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Abstract

An Eulerian Vlasov code is used to model plasma-wall interactions in a weakly collisional plasma. The different numerical
methods used to solve the Vlasov and Poisson equations are described in detail. The code is used to simulate measurements of
the ion distribution and ion temperature in a low-pressure argon plasma. In particular, it is shown that the presence of material
walls can lead to significant errors in the measurements, if the effect of the sheaths is not properly taken into account.
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1. Introduction ized in the scrape-off layer and transported into the
core, where they degrade the plasma confineifignt
A detailed understanding of plasma-wall interac-  Another application of plasma-wall interactions

tions is of paramount importance in a large number of concerns the interpretation of probe measureni@hts
problems of practical interest. This is hardly surpris- Indeed, a large variety of diagnostics are obtained with
ing, as any plasma created in the laboratory needs toProbes inserted into the plasma, thus exposing some
be confined by a material vessel. In tokamak p|asmas, solid surface to the Charged particles. It is well known
for example, material structures such as limiters and that such probe-plasma interaction alters the plasma
divertors are eroded by the impact of energetic ions, Parameters in the vicinity of the probe, and may lead
thus generating impurities (i.e., high Z neutral atoms) 1o significant errors in the measurements.

by physical sputtering. Such impurities may be ion- ~ Perhaps the most important effect caused by the
presence of a solid surface is the formation of plasma
- sheaths. Indeed, ions and electrons hit the surface
" Corresponding author. _ at very different rates, roughly proportional to their
. N'fa:‘f"f; cﬁ;’_drm giovanni. manfred@lpmi.uhp-nancy.fr thermal speeds (for equal teeratures, the electron
1 present address: Laboratoire de Chimie du Solide Minéral, Fhermal speed is at_)OUt f_orty times that of hydrOgen
CNRS UMR 7555, Université Henri Poincaré, BP 239, F-54506, 10NnS). If the surface is an insulator, or kept electrically
Vandoeuvre-lés-Nancy, France. isolated, a net charge develops on it and perturbs the
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ambient electric field, theh temperature and current,
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wherex is the coordinate normal to the wall andhe

as well as other crucial parameters. This perturbation corresponding velocity is the electrostatic potential;
of the plasma, characterized by the presence of ae > 0 andm; are respectively the ion charge and mass
distinct space charge, is called the Debye sheath (DS).and f; (x, v, t) is the ion distribution function in phase

The DS is crucial in mediating the transition from the

unperturbed plasma to the wall, but cannot be directly

space.
Eq. (1)is coupled to Poisson’s equation, where the

connected to the unperturbed plasma. It must be electron density is given by the Boltzmann relation and
preceded by a quasineutral region, the presheath (PS)n; (x, 1) = [ f; dv:

which is dominated by collisions and/or ionization,

whereas the DS is essentially collisionless (in more 32_¢ _
complex cases, the PS may also be determined by 9x?2 €0

geometrical or magnetic effedi3]).
In this paper, we shall propose a kinetic model
for plasma-wall interactions, which is capable of

e
——[ni —noexple¢/kpT,)]. (2)
Here, ¢¢ is the vacuum dielectric constantg is
Boltzmann’s constant], is the electron temperature
andng is the equilibrium ion and electron density in

describing both the collisionless DS and the collisional ¢ unperturbed plasma.

PS. The numerical techniques used to solve this model

will also be described. Finally, the model will be
applied to the physics of plasma-wall interactions in
a low-pressure argon plasma.

2. Model

Numerical and analytical stlies of plasma-wall in-

Appropriate boundary conditions are chosen. At
x = 0 (position of the perfectly absorbing wall) ions
are allowed to leave the system, and no incoming flux
exists; atx = L (plasma core) the ion distribution is
kept fixed and equal to that of the equilibrium plasma,
with given temperatur@&;o and densityg.

For Poisson’s equation, we tae= 0 in the plasma
(x = L), whereas the wall is assumed to be at the
floating potential given by #naccumulation of electric

teractions have frequently been performed using fluid charges on the wall itself. The floating potential is

models for the ions, and assuming thermal equilib-
rium for the electrons (see, for instance, RE}).

Pioneering results with a collisionless kinetic model
and patrticle-in-cell (PIC) simulations were obtained
by Chodurd4] for a magnetized plasma. In the present
paper, we include collisional effects, though we re-

computed by integrating Ampére’s equation on the
wall (x = 0):

3)

whereE = —d¢/dx is the electric field. The ion flux is

— = —e(ji — je)/%0,

strict ourselves to the case of an unmagnetized plasmagiven by: j; = [ vf; dv. The electron flux is estimated

(or a magnetic field normal to the surface, which

by assuming that the electron velocity distribution is

amounts to the same). Therefore, we are able to modelhalf-Maxwellian on the wall, which yields:

the entire transition region (DS and PS), from the un-
perturbed Maxwellian plasma to the wall surface.

For a correct description of the presheath, the
model will have to include collisions and ionization,
at least in a simplified form. The ion Vlasov equa-
tion is thus supplemented with a collision term of the
Bhatnagar—-Gross—Krook (BGK) type, which models
the relaxation of the ion population towards the equi-
librium Maxwellian fp(v) with a typical rate equal to
v [5]. In one dimension, the resulting kinetic equation
reads as:

of o

ar ' ax  my; dx dv

¢ Wi _ 5~ fo. )

v
dx m; 0x ov

7.\ /2
je(0, 1) =no<§§mee> exp(eli(g)). (4)
The BGK term on the r.h.s. oEq. (1) acts as a
sink/source term, whose effect is to reconstruct the
equilibrium Maxwellian on a time scale of order?.
Physically, it is supposed to model ion-neutral colli-
sions and ionizationfp representing the equilibrium
ion distribution far from the wall. Although very sim-
ple, this model contains enough physics to describe
the transition between the equilibrium plasma and the
wall, and has the advantage of depending on a sin-
gle free parameter, namely the collision frequency
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(or equivalently the mean-free-path= vy /v, where

vthi = kB T;0/m; is the ion thermal speed).
In this paper, we shall only be interested in the equi-
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collisional term has an algebraic solution that requires
no interpolation.
The resulting numerical scheme is only first order

librium solutions of this model. In order to obtain such accurate in time, but this is not too important as we
solutions, we first initialize the distribution functionto  are nottrying to describe the time-dependent transient.
be equal to the equilibrium Maxwelliafp; then, we In practice, we start with a relatively large timestep in
let it evolve according to our model equations until a order to roughly approach the final stationary solution,
stationary state appears. As we are not interested in thethen decrease it several &s1to obtain a more accurate

time-dependent transient, there is no need for a very result.

accurate timestepping technique, as long as the final

state is recovered correctly. This point will affect our
choice of the numerical techniques, as detailed in the
following section.

3. Numerical methods

3.1. Vlasov and Poisson’s equations

The ion Vlasov equation is integrated numerically
using an Eulerian code, which solves the kinetic equa-

tion on a fixed phase space grid. The main advantage

of Eulerian codes is their lack of random statistical
noise, inherent to particle-in-cell calculations, which

renders them accurate even in regions of the phase
space where the plasma is dilute (this is the case, for

instance, in the DS, wherde ion density decreases
significantly).

The timestepping technique is based on a splitting
algorithm [6], which amounts to solving, for each
timestep, first the &re-streaming part &q. (1) o; f; +
vy fi = 0, then the term containing the electrostatic
field: o, f; + (eE/m;)d, f; = 0, and finally the BGK
collision term:d, f; = —v(f; — fo). The solution from
timez, to timet, 1 can thus be obtained in three steps:

[ x,v) = f(x —vAL v, 1), (5)
[ (x,v) = f*(x,v—eEAt/m;), (6)
[, v tag1) = [ (x,0) — AL 7 (x,v) — fo)].

(7)

where f* and f** denote intermediate solutions. We

Poisson’s equation is nonlinear because of the ex-
ponential Boltzmann factor appearing in the electron
density. We integrate it by using an iterative method
combined with centered dérences to represent the
second derivative:

(67112677 +9371) —agi*

eAx?

. [ni.j —noexpled/kpT.)] — ag}, (8)

where the subscript indicates the grid point, and the
superscripts the iteration step. Notice that, without
the term proportional tac on both sides oEq. (8)

this iterative procedure would not be convergent.
Various tests have shown that the fastest convergence
is obtained fora ~ Ax?/A%,. The initial guess for
the iterative procedure is taken to be the potential at
the previous timestep. As the potential varies little
from one timestep to the next, this is rather a good
guess, which allows the method to converge in about
20 iterations.

3.2. Non-uniform mesh

The model described isection 2is valid for a
weakly collisional plasmawhere the mean-free-path
is much larger than the Debye length. In this case, the
size of the PS, which scales the mean-free-path, is
much larger than the size of the DS, which is only a
few Debye lengths thick. Furthermore, steep spatial
gradients are generally present in the DS, whereas all
guantities vary much more smoothly in the PS.

We are therefore confronted with a two-scale prob-
lem: a uniform mesh that resolves the DS scale would

see that the standard Vlasov terms give rise to constant,, - «ta 2 [0t of mesh points in the PS. In order to distrib-

shifts in either position or velocity spacEds. (5) and
(6)). In their numerical impmentation, these shifts
require the interpolation of the distribution function
in phase space, which is performed here using a
finite-volume technique described in Rg¥]. The

ute mesh points in a more sensible way, we resort to a
non-uniform grid[8] by introducing the new position
variablez through the relation

X:Z(S,

5> 1 (9)
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Differentiating Eq. (9) we obtain:Ax = 8z ~1Az. If
the mesh points are regularly spaced in theriable
(i.e., Az = const), then the mesh size in real spate
will be smaller near the wall (located at= 0) and
larger further from the wall. This simple trick enables
us to concentrate mesh points in the DS region.
However, the change of variable definedsq. (9)
modifies both the Vlasov and Poisson’s equations,
so that the numerical techniques described earlier
may need to be modified. The transformed Poisson’s
equation becomes:

do

d?¢
+(1- a)d_z

“dzZ
e
= —gazzz‘H[ni (z) — noexpleg (2)/kpTe)].
(10)
Eq. (10)can be solved by means of an iterative method
completely analogous to the one described earlier for
the standard Poisson’s equation.

Things are slightly more complex for the trans-
formed Vlasov equation, which reads as:

afi e 0¢ 0f;
ALk i LA

0z N

(Sz‘s_l%
m; 0z dv

5—1
o1 82 v(fi — fo).
(11)
Unfortunately, the splitting technique detailed in the
previous paragraph would not work well for the trans-
formed Vlasov equatio(iL1). The reason is that, in the
free-streaming term, theffective velocity becomes
v/(8z°~1), which is position-dependent. Therefore the
shift-like solution described ikEqg. (5) would not be
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a position-dependent effective collision rat&(z) =
87571y,

4. Simulations of alow-pressure argon plasma

This section illustrates an application of the Vlasov
kinetic code described previously. We consider a low-
pressure argon plasma confined in a cylindrical mag-
netic multipolar device, as studied experimentally by
Bachet et al[10,11] Their apparatus was especially
designed to measure the ion temperature with the help
of a laser induced fluorescence (LIF) diagnostic. The
main interest of a spectroscopy diagnostic is to provide
valuable information without perturbing the medium
that is being measured. Like all experimental results,
however, spectroscopic measurements need to be care-
fully assessed and interpreted, and a failure to do so
may lead to an incorrect estimation of the measured
quantities.

In the experiment described hefEl], LIF mea-
surements near an electrically floating wall yielded
values of the ion temperature above 2 eV. This is
clearly an overestimation, as the ion temperature in the
plasma core is known to be only 0.05 eV, and even the
electron temperature does not exceed 2 eV. The ori-
gin of this incorrect measurement of the ion temper-
ature is, however, not completely clear. The scope of
our simulations is to suggest a physical explanation for
such an overestimatida.2].

correct, and the numerical scheme would have to be 4.1. Experimental setup and simulation model

significantly modified9].
Instead, our strategy is to replagq. (11)with the
following equation:

oo e b8 _
ot 9z  m; 9z dv

The point is that bothEgs. (11) and (12)possess
the same stationary solutions, although of course not

—827(fi — fo). (12)

Bachet and co-workerfl1] produced an argon
plasma at 6< 10~* Torr in a cylindrical vessel, 45 cm
in diameter and 80 cm long, bounded at each end by
an electrically floating wallKig. 1). By restricting our
study to the region along the cylinder axis (hamed
axis hereafter), we can assume that the lateral surface
of the cylinder is sufficiently distant not to influence

necessarily the same time-dependent transient. Asthe plasma behavior. In this case, the problem can be

we are only interested in the stationary states, we
solve Eq. (12) for which the standard Vlasov code
can be directly applied (indeed only the collisional
term is slightly changed, but this is straightforward to
implement in the code). In practice, this amounts to
solving a Vlasov equation containing a BGK term with

reduced to that of a one-dimensional plasma bounded
by two walls[3,8]. Due to the symmetry of the vessel
(Fig. 1), we can further simplify the geometry of
the problem by considering only half of the cylinder
betweenx = 0 (the wall) andx = L = 40 cm (the
plasma core).
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Fig. 1. Geometry of the experimental setup used by Bachet et al.
[10,11}

Under the conditions of the experiment, the ion—
ion, the ion—electron, and the ion-neutral mean-free-
paths are respectively;; ~ 10* cm, ;. ~ 10° cm,
anda;, ~ 12 cm[11,13] By comparing these typical
lengths with the size of the cylindel.(= 40 cm),
it is clear that only ion-neutral collisions need to
be taken into account. Moreover, as, = 0.3L, the
ions created in the plasma core undergo only a few
collisions before reaching the wall. The plasma is
therefore weakly collisional, and it is appropriate to
describe the ion dynamics by means of a Vlasov
equation(1), supplemented by a BGK collision term
with the collision frequency given byt /Aip .

As detailed inSection 2 the self-consistent elec-
tric potential is computed from Poisson’s equati@)
where we assume Boltzmann electrons with uniform
temperaturel, = 1.8 eV and core densityt,(x =
L) = nog = 10° cm=3 [11]. We postulate a perfectly

1
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absorbing wall located at= 0, so that all ions reach-
ing the wall are lost. Atx = L, the ion distribution

is kept fixed and equal to that of the plasma core:
fi(x = L,v) = fo(v), where fp is a Maxwellian with
temperaturel;p = 0.05 eV and density:;(x = L) =
no=10° cm3[11].

Our aim is to compute the stationary solution of
Egs. (1), (2) which is supposed to be unique. As ex-
plained inSection 2 our procedure is to initialize the
system with a spatially homogeneous initial condition
fi(x,v,t =0) = fo(v), then letit evolve under the ac-
tion of Egs. (1), (2)until a self-consistent stationary
solution has emerged. The results presented in the next
paragraphs refer to the sheath structure for such a sta-
tionary state.

4.2. Sheath structure and ion temperature estimation

Fig. 2 shows the ion and electron density profiles
in the left-hand half of the cylinder (seBig. 1).
The density profiles clearly display two very different
scales of spatial variation: the Debye lengtbe =
0.32 mm (computed withng and 7,) and the ion-
neutral mean-free-path;, ~ 12 cm. These scales
define respectively the non-neutral Debye sheath (DS)
and the quasi-neutral presheath (PS). The boundary
between the DS and the PS seems to be areun@—
4 mm. In order to describe correctly this two-scale
problem without using an excessive number points in
the spatial direction, we have employed a non-uniform
mesh (as described Bection 3.2 An accurate spatial

0.8

0.6

0.4

e | / s |

densities: n; /ny, n,/ n,

200

400

x: position (mm)

Fig. 2. lon and electron density profiles (solid and dashed curvegatsgy) in the left-hand half of the cylinder. The inset shows an
enlargement of the density profiles near the electrically floating wall, locatee=dl. The crosses indicate the mesh points of the non-uniform

spatial mesh used in the Vlasov simulation.
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mesh throughout the DS and the PS was obtained with obtained by LIF is most probably incorrect for this

8 =4 and 400 points.

type of low-pressure plasma (it is even higher than the

Due to presence of a significant space charge, aelectron temperaturg, = 1.8 eV).

strong electric field existin the DS, which accelerates

Our interpretation of this over-estimation relies on

the ions towards the wall and creates a shear in the shearing effect mentioned abot#g. 3(a)shows

their velocity distribution. This is well illustrated by

that the velocity distribution profiles vary significantly

Fig. 3(a) which shows several cuts of the phase space betweenx = 0 andx = 3 mm from the wall (that

distribution at different positions [in this figure, all
distributions f; (v) are renormalized so that they have
the same maximum]. Note that within the DS, the ion
velocity distribution varies rapidly over a distance of a
few millimeters.

Furthermore, even though the ions are Maxwellian
in the plasma core, their velocity distributions near the
wall are clearly not Maxwellian. This fact points out
that a kinetic model is ingled necessary for an accurate
description of the plasma-wall transition, as most fluid

is, within the DS). But the spatial resolution of
the LIF diagnostic is of about 6 min[10], which
roughly corresponds to a resolution of 2 mm in one
dimension. Therefore, the LIF measurement at, for
example,x =1 mm from the wall does not provide
the actual shape of the ion distribution, but rather an
average (or convolution) of the distribution profiles
betweenx = 0 andx = 2 mm. It is obvious from
Fig. 3(a)that such an averaged distribution should
be considerably wider in velocity space, and thus

models do not take into account any departure fromthe yield a larger (and overestimated) value of the ion

Maxwellian distribution. For a non-Maxwellian dis-
tribution, the temperature is not precisely defined. In
such situations, most authofs,4,14] define it as a
quantity proportional to the standard deviation of the
distribution:7; = n””—kﬁ [(v— (v)?f; dv ({v) is the av-
erage velocity), which coincides with the thermody-
namic temperature for a Maxwellian distribution.

At 10 mm from the wall, it is found that the LIF
and simulation results yield similar values for the ion
temperature, respectively 0.24 ¢¥1] and 0.20 eV.
On the contrary, at 1 mm from the wall, the simulation
result is7; = 0.08 eV, whereas the LIF measurement
is T; = 2.26 eV [11]. As explained earlier, such
an exceptionally large value of the ion temperature

temperature.

In order to check the reliability of this interpreta-
tion, we plot inFig. 3(b)the velocity distribution pro-
files (at different positions) averaged over 2 mm. The
average is performed by convolution with a step func-
tion that has a width of 2 mm. At =1 mm, the av-
eraged velocity profile is much wider than the non-
averaged oneRjg. 3(a). The kinetic temperature de-
duced from the averaged velocity distribution is ap-
proximately 7; ~ 0.8 eV, which is ten times larger
than the simulated ion temperature from the raw dis-
tribution, but still smaller than the experimental value
T; = 2.26 eV[11]. However, the temperature given in
Ref. [11] was not computed with the simple formula

distribution function (A. U.)

Fig. 3. Profiles of the ion velocity distributiorf; (v) at different positions. All profiles haveekn normalized so that they have the same
maximum. (a) Raw distributions from the Vlassimulation; (b) averaged distributions.
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given in the previous paragraph (standard deviation of in a tokamak edgg?]. In the present work, the BGK
the velocity distribution), but rather using a more com- term models ion-neutral collisions and ionization in a

plex model due to Emmert et §8]. A direct compar- low-pressure argon plasma. The Vlasov Eulerian code
ison of the temperatures is thus not meaningful. But used to solve the kinetic equation allowed us to obtain
comparing the experimental profil&1] with the nu- fine-resolution results for the ion distribution function,

merical profile (after convolution) shows a remarkable from which accurate estimations of the ion tempera-
agreement, both in the shape and in the width of the ture could be inferred. These were compared to the
distributions. This agreement indicates that the over- experimental results of RefL1], which displayed ab-
estimated LIF temperature is indeed due to the spatial normally large values of the ion temperature near an
variation of the ion distribution in the DS, which oc- electrically floating wall. Our analysis of the ion distri-
curs on a scale shorter than the resolution of the diag- bution function enabled us to detect the origin of such
nostic. overestimated temperatumeasurements, which are

At 10 mm from the wall (which is beyond the due to the rapid ion acceleration in the Debye sheath.
DS and well into the PS), the averaging procedure
leaves the velocity distribution virtually unaffected
(seeFigs. 3(a) and 3(H) This is because the ion Acknowledgements
distribution varies much more smoothly in the PS, so
that the finite resolution of the diagnostic does not ~ We thank F. Doveil and G. Bachet for many helpful
affect the measurement. discussions on the experimental setup.

In summary, we have shown that ion temperature
measurements obtained from LIF diagnostics are not
accurate in the DS, because the typical length of spa- References
tial variations (the Debye lengtiipe >~ 0.32 mm) is
in this case smaller than the resolution of the diagnos- [ P-C. Stangeby, The Plasma Boundary of Magnetic Fusion
tic, which is approximately 2 mm. This problem does Devices, Institute of Physps Publishing, London, 2000.

o . =r ) [2] F. Valsaque, G. Manfredi, .B. Gunn, E. Gauthier, Phys.

not exist in the PS, where spatial variations of the ion Plasmas 9 (2002) 1806.

distribution function are much smoother. [3] K.-U. Riemann, J. Appl. Phys. D 24 (1991) 493.
[4] R. Chodura, Phys. Fluids 25 (1982) 1628.
[5] F. Valsaque, G. Manfredi,. Nucl. Materials 290-293 (2001)
) 763.
5. Conclusion [6] C.Z. Cheng, G. Knorr, J. Comput. Phys. 22 (1976) 330.
[7] E. Fijalkow, Comput. Phys. Commun. 116 (1999) 319.

We have presented a one-dimensional Vlasov— [8] G.A. Emmert, R.M. Wieland, A.T. Mense, J.N. Davidson,
Phys. Fluids 23 (1980) 803.

Poisson model for the treatment_ of weakly collisional [9] E. Sonnendrucker, J. Roche, P. Bertrand, A. Ghizzo, J. Com-
plasmas. The Vlasov equation is supplemented by a = pyt. phys. 149 (1999) 201.
BGK collision term, so that the model is capable of [10] G. Bachet, L. Chérigier, M. Carrére, F. Doveil, Phys. Fluids

describing the entire plasma-wall transition, including BS5(1993)3097. _
both the Debye sheath and the presheath. Although[ll] G. Bachet, L. Chérigier, F. Doveil, Phys. Plasmas 2 (1995)
1782.

S|mple, this model has already been shown to be ap- 12] F. Valsaque, PhD thesis, University of Nancy, France, 2002.

propriate to describe the interaction of a probe (retard- [13] L. cheérigier, PhD thesis, University of Marseille, France, 1994.
ing field analyzer) with a strongly magnetized plasma [14] K.-S. Chung, I.H. Hutchinson, Phys. Rev. A 38 (1988) 4721.



	Vlasov simulations of plasma-wall interactions in a weakly collisional plasma
	Introduction
	Model
	Numerical methods
	Vlasov and Poisson's equations
	Non-uniform mesh

	Simulations of a low-pressure argon plasma
	Experimental setup and simulation model
	Sheath structure and ion temperature estimation

	Conclusion
	Acknowledgements
	References


