

2m

)
× sinh

[−β
(
λS

z + γ · v0

)]
. (B.3)

The calculation of u is slightly different. Let us compute
explicitly the component ux (the generalization to the
other components is then straightforward):

ux =
2
n

∫
vxe (−βh′

0) cosh (−β|h′|) dv

=
1
n

[
e−β(λ0+λS

z )
∫

vxe−
βm
2 (v−v0)2e−βγ·vdv

+ e−β(λ0−λS
z )
∫

vxe−
βm
2 (v−v0)2e+βγ·vdv

]
.

Defining the following integral

I1
±(v0i , γi) =

∫
vie

− βm
2 (vi−v0i)

2

e±βγividvi

= Γ 1/3(T )e±βγiv0i e−βγ2
i /2m

(
v0i ±

γi

m

)
,

we obtain

ux =
e−β(λ0+λS

z )

n

[
I1
−(v0x , γx)I0

−(v0y , γy)I0
−(v0z , γz)

+ e2βλS
z I1

+(v0x , γx)I0
+(v0y , γy)I0

+(v0z , γz)
]

= v0x − 2Sz

n�m
γx.

The generalisation to the other components gives

u = v0 +
2Sz

n�m
γ. (B.4)

We finally compute the spin current, again starting from
its x component:

JS
x = �

∫
vi

h′
α

|h′| exp (−βh′
0) sinh (−β|h′|) dv

=
�

2
e−β(λ0+λS

z )I1
−(v0x , λJ

xz)I
0
−(v0y , λJ

yz)I
0
−(v0z , λJ

zz)

− �

2
e−β(λ0−λS

z )I1
+(v0x , λJ

xz)I
0
+(v0y , λJ

yz)I
0
+(v0z , λJ

zz)

= v0xSz − �γx

2m
n.

The generalisation to the other components gives

JS
i = v0iSz − �n

2m
γi. (B.5)

Inverting the relations (B.2)–(B.5), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γi =
2n�m

�2n2 + 4S2
z

(
Szui − JS

i

)
,

v0i =
1

�2n2 + 4S2
z

(
�

2n2ui + 4SzJ
S
i

)
,

e−βλ0 =
eβγ2/2m

Γ (T )

√(n

2

)2

−
(

Sz

�

)2

,

λS
z =

kBT

2
ln

(
n − 2|S|

�

n + 2|S|
�

)
− γ · v0.

(B.6)
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