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Non-Gaussian transport in strong plasma turbulence
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The transport of test particle ensembles moving in turbulent electrostatic fields governed by the
Hasegawa–Mima equation is investigated. It ranges from subdiffusive to ballistic, depending on the
size~in terms of thermal ion Larmor radii! of the domain considered, and on the magnitude of the
background density gradient. In addition to the electrostatic potential, other fields, notably the
vorticity and the Weiss field, prove to be very useful in accounting for particle dynamics and
transport. For example, the existence of well defined core-circulation cell vortex structure in the
Weiss field gives the most reliable guide to particle trapping, while locales of zero vorticity define
regions of filamentary particle flow. Differential transport of guiding center particles and energetic
particles gyrating with significant Larmor radius is investigated; the latter is strongly inhibited.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1445426#
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I. INTRODUCTION

The evidence for anomalous transport—that is, transp
which is turbulence-driven and not necessarily describa
by simple local diffusion—in magnetically confined plasm
is overwhelming. Classical reviews chronicling the develo
ment of observations, theory, and modelling over the pas
years are provided by Refs. 1–4. In parallel, in a gene
physics context, interest has grown in the fundamen
mechanisms that can give rise to anomalous transport, an
how they can be quantified and characterized; see, for
ample, Refs. 5–7. With some recent exceptions, howe
~see, for example, Refs. 8–10!, there has been only a limite
attempt to apply the general physics concepts of ‘‘stra
kinetics’’ within a fusion context. In the present paper, w
establish further linkages through a study of particle tra
port in strong plasma turbulence modelled by t
Hasegawa–Mima~HM! equation,11 whose physics is domi
nated by theEÃB drift and involves low frequency~com-
pared to the ion cyclotron frequencyvci! waves driven un-
stable by the presence of a density or temperature grad
The Hasegawa–Mima equation thus provides a nonlin
model for drift turbulence in real space, whose output is
time dependent electrostatic potential. This potential th
acts as an input for the equations of motion of ensemble
charged test particles, whose orbits we follow and wh
statistical transport properties we then infer.

We have previously investigated radial particle transp
in this way,12,13 and found that nonlinear coupling signifi
cantly reduces the level of transport compared to the lin
regime: this reduction was mainly ascribed to the format
of radial gradients in the velocity field. Now we turn to th
7911070-664X/2002/9(3)/791/9/$19.00
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poloidal component, and show that the HM model, desp
its simplicity, yields evidence for transitions between qua
tatively different types of transport when its parameters
varied. Poloidal plasma flow and poloidally extended turb
lent structures are central to tokamak confinement, and in
est has naturally focused on their implications for rad
transport and confinement. Outward transport is the resu
convolving poloidal and radial steps, and it is only safe
implicitly ‘‘average over’’ poloidal motion if one is con-
vinced that:~a! the statistics of poloidal stepping are ‘‘stan
dard,’’ so that one knows how to perform the poloid
averaging—this is not necessarily the case for non-Gaus
distributions; ~b! poloidal and radial stepping are uncorr
lated. Given the nature of turbulent transport~for example,
the roles of trapping and jumps! and the ~sometimes ex-
treme! inhomogeneity of plasma turbulence in tokamaks
appears worthwhile to explore the nature of poloidal tra
port in greater depth, so as to achieve progress on th
questions. Further, as points~a! and~b! may depend on par
ticle energy, we shall also investigate the impact of fin
Larmor radius~FLR! effects on poloidal transport. We re
ported some preliminary results in a previous letter,14 and in
this paper we expand and explain them. We show how
vorticity and Weiss fields, derived from the electrostatic p
tential and described below, can be used to account for
ticle trapping and flights.

The HM equation11 is a relatively simple two-
dimensional model for the turbulent electrostatic field in t
~x, y! plane perpendicular to the magnetic field (B[Bẑ), and
has many wider physical applications.15 The model assume
cold ions,Ti!Te ~Ti (e) being the ion~electron! temperature!,
with negligible inertia parallel toB. The quasineutrality con-
© 2002 American Institute of Physics
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dition ni.ne is satisfied, whereni (e) is the ion ~electron!
density; the electrons are assumed to have an immed
adiabatic response, with Boltzmann distribution; and th
background density depends only ony, equivalent to the ra-
dial direction in a tokamak,n0[n0(y). The HM equation is
then written11–13

]

]t
~f2¹2f!2$f,¹2f%2b

]f

]x
50. ~1!

Herex andy are normalized to the thermal ion Larmor radi
rs5cs /vci , wherecs5ATe /mi is the sound speed andmi

the ion mass; the timet is normalized toL/cs , whereL is a
characteristic length of the system;f is the electrostatic po
tential normalized to (Te /e)(rs /L); $A,B%5]xA ]yB
2]yA ]xB is the Poisson bracket and

b5U d

dy
ln@n0~y!#U ~2!

is a parameter measuring the anisotropy of the backgro
density ~this should not be confused with the standa
plasmab, the ratio of thermal to magnetic pressure!. The
linear limit of Eq. ~1! is equivalent to the evolution of a
collection of independent drift waves, each obeying the
mensionless dispersion relation

vk52
bkx

11k2 , ~3!

where kx(y) is the wave number in thex(y) direction and
k25kx

21ky
2.

We have implemented12,13 Eq. ~1! in a computational
box of areaL3L ~L is expressed in units ofrs!, which is
finite in they direction and periodic in the direction of propa
gation of drift waves,x, which is equivalent to the poloida
direction in a tokamak. As explained previously,12–14for rea-
sons of numerical stability a dissipation termD is added to
the right hand side of Eq.~1! for high wave numbers, to
gether with a forcing termS, in order to reach a quasi
stationary state. These terms have the following form in F
rier space:

Dk52~nk4!~11k2!fk , Sk5Ad~k2k f !, ~4!

wheren is the dissipation coefficient, whileA andk f are the
amplitude and wave number of the forcing, which is loc
ized at high wave numbers in both thex andy directions. The
initial condition is taken to be a random distribution for th
fluid part of the potential vorticity:

~f2¹2f!~x,y,t50!

5(
n

(
m

A0

An21m2
sinFpL mS y2

L

2D G
3cosS 2p

L
nx1hmnD , ~5!

wherehmn are random phases andA0 is a constant. Equation
~1! is solved numerically by means of a hybrid splin
spectral method coupled to a leapfrog integrator in tim
Typically a mesh 5123513 is used.
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The coefficientL represents the dimensions of the com
putational box, i.e., the number of thermal ion Larmor ra
encompassed by it. The larger the box, the greater the n
ber of vortices that it can support. This can qualitative
change the dynamics, as we shall see in Sec. III B. Furt
more, by varying the magnitude of the coefficientb in Eq.
~1!, one can control the importance of the linear terms, wh
arise from density anisotropy. The model is thus well sui
to studying the linear dispersive effects of anisotropy on
poloidal transport of test particles~Sec. III C!. Even for mod-
erate values ofb, the electrostatic potential develops an a
isotropic spectrum, shallower inky and steeper inkx .16 This
is a signature of the presence of zonal flows, i.e., poten
structures elongated in the direction of propagation of d
waves (x), which are well known to have an impact o
particle transport in the direction of the density gradient (y);
see, for example, Refs. 12, 13.

The zonal flows considered in this paper are genera
via the presence of linear dispersive waves~the so-called
‘‘ b-effect’’!,16 and are completely analogous to the zon
flows appearing in the context of geophysical flu
dynamics.17 In tokamak physics, zonal flows can also be c
ated by a different mechanism, which involves a nonad
batic electron response for purely radial, zero-frequen
modes. This requires a small~but significant! modification to
the standard HM equation, as proposed by Smolyakov
co-workers.18–22 In the present paper, we shall not consid
this alternative route to zonal flow generation, but sh
rather concentrate on the standard HM model. Zonal fl
generation in the HM equation was also studied in a rec
paper,23 which includes the effect of magnetic shear.

The HM equation can also support drifting nonline
vortex structures, which can trap particles for relatively lo
times, and therefore affect their diffusion rate. This effect h
recently been studied by Naulinet al.,24 who use a model
similar to ours~the Hasegawa–Wakatani equations25!, but
with different boundary conditions, periodic in both dire
tions. It appears that with such boundary conditions the
fect of zonal flows is reduced. Particles are trapped wit
the vortices for some time, but ultimately they become u
trapped, so that the computed diffusion24 is approximately
normal for both the radial and the poloidal directions. F
nally, if a particle has finite Larmor radius, this can avera
out the smaller wavelengths that it experiences, thus aff
ing the transport; in Sec. IV we consider simulations th
take this effect into account.

II. TEST PARTICLES

In order to analyze the transport of test particles mov
in the HM field, we create an ensemble of 104 particles,
seeded at rest once the turbulence has settled to a q
stationary state, and randomly distributed over the whole
the computational box except for a small border. Their s
sequent motion is given by theEÃB drift

dr

dt
5B3

¹f

B2 . ~6!
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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793Phys. Plasmas, Vol. 9, No. 3, March 2002 Non-Gaussian transport in strong plasma turbulence
Here f is the electrostatic potential resulting from the n
merical solution of the HM equation and we neglect the p
larization drift. The equations of motion are Hamiltonian
form, with the real space~x, y! coinciding with the phase
space andH(x,y,t)5f(x,y,t)/B as Hamiltonian. The tes
particles are noninteracting and without inertia, so that
consider only their guiding center motion; finite Larmor r
dius effects will be introduced later. Recall that for norm
diffusion ~a classical random walk!, the mean squared dis
placement

^Dx2&5
( i 51

N ~xi2^x&!2

N
, ~7!

is proportional to time:̂ Dx2&;t. If transport is anomalous
~‘‘strange kinetics’’5–7!, this becomeŝDx2&;tm: for 0,m
,1, we have subdiffusion; for 1,m,2, supradiffusion; and
for m52, ballistic motion–particles move with constant v
locity. The main purpose of the present paper is to evalu
the exponentm for poloidal transport in turbulence governe
by different regimes of the HM equation, and we shall s
that m can be smaller or larger than unity.

The equations of motion, Eq.~6!, are solved numerically
by means of a second order leapfrog scheme, which disp
little numerical diffusion. TheEÃB velocity field at the par-
ticle locations is computed by linear interpolation. This ov
all numerical scheme has been tested by taking a ‘‘froz
velocity field: in this case, the particles should simply rota
inside the vortices on closed orbits, with no diffusion. T
scheme correctly reproduces this behavior, within good
proximation, over a large number of rotations.L ~the com-
putational box dimension measured in units ofrs! andb ~the
anisotropy of the background density! are the two essentia
dimensionless parameters governing the HM equation.
have performed two sets of computer experiments: fi
holdingb50 fixed ~the isotropic and purely nonlinear case!,
we have run three simulations for different values ofL; then,
for L520, we have run another set of simulations increas
the value ofb.

III. TRANSPORT

A. Basic definitions

Let us briefly review some concepts that will assist
explaining some aspects of the transport. A two-dimensio
turbulent field may be decomposed by distinguishing
contributions of rotation and deformation. In our case,
electrostatic potentialf is also acting as the stream functio
of the particles, in the sense thatv[(vx ,vy) is the Eulerian
velocity field

vx52
]f

]y
, vy5

]f

]x
. ~8!

Vortices withf.0 ~,0! are called anticyclones~cyclones!,
and particles trapped in them rotate clockwise~anticlock-
wise!. The vorticityw is

w5
]vy

]x
2

]vx

]y
5¹2f, ~9!
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and the strains is given bys25s1
21s2

2, where

s15
]vx

]x
2

]vy

]y
522

]2f

]x ]y
~10!

and

s25
]vy

]x
1

]vx

]y
5

]2f

]x2 2
]2f

]y2 . ~11!

It is then possible to define the Weiss fieldQ by26

Q5s22w2. ~12!

As has been shown by Weiss,26 if the strain rate along a
particle path is slowly varying with respect to the vortici
gradient, the Lagrangian evolution of¹w is given by a linear
differential equation whose solution is

¹w;exp~6 1
2AQt!. ~13!

ThusQ determines whether, and how fast, two initially clo
fluid elements will~exponentially! separate (Q.0) or not
(Q,0), following the frozen streamlines. The square root
Q is not a Lyapunov exponent in the strict mathemati
sense, but plays an analogous role as an inverse times
that quantifies the stochasticity of particle motion in the t
bulent field.

One can therefore simplify the picture of two
dimensional turbulence by an elementary partitioning of
field into two distinct domains: elliptic domains (Q,0)
where rotation dominates deformation, and hyperbolic
mains (Q.0) where deformation dominates rotation. A
pointed out, for example, by Elhmaı¨di,27 vortex cores with
negativeQ correspond to the center of the vortices inf, and
tend to be surrounded by an annular region of positiveQ,
called the circulation cell; in the following we will refer to
this combination as a core-circulation cell vortex structu
These structures are usually embedded in a background
whereQ is close to zero and essentially random. They
normally more sharply spatially localized than vortices inf,
so that the Weiss field can give a clearer indication of
structures that dominate the field.

B. Uniform background density

To study the influence of the computational box dime
sions on the transport of test particles, we have run the
code for b50 and increasing values ofL, starting fromL
520. Initial wave numbers are chosen with~n, m! in Eq. ~5!
in the ranges 4<n<6 and 8<m<12, andA052. The par-
ticles are seeded once a stationary turbulent state has
reached, so the transport does not depend on the initial
ditions of the HM field. The forcing is at high wave number
with amplitudeA54 in Eq. ~4!, and the dissipation coeffi
cientn is adjusted to the appropriate value for the scale c
sidered. Unlike the Navier–Stokes equation, the HM eq
tion contains a characteristic length scale,rs , so that one can
derive two estimates for the eddy turnover time~i.e., the
typical timescale of the turbulence!, for length scales smalle
or larger thanrs . These are, respectively,
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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tes5S 1

L2 E
L
E

L
u¹2fu2 dr D 21/2

;

tel5S 1

L2 E
L
E

L
u¹4fu2 dr D 21/2

; ~14!

all our simulations are run for severaltes andtel .
For L520, we taken5631027 andk f.(40,40). Both

tel andtes are of order unity, and our run lasts several hu
dreds ofte . The particles are seeded in the rectangle 1<x
<19 and29<y<9. The electrostatic potentialf varies in-
creasingly slowly as time evolves. After long times, fo
well-defined vortices inf survive, and these correspond
four core-circulation cell vortex structures in the Weiss fie
Q, embedded in the background sea~Fig. 1!. The core-
circulation cell structure is extremely coherent, and evol
slowly on the turbulence timescale, while the background
corresponds to very small Eulerian velocities. This is due
the fact that the vortices are too far from each other for th
respective velocities to be additive; the velocities are m
larger within the vortices than outside.

The test particles essentially follow the underlying vo
tex structure of the Weiss fieldQ, which, as we shall see
provides a more useful guide to their ensemble dynam
than doesf. Particles that start within a vortex core tend n
to escape, even when two vortices merge, while particles
start outside a vortex core tend not to penetrate it. The vo
cores thus act as if surrounded by a nearly impermeable
rier.

From previous hydrodynamical simulation
Provenzale28 points out that particles are ejected only duri
strong vortex–vortex interactions. In our case, even w
two vortices merge into one, only a few particles are ejec
all the rest ending up in the resulting single vortex co

FIG. 1. Weiss fieldQ for b50 andL520, showing clear core-circulation
cell vortex structures.
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Provenzale also remarks that in forced turbulence, vorti
are continuously generated~albeit slowly!, and the only pos-
sibility for a particle to enter a vortex core is to be captur
by a newly forming vortex during the generation proce
Thus, in forced turbulence, the particle distribution becom
homogeneous on a very long timescale, which is determi
by the typical lifetime of the vortices rather than by the ed
turnover time. In our particular case, the fields evolve ve
slowly, so the four vortices have a practically infinite life
time. The resulting transport is clearly subdiffusive,
shown in Fig. 2, and the exponentm tends slightly to de-
crease over time. This is due to the fact that the backgro
velocity is very small and the vortices move increasing
slowly, partly because it is difficult to reach a perfectly st
tionary state in the simulation, so that the turbulence
slightly damped at long times.

For L5120 we taken5331023 andk f.(6.5,6.5). The
difference betweentes;10 andtel;300 is now evident. We
run the simulation for several tens oftel with the particles
starting in the rectangle 10<x<110 and250<y<50. The
Weiss field is shown in Fig. 3: in contrast to the previo
case, no vortex structures are observed, and peaks and
of Q have similar amplitudes, both several orders of mag
tude smaller than in theL520 case. This corresponds to
situation where only the randomly fluctuating backgrou

FIG. 2. Mean squared displacement^Dx2& divided by t0.5, for b50 and
L520, showing quasisteady subdiffusion.

FIG. 3. Weiss fieldQ for b50 andL5120: no vortex structures.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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sea is present. The Eulerian velocity displays some vorti
but is predominantly random. The particles still avoid so
forbidden areas, but as a whole they are much more
formly spread than forL520. Their mean squared displac
ment ~divided by time! is shown in Fig. 4, and is approxi
mately constant, so that the resulting diffusion is normal.

For values ofL betweenL520 andL5120, the trans-
port is subdiffusive, but with an exponent increasing withL,
and the vortex structures are increasingly destroyed. Ab
L5120 the transport is normal and only the coefficient v
ies. We can make two deductions from those studies. F
the Weiss field plays the central role in determining parti
trapping. Only if it corresponds to a core-circulation cell
the Q field does a vortex that is visible in the electrosta
field significantly trap particles and reduce the exponen
diffusion. Second, there is a well established transport
gime ~normal diffusion! once a threshold inL is crossed.

We also note that the vortices observed in Fig. 2
reminiscent of the so-called Larichev–Reznik modon~see,
for instance, Ref. 29 and references therein!, which is an
exact vortex solution to the HM equation propagating alo
the x direction. The modon is formed by a localized dipol
structure, with both potential and vorticity taking differe
signs on either sides of an axis of symmetry. This is, ho
ever, rather different from the vortices observed in our sim
lations, which display the core-circulation cell structure d
scribed above. Our vortices are spontaneously generate
the turbulence under the action of the forcing—they are
exact solutions of the HM equations, although they appea
survive over long times. Further, these vortex structures
no longer observed for larger values ofL ~Fig. 4!.

In summary, we find that the particle transport chang
nature with~restoring dimensional units! L/rs[r!

21, where
r! is the normalized ion ‘‘thermal’’ Larmor radius. Transpo
scaling laws are sometimes expressed asD}r!

a , whereD is
the transport coefficient anda an exponent defining the typ
of scaling~Bohm, gyro-Bohm, ...!. Therefore, in our simula-
tions, varying the dimensions of the computational box
equivalent to varying the value ofr! . Our study shows tha
not only the scaling of the transport coefficient, but also
nature of the transport~normal versus ‘‘strange’’!, can
depend on the magnitude ofr! . For moderate values o
r! ~5 1/20!, the observed transport is clearly subdiffusiv
For smaller values~r!<1/120, a regime more relevant t
tokamak physics!, the transport is normal, suggesting that t
standard diffusion approximation can be justified in this co
text. This may not be the case, however, for small-size,

FIG. 4. Mean squared displacement^Dx2& divided by t, for b50 andL
5120, showing quasisteady normal diffusion.
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magnetic field laboratory devices operating at largerr! , for
which the standard diffusion picture should be used w
more caution.

C. Increasing anisotropy

We turn now to the influence of density anisotropy~or,
equivalently, of the linear term! in the HM equation. Whenb
is increased, drift waves propagating toward the negativx
direction appear. We therefore holdL520 and run simula-
tions with b50.05 andb50.25. The reference case is no
theb50 andL520 simulation reported in Sec. III B; we us
the same dissipation and forcing, obtaining approximat
the same eddy turnover time. The initial position of the p
ticles is the same as in the purely nonlinear case.

Whenb50.05, the electrostatic potentialf displays two
major vortices, but they are not as well defined and w
separated as forb50, and they move and merge much fast
Two vortex structures survive for long times and they drift
the 2x direction with a speed of the order of 1022 in our
units. Also, the Weiss field has elongated horizontal featu
to which we will return later in this section. The Euleria
velocity field is displayed in Fig. 5, showing open paths fro
left to right, with rather high velocity.

The final positions of the test particles~Fig. 6! reveal
ordered structures and display qualitatively different featu
on the left and on the right. At far left the particles are clu
tered in disks or circles, everywhere else being empty. T
two disks are the vortices that were in the computational b
at the time when the particles were injected. They ha
trapped the particles initially seeded in the cores and
vected them. Analogously, the circulation cells have trapp
some particles and are advecting them, explaining the cir
of particles present. Figure 6~b! shows the portion2150
<x<290 of the domain, with the particles superimposed
the Weiss field, and illustrates this phenomenon. The tra
tory x(t) of a trapped particle and the potential seen by it
displayed in Figs. 7~a!, 7~b!. It appears that the particle
moves with constant velocity and stays on an isopoten
curve within the vortex, so that the potential seen by

FIG. 5. Eulerian velocity fieldv for b50.05 andL520. Open paths from
left to right are visible.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 6. Positions of the diffused tes
particles for b50.05 andL520. ~a!
Position of all the particles.~b! Par-
ticles at far left superimposed on theQ
field. ~c! Particles at far right superim-
posed on thef field.
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particle is approximately constant; the particle thus has
listic motion at the speed of propagation of drift waves. T
situation is different at far right, where we observe filame
of particles. These are located in the areas between neigh
ing vortices of opposite sign inf, as is clear from Fig. 6~c!,
where the velocity of the two surrounding structures is ad
tive, and there are open paths of Eulerian velocity. Th
particles have ballistic motion too, as can be deduced fr
the trajectory displayed in Fig. 7~c!. However, the potentia
seen by these particles is not constant~as was the case fo
particles at far left!, but rather oscillates around zero,
shown in Fig. 7~d!. These oscillations are probably due to t
random nature of the potential in the background sea
tween vortices. The remaining particles have less well
fined types of motion: some perform random walks, wh
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others are trapped in circulation cells and then advecte
the left for a certain time. The coexistence of those differ
types of transport yields supradiffusion with exponentm
;1.7, as shown in Fig. 8.

For b50.25, the vortices in the electrostatic potentialf
propagate toward the left with a velocity of approximate
1021, which is an order of magnitude larger than for the ca
b50.05. The field lines move and mix quickly, and no vo
tex survives for long times. The Weiss field displays no v
tex structure, and only the background sea is left. The E
rian velocity is much higher in the regions between elect
static vortices than inside them, and there are open p
from left to right. Despite the apparent disorder of thef
andQ fields, the particles have closely correlated positio
as shown in Fig. 9. The fact that there are no long
FIG. 7. ~a! Trajectoryx(t) of a particle
trapped by a vortex and~b! local po-
tential at x(t): the particle being
trapped,f is approximately constant
and nonzero.~c! Trajectory x(t) of a
particle that travels to the far right and
~d! local potential atx(t): the particle
oscillates across the region wheref
changes sign. Parameters areb50.05
andL520.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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any well defined structures in the Weiss field reduces
amount of trapping, and the best way of accounting for
position of the particles is now through the vorticityw, Eq.
~9!. Figure 10 shows a snapshot ofw, displaying zonal flows
~elongated structures! in the vorticity approximately paralle
to thex axis. This is also reflected in the averaged correlat
lengths ofw, that inx being approximately double that iny.
On the other hand, there is a tendency for the particles to
in areas wherew.0 ~see also Ref. 27!, so that the filaments
of particles correspond to the isolinesw.0 of the zonal
flow. For example, the group of particles that travel to the
right follow the lower isolinew50 of the well defined pat-
tern aty.25. There, the signs of the local vortices are su
that the particles are pushed toward the right. Considera
of the vorticity fieldw is thus helpful in identifying dynami-
cally significant zonal flows. These zonal flows are pres
throughout the duration of the run, and are responsible
the coherent particle positions displayed in Fig. 9. They a
give rise to the layered pattern in Fig. 11, which shows h
strongly the transport can depend on the initial position
the particles. This explanation also applies to the group
particles that travel to the far right in the caseb50.05; see
Fig. 6. The resultant transport is ballistic@Fig. 12~a!# and the
mean displacement inx has increasing velocity toward pos
tive x @see Fig. 12~b!#, a feature known as ‘‘anomalou
advection.’’30 The influence of zonal flows and cohere
structures, in a simple deterministic Hamiltonian model d
rived from the HM equation and incorporating asymmet
turbulence, has been studied by del Castillo–Negrete.30,31

The author found that the trapping effect of the vortices co

FIG. 8. Mean squared displacement^Dx2& divided byt1.7, for b50.05 and
L520, showing quasisteady supradiffusion.

FIG. 9. Positions of the test particles forb50.25 andL520 at t55482,
showing a high degree of spatial correlation.
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bined with the zonal flows gives rise to anomalous diffusio
anomalous advection and Le´vy statistics.

Other runs withb.0.25 have been performed, all o
which give ballistic motion with a coefficient increasing wit
b. As in the preceding subsection~Sec. III B!, a well-
established transport regime appears once a threshold
specific parameter is crossed: in the present case the rele
parameter isb, and the threshold separates a region wh
the transport is supradiffusive from a region where it is b
listic. This threshold value ofb decreases with increasingL
because, in the HM equation, the relative importance of
nonlinear terms decreases for smaller wave numbers~and
thus largerL!. A schematic diagram of the types of poloid
transport resulting from the HM model whenb and L are
varied is displayed in Fig. 13.

IV. FINITE LARMOR RADIUS „FLR… EFFECTS

Fusion reactions in a deuterium-tritium tokamak pals
produce 3.5 MeV alpha particles whose Larmor radii grea
exceed those of the thermal ions, so that their respons

FIG. 10. Contour plot of the vorticityw for b50.25 andL520, showing
zonal flows. Dotted lines:w<0; unbroken lines:w.0.

FIG. 11. Initial positions of the particles for which the total displacement
x is positive. Particles whose total displacement inx is negative have been
removed. Case withb50.25 andL520.
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turbulence in the plasma can be significantly different. F
example, the larger scale of gyromotion and drift motion w
smooth out the effects of short wavelength turbulence, cr
ing a differential response for particles of different energi
Given a theoretical understanding of this differential effe
observations of alpha particle transport may yield inform
tion on the characteristics of the turbulence. Studies of
influence of the finite Larmor radius~FLR! on the transport
resulting from the linearized HM equation were performed
Refs. 12, 13, showing the reduction of the diffusion coe
cient for increasing Larmor radii. Here we extend the sim
lations to the full equation.

The simplest model for FLR is obtained by ‘spreadin
the particle over a ring centered at the position of its guid
center, and this is accurate as long as the gyration freque
vci is much larger than the drift frequencyv* .vcirs /Ln ,
whereLn is the typical density scale length. This model c
be implemented numerically using linear interpolation to c
culate the electric field atNgyro ~58 in our case! points dis-
tributed over a ring whose radius is equal to the Larm
radius, and then averaging the electric field over th
points.32 The averaging operation tends to suppress
smaller scale components of the electric field.

FIG. 12. Transport forb50.25 andL520. ~a! Mean squared displacemen
^Dx2& divided byt2, ballistic transport.~b! Mean displacement^x& increases
with x, anomalous advection.

FIG. 13. Schematic of transport regimes in the parameter space (L,b). The
squares and circles represent some of the runs; the lines separatin
various regimes indicate approximately where the transitions occur.
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Let us first consider runs with only nonlinear effec
present, so that the fluctuations are isotropic. We takeL
5120, which gives normal diffusion. The fields are the sa
as in the analogous case of the preceding section, howe
the 104 particles now have normalized Larmor radiusr
5rL /rs ~whererL5v' /vci! and start in a rectangle define
by 10<x<110 and250<y<50. Whenr51 the transport is
essentially identical to that obtained forr50. Some small
differences are visible whenr55, but forr510 the diffusion
coefficient is substantially reduced while the transport st
normal, as shown in Fig. 14. The correlation lengths for
electrostatic potential,lf , the vorticity field, lw , and the
Weiss field,lQ , have approximate values between 3 and
both in x and iny, with lf>lw>lQ becausew;k2f and
Q;k4f. Thus as long asr is smaller than or similar to the
typical size of the structures, FLR effects are irreleva
When r becomes larger, the averaging introduced by
FLR affects the particle response to the vortices, and
magnitude of the transport is greatly reduced, even thoug
qualitative character~normal! is unaltered.

For anisotropic fluctuations, we performed a run w
b50.2 andL560, parameters which give ballistic motio
when there are no FLR effects. We enlarged the comp
tional box dimensions, because we requirer!L, and for
r50, 1 and 5 we put 5000 particles in a rectangle defined
10<x<50 and220<y<20. Figure 15 shows the resultin
transport, which is evidently ballistic and again very simil
for r50 andr51, whereas forr55 it is strongly inhibited,
although still ballistic. The reason for this threshold effect
the Larmor radius is to be found in the zonal flows, for whi

the

FIG. 14. Dependence of transport on Larmor radius forb50 andL5120,
for r50, 5, and 10. Mean squared displacement^Dx2& divided by time
reveals normal transport with diffusion coefficient decreasing withr.

FIG. 15. Dependence of transport on Larmor radius forb50.2 and L
560, for r50, 1, and 5. Mean squared displacement^Dx2& divided by t2

reveals ballistic transport with coefficient decreasing withr.
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the vorticity correlation lengthlw is ;5 in x and;2.2 in y.
Whenr is comparable to or larger than their width, the p
ticle sees a field averaged over different uncorrelated vo
ces, so that the resultant velocity is strongly reduced.

We infer that the effect of FLR is negligible below
certain threshold, but whenr becomes comparable to o
larger than the turbulent structures that determine the tr
port, this strongly inhibits the diffusion. The value of th
diffusion coefficient is then drastically reduced, while t
exponent is relatively unaffected. FLR effects can thus cre
large quantitative changes in the transport, without chang
its qualitative character.

V. CONCLUSIONS

We have performed numerical simulations of partic
transport using the simplest model of strong two-dimensio
electrostatic turbulence, the HM equation. When we fu
take into account the nonlinear term in the equation, t
parameters determine the character of the transport: the
of the computational box, and the anisotropy of the ba
ground density.

When the turbulence is isotropic or, equivalently, t
HM equation is purely nonlinear, the transport in the~poloi-
dal! x direction increases from subdiffusive, when the b
dimensions are of the order of some tens ofrs , to normal,
when the box dimensions are 120rs or more. When the box
dimensions are fixed to 20rs and the anisotropy parameterb
is increased, the transport rapidly becomes supradiffu
and, beyond a threshold atb'0.2, ballistic. Particles follow
qualitatively different trajectories~traps, jumps, etc.! depend-
ing on the control parameters of the turbulence and also
their different initial positions within a given simulation.

An important aspect that emerges from those result
the role of the Weiss fieldQ defined by Eq.~12! in determin-
ing particle trapping. WhenQ displays clear vortex struc
tures, there is trapping and the transport depends on the
tion of the structures. When there are no vortex structure
the Q field, there is no significant trapping, but even in th
case the transport can be anomalous. In fact, the cohe
patterns that can be observed in some cases~e.g., with non-
zerob! can be due to zonal flows that are particularly visib
in the vorticity fieldw, and are horizontally localized to re
gions wheref changes sign.

When the particles have a finite Larmor radius com
rable to or bigger than the typical size of the structures do
nating the transport in the flow, the diffusion is genera
inhibited, in the sense that while the exponent does
greatly change, the coefficient is drastically reduced.

The results reported here, although derived from perh
the simplest model that can be considered relevant to tu
lent transport in tokamak plasmas, indicate the depth of c
plexity of the physical processes at work. They also confi
how strongly the transport depends on the control par
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eters. Nevertheless, there seems to be a general tenden
establish stable regimes once certain critical values of
dimensionless parametersb andL/rs have been crossed. Ou
results also show how use of derived quantities, notably
vorticity and the Weiss potential, can assist in understand
some of the complexities of the underlying particle dyna
ics.
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