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Strasbourg, France
4 Association EURATOM-ÖAW, University of Innsbruck, A-6020 Innsbruck, Austria

E-mail: david.moulton@cea.fr

Received 16 January 2013, in final form 20 April 2013
Published 21 May 2013
Online at stacks.iop.org/PPCF/55/085003

Abstract
An analytic solution for the expansion of a plasma into vacuum is assessed for its relevance to
the parallel transport of edge localized mode (ELM) filaments along field lines. This solution
solves the 1D1V Vlasov–Poisson equations for the adiabatic (instantaneous source),
collisionless expansion of a Gaussian plasma bunch into an infinite space in the quasineutral
limit. The quasineutral assumption is found to hold as long as λD0/σ0 � 0.01 (where λD0 is
the initial Debye length at peak density and σ0 is the parallel length of the Gaussian filament),
a condition that is physically realistic. The inclusion of a boundary at x = L and consequent
formation of a target sheath is found to have a negligible effect when L/σ0 � 5, a condition
that is physically plausible. Under the same condition, the target flux densities predicted by the
analytic solution are well approximated by the ‘free-streaming’ equations used in previous
experimental studies, strengthening the notion that these simple equations are physically
reasonable. Importantly, the analytic solution predicts a zero heat flux density so that a fluid
approach to the problem can be used equally well, at least when the source is instantaneous. It
is found that, even for JET-like pedestal parameters, collisions can affect the expansion
dynamics via electron temperature isotropization, although this is probably a secondary effect.
Finally, the effect of a finite duration, τsrc, for the plasma source is investigated. As is found
for an instantaneous source, when L/σ0 � 5 the presence of a target sheath has a negligible
effect, at least up to the explored range of τsrc = L/cs (where cs is the sound speed at the initial
temperature).

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Motivation

Safe exhaust of the energy and particles contained in edge
localized modes (ELMs) is a key requirement for the successful
operation of future tokamaks employing the high-confinement
mode. An ELM originates from a magnetohydrodynamic

5 Permanent address: Andronikashvili Institute of Physics, 0177 Tbilisi,
Georgia.

(MHD) eigenmode on closed field lines, the growth of
which is driven by a combination of edge current and
radial pressure gradient in regions of unfavourable magnetic
curvature (Bécoulet et al 2003, Snyder and Wilson 2003).
Initially positioned in the vicinity of the outboard pre-ELM
pedestal, the eigenmode develops nonlinearly into ∼10–20
separate field-aligned pressure perturbations, called filaments.

After their creation, the filaments become magnetically
connected to the targets. How exactly this happens, and
whether there is a significant period during which the filament
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is connected to both the pedestal and the targets is still
a matter of debate (Kirk et al 2005, Fundamenski et al
2007). Whichever way, once they are connected to the
targets, energy and particles are transported primarily in the
parallel direction to the divertor targets, causing ∼2–20% of
the total plasma energy to be lost (Loarte et al 2003). Parallel
transport will affect, and may primarily determine, the time
duration over which the ELM spreads its energy on the target,
τELM. This time is of critical importance since the maximum
target temperature rise due to an ELM (which should not
exceed the melting point of the divertor tiles) is approximately
proportional to 1/

√
τELM (Loarte et al 2007, Jachmich et al

2011). It is this parallel transport along open field lines which
is the focus of the work presented here.

A range of numerical methods exist to model ELM
transport. Generally, it is deemed too computationally costly
to model ELMs kinetically in more than one spatial dimension.
Thus, kinetic codes such as BIT1 (Tskhakaya et al 2008,
Tskhakaya et al 2009) and VESPA (Manfredi et al 2011)
(both of which are used in this work) tend to model filament
transport in the parallel direction only, while fluid codes such
as EDGE2D-EIRENE and JOREK are used to model filament
transport in multiple directions (Wiesen et al 2011 and Pamela
et al 2011).

In this paper, a kinetic approach is adopted since the
density, temperatures and length scales associated with most
ELM filaments on present machines (and certainly those on
ITER) are collisionless. Thus, a priori, a fluid approach
could not be justified. Unfortunately, kinetic codes are often
computationally intensive, and it can be difficult to discern
the dominant physical effects from the simulation output.
Fortunately, however, a relevant analytic solution exists which
captures the dominant physics simulated numerically. This
analytic solution forms the backbone of this paper.

1.2. Analytic approach for instantaneous-source expansion

The analytic solution described here was not derived by the
authors. In fact, it resulted from a large body of work carried
out in the field of laser-driven thermonuclear fusion (Manfredi
et al 1993, Dorozhkina and Semenov 1998, Dorozhkina and
Semenov 1999, Kovalev et al 2002, Kovalev and Bychenkov
2003, Mora 2005). To the authors’ knowledge, however, it has
not yet been applied to ELM parallel transport. The solution
is derived by solving the collisionless Vlasov–Poisson (VP)
equations in an infinite space and with the assumption of a
quasineutral plasma. For realistic ELM parameters, it is shown
to be well matched to numerical solutions in a bounded space
and without any quasineutral assumption. This agreement is
achieved because the majority of the simulated plasma does
indeed remain quasineutral throughout the expansion and,
critically, because the sheath potential set up at the simulation
boundary is negligible when the parallel extent of the initial
ELM filament perturbation, σ0, is at least ∼5 times shorter than
the connection length to the target, L. This ratio is plausible
for present-day tokamaks and for ITER.

The analytic solution is shown to be a generalized
version of the free-streaming model for plasma expansion.

Currently, the free-streaming model is the primary analytic
tool for modelling the particle and energy flux densities at
the targets due to an ELM filament. Originally conceived
by Fundamenski et al (2006), the model solves the Vlasov
equation for ions in the absence of a Coulomb potential. This
neglect of the potential means that the ions feel no forces and
are simply advected towards the targets at an average speed
equal to the ion thermal speed vTi . Despite this seemingly
crude approach, the free-streaming equations have proven
remarkably successful in reproducing the shape of the target
power loads on JET and ASDEX Upgrade (Eich et al 2009).
In this work, a possible explanation for this agreement is
put forward by showing that the shape of the free-streaming
equations are actually unchanged by the presence of electrons
and a self-consistent Coulomb potential, as long as the same
condition holds as is required for the sheath to be negligible,
i.e. as long as L/σ0 � 5. Thus, the physical relevance of the
free-streaming equations are fortified.

In order to derive the analytic solution, it must be assumed
that the source is instantaneous, which means that its evolution
depends only on the initial conditions (a Gaussian density
perturbation with parallel extent σ0 in this case) and that the
total number of particles and energy in an infinite domain is
constant. (For an infinite domain, the term ‘instantaneous
source’ is therefore synonymous with ‘adiabatic’, but for a
bounded domain it is not, since energy can be lost through the
boundaries.) It is argued in section 5.1.6 that the instantaneous-
source case could well be physically relevant. If this is not
the case, the effect of a finite source duration must be treated
numerically, since the authors are unaware of an appropriate
analytic solution. This is carried out using the VESPA code in
section 4.9.

1.3. Paper overview

The paper is organized as follows. Section 2 describes
the 1D1V VP model used throughout. Section 3 describes
the analytic solution to the VP model for an instantaneous,
Gaussian shaped density source, in the limit of quasineutrality
and a slowly varying current. Numerical results from primarily
VESPA but also BIT1 simulations are presented in section 4.
In these simulations, various assumptions made in the analytic
solution are tested for their effect on the solution. The
assumptions tested are (i) quasineutrality, (ii) an infinite
domain, (iii) an initially Gaussian density profile, (iv) a
collisionless 1V plasma, and (v) an instantaneous source. The
challenge of including a background plasma is left for future
work. Finally, the results are discussed in section 5 and
conclusions are drawn in section 6.

2. The VP model

2.1. Equations

In the 1D1V VP model used here, the parallel distribution
function fα(x, v, t) evolves according to the collisionless
Vlasov equation:

∂fα

∂t
+ v

∂fα

∂x
− qα

mα

∂φ

∂x

∂fα

∂v
= Sα (x, v, t) , (1)
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where x is the 1D spatial coordinate parallel to the magnetic
field, v is the parallel velocity coordinate, α ∈ {e, i} is the
species index (only two-component plasmas are considered in
this work), qα ∈ {−e, Ze} is the species charge, mα is the
species mass, φ(x, t) is the Coulomb potential and Sα is the
source function. φ evolves according to the Poisson equation:

∂2φ

∂x2
= − e

ε0
(Zni − ne) , (2)

where nα(x, t) ≡ ∫
fα dv is the density of species α.

Both bounded (−L � x � L, where L is the
connection length of the magnetic field lines being modelled)
and unbounded (−∞ � x � ∞) parallel coordinate systems
will be considered. The assumption of an unbounded space is
required in order to derive an exact analytic solution for fα . In
the bounded case, the VP model is solved numerically with a
boundary condition fα(x = ±L, v, t) = φ(x = ±L, t) = 0.
It is emphasized that, since this model is one-dimensional, it
can only predict quantities which are averaged over some area
in the drift plane (i.e. the plane perpendicular to the magnetic
field lines).

2.2. Source function

It is assumed throughout that Sα is uniform in time for a
duration τsrc, that it is Gaussian along x and symmetric about
x = 0, and that the injected particles are Maxwellian with
parallel temperature Tα0. Thus,

Sα(x, v, t) = nα0U(t)√
2πvT α

exp

(
− x2

2σ 2
0

)
exp

(
− v2

2v2
T α

)
, (3)

where σ0 is the parallel extent of the source, vT α ≡ √
Tα0/mα

is the thermal speed of the injected particles, and ne0 = Zni0 so
that the total charge injected is zero. Also, U(t) is the uniform
distribution function, which sets a constant particle injection
rate:

U(t) =
{

1/τsrc for 0 � t � τsrc

0 otherwise.
(4)

The density nα0 in (3) is the initial peak density for the
particular case in which the source is instantaneous, i.e. when
τsrc → 0 (see section 3.1). It is important to recognize
that there is no background plasma in this model; the source
particles expand into vacuum.

The total number of particles injected (per unit area) over
an infinite parallel space is

Nα0 ≡
∫ ∫ ∫

Sαdx dv dt =
√

2πnα0σ0, (5)

and the total parallel energy injected (per unit area) is

Eα0 ≡
∫ ∫ ∫

1

2
mαv2Sα dx dv dt = 1

2
Nα0Tα0. (6)

Note that the magnitude of U(t) has been chosen so that both
Nα0 and Eα0 are independent of τsrc.

2.3. Accounting for gyratory energy

The 1D1V VP model only solves for the parallel distribution
functions. When the perpendicular distribution functions
are required, it is assumed that they are Maxwellian with
associated perpendicular temperatures T ⊥

α0 = Tα0, i.e.
that the perpendicular temperatures are the same as the
parallel temperatures of the particles when they are injected.
Furthermore, it is assumed that there is no interaction
between the parallel and perpendicular distribution functions,
or between the two perpendicular distribution functions. The
perpendicular temperatures therefore remain constant in time
and space at a value Tα0 (the effect of relaxing this assumption
is considered in section 4.8).

3. Analytic solution with an instantaneous source

3.1. Initial conditions

Imposing an instantaneous source (τsrc → 0) is equivalent to
setting Sα = 0 and imposing an initial condition on fα , such
that the initial temperatures are equal to Tα0 for all x and the
initial densities are Gaussian:

nα (x, t = 0) = nα0 exp

(
− x2

2σ 2
0

)
. (7)

It is emphasized that, for the analytic solution, the expansion
is into an infinite space, −∞ � x � ∞, i.e. the effect of
a boundary is not accounted for. Note that, as mentioned
in the previous section, nα0 is the initial peak density for an
instantaneous source. As previously shown by Dorozhkina
and Semenov (1998), under these conditions the solution to
the VP model is analytically tractable.

3.2. The solution

Subtracting the ion and electron momentum balance equations
and rearranging yields

e
∂φ

∂x
= memi

Z2meni + mine

(
1

e

∂j

∂t
+

∂

∂x

∫
v2 (Zfi − fe) dv

)
,

(8)

where j ≡ e(Z	i − 	e) is the current density and
	α ≡ ∫

vfα dv is the particle flux density. Two important
assumptions are now made. It is assumed that, for all x and t ,
the plasma is quasineutral,

ne (x, t) ≈ Zni (x, t) , (9)

and the rate of change of current density is negligible,∣∣∣∣1

e

∂j

∂t

∣∣∣∣ 	
∣∣∣∣ ∂

∂x

∫
v2 (Zfi − fe) dv

∣∣∣∣ . (10)

In section 4.5, the validity of these two assumptions will be
assessed via comparison with numerical solutions in which no
such assumptions are made. Under assumptions (9) and (10),
equation (8) becomes

e
∂φ

∂x
= memi

ne(Zme + mi)

∂

∂x

∫
v2 (Zfi − fe) dv. (11)

3
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Equations (1) and (11) are then a complete set which,
for the initial conditions stated in section 3.1, can be solved
analytically. Neglecting terms with a factor me/mi, the
distribution functions are given by Dorozhkina and Semenov
(1998), Kovalev et al (2002)

fα = nα (x, t)

(2πTα (t) /mα)1/2 exp

(
− (v − u)2

2Tα (t) /mα

)
, (12)

where

u (x, t) = uα ≡ 1

nα

∫
vfα dv = xt/τ 2

σ

1 + (t/τσ )2 (13)

is the ambipolar fluid velocity, τσ ≡ σ0/cs is the characteristic
expansion time, and

cs =
√

Ti0 + ZTe0

mi + Zme
(14)

is the sound speed at the initial temperatures. Equation (12)
states that both electron and ion distribution functions are
Maxwellian for all x and t , with drift velocity u. Furthermore,
the parallel temperature is constant in space and given by

Tα (t) = Tα0

1 + (t/τσ )2 , (15)

and the density is

nα (x, t) = nα0√
1 + (t/τσ )2

exp

(
eφ (x, t)

Te (t)

)
. (16)

Note that ne = Zni and the plasma is current-free, consistent
with assumptions (9) and (10), respectively. The self-
consistent potential has a quadratic dependence on x:

φ (x, t) = −Te0 (x/σ0)
2

2e
(
1 + (t/τσ )2

)2 , (17)

i.e. the electric field is linear in x. This potential and its
corresponding electric field, E = −∂φ/∂x, will henceforth
be referred to as the ‘DS potential’ and ‘DS electric
field’, respectively, after the authors who first described it
(Dorozhkina and Semenov 1998). Using (17) and defining
σ(t) ≡ σ0

√
1 + (t/τσ )2, (16) can be written alternatively as

nα (x, t) = nα0
σ0

σ(t)
exp

(
− x2

2σ(t)2

)
, (18)

i.e. the density remains Gaussian at all times, with a
monotonically increasing width σ(t).

3.3. Flux densities

The most important quantities in terms of predictive ELM
modelling are the particle and energy flux densities. For the
Maxwellian distribution functions with drift velocity u and
temperature Tα , these are given by

	α(x, t) ≡
∫

vfα dv = nαu, (19)

Qx
α(x, t) ≡

∫
1

2
mαv3fα dv = 	α

(
1

2
mαu2 +

3

2
Tα

)
. (20)

Qx
α consists of a contribution 1

2mαu2	α due to the kinetic
energy of the parallel (directed) flow and another 3

2Tα	α due
to the convection of parallel (random) thermal energy. Note
that there is no heat flux density:

qx
α(x, t) ≡

∫
1

2
mα(v − u)3fα dv = 0, (21)

since the velocity distributions are symmetric about v = u

(in this particular case they are Maxwellian). This means that,
rather than solving the VP equations, the expansion could have
been modelled equally well using a fluid closure which sets
qx

α = 0. This has important consequences for the justification
of using fluid models to model parallel ELM transport and will
be discussed further in section 5.2.

For the total parallel energy flux density due to species
α, Qα , one must also account for the contribution Q⊥

α due to
the parallel convection of perpendicular (gyratory) thermal
energy, i.e.

Qα(t) ≡ Qx
α + Q⊥

α . (22)

As noted in section 2.3, this is accounted for in the 1D1V VP
model by assuming a constant perpendicular temperature for
both species equal to their initial parallel temperature. Each
of the two perpendicular degrees of freedom in the drift plane
then contributes 1

2	αTα0 to Q⊥
α , so that in total

Q⊥
α (t) = 	αTα0. (23)

Unlike the parallel temperature, the perpendicular temperature
is time independent. Thus, on timescales t 
 τσ , the
convected perpendicular thermal energy 	αTα0 dominates over
the convected parallel thermal energy 3

2	αTα since Tα 	 Tα0

(recall (15) for t 
 τσ ). For electrons, this means that Qe(t 

τσ ) ≈ Q⊥

e while for ions Qi(t 
 τσ ) ≈ Q⊥
i + 1

2miu
2	i.

3.4. Electron-to-ion energy transfer in the first few τσ

It is worth emphasizing that the DS electric field remains linear
at all times. It does not peak at the edge of the plasma bunch,
where one would expect quasineutrality to break down, simply
because quasineutrality is assumed not to break down. The
field acts to confine the electrons (which oscillate back and
forth inside the potential well) and to transfer kinetic energy
from the electrons to the ions. To see this energy transfer,
consider the total parallel stress,

Pα(x, t) ≡
∫

mαv2fα dv = pα + nαmαu2, (24)

where pα ≡ nαTα is the thermal pressure. The kinetic energy
(per unit area in the drift plane) due to parallel motion is then

Eα(t) ≡
∫

1

2
Pα dx = Eα0

1 + (t/τσ )2

(
1 +

(
cs

vT α

t

τσ

)2
)

= Eth
α (t) + Edy

α (t), (25)

where Eth
α is the thermal energy due to the random motion and

E
dy
α is the ‘dynamic’ energy due to the directed flow. Note that,

4
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Figure 1. Thermal, dynamic and total energies for electrons and
ions as a function of time for a hydrogen plasma with Te0 = Ti0,
according to equation (25).

for this instantaneous-source expansion into an infinite space,
the total kinetic energy remains constant at all times, i.e. the
expansion is adiabatic:

Ei(t) + Ee (t) = Ei0 + Ee0 ∀t. (26)

Also, since ne = Zni, there is no contribution from the
potential energy; Eφ ≡ e

2

∫
(Zni − ne)φ dx = 0.

The thermal, dynamic and total energies for ions and
electrons are plotted in figure 1 for a hydrogen plasma
(Z = 1, mi/me = 1836) with Te0 = Ti0 and Ee0 =
Ei0 = E0. Throughout the expansion, Eth

e = Eth
i (in

general, Eth
e = (ZTe0/Ti0)E

th
i ). Initially, all of the energy

is thermal. Then, due to the decreasing temperature, Eth
α

decreases asymptotically to zero on a timescale τσ . At the same
time, the electric field accelerates the ions so that Edy

i increases

from zero to 2E0 (in general E
dy
i increases to (cs/vTi)

2Ei0).

Since the ion and electron fluid velocities are equal, E
dy
e also

increases, but by a negligible amount compared with E
dy
i (in

general Edy
e increases from zero to just (cs/vTe)

2Ee0 ≈ 0 due to
the small electron mass). Thus, on a timescale τσ , the energy
allocation changes from being entirely thermal and equally
shared between electrons and ions, to almost entirely dynamic
and predominantly contained in the ions.

3.5. The free-streaming model in context

3.5.1. Transition to the free-streaming phase. For times
t 
 τσ for the ions and t 
 √

mi/meτσ for the electrons, the
DS electric field becomes too small to have any influence on
the particle distribution functions (the longer timescale for the
electrons is due to the electrons being more influenced by the
electric field due to their lower mass; before t ≈ √

mi/meτσ ,
the electron thermal velocity is sufficient that electrons
continue to be confined by DS potential well, oscillating inside
it). Once the DS electric field becomes negligible for species
α, the distribution functions evolve according to the force-free
Vlasov equation:

∂fα

∂t
+ v

∂fα

∂x
= 0, (27)

which describes an advection of fα along x at velocity v and
has solution

fα (x, v, t) = fα (x − vt, v, t) . (28)

At this point, the particles can be said to ‘free-stream’ along x

under their inertia only.

3.5.2. The free-streaming model is equation (12) for σ0 → 0.
In the limit σ0 → 0, the ions and electrons are all initially at the
same point in space with initial density profile nα(x, t = 0) =√

2πnα0σ0δ(x). The electron–ion energy transfer, described
in section 3.4, occurs instantaneously and the DS electric field
decays in negligible time. Equation (12) gives the following
solution:

f FS
α = nα0σ0

cs
δ(x − vt) exp

(
− v2

2cs

)
, (29)

where the ‘FS’ superscript signifies that the electrons and ions
enter their free-streaming phases immediately.

Importantly, (29) is identical to the solution obtained if
the potential is ignored and if the initial temperatures for the
electrons and ions mimic their values after the energy transfer,
i.e. if φ → 0 and vT α → cs. This can be seen by the fact that,
in this hypothetical situation, the initial distribution function is

fα(t = 0) = nα0σ0

cs
δ(x) exp

(
− v2

2cs

)
(30)

and the solution given by (28) is identical to (29). Thus, for
σ0 → 0, the ions and electrons behave as if they originated
from Maxwellian distributions with thermal speeds equal to cs

(rather than vT α) and as if there were no electric field acting
on them in their subsequent free-streaming along x.

This is a significant observation, since it lends credence
to the free-streaming model (Fundamenski et al 2006), which
is currently the primary analytic model for parallel transport
in an ELM filament. The free-streaming model assumes that
σ0 → 0 and that the Coulomb force can be ignored. In
fact, the Coulomb force cannot be ignored. However, as was
recognized above, in the σ0 → 0 case the acceleration of the
ions is instantaneous so that a simple substitution vT i → cs

is sufficient to account for the Coulomb force. The free-
streaming assumption is then simply that σ0 → 0.

In fact, the substitution vT i → cs was made previously
by Eich et al (2009). However, its rigorous justification via
an analytic solution to the VP model is made here for the first
time. In the next section, the particle and energy flux densities
predicted by the free-streaming case (σ0 → 0) and by the more
general case (σ0 � 0) are compared. For both the particle and
energy flux densities, the free-streaming assumption is seen to
be appropriate wherever x/σ0 � 5.

3.5.3. The free-streaming equations for flux densities. The
first velocity moment of (29) gives the particle flux density for
the σ0 → 0 case:

	FS
α (x, t) = nα0cs

x/σ0

(t/τσ )2
exp

(
− (x/σ0)

2

2(t/τσ )2

)
. (31)

Compare this with the general σ0 � 0 case, obtained by
substituting (13) and (18) into (19):

	α(x, t) = nα0cs
(x/σ0)(t/τσ )(
1 + (t/τσ )2

)3/2 exp

(
− (x/σ0)

2

2
(
1 + (t/τσ )2

)
)

.

(32)

5
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Equation (31) is identical to that given previously by
Fundamenski et al (2006) and Manfredi et al (2011) once the
substitution vT i → cs is made.

Clearly, for t 
 τσ the free-streaming equation (31) is a
good approximation to the σ0 � 0 equation (32). There is a
disagreement when t � τσ because, in the σ0 � 0 case, the ions
(which also determine the electron particle flux) have not yet
entered their free-streaming phase. However, in a particular
region, this disagreement can be ignored as long as the particle
flux density in that region peaks long after t = τσ . In fact, 	FS

α

peaks when

t = tmax
	 (x) = x/cs√

2
. (33)

Thus, (31) is a good approximation of (32) when tmax
	 
 τσ in

the region under consideration, i.e. where x 
 σ0.
The same exercise can be carried out for the energy flux

densities. Taking the third velocity moment of (29) and
accounting for the convection of perpendicular energy (which
contributes an additional 	FS

α Tα0), the parallel energy flux
density for the σ0 → 0 case is

QFS
α (x, t) = 	FS

α Tα0

{
(x/σ0)

2(cs/vT α)2

2(t/τσ )2
+ 1

}
. (34)

Compare this with the general σ0 � 0 case, obtained by
substituting (13) and (15) into (20), then (20) and (23) into (22):

Qα(x, t) = 	αTα0

×
{

(x/σ0)
2(t/τσ )2(cs/vT α)2

2
(
1 + (t/τσ )2

)2 +
3/2

1 + (t/τσ )2
+ 1

}
. (35)

For the ions, equation (34) is identical to that given
previously by Fundamenski et al (2006) and Manfredi et al
(2011) once the substitution vT i → cs is made. For
the electrons, (34) is a new addition to the free-streaming
equations. It says that electrons contribute to the parallel
energy flux density almost entirely through the convection of
their perpendicular thermal energy. This is because they donate
almost all of their parallel energy to the ions instantaneously.
Note that, unlike the σ0 � 0 case, QFS

α has no component due
to the convection of parallel thermal energy (the second term
in (35)), since the temperature at all positions goes immediately
to zero (recall equation (15) for σ0 → 0).

Equation (34) is a good approximation to (35) when
t 
 τσ . At earlier times, the agreement breaks down because
the ions have not yet entered their free-streaming phase. Note
that, although the electrons do not enter their free-streaming
phase until t ∼ √

mi/meτσ , QFS
e still agrees with Qe by the

much earlier time t ∼ τσ . This is because, after t ∼ τσ ,
the energy transfer from electrons to ions means that Qe is
dominated by the convection of perpendicular energy, which is
set by the ion particle flux. It is therefore of little consequence
that equation (34) gets the component of the energy flux density
due to parallel electron motion significantly wrong.

Applying the same argument as for the particle flux
density, the total energy flux density in a particular region,
Qtot ≡ Qe + Qi, will agree with the free-streaming value as

0 2 4 6 8 10
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0.5
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1.5

x/σ
0

 

 
ΣΓα

ΣQi
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ΣQtot

Figure 2. Level of agreement between free-streaming and σ0 � 0
cases (measured by the function �η) as a function of x/σ0. Values
for the particle, electron energy, ion energy and total energy flux
densities are shown.

long as it peaks long after t = τσ . From (34), the total free-
streaming energy flux density, QFS

tot ≡ QFS
i + QFS

e , peaks when

t = tmax
Q (x) = 0.556x/cs, (36)

i.e. tmax
Q depends on the plasma parameters only through cs.

Thus, for QFS
tot to be a good approximation of Qtot, it is required

that tmax
Q 
 τσ , i.e. that x 
 σ0 in a given region.

3.5.4. The free-streaming equations are appropriate where
x/σ0 � 5. Instead of the rather vague statement that the free-
streaming equations are a good approximation to the σ0 � 0
case wherever x 
 σ0, for practical purposes it is useful to
quantify the level of approximation. To do this, the function
�η is introduced:

�η ≡ max
(∣∣η − ηFS

∣∣)
max (η)

, (37)

where η ∈ (	α, Qi, Qe, Qtot) is some flux density and the
maximum in (37) is taken over all time. Figure 2 shows �	α ,
�Qi , �Qe and �Qtot as a function of x/σ0. An acceptable level
of agreement (�η < 0.15) is found for 	α and Qtot in regions
where x/σ0 > 5. Note that Qe requires slightly larger values
of x/σ0 before an acceptable agreement is found, because the
electrons are not yet in their free-streaming phase.

It is concluded from this section that the free-streaming
model for ELM parallel transport is in fact the same as the
solution derived by Dorozhkina and Semenov (1998), for the
particular case in which σ → 0. Furthermore, in terms of the
particle and energy flux densities it predicts, this assumption
is reasonable wherever x/σ0 � 5.

3.6. On the assumption of an unbounded expansion

The solution described by equations (12)–(17) assumes that the
x-axis is unbounded. In the case of a bounded plasma, with the
boundary condition fα(x = ±L, v, t) = φ(x = ±L, t) = 0,
it is expected that a sheath potential φs will be set up at the
target, over a width approximately equal to the local Debye
length. If L/σ0 
 1, however, the majority of electrons,
which will reach the target at the same time as the ions on a
timescale τL ≡ L/cs, will have lost the majority of their energy
to the ions by the time they reach the target, and will not have
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sufficient energy to set up a significant sheath potential. This
can be seen quantitatively by estimating the sheath potential φs

created by inserting a boundary at x = L, under the assumption
that the ion and electron dynamics away from the sheath are
unaffected by its presence. The goal is then to find the value
of L/σ0 which is sufficiently small that the calculated value of
φs would, in fact, alter the dynamics away from the sheath.

A similar approach by Stangeby (2000) is used to estimate
φs. In the absence of a particle source inside the sheath, the
ion flux density to the wall, 	w

i (t), is unchanged relative to its
value at the sheath edge. Assuming that the thickness of the
sheath is negligible, this gives

	w
i (t) = ni(x = L, t)u(x = L, t), (38)

where u and ni are given by (13) and (16). It is also assumed
that the electron density is given by a Boltzmann relation in
the sheath, and that the electron distribution function at the
wall is a half-Maxwellian with zero drift velocity and with no
backward-moving electrons. Such a distribution, with density
nH

e (‘H’ for ‘half’) and local thermal velocity vH
T e has particle

flux density
√

2/πnH
e vH

T e. The electron flux density to the wall
is therefore

	w
e (t) =

√
2

π
ne(x = L, t)

× exp

(
eφs

Te(x = L, t)

) √
Te(x = L, t)

me
. (39)

Assuming zero current density into the target, Z	w
i (t) +

	w
e (t) = 0, yields

eφs

Te0
= 1

1 + (L/σ0)2(t/τL)2

× ln

(
Z2

√
π

2
(cs/vT e)

(L/σ0)
2(t/τL)√

1 + (L/σ0)2(t/τL)2

)
(40)

for the sheath potential as a function of time.
It is assumed that the dynamics of the plasma expansion

will be significantly altered by the presence of a target sheath
when the work done on the plasma by the sheath, Us, is of a
similar order to the work done by the DS potential, UDS. By
energy conservation, UDS in the region−L � x � L is the total
increase in ion kinetic energy in the infinite region minus the
energy made unavailable by electron energy transport through
x = −L and x = L:

UDS(t) = (Ei(t) − Ei0) − 2
∫ t

0
Qx

e (x = L, t ′) dt ′, (41)

while Us is equal to the time integral of the sheath potential
multiplied by the electron flux through x = −L and x = L:

Us(t) = −2e

∫ t

0
φs(t

′)	x
e (x = L, t ′) dt ′. (42)

Figure 3 compares UDS and Us (normalized to Ee0), as
functions of t/τL for different values of L/σ0. It is seen that
for L/σ0 � 5 the work done by the DS potential is dominant.
For L/σ0 = 2, however, the work done by the sheath is
dominant. It is therefore expected that the sheath will have a
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Figure 3. Work done by the DS potential in the bounded region
−L � x � L compared with the work done by the sheath potential
predicted by equation (40), for different values of L/σ0.

significant effect on the plasma dynamics for values L/σ0 � 5.
It is important to note that this is the same condition that was
required for the free-streaming target flux densities to be valid.
Thus, for the target flux densities, if the sheath can be ignored
then so can the fact that the filament has a finite parallel extent.

3.7. On the assumption of quasineutrality

A quasineutral region is defined where |x| � σq(t). The
quasineutral assumption requires that this region extends over
several plasma widths at all times:

σq(t)/σ (t) > O(1) ∀t. (43)

At the points x = ±σq, where the plasma ceases to be
quasineutral, it is assumed that the local gradient length in
the electron density is approximately equal to the local Debye
length:

ne

|∂ne/∂x|
∣∣∣∣
x=σq

≈ λD, (44)

where λD(x, t) =
√

ε0Te/e2ne. Assuming that the
quasineutral solutions are valid in the quasineutral region, (15)
and (16) can be substituted into (44) and the resulting equation
can be solved for σq, giving

σq(t)

σ (t)
≈

√√√√2W

((
1 + (t/τσ )2

)
2(λD0/σ0)2

3/2)
, (45)

where λD0 ≡ λD(x = 0, t = 0) and W(a) is the Lambert
W function, which is the solution to xex = a (Valluri et al
2000). Equation (45) is plotted in figure 4, for different values
of λD0/σ0.

It is seen that, as λD0/σ0 decreases, the quasineutral region
extends over an increasing portion of the expanding plasma.
Furthermore, σq/σ is a monotonically increasing function of
time. This means that, as the plasma expands, the width of the
initially quasineutral region can only get wider relative to the
width of the expanding plasma:

σq(t > 0)

σ (t > 0)
>

σq(t = 0)

σ0
∀t. (46)
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Figure 4. Plot of the width of the quasineutral region compared
with the width of the expanding plasma, according to equation (45),
for different values of λD0/σ0.

Inserting (45) into (43), the quasineutrality requirement
therefore reduces to a requirement on the initial conditions
only: √

2W

(
1

2(λD0/σ0)2

)
> O(1). (47)

Thus, if the quasineutrality condition holds initially in the bulk
of the plasma then it will hold at all times. Note that this
hypothesis was also previously made by Manfredi et al (1993)
and Dorozhkina and Semenov (1998). However, an equation
for the width of the quasineutral region, such as (45), was
not derived. Furthermore, in this work (45) will be verified
by comparison with a numerical solution to the VP model in
which quasineutrality was not assumed (see section 4.5).

4. Numerical results

In this section, numerical solutions to the VP model are
presented. For the instantaneous-source case, these solutions
allow for a comparison between the analytic solution and its
numerically solved counterpart. The validity of the various
assumptions made in deriving the analytic solution are assessed
by means of numerical simulations in which those assumptions
are not made. In particular, the assumptions of quasineutrality,
of a slowly varying current density, of an unbounded parallel
coordinate, of a 1v collisionless plasma, and of a Gaussian
initial density, will be assessed. The effect of a finite source
duration (for which an analytic solution is unavailable) will
also be investigated.

4.1. Dimensionless input parameters and the ‘reference’
simulation

The minimum set of dimensionless input parameters for the
bounded VP model is as follows (values in brackets are those
that were used for the ‘reference’ simulation):

• m∗ ≡ mi/me (= 1836), the mass ratio,
• Z (= 1), the proton number,
• T ∗ ≡ Ti0/Te0 (= 1), the temperature ratio of the injected

particles,
• λ∗

D0 ≡ λD0/σ0 (= 10−2), the normalized Debye length,
• L∗ ≡ L/σ0 (= 10), the normalized connection length,
• τ ∗

src ≡ τsrc/τσ (= 0), the normalized source duration.

4.2. Solution methods

Unless otherwise stated, the numerical solutions presented
here were calculated by the code previously described by
Manfredi et al (2011). Henceforth, this code will be called
VESPA (Vlasov Eulerian Simulator of PArallel transport). For
a detailed description of the VESPA code, the reader is referred
to Manfredi et al (2011). For this paper, the two important
points to note are the following:

(a) Numerical stability was ensured by always using a
grid spacing of �x = λD0 along x and a time step
�t = 1/ωpe0, where ωpe0 ≡ vT e/λD0 is the electron
plasma frequency at electron density ne0 and electron
temperature Te0.

(b) The actual value used for λ∗
D0 was typically 10−2, which

is significantly higher than the ELM-realistic value of
λ∗

D0 � 10−5 (see section 5.1.4).

This last point requires some explanation, since it is
essential if the code is to run on an acceptable timescale (using
λ∗

D0 = 10−2, the solution time on a modern desktop is ∼30 h,
but this time quickly increases for smaller values ofλ∗

D0, scaling
roughly with λ∗−2

D0 ). It was already recognized by Manfredi
et al (2011) that the difference in the numerical solution when
λ∗

D0 = 10−2 and when λ∗
D0 = 2.5 × 10−3 is negligible. In

fact, this is precisely because the assumption of quasineutrality
is valid in the bulk plasma whenever λ∗

D0 � 10−2. The
solution for the bulk plasma is therefore independent of λ∗

D0
for λ∗

D0 � 10−2. This will be discussed further in sections 4.5
and 4.7.

In addition to the VESPA code, the 1D3V particle-in-cell
code BIT1 was also used to solve the VP model. For details
of this code the reader is referred to Tskhakaya and Schneider
(2007), Tskhakaya et al (2008). The important points to note
for this article are that:

(i) The particle-in-cell method employed by BIT1 allows it to
be massively parallelized. This means that realistic values
for λ∗

D0 can be modelled, by spreading the computational
load over several thousand processors. The hypothesis
that the solution with λ∗

D0 = 10−2 is negligibly different
to the solution with a realistic value of λ∗

D0 can therefore
be directly tested.

(ii) BIT1 is able to include collisions. It is also three-
dimensional in velocity space, so that parallel and
perpendicular distribution functions can affect each other,
via collisions. The assumption of a 1v collisionless
plasma can therefore be assessed.

4.3. Reference simulation matches analytic solution inside
the quasineutral region

4.3.1. Comparison for the densities and electric field.
Figure 5(a) shows the reference simulation values for ne (solid
red lines) and ni (solid blue lines) at t = 0.01τσ , t = τσ and
t = 10τσ . These times span the entire expansion process,
from the initial setup of the electric field in the quasineutral
region, until after the particle flux density to the target has
peaked (when t = 7.1τσ ). The significance of t = 0.01τσ
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Figure 5. (a) Comparison between ne (solid red lines) and ni (solid
blue lines) for the reference simulation and for the analytic solution
predicted by (16) (dotted black lines). Plots are made at t = 0.01τσ ,
t = τσ and t = 10τσ . The x = σq lines predicted by (45) are plotted
as dashed black lines. The inset axis in the final panel is zoomed
into the sheath region and has the same y-axis limits as the main
panel. (b) Comparison between the electric field for the reference
simulation (solid lines) and for the analytic solution predicted by
(17) (dotted lines), at the same times as plotted in (a).

is explained below. Plots are shown only in the positive-x
region since the solution is symmetric about x = 0. The
simulation values should be compared with the black dotted
lines, which plot equation (16) for the analytic prediction of
the density evolution. Also plotted, as black dashed lines at
times t = 0.01τσ and t = τσ , are the lines x = σq, which
correspond to the edges of the quasineutral region predicted
by equation (45). These predictions are seen to coincide well
with the position at which quasineutrality breaks down in the
simulation (see section 4.5 for a more thorough verification
of (45)). Note that at all times the vast majority (>99.9%) of
the plasma is contained within this quasineutral region. For
the t = 10τσ panel, σq is not plotted since by that time the
edge of the quasineutral region is at the entrance to the target
sheath rather than at the edge of the expanding plasma.

Inside the quasineutral region, the reference simulation
values for ne and ni agree well with equation (16). This is true
at all times. Outside the quasineutral region and before the bulk
plasma reaches the boundary (as shown in the t = 0.01τσ and
t = τσ panels), ne is greater than the analytic prediction due
to suprathermal electrons escaping the confining electric field.
In contrast, ni is lower than the analytic prediction because
the electric field is weaker than predicted by equation (17). In
fact, the suprathermal electrons leave the quasineutral region
in bunches, rather than as a constant stream. This causes a
wavelike density profile outside the quasineutral region, as seen
in the t = τσ panel of figure 5(a). This behaviour, although
physically interesting, does not appear to affect the solution
inside the quasineutral region, nor is it important in terms of
energy flux densities to the target. It will not, therefore, be
analysed further in this paper.

Once the bulk plasma reaches the boundary, which it has
done by time t = 10τσ , the edge of the quasineutral region

becomes defined by the sheath. Inside the sheath, ne < ni,
as can be seen in the zoomed-in version of the t = 10τσ

panel, inset. Importantly, however, at no point in time does the
presence of a sheath at the boundary has a significant effect
on the excellent level of agreement with the analytic density
evolution inside the quasineutral region.

Figure 5(b) plots the electric field corresponding to
the densities shown in figure 5(a). Reference simulation
and analytic values are plotted as solid and dotted lines,
respectively. From an initial plasma that is perfectly neutral,
electron motion sets up a local electric field on a timescale
given by the inverse of the local electron plasma frequency,
ωpe(x, t). Since ωpe ∝ ωpe0

√
ne, the linear electric field

takes time to spread out from x = 0 (where the plasma is
most dense) to x = σq (where the plasma is less dense). By
time t = 1/ωpe(x = σq, t = 0) = 0.01τσ , an electric field
which agrees well with equation (17) is set up across the entire
quasineutral region (this explains why plots have been made
at t = 0.01τσ ).

Outside the quasineutral region and before the bulk plasma
reaches the boundary, the electric field decays to zero, as it must
since the charge density is finite. By the time the sheath is set up
at the boundary, the electric field has decayed to ∼0 inside the
quasineutral region and the sheath electric field (which extends
over several λD0) is dominant. This is shown in the t = 10τσ

panel (note the change in x-axis limits for this panel and that
λD0 = 0.001L for this simulation). Importantly, however, this
sheath electric field is too weak to alter the dynamics of the
density expansion inside the quasineutral region.

4.3.2. Comparison for the temperatures and fluid velocity.
Figure 6(a) shows Te (solid red lines) and Ti (solid blue lines)
in the reference simulation, at the same times as plotted in
figure 5 (Tα is defined as Tα ≡ ∫

mα(v − uα)2fα dv/nα). The
analytic solution given by (15), which is constant in space and
equal for ions and electrons, is plotted as black dotted lines.
Again, the agreement in the quasineutral region is good. The
decrease in Te outside the quasineutral region is due to the
fact that the energy contained in the suprathermal electrons
which escape the confining potential is primarily dynamic; the
decrease does not imply that the escaping electrons are sub-
thermal. By time t = 10τσ , there is a small decrease in Te

inside the quasineutral region, compared with (15). This is
due to the formation of a boundary sheath, and the fact that
only suprathermal electrons can overcome the sheath potential
and reach the wall. The resultant effect on Te is small, however,
reducing it by only 17% at the sheath edge, compared with the
analytic solution.

Figure 6(b) compares ui in the reference simulation (solid
lines) and as predicted by equation (13) (dotted lines). Note
that ui is normalized to the initial sound speed; ui/cs is
not the local Mach number, which increases with decreasing
temperature and is given by M = (ui/cs)

√
Ti0/Ti. At

t = 10τσ , for example, ui/cs = 1 at the target, while
M = 10.0. As for nα , E and Tα , the reference simulation
values for ui agree well with the analytic solution inside the
quasineutral region at all times. Outside the quasineutral
region, ui is lower than the analytic prediction because the
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Figure 6. (a) Comparison between Te (solid red lines) and Ti (solid
blue lines) for the reference simulation and for the analytic solution
predicted by (15) (dotted black lines). Plots are made at the same
times as in figure 5. (b)–(c) Comparison between ui (b) and ue (c)
for the reference simulation (solid lines) and for the analytic solution
predicted by (17) (dotted lines), at the same times as plotted in (a).

accelerating electric field is also lower, as was shown in
figure 5.

Figure 6(c) makes the same comparison for ue (recall
that in the analytic solution ue = ui at all times). At
t = 0.01τσ in the quasineutral region, the simulated ue

exceeds (13) by a constant factor 16.3. This is because, for
the value of λ∗

D0 used in the simulation, the timescale on which
electrons move across the plasma, σ0/vT e, is not significantly
shorter than the timescale on which the electric field is set
up across the quasineutral region: 0.01τσ = 0.3σ0/vT e.
As a result, suprathermal electrons, which start off at the
edge of the quasineutral region, and which have sufficiently
positive velocities that they escape the potential well, are not
reflected backwards in the negative-x direction. They are
therefore unable to provide a counter to the forward moving
suprathermal electrons which start off deeper inside the bulk
plasma. These remaining electrons contribute to a positive
ue inside the quasineutral region that is significantly larger
than in the analytic solution, in which all of the electrons are
confined and oscillate in the potential well in precisely such
a way that ue = ui. The important point is that the degree to
which ue exceeds equation (13) in the quasineutral region at
early times is dependent on the flux of electrons that are able to
overcome the confining potential (and therefore do not oscillate
back). This flux decreases with decreasing λ∗

D0 (Manfredi et al
2011), so that the agreement with (13) is expected to improve
markedly for more realistic (lower) values than the value of
λ∗

D0 = 10−2 used in the reference simulation. Indeed, in a
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Figure 7. Comparison between fe (solid red lines) and fi (solid
blue lines) for the reference simulation and for the analytic solution
predicted by (12) (dotted black lines). Plots are made at the same
times as in figures 5 and 6. In (a) plots are made at x = 0, while in
(b) plots are made either at x = 2/3σq or at x = 0.99L, as indicated.

simulation with λ∗
D0 = 10−3 ue was found to exceed (13) in the

quasineutral region by a constant factor of only 6.5. Realistic
values of λ∗

D0 � 10−5 (see section 5.1.4) are therefore expected
to eliminate the disagreement with (13).

At the edge of the quasineutral region, ue drops suddenly
in the reference simulation, due to electrons being reflected
back towards the bulk. It then rises monotonically to ∼80/cs =
2.6vT e at the target (this rise is not visible on the axes chosen for
this plot). This is because, as previously stated, the energy in
the escaping suprathermal electrons is predominantly dynamic.

By time t ≈ 0.1τσ , and at all subsequent times (the
first shown being t = τσ ), ue does agree well with (13) in
the quasineutral region and the plasma is ambipolar there.
Outside the quasineutral region, ue is highly non-linear due
to the oscillations of high-energy electron bunches, which are
themselves dependent on the value of λ∗

D0 used. Fortunately,
the behaviour in this region is not important when trying to
predict the energy flux densities at the targets, which are
dependent on the dynamics inside the quasineutral region,
where the vast majority of the plasma is found.

4.3.3. Comparison for the distribution functions. Values of
fe and fi for the reference simulation are plotted in figure 7,
as red and blue solid lines, respectively, at the same times as
plotted in figures 5 and 6. In figure 7(a) plots are made at
x = 0, while in figure 7(b) plots are made towards the edge of
the quasineutral region, at x = 2/3σq (for the t = 0.01τσ and
t = τσ panels) and at x = 0.99L (i.e. at the sheath entrance, for
the t = 10τσ panel). In all plots, distribution function values
are normalized to their maxima and plotted as a function of
(v−u)/vT α , where u is calculated using (13). For comparison,
the analytic solution from (12) is plotted as black dotted lines.

At all times, the simulated fi agrees well with the analytic
Maxwellian solution (12) inside the quasineutral region. For
the simulated fe, however, there is some deviation from (12).
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Figure 8. Comparison between (a) Qi and (b) Qe for the reference
simulation (solid lines) and for the analytic solution predicted
by (35) (dotted black lines). Plots are made at t = 0.01τσ , t = τσ

and t = 5τσ . In the t = 0.01τσ panel of (b), the dashed line shows
values an identical simulation to the reference simulation, but with
λ∗

D0 = 10−3. The inset axis in the final panel is zoomed into the
sheath region and has the same y-axis limits as the main panel.

When t = 0.01τσ , the deviation (which is due to the loss of
suprathermal electrons as explained in the previous section)
is not obvious, primarily because ue 	 vT e. However, as
will be seen in figure 8, this deviation does cause a significant
departure from the analytic electron energy flux density
predicted by (35). When t = τσ , especially towards the edge
of the quasineutral region, there is a departure of fe from (12).
Again, this is due to the loss of suprathermal electrons from
the confining potential and the agreement between analytic and
simulated values for fe is expected to improve for lower (more
realistic) values of λ∗

D0 than used in the reference simulation.
Still, even for the (unphysically high) value of λ∗

D0 = 10−2

used in the reference simulation, the electron distribution
function approximates well to the analytic Maxwellian solution
over several orders of magnitude. By time t = 10τσ , fe

narrows slightly compared with the analytic solution (i.e. Te

decreases). This is due to the loss of suprathermal electrons
which overcome the target sheath potential, as described in
the previous section. Overall, however, the prediction that the
distribution functions remain Maxwellian throughout is well
met in the quasineutral region of the reference simulation.

4.3.4. Comparison for the energy flux densities. Figure 8
shows (a) Qx

i and (b) Qx
e in the reference simulation (solid

lines) and according to (35) (dotted lines). Note that, since
Qtot peaks at the target when t = 5.6τσ , the final panels in this
figure show plots at t = 5τσ rather than at t = 10τσ as in the
previous figures.

Simulated values for Qx
i agree with (35) at all times (the

dotted lines are obscured in figure 8 because they overlay the
solid lines). By time t = 5τσ , the majority of the energy
flux density due to parallel motion is provided by the kinetic
energy of the ion flow. For the electrons, there is a marked
disagreement between simulated and analytic values when

t = 0.01τσ . This is caused primarily by the larger value of
ue compared with (13), but also by the asymmetry of fe about
v = ue, which generates a heat flux density. Importantly this
disagreement is almost eliminated by a more realistic choice
of λ∗

D0 = 10−3, as shown by the dashed line in the t = 0.01τσ

panel of figure 8(b). This disagreement is expected to be
completely eliminated for realistic values of λ∗

D0 � 10−5. By
time t = τσ , the simulated Qx

e agrees well with (35). At time
t = 5τσ , the sheath acts to decrease Qx

e at the boundary by 40%
compared with (35). This can be seen in the zoomed-in plot,
inset. However, this decrease has a negligible effect on the
total electron energy flux to the target, which is due primarily
to the convection of perpendicular thermal energy.

It is concluded from this section that the analytic
solution agrees well with the reference simulation inside the
quasineutral region and that the disagreement outside the
quasineutral region does not affect the agreement inside.

4.4. The role of the target sheath

4.4.1. The sheath has negligible effect on target flux densities
when L∗ � 5. Of particular interest are the levels of
agreement between analytic and numerical solutions for the
particle and energy flux densities to the target which, as
explained in section 3.6, are expected to get worse as L∗

decreases and the target sheath plays an increasingly important
role. A scan in L∗ was therefore performed, comprising three
simulations with values of L∗ = 10 (the reference simulation),
L∗ = 5 and L∗ = 2. Due to the ballooning nature of the ELM
filament source, values lower than L∗ = 2 are likely to be
unphysical, so were not explored (see section 5.1.5 for further
discussion).

Figure 9 plots 	i, Qx
i , Qx

e and Qtot at the target, for the
numerical simulations (solid lines) and analytic predictions
(dotted lines) given by equations (32), (22) and (35). The
different values of L∗ are denoted by different colours, as
described in the legend. Note that only 	i is shown since,
as expected, 	e is very well approximated by 	i in the
simulations.

For the reference simulation (black solid lines) the
differences between the analytic and numerical flux densities
at the target are negligible. The sheath can therefore be
ignored at this value of L∗. For values of L∗ � 5 (as
predicted in section 3.6) the sheath starts to become important
in the simulations, at least in terms of energy exchange
between electrons and ions. This is clearly seen for the
L∗ = 2 simulation, in which the sheath acts to increase Qx

i
and decrease Qx

e at the target, compared with the analytic
predictions of equation (35). However, even at this value of
L∗ (which appears to be right at the lowest bound of what can
be expected in experiment; see section 5.1.5), the agreement
for the total energy flux density, figure 9(d), is still acceptable.
That is, the sheath acts only to alter the partition of ion and
electron energies reaching the target, but does not affect the
dynamics of the plasma expansion to the target.

As a brief aside, it should be noted that there is a burst of
suprathermal electrons in the simulations, which arrive at the
target on a timescale L/vT e. Such electron bursts are also
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observed in experiment (Loarte et al 2003) and have been
analysed more thoroughly by Manfredi et al (2011). The
resulting target flux densities, which are due to a breakdown
in quasineutrality, are not captured by the analytic solution.
However, compared with the flux densities delivered by the
>99.9% of plasma inside the quasineutral region (which is
captured by the analytic solution), the fluxes delivered by these
suprathermal electrons is negligible, and inconsequential in
terms of engineering concerns.

4.4.2. Comparison between predicted and simulated sheath
potentials. In order to assess the accuracy of the sheath
potential predicted by equation (40), the simulated sheath
potential is defined as

φs ≡ φ2(x = L) − φ1(x = L), (48)

where φ1 and φ2 are the potentials in a simulation bounded
at x = ±L and at x = ±2L, respectively (both φ1 and φ2

are renormalized so that φ1(x = 0) = φ2(x = 0)). Thus,
for each simulation in the L∗ scan, the connection length was
doubled whilst leaving all other parameters the same. For all
three simulations, this had the desired effect of removing any
sheath effects at x = L, at least for times after the quasineutral
region reaches the boundary. This was confirmed by observing
that the analytic (unbounded) solutions for fe and fi were
recovered at x = L when the connection length was doubled
in the simulation (before the quasineutral region reaches the
boundary, the analytic solution at x = L is incorrect so it is
not possible to be sure that the effect of a boundary has been
removed).

Figure 10 shows the simulated sheath potential (solid
lines) compared with the theoretical prediction of equation (40)
(dotted lines) for different values of L∗, as a function of t/τL.
The time when the quasineutral region reaches the boundary,
i.e. when σq(t) = L according to equation (45), is indicated by
dashed red lines (no line is shown for the L∗ = 2 simulation
since σq(t = 0) > L).

Before the quasineutral region reaches the boundary, there
is a clear discrepancy between equation (40) and the simulation
result in all three simulations. Assuming that doubling the
connection length did remove the effect of the sheath at these
early times, this discrepancy can be explained by the fact
that, before the quasineutral region reaches the boundary,
the sheath potential is set by suprathermal electrons. For
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Figure 10. Comparison between the theoretical (dotted lines) and
simulated (solid lines) sheath potential as a function of time, for
different values of L∗. Theoretical values were calculated using
equation (40). The time when the quasineutral region reaches the
boundary (according to equation (45)) is indicated by red dashed
lines.

these electrons, the assumption of a Boltzmann distributed
density which was made in the derivation of (40) will be
wrong. After the quasineutral region reaches the boundary,
the agreement between (40) and the simulation result is quite
reasonable, although the agreement worsens for smaller values
of L∗. An explanation for this might be that, for small
L∗, the sheath potential is sufficiently strong that Te at the
sheath edge is significantly reduced relative to the unbounded
solution. This would have the effect of reducing the magnitude
of φs in the simulation compared with (40). Nevertheless, for
experimentally realistic values of L∗, equation (40) provides
a reasonable agreement with the numerical result after the
quasineutral region reaches the boundary.

4.5. Verification of quasineutral and current density
assumptions

It has been demonstrated that the sheath has a negligible effect
on the plasma dynamics inside the quasineutral region (which
accounts for the vast majority of the plasma). It is now shown
that the other two assumptions made in deriving the analytic
solution, namely that the plasma is quasineutral (equation (9))
and that the current density evolves slowly (equation (10)), are
also well met in the reference simulation.

Considering first the quasineutral assumption, figure 11(a)
shows a 2D plot of the quantity

ñ ≡ ni − ne

ni + ne
(49)
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Figure 11. Verification that, in the reference simulation,
quasineutrality is satisfied and the time evolution of the current
density is sufficiently slow. ñ and |∂̄/∂t | are plotted in (a) and (b),
respectively, as a function of x/σ0 and t/τσ over the first 3τσ . Also
plotted is the analytical prediction for the width of the quasineutral
region σq(t) (dashed magenta line), and the numerically derived
values for lines inside which 90% and 99.9% of the electrons are
contained (dashed red lines).

as a function of x/σ0 and t/τσ for the reference simulation
in the region x � 0. Regions where there are predominantly
electrons take values ñ ≈ −1 (blue) and regions where there
are predominantly ions take values ñ ≈ 1 (red). In neutral
regions, ñ = 0 (green).

At t = 0, ñ = 0 everywhere. After the first time step a
clearly defined quasineutral region is set up around x = 0. This
quasineutral region is seen to expand with increasing time. At
times t � 2τσ , suprathermal electrons (which are sufficiently
fast to overcome the confining electric field) dominate the
space outside the quasineutral region, so that ñ ≈ 1 there.
These fast electrons set up a narrow (a few λD0 wide) sheath
potential at the wall which attracts ions. Around time t ≈ 2τσ ,
ions begin to arrive at the boundary and dominate the density
in this sheath region, so that ñ > 0 there (note the thin red line
at the boundary for t � 2τσ ).

The dashed magenta lines in figure 11 show the width of
the quasineutral region as predicted by equation (45) for an
unbounded expansion. Before the quasineutral region reaches
the wall, this prediction is seen to match very well to the
numerical simulation. This can be seen by the fact that the
dashed magenta line coincides with the region where ñ rapidly
increases from approximately zero towards one. Once the
quasineutral region reaches the wall, the plasma subsequently
remains quasineutral across the entire domain except for the
narrow sheath region at the wall.

Also plotted in figure 11(a), as dashed red lines, are the
values of x inside which 90% and 99.9% of the electrons
are contained in the simulation. Importantly, as predicted in
section 3.7, the bulk of the plasma (>99.9%) is quasineutral
at all times. It can therefore be concluded that, except in the
target sheath, the quasineutral assumption is well met in the
numerical simulation, in which a value of λ∗

D0 = 10−2 was
used.

In addition to the assumption of quasineutrality, it was also
assumed that the rate of change of current density is small, i.e.
that the quantity∣∣∣∣∂̄

∂t

∣∣∣∣ ≡
∣∣∣∣∂j∂t

∣∣∣∣
/ ∣∣∣∣ ∂

∂x

∫
ev2 (Zfi − fe) dv

∣∣∣∣ (50)

is much less than 1 (recall equation (10)). |∂̄/∂t | is plotted
in figure 11(b) for the reference simulation (note that the
colour scale has been cropped so that only values below
0.01 are shown). At times t � 0.1τσ , |∂̄/∂t | � 0.01
in the quasineutral region so that assumption (10) is well
met. However, at earlier times t � 0.1τσ , this assumption
is not met because of the high values of ue compared with
ui (recall figure 6). As discussed in section 4.3.2, this is
due to an overly large flux of escaping suprathermal electrons
for the unphysically high value of λ∗

D0 = 0.01 in the
reference simulation. Despite this, the duration and magnitude
of these unphysically large currents are still small enough
that quasineutrality persists once the suprathermal electrons
have left the bulk plasma. The subsequent evolution of
the distribution functions inside the quasineutral region is
therefore unaffected in the reference simulation, compared
with simulations with smaller (more realistic) values of λ∗

D0.
It is therefore concluded from this analysis that a value

of λ∗
D0 = 10−2 is sufficiently small that the assumptions

of quasineutrality and of negligibly small current density
evolution are well met across the majority of the plasma and
over the majority of times. The effect of using a lower value of
λ∗

D0 is to decrease the initial currents caused by suprathermal
electrons and, as was predicted in section 3.7, to widen the
quasineutral region. The evolution of the distribution functions
inside the quasineutral region are negligibly affected, however.
This explains the observation by Manfredi et al (2011) that two
simulations with λ∗

D0 = 10−2 and λ∗
D0 = 2.5 × 10−3 behave

almost identically.

4.6. Effect of an alternative initial density distribution

Until now, only a symmetrical Gaussian initial density has been
considered. In this section, the effect of two alternative initial
density profiles is assessed. The first is a sum of two logistic
curves:

nα(x, t = 0) = nα0

(
1

1 + e−(x+σ0

√
π
2 )/s

− 1

1 + e−(x−σ0

√
π
2 )/s

)
,

(51)

where s sets the steepness of the curve and the factor
√

π/2
ensures that the total number of particles and energy remain the
same as for the Gaussian case. The second is an asymmetric
Gaussian distribution, with width σ0 + σ ′

0 for x < 0 and width
σ0 − σ ′

0 for x > 0:

nα(x, t = 0) =




nα0 exp

(
− x2

2(σ0+σ ′
0)

2

)
for x < 0

nα0 exp

(
− x2

2(σ0−σ ′
0)

2

)
for x > 0.

(52)
Two simulations are discussed. The first will be referred to
as the ‘sigmoid simulation’ with initial density given by (51),
with σ0 = 0.1L and s = 0.01L. The second will be referred
to as the ‘asymmetric simulation’ with initial density given
by (52), with σ0 = 0.1L and σ ′

0 = 0.03L.
Figure 12 shows, as solid lines, the ion density evolution

over the first 2τσ for (a) the sigmoid simulation and (b) the
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Figure 12. Relaxation towards the Gaussian ni profiles of the
reference simulation (dotted lines) for (a) the sigmoid simulation
and (b) the asymmetric simulation, both of which are plotted as
solid lines.

asymmetric simulation. The evolution of the reference
simulation, with σ0 = 0.1L, is plotted as dotted lines for
comparison. In both non-Gaussian simulations, the density
profiles evolve towards the Gaussian profiles of the reference
simulation on a timescale τσ . For the asymmetric initial
condition, there is a small displacement of the evolved
Gaussian density away from x = 0, but this displacement
remains constant and small throughout the expansion.

Figure 13 shows the same comparisons, but for the ion
fluid velocity. At t = 0.01τσ , ui(x) is considerably different in
the simulations with non-Gaussian initial conditions compared
with the Gaussian reference simulation. This is because, in
all three simulations, ui is set by the electric field, which
in turn is set by the spatial gradient of the initial density.
Thus, for the sigmoid simulation (a), ui peaks at the edge
of the plasma bunch, where the density gradient is strongest,
while for the asymmetric simulation (b), ui is greater in the
positive-x region than in the negative-x region, again due to
the stronger initial density gradient where x > 0. Despite
this clear difference in ui at early times, by time t = 2τσ (as
was the case for the density profiles) the ui profiles for both
non-Gaussian simulations are very well matched to that of the
reference simulation.

Since both the density and ion velocities in the non-
Gaussian simulations quickly converge to those of the
Gaussian reference simulation, one would expect the energy
flux densities at the target (which are dominated by the kinetic
energy of the ion flow and by the convection of electron and
ion perpendicular thermal energy) to also be similar to the
reference simulation. This is indeed the case. Figure 14
plots Qi and Qe as a function of t/τL for (1) the reference
simulation at x = L, (2) the sigmoid simulation at x = L, (3)
the asymmetric simulation at x = L, and (4) the asymmetric
simulation at x = −L. In all four cases, the energy flux
densities to both targets are minimally affected by the initial
density profile.

It seems, therefore, that the assumption of a Gaussian
initial density makes little difference to the dynamics of the
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Figure 14. Energy flux densities to the targets due to ions (left) and
electrons (right). Labelling is as follows: (1) reference simulation at
x = L, (2) sigmoid simulation at x = L, (3) asymmetric simulation
at x = L, (4) asymmetric simulation at x = −L.

plasma expansion on timescales longer than τσ . Although
further work is required to understand the physical reason
behind this result, it suggests that the conclusions drawn in
this paper for expansion of a Gaussian plasma bunch can be
extended to non-Gaussian initial density profiles as well.

4.7. BIT1 comparison with VESPA reference simulation

The results presented in section 4.5 strongly suggest that
a further decrease in λ∗

D0 will not affect the particle and
energy flux densities to the target. To dispel any remaining
doubt on this point, a massively parallel, collisionless BIT1
simulation was run for the same settings as the VESPA
reference simulation, but with λ∗

D0 = 1.3 × 10−5. This run
required ∼2.5×105 CPU hours, spread over 4096 processors.

The results for Qi and Qe at the target according to BIT1
are plotted as solid black lines in figure 15. For comparison,
the analytic solutions for Qi and Qe, given by equation (34),
are plotted as dotted red lines. As expected, these agree almost
perfectly, legitimizing the use of an unphysically large value
for λ∗

D0 in the VESPA simulations.
It should be noted that another BIT1 simulation was run

with the target inclined to a magnetic field of magnitude
such that the ion Larmor radius was ∼100 times longer than
λD0, which is a physically realistic ratio, corresponding to a
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Figure 15. Ion and electron energy flux densities to the target
calculated by a BIT1 simulation with identical input parameters to
the VESPA reference simulation, except for λ∗

D0 = 1.3 × 10−5 (solid
black lines). The analytic solutions according to (34) are plotted for
comparison (dotted red lines).

hydrogen plasma with B = 1 T, Ti0 = Te0 = 1500 eV and
ne0 = 5 × 10−19. This was found to cause oscillations in
the target energy flux densities at the ion cyclotron and lower
hybrid frequencies. However, once smoothed over the ion
cyclotron frequency, the profiles were the same as those plotted
in figure 15.

4.8. Effect of collisions

Coulomb collisions were turned on in an otherwise identical
BIT1 simulation to the one described above. In a collisional
simulation, absolute input values become important. For this
simulation, input values of Te0 = 1.5 keV, ne0 = 5×1019 m−3,
σ0 = 6 m and L = 30 m were used. It was found that the
presence of collisions allows for an isotropization between
the parallel and perpendicular electron temperatures (here, the
parallel temperature, which is normally labelled Tα , will be
labelledT ‖

α to distinguish it from the perpendicular temperature
T ⊥

α ). Since parallel expansion causes T
‖

e to be below T ⊥
e ,

this isotropization corresponds to an energy transfer from the
perpendicular electron thermal energy to the parallel electron
thermal energy.

The isotropization is demonstrated in figure 16(a), which
plots T

‖
e (black solid lines) and T ⊥

e (red solid lines) for the
collisional BIT1 simulation, as well as the analytic parallel
temperature given by (15) (black dotted lines), at times t =
0.004τσ , t = 0.91τσ and t = 4.49τσ (note that, by time
t = 0.004τσ the electric field has been set up across the
quasineutral region). In the collisionless case, T ⊥

α remains
constant in space and time at its initial value Tα0 = 1.5 keV.

For times before t ≈ τσ , T ⊥
e stays at 1.5 keV and

T
‖

e matches equation (15) inside the quasineutral region, as
was also found in the collisionless case (recall figure 6).
On longer timescales, however, T ⊥

e drops below 1.5 keV
and T

‖
e exceeds the analytic prediction, despite the action

of the sheath to decrease T
‖

e below the analytic prediction.
This is evidence that the perpendicular and parallel electron
temperatures are beginning to isotropize. In contrast to the
electrons, figure 16(b) shows that very little isotropization
occurs between the ion temperatures so that T

‖
i and T ⊥

i
correspond very well to the collisionless case within the
quasineutral region.
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Figure 16. Electron temperature isotropization in the collisional
BIT1 simulation. (a) T ‖

e (black solid lines) and T ⊥
e (red solid lines)

in the simulation, compared with equation (15) (black dotted lines)
at different times as indicated. (b) The same plot for the ion
temperatures.

The increased mobility of the electrons in the parallel
direction due to electron temperature isotropization causes
an increase in the magnitude of the electric field, which in
turn accelerates the ions to higher fluid velocities than in the
collisionless case. This is demonstrated in figure 17, in which
solid lines represent (a) eφ(x)/Te0 and (b) ui(x)/cs for the
collisional simulation, at the same times that were plotted
in figure 16. These should be compared with the dotted
lines, which represent the collisionless analytic predictions
of equations (17) and (13) (note that the analytic φ has
been normalized to have the same peak value as the BIT1
simulation). As was the case for the temperatures, before
t ≈ τσ , φ and ui agree well with the collisionless case in
the quasineutral region. On longer timescales, however, both
|∂φ/∂x| and ui are significantly increased compared with the
collisionless case (the noisy values at t = 0.004τσ are due to
the particle-in-cell nature of BIT1).

Figure 18 compares the resulting ion and electron energy
flux densities at the target with the collisionless analytic
equation (35). The increase in ui at the target, which occurs
before Qi reaches its peak, acts to increase the peak value
of Qi compared with the collisionless case. The drop in T ⊥

e
decreases the convected electron thermal energy (and therefore
Qe) compared with the collisionless case; however, the peak
Qtot is still increased. Thus, for the particular input parameters
used in this collisional BIT1 simulation, electron–electron
collisions do have a role to play. They act to transfer energy
from the perpendicular plane to the parallel direction, thereby
increasing the electric field and accelerating the ions more than
in the collisionless case. This results in a ∼25% increase in
the peak value of Qtot compared with the collisionless case.

It is important to estimate the strength of this isotropization
effect for different input parameters. The isotropization time
for species α is given by (NRL Plasma Formulary)

τα
T = m

1/2
α (kT ‖

α )3/2

2πq4
αnα ln �

A2

(
−3 + (A + 3)

tan−1
(
A1/2

)
A1/2

)−1

, (53)
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Figure 17. Effect of electron temperature isotropization on
(a) eφ(x)/Te0 and (b) ui(x)/cs. The same times are plotted as in
figure 16. Solid lines represent the collisional BIT1 simulation and
dotted lines represent the collisionless analytic solutions from
equations (17) and (13). In (a), the analytic φ has been normalized
to have the same peak value as the BIT1 simulation.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

t/τ
L

Q
i/(

n i0
c sT

i0
)

 

 

0 0.5 1 1.5
0

0.05

0.1

t/τ
L

Q
e/(

n e0
c sT

e0
)

 

 
BIT1

Analytic

BIT1

Analytic

Figure 18. Effect of collisions on the ion and electron energy flux
densities in the BIT1 simulation.

where ln � is the Coulomb logarithm and A ≡ T ⊥
e /T

‖
e − 1

(note that for the case considered here A > 0). It is
seen that τ i

T /τ e
T = √

mi/me, i.e. isotropization between
ion temperatures takes much longer than between electron
temperatures, in agreement with the collisional BIT1
simulation. Electron temperature isotropization is expected
to be significant if it has time to occur before the energy flux
density to the target reaches its peak, i.e. if τ e

T < tmax
Q (L) =

0.556L/cs.
A representative value for τ e

T can be calculated using
the collisionless values for T

‖
e , T ⊥

e and the peak ne, when
t = tmax

Q (L). The resulting ratio of τ e
T /tmax

Q (L) is plotted in
figure 19 as a function of Te0, for different combinations of σ0

and L, and for a density corresponding to the ITER pedestal
density of 8 × 1019 m−3. These values should be compared
with the value of τ e

T /tmax
Q (L) in the collisional BIT1 simulation,

which was 0.46 and is shown as a dotted line. If values fall
below this line then isotropization is expected to play a more
important role than in the BIT1 simulation.

For values ofL equal to to a typical equilibrium connection
length of L ∼ 60 m on ITER, τ e

T /tmax
Q (L) is seen to be larger

than the BIT1 collisional simulation for realistic (pedestal)
values of Te0 and for σ0 � 6 m. Thus, electron temperature
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Figure 19. Expected strength of the electron temperature
isotropization effect (measured by τ e

T /tmax
Q (L)) as a function of Te0

for ne0 = 8 × 1019 m−3 and for different values of σ0 and L, as
indicated. The dotted line shows the value of τ e

T /tmax
Q (L) for the

collisional BIT1 simulation.

isotropization is expected to play less of a role than reported
for the BIT1 simulation described above. However, if the
connection length is significantly longer than its equilibrium
value (as shown by the σ0 = 20 m, L = 200 m case), then
isotropization will have more time to take place, and the total
energy flux density would be expected to peak at a significantly
higher value than for the collisionless case. It is concluded that
the absolute values of L and σ0 during an ELM on ITER will set
the degree to which electron isotropization (and the resulting
increase in peak Qtot) are important.

4.9. Effect of a distributed source in time

Until now, the source function has been instantaneous. In
reality, however, the duration of the source may be significant
compared with τσ , and possibly compared with the longer time
τL also. A preliminary investigation into the effect of setting
τsrc > 0 is made in this section. It is important to note that,
as for the instantaneous-source case, the dynamics inside the
quasineutral region, as well as the particle and energy flux
densities at the target, were found to be independent of λ∗

D0 for
λ∗

D0 � 10−2. This allowed the simulations to be completed
on reasonable timescales. For all simulations in this section, a
value of λD0 = 10−2 was used.

4.9.1. Upstream evolution is independent of the connection
length. When τsrc takes finite values, the upstream density
nα(x = 0) no longer peaks at t = 0 with a value nα0. Instead,
nα(x = 0) peaks at t = τsrc with a value that is lower
than nα0 and which decreases with increasing τsrc. This is
demonstrated in figure 20, which plots ne(x = 0) as a function
of t/τσ , for different values of τsrc and L∗. As expected
for the τsrc → 0 cases (plotted in black), the evolution of
nα(x = 0) is independent of the connection length for the
explored parameter range. This implies that the sheath has no
effect on the upstream density evolution, at least for L∗ � 2.
Importantly, this lack of dependence on the connection length
is also seen for finite values of τsrc (plotted in green, blue and
red for different values of τsrc). Thus, the sheath plays little
role in the upstream density evolution even when the source is
finite. Rather, the evolution is determined by τsrc/τσ .

Consider now the evolution of the upstream temperature
Tα(x = 0). This is shown in figure 21 for the same set of
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different values of τsrc and L∗, as indicated. The same line styles are
used as in figure 20.

simulations that were plotted in figure 20 (note that the same
line styles and colours are used). As for the upstream density,
the upstream temperature evolution is determined primarily by
τsrc/τσ . The connection length does play some role (there is
a small decrease in Te(x = 0) for small L∗ = 2, compared
with higher values of L∗, due to the action of the sheath),
but this effect is minimal. Note that, before the source is
removed, the fall in Tα(x = 0) is identical for all values of
τsrc/τσ . Furthermore, Te(x = 0) is seen to decrease faster
than Ti(x = 0) while the source is present. This is due to the
transferral of energy from electrons to ions via the potential
created by a spatial gradient in the ELM source. It is not due
to the target sheath.

4.9.2. Target Qtot deviates from σ0 → 0 solution when
τsrc/τL � 0.1. Although the upstream evolution with a finite
source duration is determined by τsrc/τσ , the target evolution
of the total target energy flux density is determined by τsrc/τL.
Figure 22 plots Qtot at the target for different values of τsrc and
for L∗ = 10. As long as τsrc � 0.1τL, the evolution of the
target energy flux density remains almost unchanged from the
τsrc → 0 case.

4.9.3. Electron heat flux densities are no longer negligible.
Consider the particular simulation with the same input
parameters as the reference simulation, but with τsrc = 10τσ =
τL (the red lines in figures 20 and 21). Figure 23 plots
the total energy flux densities (solid lines) and the heat flux
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Figure 23. Qα (solid lines) and qα (dotted lines) for (a) ions and (b)
electrons in a simulation equivalent to the reference simulation, but
with τsrc = 10τσ = τL. Plots are made at times spanning the
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densities (dotted lines) for (a) ions and (b) electrons, at t = τσ ,
t = 10τσ = τsrc and at t = 15τσ .

It is seen that qx
e makes a significant contribution

to Qx
e throughout the expansion. In fact, with a time-

distributed source, the ion and electron distribution functions
are strongly non-Maxwellian, and are not symmetric about
the fluid velocity. The underlying physics for this difference
between the instantaneous and time-distributed source cases
is still under investigation. Although not fully understood,
the resulting finite electron heat flux density has important
consequences for the validity of using a fluid approach to model
the expansion with a time-distributed source. In particular,
it is expected that the accuracy of a fluid closure which sets
qx

α = 0 will be significantly diminished compared with the
instantaneous-source case.

4.9.4. The target sheath is still negligible. For the
instantaneous source, it was observed that the effect of a target
sheath at x = L can be eliminated in the simulation by moving
the boundary to x = 2L. Assuming that this is also true for
finite values of τsrc, the same exercise can be carried out to
determine the role of the sheath when τsrc > 0. Figure 24
shows the simulation values for Qx

i (a), Qx
e (b) and Qe + Qi
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(c) at the target for simulations with L∗ = 10 (black lines) and
L∗ = 2 (blue lines). Values of Qx

α as a function of x/L at time
t = τsrc are plotted for the L∗ = 2 simulation in (d).

For both values of L∗, Qx
e makes a larger contribution to

Qtot than in their equivalent instantaneous-source cases (recall
figure 9). However, the contribution is still small, due to energy
transferral from electrons to ions via the electric field. For the
L∗ = 10 simulation, moving the boundary to x = 2L makes
little difference to either Qx

i or Qx
e at the target, and makes

almost no difference to Qtot. It is concluded that the sheath
has little effect at this value of L∗. For L∗ = 2, the sheath does
act to transfer energy from electrons to ions within the sheath
region, as it did in the instantaneous-source simulation with the
same value of L∗ (recall figure 9). However, also consistent
with that instantaneous-source simulation is the fact that Qtot

at the target is almost completely unaffected by moving the
boundary. Furthermore, as is seen in figure 24(d), away from
the sheath entrance Qx

α is almost unaffected by moving the
boundary to x = 2L. The majority of the difference between
Qx

α at the target in the simulation with a boundary at x = L

and Qx
α at the target in the simulation with boundary at x = 2L

arises due to energy transfer which takes place inside the
sheath. Thus, the sheath acts only to alter the partition of ion
and electron energies reaching the target, but does not affect
the dynamics of the plasma expansion to the target.

5. Discussion

5.1. Estimation of realistic input parameters for an ELM
filament

5.1.1. m∗(≡ mi/me) and Z. These inputs are
straightforward. Assuming pure hydrogen, deuterium and
helium plasmas, the mass ratios are m∗ = 1836, m∗ = 3672
and m∗ = 7294, respectively, and the proton numbers are
Z = 1, Z = 1, Z = 2.

5.1.2. T ∗(≡ Ti0/Te0). Direct measurements for temperature
ratios during an ELM do not exist. However, the injected
temperature ratio is presumably similar to its value at the inter-
ELM pedestal, i.e. T ∗ ∼ 1–3 (see Koc̆an et al (2011) and
references therein).

5.1.3. σ0. Although not an input parameter itself, the
remaining three dimensionless inputs (λ∗

D0, L∗ and τ ∗
src) require

knowledge of the parallel extent of the filament, σ0. It is
known from double-null experiments that the ELM pressure
perturbation occupies a region on the outboard side only
(Counsell et al 2002, Petrie et al 2003). Furthermore, at least in
the upstream region, the filament appears to remain aligned to
the pre-ELM magnetic field lines (Kirk et al 2006, Jakubowski
et al 2009). Assuming that the perturbation occupies a similar
poloidal extent to the ballooning region of the particle flux in
L-mode, measured as θ0 ∼ 0.5 rad on Tore Supra (Gunn et al
2007), σ0 can be estimated as

σ0 ∼ Rθ0q95 ∼ 0.5Rq95, (54)

where q95 is the edge safety factor. For ITER with q95 = 3
and R = 6.2 m, (54) gives σ0 ∼ 9 m. It should be noted that
fast camera images on MAST show the density perturbations
to be more spread out in the parallel direction than this number
suggests (Kirk et al 2006). This may be because significant
parallel transport has occurred before the filaments are imaged,
although further investigation is required on this point.

5.1.4. λ∗
D0(≡ λD0/σ0). λD0 =

√
ε0Te0/e2ne0 requires typical

values for Te0 and ne0. Te0 is assumed to be the pedestal
electron temperature, expected to be ∼4.3 keV for QDT = 10
conditions on ITER (Loarte et al 2004). The peak density of a
filament is typically measured as being similar to the pedestal
density (Loarte et al 2003, Kirk et al 2006, Beurskens et al
2009), i.e. ∼8 × 1019 m−3 for a QDT = 10 ITER plasma
(Loarte et al 2004). Using Te0 = 4.3 keV, ne0 = 8 × 1019 m−3

and σ0 = 9 m gives λ∗
D0 = 6 × 10−6 on ITER, and values

to within an order of magnitude for all other machines. An
important conclusion from this paper is that the particle and
energy flux densities to the target are independent ofλ∗

D0 as long
as λ∗

D0 � 10−2. This condition is clearly met in experiment
(note that, for a time-distributed source, ne0 might be up to ∼3
times larger than the measured peak density, but this will only
act to decrease λ∗

D0 further).

5.1.5. L∗(≡ L/σ0). If the magnetic field lines within the
filament remain unperturbed relative to their pre-ELM state,
then the connection length within the filament can be estimated
as L ≈ πRq95. Using (54) gives L∗ ∼ π/θ0 and is machine
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independent. With θ0 = 0.5 rad, this gives L∗ ∼ 6. Even if the
source was spread over a poloidal angle of θ0 = 90◦, L∗ would
still only go down to∼2. Furthermore, in reality the connection
lengths within an ELM filament may be significantly increased
compared with their pre-ELM values, with the majority of the
field line existing in the X-point region. JOREK simulations,
for example, suggest perturbed connection lengths during the
ELM phase of up to ∼17πRq95 on JET (Huysmans et al 2009).
It seems likely, therefore, that the result from this paper that the
sheath only plays a role when L∗ � 5, and that even at L∗ = 2 it
only acts to repartition energy between ions and electrons (not
to alter the total energy flux density to the target), is physically
relevant on all machines.

Note that this result is unlikely to be significantly affected
if the source is centred away from x = 0, or if the injected
particles are given an initial drift velocity towards one of the
targets. As long as the majority of electrons have time to cool
before the bulk of the plasma reaches the target, the sheath is
expected to be negligible.

5.1.6. τsrc. An absolute value for τsrc is particularly difficult
to estimate, since it depends on how the pressure perturbation in
the filament becomes magnetically connected to the target. If it
is the case that the filament drifts radially across relatively static
field lines and into the pre-ELM SOL, then the modelled field
lines are those of the pre-ELM SOL and τsrc is the time required
for the filament to transport into it. This is the so-called
‘drift hydrodynamic’ transport proposed in (Fundamenski et al
2007). τsrc can then be estimated as τsrc ≈ δr/ur , where δr is
the radial extent of the filament and ur is the average radial
speed of the filament. On the other hand, if it is the case
that the filament becomes magnetically connected to the target
due to the motion of field lines, so that the filament serves as
a conduit for the pedestal energy (Kirk et al 2006), then the
modelled field lines are those moving field lines and τsrc is a
combination of the time required for the filament to form and
the time for which the field lines are connected to the pedestal.
In this case, τsrc is more difficult to estimate. Resolving which
of these two models best fits reality should be a primary focus
of the ELM transport community. For now, however, a direct
determination of the absolute value for τsrc remains elusive.

That being said, there does appear to be strong
experimental evidence that, whichever model is more realistic,
τsrc � 0.1τL. This comes primarily from the excellent
agreement that is found between the free-streaming model and
experiment. In (Eich et al 2009) the power flux density to
the target predicted by the free-streaming model (essentially
equation (34)) was compared with the total power arriving
at the target according to infra-red camera measurements on
JET and ASDEX Upgrade. An excellent fit to the absolute
measurements at the outer target in normal field configuration
was achieved when values of L ≈ 9πRq95 were used
for both JET and ASDEX Upgrade measurements. The
results of this paper suggest that this agreement between
equation (34) and experiment can only exist if L∗ � 5 and
τsrc � 0.1τL. Furthermore, the free-streaming model predicts
that the rise time for the total power to the target should be
directly proportional to L/cs (recall equation (36)) and, using

L ∝ Rq95, this is indeed what is found in experiment across
a wide range of R, q95 and cs (Loarte et al 2004, Loarte et al
2007).

As discussed by Eich et al (2009), the excellent agreement
between (34) and experiment could also be recovered if a
source with duration several times longer than τL was used,
and if the connection length remained unperturbed from its
pre-ELM value. However, such a source would have to
vary in time in just such a way that the power to the target
mimics the free-streaming time profile. It would have to do
this on multiple machines and it would have to vary with L

and cs in just such a way that the observed proportionality
between the rise time and L/cs is maintained. Given these
stringent conditions, it seems more likely that L∗ � 5
and τsrc � 0.1τL.

An objection to the suggestion that τsrc � 0.1τL might be
that the total energy reaching the target cannot be accounted
for unless the upstream density rises to values which are
considerably higher than observed in experiment. However,
this is not necessarily the case, since the reduction in upstream
density due to a distributed source is dependent on the value
of τsrc relative to τσ , not relative to τL (section 4.9.1). For
large values of L∗, it can be the case that τsrc � 0.1τL

whilst at the same time τsrc significantly exceeds τσ . For
example, using (54) for σ0 and the experimentally fitted value
of L ≈ 9πRq95 gives L∗ ∼ 9π/θ0. A source duration of 0.1τL

will then be equivalent to 0.9π/θ0τσ = 5.7τσ for θ0 = 0.5 rad.
Interpolating the peak values in figure 20, this source duration,
along with a peak upstream electron density of 5 × 1019 m−3,
corresponds to a value of ne0 = 10.7 × 1019 m−3. The total
energy in the ELM is then given by

EELM ≈ 3nfilA⊥(Ee0 + Ei0), (55)

where nfil is the number of filaments and A⊥ is the area of
a single filament in the drift plane. On JET, nfil ∼ 10–20
(Pitts et al 2006, Jakubowski et al 2009). The perpendicular
area of a filament is roughly elliptical, with a major radius in
the diamagnetic direction of δ∧ ∼ 10–20 cm and minor radius
in the radial direction of δr ∼ 4–5 cm (Kirk et al 2008) and
references therein). Thus, A⊥ ≈ πδ∧δr ∼ 30–80 cm2. Using
Te0 = 1500 eV and T ∗ = 3 gives an upper range for EELM

of 320 kJ, in line with typical experimental measurements on
JET (Beurskens et al 2009).

5.2. Can a fluid approach be used to model parallel ELM
transport?

This is an important question for the edge plasma modelling
community since many codes, such as EDGE2D and JOREK,
use a fluid approach to model ELM parallel transport (Wiesen
et al 2011, Pamela et al 2011). It might be inferred from the
low collisionality of the pedestal, that fluid equations, which
assume a high collisionality, are not appropriate. However,
high collisionality is a sufficient, but not a necessary, condition
for a fluid approach to be valid. If the velocity distribution
functions remain symmetric about the fluid velocity then there
is no heat flux density and the fluid equations can be closed
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by setting qα = 0. The simulations presented in this paper
show that with an instantaneous source this is indeed the case
inside the quasineutral region of a plasma bunch expanding
into vacuum.

In fact, since the temperatures are constant in space for the
adiabatic expansion of a quasineutral Gaussian plasma bunch
into infinite vacuum, analytic solutions to the fluid equations
can be derived with the assumptions that ne = ni, Tα =
constant and qα = 0 (Mora 2005). Actually, the solution given
by Mora (2005) assumed cold ions; however, the inclusion of
warm ions using the same procedure described in that reference
is trivial. These solutions for nα , u and Tα are then identical
to those given in section 3.2 by solving the VP equations.
In this particular case, therefore, the fluid approach is exact.
The only ‘kinetic aspect’ to the expansion comes outside the
quasineutral region, and is of negligible consequence for the
particle and energy flux densities to the wall.

It was shown in section 4.6 that, for an instantaneous
source, the solution on timescales longer than τσ is fairly
insensitive to the initial shape of the density perturbation.
However, it remains to be seen whether this is also the case
when a fluid model is used. In addition, the transfer of energy
from the perpendicular to parallel directions, demonstrated in
section 4.8, would not be captured in typical fluid models which
assume a single temperature for electrons and ions. Another
important aspect not discussed in this paper is the effect of
a background plasma on the expansion dynamics. Whether
a background plasma affects kinetic and fluid simulations in
the same way will be investigated in future work. Finally,
as was shown in section 4.9.3, when τsrc � τσ , a significant
electron heat flux density arises. A fluid closure which sets
qe = 0 may lead to significant error in this case, and this
should be a topic of future research. This can be seen
as a continuation of the work started by Havlı́c̆ková et al
(2012).

The results from this paper have important implications for
the boundary conditions that should be used in fluid simulations
of ELM filaments, which are only able to model up to the sheath
entrance. In general, when L∗ � 5, the plasma behaves as if
there was a negligible sheath. Such a situation might best
be modelled using continuous gradient boundary conditions,
although this requires further investigation. Certainly, use
of the marginal Bohm criterion M = 1 cannot be justified,
since the Mach number at the sheath entrance can significantly
exceed unity during the ELM transient. Furthermore, although
it may be reasonable in the steady state to set the energy flux
densities at the sheath entrance such that Qx

i = γiniTic
se
s

and Qx
e = γeneTic

se
s (where cse

s is the local sound speed
at the sheath entrance and γi ≈ 3.5 and γe ≈ 5 are the
sheath transmission coefficients), this is not justifiable during
an ELM transient, particularly for the dominant ion energy
flux density. To see this, consider the instantaneous-source
case. For L∗ = 2, Qx

i peaks at a value equal to 5.1niTic
t
s, in

reasonable agreement with the standard boundary condition.
However, for L∗ = 10, Qx

i peaks at a value equal to
956niTic

t
s, well in excess of the value given by the steady-state

boundary condition. Such boundary conditions are therefore
inadvisable.

6. Conclusions

This work has introduced an existing analytic solution for
plasma expansion to the ELM transport community. The
solution solves the VP model for the collisionless, adiabatic
expansion of a Gaussian density perturbation into an infinite
vacuum, assuming quasineutrality at all times. In the limit
σ0 → 0, the solution recovers the free-streaming solution once
a substitution vT i → cs is made. Furthermore, as long as
L∗ � 5, the free-streaming solution for the particle and energy
flux densities at the target are a good approximation to those
found for the generalL∗ case. This helps one to explain how the
free-streaming model can agree so well with measured target
power loads, and suggests that L∗ � 5 and τsrc/τL � 0.1 in
experiment. It was also demonstrated, via a comparison with
numerical solutions, that if the plasma is quasineutral in the
bulk initially, then it is quasineutral in the bulk at all times.

For values of L∗ down to the minimum explored value of
L∗ = 2, the dynamics of the expansion inside the quasineutral
region is unaffected by the presence of a target sheath. The
target sheath is negligible because the majority of electrons,
which arrive with the ions, are too cold to set up a significant
sheath by the time they reach the target. For L∗ � 5
the electron and ion energy flux densities at the target are
negligibly affected by the formation of this weak sheath.
Energy exchange from electrons to ions occurs on a timescale
τσ via a potential which is set up due to the parallel gradient
in the density, and has nothing to do with the target sheath.
For L∗ � 5 the sheath does act to repartition the target energy
flux density between electrons and ions, but the total target
energy flux density is unaltered from the analytic solution
which ignores the sheath. Furthermore, numerical simulations
suggest that the sheath can also be neglected when the source
is spread over a significant duration, up to τsrc = τL.

This conclusion is in contrast to the existing consensus in
the ELM parallel transport community. In the ITER Physics
Basis (Loarte et al 2007), for example, it was stated that the
‘sheath plays a major role in limiting the energy flux from the
pedestal plasma to the divertor during the ELM power pulse’.
The evidence in this paper suggests that in fact sheath formation
can be ignored, as long as L∗ � 5.

For the particular case of an adiabatic expansion of a
Gaussian density perturbation into an infinite vacuum, the fluid
approach is exact. Future work will investigate the agreement
between fluid and kinetic models for a time-distributed source
and in the presence of a background plasma. Also, further
complexity will be introduced to the VESPA simulations by
including magnetic mirroring effects and collisions.
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