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ABSTRACT: We examine the magnetic properties of two-dimensional monolayers of iron-
oxide magnetic nanoparticles arranged on a hexagonal lattice and interacting through magnetic
dipole forces. Monte Carlo simulations are used to reconstruct the zero-field cooled
magnetization curve, as well as other relevant quantities (Zeeman and dipolar energies). The
blocking temperature is found to increase with shorter interparticle distance. The effect of
structural disorder is studied by randomly removing some nanoparticles from their lattice sites.
Surprisingly, it is found that disorder has little impact on the global magnetic structure of the
sample. The numerical results are compared to existing experimental measurements.

1. INTRODUCTION

Nanoparticle (NP) assemblies have attracted much interest for
their potential applications in various fields, such as magnetic
and magneto-resistive sensors.”” In this context, the spatial
arrangement of the NPs is a key element to control their
collective properties through the fine-tuning of the dipolar
interactions. However, assemblies of NPs usually form complex
magnetic structures that are difficult to understand and to tailor
at will. Significant progress has been made on the preparation
of well-structured assemblies in recent years,” but their
experimental preparation still faces several technical limitations
which impede the high structuration of the assemblies.
Although the influence of the structuring of NP assemblies
on their collective magnetic properties has been widely
reported,” the role of the interparticle distance on the dipolar
interactions cannot be precisely assessed because it is directly
related to the organization of the assembly.

On the other hand, the preparation of two-dimensional (2D)
assemblies, such as monolayers with high topographical control,
is well established.”” In contrast to random assemblies such as
powder, collective properties have been reported to be
markedly enhanced by the shape anisotropy, which favors in-
plane dipolar interactions.*”'? The preparation of NP
monolayers by the Langmuir—Blodgett technique with tunable
interparticle distance (1—10 nm) confirmed that the blocking
temperature behaves as a~>, where a is the interparticle
distance.'* This scaling of the blocking temperature was also
observed in solvents."” Although such NP assemblies display
some local order,'® the increase of the interparticle distance is
generally accompanied by increasing disorder.'* While disorder
is acknowledged to be a critical parameter for the control of the
collective properties of the NPs, it is difficult to study from a
purely experimental point of view. Theoretical studies offer an
interesting and complementary alternative to circumventing
these limitations.'”~*' Monte Carlo simulations have confirmed
that the blocking temperature is modified by the dipolar
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coupling strength®>™>* and scales as a=3.>>*° This effect was
pling g

interpreted as an increase in the single-particle anisotropy
barrier by the magnetic dipole—dipole interaction.

A computational approach also allows us to easily and
accurately induce different kinds of disorder in the lattice. One
can vary, for instance, the coverage of the nanoparticles over
the monolayer:*® while the total magnetization of the assembly
strongly depends on this quantity, no significant difference was
observed for the blocking temperature between 100% and 80%
coverage. Alternatively, one can assign random positions to the
NPs.””*® Brinis et al.”’ used a Monte Carlo technique to
compute the magnetic susceptibility of a monolayer with a
square unit cell but surprisingly noticed no significant difference
between self-organized (ordered) and random assemblies when
the anisotropy axes were in the plane of the monolayer. Using a
dynamical approach based on the Landau—Lifshitz—Gilbert
equation, Varon et al.”® observed that the magnetic structure
induced by the dipolar interactions in a 2D lattice was roughly
preserved under significant randomization of the NP positions
and sizes. The only noticeable effect was a small reduction of
the average magnetization. These numerical results were
corroborated by experimental measurements.

Few studies have investigated the effect of disorder on the so-
called zero-field cooled (ZFC) curve by means of both
theoretical and experimental approaches.”® ZFC is an
experimental technique that allows one to determine the
blocking temperature of an assembly of magnetic NPs. The
sample is first cooled to a temperature of a few degrees Kelvin
in the absence of any external magnetic field. If the anisotropy
axes of the NPs are randomly oriented, then the total
magnetization is roughly zero. Subsequently, a small magnetic
field is applied and the temperature is gradually raised, allowing
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the magnetic moments of the NPs to escape from the
anisotropy energy barrier and to align with the magnetic
field. Thus, the total magnetization increases and reaches a
maximum at the blocking temperature T,,,.. For T > T, the
magnetic moments fluctuate randomly (superparamagnetic
regime) and the magnetization drops slowly to zero.

In ref 26, the authors induced the disorder by varying the
coverage of a monolayer assembly. However, disorder can have
different meanings for different investigators and can be set up
in many ways. The most usual way consists in randomly shifting
the positions of the NPs or inducing a distribution of sizes.
However, to our knowledge, there exist no studies where the
disorder is induced by removing some NPs while preserving the
structure of the remaining ones. We believe this kind of
disorder describes well our experimental samples where locally
ordered domains exist on the scale of 20 nm.' Perturblng the
positions of all nanoparticles would not be representative of
such samples.

Herein, we report on the theoretical study of the collective
properties of 2D assemblies of magnetic NPs, using a Monte
Carlo technique where the random step is a rotation of the
magnetic moment. To compare with the experimental results
obtained earlier on Langmuir—Blodgett assemblies,'**"* we
consider iron-oxide NPs with a diameter of 10 nm distributed
on a 2D hexagonal lattice. The dipolar interaction is computed
exactly and thus depends critically on the spatial arrangement of
the NPs in the monolayer. We will investigate the effect of
disorder as a function of the interparticle distance and of the
number of random vacancies in the lattice. The collective
properties will be determined primarily from the temperature-
dependent magnetization curves (ZFC curves) but also from
the evolution of the various energy terms (dipolar and Zeeman
energies) and the angular distribution of the magnetic moments
of the NPs.

2. MODEL

We consider a monodisperse assembly of 49 iron-oxide
magnetic NPs with diameter d = 10 nm, uniaxial anisotropy
with constant K = 2.82 X 10* J/m? and saturation
magnetization y, = 2.5 X 10* pg = 2.32 x 107" J/T. This
kind of NP does not exhibit more than one magnetic domain
below a diameter of ~30 nm,””*° and so we can work within
the macrospin approximation. The NPs are spread over a
hexagonal 2D lattice with lattice constant a > d + 2.5 nm. The
anisotropy axes are initially oriented randomly in the (%, oy € )
plane defined by the layer. This configuration represents the
state of the NP assembly after the ZFC phase.

A small external magnetic field B .« of magnitude 7.5 mT is
applied in the plane of the film. Then, the total energy of the ith
NP is

E,=E, + E; + Eg, (1)
where E., is the anisotropy energy, Ej is the Zeeman energy,
and Ey, is the dipolar energy. Let us call ¢; the angle between

[
the magnetic moment 1, = M,/ u and the anisotropy axis, and

7. the position of the ith nanoparticle. The different energy
terms can be written as follows

E., = KV sin’ ¢ @)
—_ —
E, = -M, B, 3)

2
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By = X S (e, = 3 5) (7))
jri TG (4)
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where 7, f; = 7. —f; denotes the center-to-center interparticle
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distance vector, and 7; = 7,/ |7;-| is the unit distance vector. The

total energy is therefore determined by the relative orientation
between the magnetic moments, as well as their own
orientation with respect to the external magnetic field and
their anisotropy axes. Because the distance between the NP
surfaces is much larger than the range of the exchange
interaction, we neglect the interaction between surface spins of
neighboring NPs. The dipolar energy is computed exactly by
evaluating the dipole—dipole interactions between all pairs of
NPs. No periodic boundary conditions are assumed in our
study.

We search for an equilibrium magnetic configuration at a
given temperature; therefore, a Monte Carlo approach is the
method of choice.”*”**** We used the Metropolis algorithm™”
to approach the Boltzmann distribution by seeking the most
energetically favorable configuration under the effect of thermal
agitation. A Monte Carlo step consists in randomly picking a
NP, randomly modifying its magnetic moment, and then
deciding whether to accept or reject this trial move on the basis
of the energy difference AE = E;, — E,, where E, is the energy
of the NP at the current time ¢. The trial state is accepted with a
probability equal to unity if AE is negative, and it is picked in
the distribution exp(AE/ksT) otherwise. At low temperatures,
this algorithm tends to mostly accept lower free energy states,
but the higher the temperature the higher the probability to
make positive jumps in energy.

The random modification is in fact a rotation of the magnetic
moment within a cone whose half-opening angle is temper-
ature-dependent in order to maintain the Metropolis accept-
ance ratio at around S50%. The angle was determined
empirically to fulfill this condition and reads as

T

d] = 0.031T[K]**® +
alrad] [ 800 (%)

To reproduce a ZFC curve, we perform a Monte Carlo run
for different temperatures starting from T, = 0 K, where each
magnetic moment is initialized along its anisotropy axis. Then,
the temperature is increased by steps of 5 K, that is, Tj,; = T; +
S K, until Tg,, = 300 K. The magnetic configuration at T; is
taken as the starting point for the Monte Carlo algorithm at
T;,,. For each temperature, the code performs 10* Monte Carlo
steps per NP to reach equilibrium, and only then it starts to
compute the thermal averages of relevant variables, such as the
in-plane magnetization of the sample, for another 5 X 10°
Monte Carlo steps.

Each ZFC curve is obtained by averaging over 40 statistically
independent realizations with different initial random orienta-
tions of the anisotropy axes. As the anisotropy axes are
randomly oriented, the ensemble average of the magnetization
at T = 0 K is approximately zero. At higher temperature, the
thermal agitation becomes sufficient to unpin the magnetic
moments from their anisotropy axes, and collective magnetic
order is created by the combined action of the dipolar
interaction and the external field. At even higher temperatures,
the thermal energy becomes larger than any other magnetic
energy, the NPs enter the superparamagnetic regime, and thus,
the total magnetization tends to zero.
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Figure 1. (a) ZFC curves of a hexagonal-ordered monolayer composed of 49 nanoparticles for different lattice parameters. We show the in-plane
component of the total magnetization normalized to its maximum value. (b) Temperature values corresponding to the maximum of the ZFC curves
as a function of the cube of the inverse interparticle distance for three sets of numerical simulations (red, green, and black) and one set of
experimental data (blue).The straight lines are linear fits. (c) Dipolar energy as a function of the temperature for different lattice parameters. (d)
Zeeman energy as a function of the temperature for different lattice parameters.

3. ORDERED HEXAGONAL PACKING

We first study a perfectly organized assembly of NPs. To
reduce the density and thus decrease the strength of the dipolar
interaction, one can increase the lattice parameter a to position
the NPs farther away from each other. We will specifically study
the cases where the center-to-center distance between nearest
neighbors is 12.5, 15, 20, and 25 nm.

When varying the distance between lattice sites, we observe
three effects on the ZFC curves (see Figure la):

o Increasing the interparticle distance leads to a smaller
blocking temperature, which is expected’***>*>>%**
and has been observed experimentally,'*%*71%19938
The maximum of the magnetization curves ranges from
117 K for 25 nm to 142 K for 12.5 nm. Notice that there
is not much difference above 20 nm, meaning that the
dipolar interactions are very weak, and we recover the
case of isolated NPs.

e The stronger the dipolar interaction the broader the
maximum. This result can be explained as follows. For
large interparticle distance, the NPs behave as if they
were isolated, and because they are all identical, they
respond in the same way to the temperature increase. In
contrast, for closely packed assemblies, each NP
experiences a slightly different environment, because it
feels both the external magnetic field and the field
generated by the other neighboring particles. This
induces some dispersion in the effective blocking
temperature of each individual NP, resulting in a
broadening of the global curve.

e In the low-temperature range, the magnetization
increases earlier and more slowly in the case of strong
dipolar interactions. This means that the dipolar
interactions facilitate the unpinning of the magnetic

moment from its anisotropy axis and induce an in-plane
magnetization more easily, as was already noticed.”” In
contrast, when the interactions are weaker and the NPs
almost independent, the magnetic moments react as a
whole in a more simultaneous way to the external field.
This behavior is similar to what was observed
experimentally in a study comparing 5 and 16 nm iron-
oxide NPs.® The smaller (and thus weakly interacting)
NPs displayed a narrower ZFC curve compared to the
larger (and thus more strongly interacting) NPs. A steep
increase has also been observed in field-dependent
magnetization curves measured for iron-oxide NPs with
similar sizes.”

Extracting the blocking temperature T, from the data of
Figure 1a, one can see that T, scales as 1/a’ as expected from
earlier results,’* both experimental and theoretical. The
corresponding standard deviation yields the error bars
represented in the figure. When a — oo, one obtains the
blocking temperature of an isolated NP, which is around 110 K
according to the linear fit. The discrepancy with the
experimental data of Fleutot et al,'* obtained for 10 nm
sized iron-oxide NPs, is significant, especially in the weak-
interaction regime. Such discrepancy may arise from a poor
knowledge of the NP intrinsic parameters, for instance, the
anisotropy constant or the magnetic moment. It may also be
due to the magnetic contribution of the spins on the surface of
the NPs, which was not considered in the present work. Indeed,
magnetic NPs have been reported to exhibit surface spin-
canting.** The difference between the theoretical and the
experimental results would suggest that the magnetic
contribution of the surface is influenced by the dipolar
interactions. Indeed, the magnetic surface contribution of the
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NPs is more sensitive to dipolar interactions than the volume
contribution.*"**

The 1/a’ scaling of T,,,, suggests a strong dependence on the
dipolar interaction. However, Figure 1c shows that the minima
of the dipolar energy, while drastically decreasing (in absolute
value) with the interparticle distance, all occur at the same
temperature (around 110 K). In contrast, the minima of the
Zeeman energy perfectly match the maxima of the ZFC curves
(Figure 1d) because, as the external magnetic field is constant, a
minimum in the Zeeman energy can only be due to a maximum

of the magnetization along E;t. Thus, the most favorable
configuration of the magnetic moments with regard to the
dipolar energy, which always happens around 110 K, does not
necessarily correspond to the largest in-plane magnetization,
which is realized at different temperatures between 110 and 150
K.

The behavior of the dipolar energy can be explained
qualitatively as follows. Magnetic configurations that minimize
the dipolar energy should be invariant with respect to distance
scaling and only depend on the geometry of the assembly
(here, a hexagonal lattice). This is because the corresponding
magnetic order is given by particle—particle interactions that
depend only on the distance and the angle between the
magnetic moments. Thus, the temperature corresponding to
these configurations should be independent of the interparticle
distance, in agreement with Figure 1c (see also Figure 2). As a
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Figure 2. Normalized dipolar energy as a function of the temperature
for different lattice parameters.

consequence, the position of the minimum of the dipolar
energy only depends on the blocking temperature of isolated
nanoparticles, which is around 110 K in our case, as can be
extrapolated from Figure 1b in the limit a — oo.

However, the robustness of these Eg,-minimizing config-
urations does depend on the distance. Indeed, for weaker
dipolar interactions (larger distance), the dipolar energy tends
more rapidly to zero when the temperature is raised, as can be
seen from Figure 2. In contrast, for more closely packed
assemblies, higher temperatures are required to counteract the
magnetic order induced by the dipolar interactions. It appears
that this order stems from the formation of local magnetic
domains, such as rings or chains.

In summary, we can draw a global picture of the behavior of
an assembly of magnetic NPs. At zero temperature, the
magnetic moments are aligned with the anisotropy axes, which
are randomly oriented thus yielding a vanishing total
magnetization. Increasing the temperature, the magnetic
moments overcome the anisotropy barrier and are free to
form ordered magnetic domains. This occurs at the blocking
temperature of an isolated NP (around 110 K in our example)
and corresponds to a minimum of the dipolar energy. By

further heating the sample, the domains are broken down and
the magnetic moments can now orient themselves along the
external field. This reorientation reaches a maximum between
110 and 150 K (blocking temperature T,,). For higher
temperatures, thermal fluctuations induce complete disorder
and the magnetization falls back to zero.

We can now understand why the position of T, is shifted to
higher temperatures for larger dipolar interactions. Indeed, for
interacting NPs, one has to overcome two constraints to reach
the maximum magnetization: first the anisotropy barrier, and
then the local magnetic domains induced by the dipolar
interactions. Breaking down these domains requires some
additional energy, hence, a higher blocking temperature T,,,.

4. EFFECT OF RANDOM DISORDER

We now introduce disorder in the sample by randomly
removing some of the NPs from the lattice in order to
reproduce the small defects observed experimentally in
Langmuir—Blodgett monolayers.®'* These films exhibit local
hexagonal arrangement, but the spatial correlation length is
only approximately 20 nm,'® which is about twice the distance
between two NPs. Larger scale order is prevented by holes
(defects), which we model numerically as empty sites on the
lattice. Each of the 40 realizations involves a different random
distribution of defects among the available lattice sites. We
remove 9 (18%) or 16 (33%) NPs among the 49 available sites.
The spatial density is therefore considerably altered.

The effect of adding random empty sites is counterintuitive.
Whatever the lattice parameter, removing even 33% of the NPs
does not seem to significantly alter the blocking temperature in
the magnetization curve (Figure 3a). This is somewhat puzzling
because a reduced density should lower the strength of the
dipolar interactions and therefore lead to a smaller blocking
temperature, as in Figure la. However, our observation is in
line with the findings of Brinis et al,”” who also did not observe
any visible influence of randomness on the peak position. Our
approach is different in three respects: (1) The easy axes have
random directions, whereas for Brinis et al.”” they all have the
same direction in the plane; (2) our random trial move is a
rotation of the magnetic moment within a cone, whereas theirs
is a single spin flip; (3) the randomness is not introduced in the
same way: we take a perfectly organized lattice and remove
some NPs, whereas they assigned random positions to all the
NPs. In doing so, we preserve the local order by keeping small
structurally ordered domains. Despite these differences, we
note the same absence of significant effect of structural disorder
on the blocking temperature, as was also observed in three-
dimensional supracrystals** and monolayers.*®

The dipolar energy (Figure 3c) shows no variation as to the
position of its minimum, but its decreasing tail seems affected
by the addition of defects. This is even more visible when the
lattice parameter a is large, that is, in the weak-interaction
regime. One can also see this effect for a 12.5 nm lattice
parameter but to a lesser extent. The Zeeman energy (not
shown) displays no variation with the number of defects, either
regarding the blocking temperature or the tail of the curve.

The fact that the addition of disorder has little or no
influence on the magnetization curves may be due to a lowering
of magnetic frustration. When removing some nanoparticles,
there are fewer constraints on the remaining magnetic
moments, which can more easily form small local domains
where the magnetic order is determined by the dipolar
interaction. These magnetic structures, which are harder to
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Figure 3. Top: ZFC curves (total magnetization versus temperature) of a monolayer of 49 (blue), 40 (black), and 33 (red) nanoparticles allocated
among 49 lattice sites for lattice parameters (a) a = 12.5 nm and (b) a = 25 nm. Bottom: Dipolar energy as a function of the temperature for the
same systems, with lattice parameters (c) a = 12.5 nm or (d) a = 25 nm.
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Figure 4. Top panels: Map of an ensemble of 40 nanoparticles separated by a distance of 15 nm and presenting 9 defects, taken at T = 0 K (left), T =
125 K (middle), and T = 295 K (right). In the middle plot, an example of magnetic domain is highlighted in yellow. Bottom panels: Corresponding

angular distributions averaged over all realizations. The red line is a Gaussian fit.

demagnetize for the temperature and the external field, may
thus compensate for the lower density.

In Figure 4, we show a map of the sample, picturing the
positions of the NPs and the orientations of their magnetic
moments. Here, the external magnetic field is applied along the
E; direction, and 6; is defined, for each NP, as the angle
between its magnetic moment and the direction of the field.

We also plot in Figure 4 (bottom panels) the distribution of
the angles 60, averaged over all realizations with the same
number of defects. At T = 0 K, the magnetic moments are
randomly oriented, resulting in a uniform angular distribution.

The average magnetization therefore approaches zero (left
panels on Figure 4). Then, at a temperature close to the
maximum of the ZFC curves (T = 125 K, middle plots), the
angular distribution tightens around zero. Most of the moments
align with the field and some even form chainlike structures
covering up to six nanoparticles (highlighted in yellow in the
figure). Finally, at T = 295 K (right plots), most of the dipoles
are still oriented along the external field, but the distribution
flattens and widens.

Using a Gaussian function to fit the angular distributions of
Figure 4, we can retrieve the standard deviation, which is shown
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Table 1. Standard Deviation of the Angular Distribution at T = 125 K, for Different Values of the Lattice Parameter and

Different Numbers of Defects

12.5 nm 1S nm 20 nm 25 nm
no defects 2.37 + 0.0 2.17 £ 0.01 2.09 £+ 0.01 2.17 £ 0.02
9 defects 2.52 + 0.08 2.25 + 0.004 2.11 + 0.1 2.16 + 0.26
16 defects 2.36 + 0.11 229 + 0.01 2.30 £ 0.1 227 +0.12

in Table 1 for different lattice parameters and numbers of
defects. In the case of assemblies with no defects, stronger
dipolar interactions result in a broader angular distribution, that
is, the magnetic moments tend to be less aligned with the
external field at the magnetization peak. Such broadening of the
angular distribution can be correlated with the broadening of
the magnetization curve and the dipolar energy (Figure la and
c) and may be ascribed to the strong magnetic frustration
arising from the 2D character of the assembly. In contrast, the
standard deviation tends to decrease for larger interparticle
distance, which means that the system tends to favor a
unidirectional orientation of magnetic moments. Such behavior
is particularly pronounced in the case of assemblies containing
9 defects. In contrast, samples with 16 defects exhibit rather
similar values of the standard deviation, because of weak dipolar
interactions.

Finally, with the exception of the strong interaction regime, a
broadening of the angular distribution is observed when the
number of defects increases, whatever the original center-to-
center distance. This is similar to what was observed earlier in a
system without defects: the dipolar interactions broaden the
angular distribution (and the ZFC curve, see Figure la)
because they slightly randomize the local environment of each
NP. Here, the same effect is achieved by the introduction of
random defects.

5. CONCLUSION

In this work, we studied the influence of dipolar interactions
and structural disorder on the ZFC curves of an NP monolayer.
The NPs are located on the sites of a lattice with hexagonal unit
cell and interact via long-range dipolar forces. Their anisotropy
axes are randomly distributed in the plane of the layer. We used
a Monte Carlo method based on the Metropolis algorithm to
find the equilibrium magnetic configuration at a given
temperature, induced by the combined action of the dipolar
interactions, the anisotropy field, and the external magnetic
field. This procedure allowed us to reconstruct numerically the
zero-field cooled curves that we later compared to existing
experimental results. In the case of ordered monolayers, we
found a good agreement between experimental and numerical
data and observed an increase of the blocking temperature
when the interparticle distance is lowered. We also found that
the minimum in dipolar energy is determined by the properties
of isolated NPs, although the interparticle distance affects the
rate at which the dipolar energy goes to zero at high
temperatures.

These findings indicate that the ZFC curve for interacting
NPs results from two effects: first, at relatively low temperature,
the magnetic moments overcome the single-particle anisotropy
barrier and form small magnetic domains; then, at higher
temperature, thermal effects destroy these domains so that the
magnetic moments are able to align with the external field. This
two-step mechanism explains the increase of the blocking
temperature with shorter interparticle distance.

We then introduced disorder into the system by removing
some NPs from their lattice sites: this procedure preserves local
order on the scale of 20 nm, as in the experiments. We found
that there is no major change in the shape of the ZFC curves
even after removing 33% of the NPs. These results show that
the dipolar interactions predominate over disorder: even
though only a fraction of the NPs remain, they are still able
to induce strong collective properties. This observation
corroborates earlier studies that examined the effect of disorder
in monolayers, although in our case the disorder was created in
a very different way. We explained this behavior by noting that
removing some of the NPs lowers the magnetic frustration and
facilitates the formation of magnetic domains that are
energetically favorable for the dipolar interaction. These
domains are more resistant to the temperature and compensate
for the loss in coverage (lower NP density).
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