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1.  Introduction

Attempts at reproducing on Earth, in a controlled way, the 
nuclear fusion reactions that fuel most stars, including the 
Sun, have mainly followed two approaches—magnetic con-
finement fusion (MCF) and inertial confinement fusion (ICF). 
Both approaches rely on a mixture (plasma) of electrons and 
hydrogen ions (deuterium and tritium), which at very high 
temperatures have a finite probability to fuse together to yield 
heavier ions (helium), thereby releasing large amounts of 
energy in the form of kinetic energy of the reaction products 
(helium ions and neutrons).

At a fundamental level, these two competing approaches 
differ primarily in the physical features of the plasmas. A 
simple measure for a fusion reactor to reach ignition is pro-
vided by the Lawson criterion, which gives a minimum 
required value for the ‘triple product’ of the plasma density 
n, the plasma temperature T, and the energy confinement 
time τE: nTτE > 3 × 1021 keV m−3 s. Broadly speaking, MCF 
plasmas correspond to low densities (n ≃ 1020 m−3) and long 
confinement times (τE ≃ 1  s), whereas ICF plasmas display 
large densities (1030–1032 m−3) and short confinement times 
(τE ≃ 10−10  s). In both cases, the temperature needs to be 
around 100  million degrees (T  ≃  10  keV) in order for the 
fusion reactions to occur. These densities should be compared 
to that of atmospheric air, basically a perfect gas (1025 m−3) 

and solid metal objects (1028 m−3). Thus, MCF plasmas are 
much more rarefied than ordinary gases, while ICF plasmas 
are even denser than solids.

Can one expect any quantum mechanical phenomena to 
take place in such plasmas? Certainly not for MCF. We know 
that quantum features occur at high densities (short distances) 
and low temperature. Since atmospheric air behaves as a 
classical gas at room temperature, then a fortiori this should 
remain so for the more rarefied and hotter plasmas occurring 
in MCF. For ICF plasmas, the situation is more ambiguous, as 
they are both denser and hotter than ordinary solid matter and 
we know that electrons in solids behave quantum mechani-
cally at room temperature. As we shall see, ICF plasmas are 
usually on the border between the classical and the quantum 
regimes.

While quantum effects have no impact on the dynamics 
of MCF plasmas, they do play an important role in deter-
mining the cross sections  of the fusion reactions. For the 
reactions to take place, the hydrogen ions need to overcome 
the repulsive Coulomb barrier, which is about 300  keV. 
However, quantum tunneling allows the classical barrier to 
be overcome at somewhat lower energies, of the order of 
100 keV. Then, for a plasma with temperature T ≃ 10 keV, 
there are enough particles in the Maxwellian tail with suf-
ficient energy to tunnel through the Coulomb barrier and 
trigger a reaction. We will not consider this aspect here and 
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rather concentrate on the influence of quantum effects on the 
collective plasma motion.

This review will focus on the quantum electron dynamics 
in solids, particularly metals, for which the conduction elec-
trons can be viewed as a mobile plasma neutralized by the 
background ions. Quantum effects arise because of the 
large density, which means that electrons are closely packed 
together. These quantum features become even more apparent 
for metallic objects of nanometric size (1 nm = 10−9 m), such 
as metallic nanoparticles, thin films, and nanorods, which 
have stimulated a huge amount of scientific interest in the 
last two decades [1], both for fundamental research and for 
potential technological applications that range from physical 
chemistry, to biology and medicine. For instance, ‘plasmonic 
resonances’, ie, electronic oscillations near the plasma fre-
quency ω ε= n me /p

2
0 , are routinely observed in metallic 

nanoparticles and their properties (resonance width, damping, 
dipole and quadrupole modes, …) are studied experimentally 
using ultrafast spectroscopy techniques. Indeed, as the plasma 
period in metallic nanoparticles is of the order of one femto-
second (10−15 s), the recent development of femto- and atto-
second laser sources has opened up a vast domain of research 
that is still being explored [2, 3].

Finally, quantum plasma effects can be observed in astro-
physical systems—interior of giant planets, white dwarfs, 
neutron stars and pulsars—due to the extreme conditions of 
density, temperature, and magnetic fields that exist in such 
environments [4].

Here, we will first review some of the basic aspects of 
solid-state electron plasmas, with particular emphasis on 
kinetic descriptions. These methods will help us illustrate 
the impact of quantum phenomena on the electron dynamics 
in metallic nano-objects, particularly thin metallic films 
excited by ultrashort laser pulses. Secondly, we will present 
new theoretical advances related to recent experiments [5] 
on ferromagnetic thin films, where the magnetic degrees of 
freedom of the electron (spin and orbital angular momentum) 
can play an important part. Finally, we will briefly hint at 
relativistic effects, which also have an impact on the spin 
dynamics.

2.  Basic concepts

The basic tenets of quantum plasma physics have been pre-
sented in previous reviews [6, 7] and will be briefly summa-
rized here.

A fermion gas at equilibrium obeys the Fermi–Dirac (FD) 
distribution. At zero temperature, all energy levels are occu-
pied up to the Fermi energy

� π= ℏ      E
m

n
2

(3 ) ,F

2
2 2/3 2/3 (1)

which is a function of the electron mass m and density n (ℏ is 
the reduced Planck constant). One can also define the Fermi 
temperature TF = EF/kB, where kB is the Boltzmann constant, 
and the Fermi velocity =v E m2 /F F . A convenient param-
eter to quantify the degree of ‘quantumness’ of an electron 

gas is the degeneracy parameter χ = T/TF: when χ ≫   1 the 
FD distribution tends to a Maxwell–Boltzmann one and the 
gas behaves classically; in contrast, χ ≪  1 describes the fully 
quantum regime.

The degeneracy parameter can also be expressed in terms 
of the thermal de Broglie wavelength λ = ℏ mk T/B B , which 
is a measure of the spread of the electron wave function. One 
can easily show that χ ∼(d/λB)2, where d = n−1/3 is the average 
interparticle distance. Quite naturally then, quantum effects 
become important when the electron wave functions overlap 
significantly.

Two further important dimensionless quantities are the 
coupling parameters g, which characterize the degree of col-
lisionality of the plasma. They can be expressed as the ratio of 
the interaction (Coulomb) energy Ecoul = e2/(ε0d) to the typical 
kinetic energy. In the classical regime, the latter is given by the 
thermal energy, so that the coupling parameter is the usual one:
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where we have introduced the Debye length λ ε= k T en/D B 0 .  
In the deep quantum regime, the typical kinetic energy is the 
Fermi energy and the coupling parameter becomes:
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where λF  =  vF/ωp is the Thomas–Fermi screening length, 
the quantum analogue of the Debye length. A classical or 
quantum plasma is collisionless (i.e. weakly coupled) when 
the relevant coupling parameter is much less than unity. In 
condensed matter physics, models that are valid when g ≪ 1 
are often referred to as mean-field models.

In order to fix the ideas, let us consider gold nanoparti-
cles, which are typical metallic nano-objects routinely used 
in the experiments. The typical time, space, and energy scales 
for gold are summarized in table  1. Note that these values 
are meaningful at thermodynamic equilibrium and for bulk 
macroscopic matter. First, we notice that the Fermi tempera-
ture is very high, therefore χ ≪  1 even at room temperature: 
electrons in solid metals are always degenerate and behave 
quantum-mechanically. Second, the coupling parameter 

Table 1.  Typical time, space, velocity, and energy scales for bulk 
gold and ICF plasmas.

Solid gold ICF Units

n 5.9 × 1028 1032 m−3

T 300 108 K
EF 5.53 785 eV
TF 64200 9 × 106 K
λF 0.1 0.03 nm
d = n−1/3 0.25 0.022 nm
vF 1.4 × 106 1.7 × 107 ms−1

πω −2 p
1 0.46 0.01 fs

ℏωp 9.02 371 eV
gQ 12.7 1.07 —
χ 4.7 × 10−3 11 —

Plasma Phys. Control. Fusion 57 (2015) 054004
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gQ is larger than unity, ie, electron correlations must play a 
role. Collisionless (mean field) approaches may be fine to 
understand qualitatively the electron dynamics, but in order 
to obtain quantitative results more sophisticated models are 
required. We also see that the typical time, space, and energy 
scale are given respectively by the femtosecond, the nanom-
eter, and the electron-volt. Finally, as the Fermi velocity is 
much less than the speed of light c = 3 × 108 m s−1, we do not 
expect any relativistic effects, at least at equilibrium, although 
strong electromagnetic pulses may accelerate the electrons 
out of equilibrium to relativistic velocities.

For comparison, table 1 also shows the values for typical 
ICF experiments. The most important difference is that ICF 
plasmas are on the border of degeneracy (χ ≃ 10); in other 
words, contrarily to MCF plasmas, they can display weak 
quantum effects in their dynamics, although, because of their 
high temperature, they are still very far from the fully degen-
erate regime (χ ≪  1). We also see that ICF plasmas are closer 
to the collisionless regime, as their coupling parameter is 
close to unity (note that when χ ≈ 1, then gC ≈ gQ).

3.  Plasmon resonances in nano-objects: Mie theory

In most current experiments, nano-objects are excited via 
ultrashort laser pulses with a pulse duration that can go 
down to a few hundred attoseconds. Femtosecond or longer 
pulses have been almost routine for the last two decades. The 
wavelength of the radiation usually lies in the visible range 
(400–800  nm), although x-ray and infrared pulses are also 
envisageable (although less easily produced). Thus, the laser 
wavelength is much longer than the size of the nano-objects 
and the electromagnetic fields can be viewed as spatially uni-
form inside the object (dipole approximation).

In this approximation, the laser electric field pulls the 
conduction electrons away from the more massive ions, thus 
initiating self-consistent oscillations of the electron gas. At 
resonance, when the frequency of the external electric field 
equals the natural frequency of the electron gas in the nano-
object, the absorption cross-section reaches a maximum. 
Using purely classical arguments based on Maxwell’s equa-
tions  and considering spherical nanoparticles, the resonant 
frequency turns out to be the Mie frequency [8]:

� ω
ω

ϵ ϵ
=

+2
,

m b
Mie

p
(4)

where ϵm is the dielectric constant of the environment where 
the nanoparticle is embedded and ϵb is the dielectric constant 
of the bound electrons inside the particle (see figure  1, left 
panel). Taking ϵb = ϵm = 1 for simplicity, yields ω ω= / 3Mie p .  
The factor 3 comes from the spherical symmetry that we 
assumed. For a planar film (figure 1, right panel), the resonant 
frequency is simply: ωMie = ωp.

An example of measured scattering spectrum for gold and 
silver nanoparticles is shown in figure 2. For spherical gold 
particles, the Mie frequency in energy units is ℏωMie = 5.2 eV 
(see table  1), which differs significantly from the value on 
figure  2, although the order of magnitude is correct. The 

discrepancy come from various sources of damping, which 
tend to red shift the resonant frequency, as in a damped oscil-
lator. The damping rate Γ is given by the linewidth of the 
resonance curve: in this case Γ ≈ 0.4 eV, which is rather large 
compared to the observed resonant frequency ωres ≈ 2.2 eV. 
Nevertheless, a proper application of the Mie theory, including 
the realistic dielectric constants and various forms of damping, 
reproduces the correct value of the resonance frequency and 
linewidth [9].

In metallic nano-objects, the main sources of damping are 
electron–electron (e–e) and electron–phonon (e–ph) colli-
sions, as well as radiation damping. When T ≪ TF, e–e col-
lisions are strongly suppressed, because almost all energy 
levels below EF are full and there are no available states for 
the scattered electrons to occupy. This effect is known as Pauli 
blocking [6, 10].

Phonons represent the vibrational eigenmodes of the ion 
lattice. Although bulk ion motion is usually neglected because 
of the large ion-to-electron mass ratio, random interactions 
(‘collisions’) between the electrons and the vibrating ion lat-
tice do contribute to the electronic energy relaxation. e–ph 
collisions can be crudely estimated using Drude’s classical 
theory [10]. For gold at room temperature, the e–ph relaxa-
tion time is around Γ ≈− 28e-ph

1  fs, which in energy units yields 

Figure 1.  Schematic representation of the plasmon resonance for a 
spherical nanoparticle (left panel) and a planar film (right panel).

Figure 2.  Scattering spectra of gold and silver spherical 
nanoparticles with diameter 60 nm (from [9]).

Plasma Phys. Control. Fusion 57 (2015) 054004
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Γe − ph ≈ 0.15 eV, and accounts for almost half of the damping 
observed in figure 2.

Finally, radiation damping occurs because the oscillating 
electrons behave as an electric dipole, thus emitting electro-
magnetic waves. The damping rate can be estimated by com-
puting the total power radiated by the dipole [11]. One obtains

�
Γ
ω ε

ω ω≈   ℏ   ≈   ℏ  
hc mc

N N
e

2

1

137 511keV
,rad

res

2

0

res
2

res
(5)

where N is the the number of electrons in the nanoparticle. For 
the 60 nm diameter particles of figure 2, one obtains approxi-
mately Γrad ≈ 0.46 eV, which is actually the dominant source 
of damping in this case.

4.  Kinetic models

The use of kinetic phase-space models for the electron 
dynamics in metallic nano-objects was described in detail in 
previous reviews of ours [6, 7]. An electron plasma constitutes 
a many-particle system that in principle should be described 
by the N-body Schrödinger equation. However, for more than 
a few electrons, this task is computationally untractable, hence 
the need of approximate models. In condensed-matter theory, 
the ‘mother-of-all-approximations’ is given by the time-
dependent Hartree equations (TDHEs). This is the analogue 
of the Vlasov–Poisson equations  (VPEs) in plasma physics: 
it retains the self-consistent electric field (mean field), but 
neglects e–e correlations. Just like the VPEs, the TDHEs are 
a good approximation when the coupling parameter is small. 
This is well-established for most fusion plasmas (gC ≪   1), 
but not so much for electrons in metals where gQ ⩾ 1. For this 
reason, a battery of improvements on the Hartree equations has 
been developed, which can be grouped in two categories:

	 •	The Hartree–Fock equations  retain a purely quantum 
kind of e–e correlations, called exchange, which results 
from the anti-symmetric character of the N-body wave 
function for fermions;

	 •	Density functional theory (DFT) can in principle accom-
modate all e–e correlations in the form of extra potentials 
that depend on the electron density. In practice, such 
potentials are only known approximately. Thus, DFT can 
be view as a formal ‘exactification’ 1 of the Hartree theory.

The TDHEs read as a set of one-body Schrödinger equa-
tions coupled to Poisson’s equation for the electric potential 
V (r, t):

�
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Δψ ψ αℏ
∂
∂

= − ℏ − = …α
α αt m

eV Ni
2
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(6)
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i
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where ni(r) is the ion density and pα is the occupation prob-
ability for the state ψα. The link between the quantum TDHEs 

and the classical VPEs can be made through the Wigner trans-
formation [13, 14]
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Using the Wigner transformation, the TDHE can be written 
in the form of a phase-space evolution equation  (Wigner 
equation)
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where the electric potential obeys Poisson’s equation (7).
It can be shown that Wigner’s evolution equation (9) for-

mally reduces to the Vlasov equation when ℏ → 0. The Wigner 
formalism thus constitute a useful tool to compare directly the 
classical and quantum dynamics for the same physical system. 
We will do just that in the next section for the case of a thin 
metallic film.

5.  Electron dynamics in thin metal films

As an illustration, we present here some of the results that were 
obtained by our group along a period of several years [15–17]. 
We model our metal film as a slab of thickness L in the x direc-
tion and much larger extension in the transverse plane (see 
figure 1, right panel). The ions constitute an immobile back-
ground of uniform positive charge, with density n0 inside the 
slab and zero outside. In this configuration, the motion of an 
electron in the transverse plane is decoupled from the motion 
normal to the surface of the film and a one-dimensional (1D) 
model along x can be adopted.

The electrons are initially prepared in a FD equilibrium at 
finite temperature. They are subsequently excited by imposing 
a constant velocity shift δv to the initial distribution. The elec-
tron dynamics is computed by solving numerically the Vlasov 
or Wigner equations on a phase-space grid. In particular, we 
have analyzed the time evolution of the thermal energy Eth 
and the center-of-mass kinetic energy Ecm (figure 3). During 
an initial rapidly-oscillating phase, Ecm is almost entirely con-
verted into thermal energy through Landau damping. After 
saturation, a slowly oscillating regime appears. The period T 
of these oscillations is very close to the time of flight between 
the film surfaces for electrons traveling at the Fermi velocity. 
Thus, such oscillations correspond to bunches of electrons 
bouncing back and forth on the film surfaces, as one could 
verify by directly inspecting the phase space portraits [15].

However, the period of these oscillations is not quite the 
same when we use the Vlasov or the Wigner approach, as can 
be seen from figure 3. By repeating the simulations for dif-
ferent excitations, it turns out that the classical and quantum 
results coincide for strong excitations, but diverge for small 

1 This is the expression used by Walter Kohn, the founder of DFT, in his 
1998 Nobel lecture [12].
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ones (figure 4). Thus, we observe a clear transition between 
a classical and a quantum regime occurring at a fairly well-
defined threshold. The threshold corresponds to an excitation 
with energy equal to the plasmon energy ℏωp. These results 
provide a practical example of a quantum-classical transition 
in the electron dynamics that could, in principle, be observed 
experimentally.

An important advantage of the Wigner formalism (com-
pared to the Schrödinger formalism of DFT) is that col-
lisional effects can more easily be added to the model, by 
analogy with the classical Fokker–Planck (FP) equation. In 
order to model e–ph collisions in our thin film dynamics, we 
have added a FP term on the right-hand side of the Wigner 
equation  (9): γ∂ = ∇ + ∇ ·  vf D f G f( ) ( [ ] )t v ve-ph

2 , where γ is 
the nominal relaxation rate, D is a diffusion coefficient in 
velocity space, and G[·] is a functional that depends on the 
quantum statistics and on the dimensionality of the system 
[17]. A judicious choice of G[·] yields that (∂f/∂t)e − ph = 0 
when the electrons follow a FD distribution in 1D. This 
approach enabled us to study the approach to equilibrium 
after an external excitation, which had been neglected in the 
preceding analysis. The results are shown in figure 5, where 
we plot a cut of the Wigner function f against the velocity v, 
at the midpoint of the film. Under the action of the FP term,  
f tends to its FD equilibrium. During the evolution, the 
Wigner function becomes everywhere positive, so that it can 

be interpreted as a true probability density in the phase space. 
This process, whereby quantum correlations are lost to an 
external environment (here, the phonon bath), constitutes the 
essence of decoherence.

6.  Spin and relativistic effects

6.1.  Spin Vlasov equations

The electron carries not only an electric charge, but also a 
spin. In recent years, there has been a surge of interest in the 
spin dynamics in solid-state devices [1], as a possible means 
to store and transport information (spintronics), as well as for 
attempts at developing quantum computing devices [18].

In order to take into account the electron spin at a nonrela-
tivistic level, the Schrödinger wave function must be replaced 
by a 2-spinor
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⎠
⎟⎟Ψ

ψ
ψ
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α

α
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r

r
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Then, the TDHEs are replaced by the mean-field Pauli 
equations:

�
⎡
⎣⎢

⎤
⎦⎥

Ψ Ψ μ Ψσℏ ∂
∂

= − ℏ ∇ + − +α
α αA B

t m
e eVi

1

2
( i ) · ,2

B (11)

where μB = eℏ/2m is Bohr’s magneton, σ are the Pauli matrices, 
and B = ∇ × A. The term μB σ·B represents the Zeeman effect. 
The scalar and vector potentials V and A can be either external 
or self-consistent.

Figure 3.  Evolution of the thermal and centre-of-mass energies in the Vlasov (left panel) and Wigner (right panel) cases, for a sodium film 
of thickness L = 6 nm (from [19]).

Figure 4.  Period of the low-frequency oscillations of figure 3 as 
a function of the perturbation. The horizontal line represents the 
classical time of flight (from [19]).

Figure 5.  Velocity distribution at the midpoint of the film, for two 
different times measured in units of ωp. The red line represents the 
1D equilibrium FD distribution.
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The Wigner function that corresponds to the spinor (10) is 
a 2 × 2 matrix:
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↑↑ ↑↓

↓↑ ↓↓r v t
f f

f f
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It is convenient to project F  onto the Pauli basis [19], such 

that: σ= +
ℏ

F ff
1

2

1
·0 , where

� F Fσ= = +      = ℏ↑↑ ↓↓ ff f ftr ( ) ,
2

tr ( )0 (13)

and tr denotes the trace. Now, f0 is the analogue of the ordinary 
phase-space distribution, while f (with components fi, i = x, y, 
z) is related to the spin polarization in the direction i. In other 
words, f0 represents the probability to find an electron at one 
point of the phase space at a given time, whereas fi represents 
the probability to have a spin polarization probability in the 
direction êi for that electron.

The evolution equations obeyed by the Wigner functions 
(13) are rather complicated. In the limit ℏ → 0, they reduce to 
the following set of Vlasov equations [20]
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Both the electron charge and spin are subject to the Lorentz 
force; in addition the spins precess around the magnetic field 
(f × B term). Charges and spins are coupled via a term that 
depends on the gradient of the magnetic field (last term in both 
equations). Equations (14) and (15) constitute an intermediate 
model where the electron motion is classical, while the spin is 
treated as a fully quantum variable.

Some authors have used an alternative representation 
based on a single scalar Wigner function (instead of a 2 × 2 
matrix) evolving in an extend phase space: ^r v sF ( , , ), where 
ŝ is a vector of unit length [21]. The two approach are math-
ematically equivalent, as one can go from the extended phase-
space distribution F to the matrix Wigner function F  through 
a simple linear transformation [20].

6.2.  Stationary states

We consider a 1D slab geometry as in the preceding section, 
with only variations in the x direction taken into account. The 
external magnetic field B = Bzez is uniform and parallel to z. 
We also suppose that the electrons can only be polarized along 
z (collinear magnetism). Therefore, at equilibrium one has: 
f0 = f0(x, ∣v∣), fz = fz(x, ∣v∣), and fx = fy = 0.

For the standard (spinless) Vlasov equation, the stationary 
states are functions of the Hamiltonian H = mv2/2 − eV. In 
our case, it is natural to take a FD equilibrium: FD(H) = n0 
[ 1 +exp((H − μ)/kBT)]−1, where μ is the chemical potential. 

When the spin is included, the Vlasov equations (14) and (15) 
can be written as (braces denote Poisson’s brackets):

�

∂
∂

= +    

∂
∂

= −

↑↑ ↑↑ ↓↓ ↓↓

↑↑ ↑↑ ↓↓ ↓↓

f

t
H f H f

f

t
H f H f

{ , } { , } ,

{ , } { , } ,z

0

(16)

where μ= + +↑↑ vH
m

V B
2

z
2

B  and μ= + −↓↓ vH
m

V B
2

z
2

B . 

We deduce that f↑↑ at equilibrium must be a function of H↑↑ 
and f↓↓ a function of H↓↓. Using the FD distribution, the sta-
tionary solutions are given by: = +↑↑ ↓↓f H HF ( ) F ( )0

stat
D D  

and = −↑↑ ↓↓f H HF ( ) F ( )z
stat

D D . Finally, the stationary state is 
found by computing the electron density n = ∫ f0dv and solving 
the resulting nonlinear Poisson equation to obtain the poten-
tial V. This is enough to specify the self-consistent FD equi-
libria for f0 and fz.

A uniform magnetic field has no impact on the electron 
dynamics (as only the gradients of B enter equations (14) and 
(15)), but affects the equilibrium, because it acts differently 
on spin-up and spin-down electrons. In figure  6, we show 

numerical results for the total magnetization ∫∫= vM f xd dz  

as a function of the external magnetic field. Clearly, the 
magnetization is significantly different from zero only when 
μBBz ≈ kBTF. For solid gold, this means Bz ≈  105 T, which 
is a huge magnetic field. This is consistent with the fact that 
Pauli’s spin paramagnetism is very small at equilibrium [10, 
22], since, for small temperatures, it is proportional to (T/TF)2.

The above result sheds some light on a recent controversy 
concerning spin fluid models, which are obtained by taking 
velocity moments of kinetic equations such as (14) and (15). 
For instance, the spin polarization is defined as S(r, t) = ∫ f (r, 
v, t) dv and should be small when f is a FD equilibrium, as was 
correctly recognized in [23, 24]. The problem with the fluid 
models is that the FD distribution is somewhat forgotten in the 
moment-taking procedure, so that it appears (incorrectly) that 
the spin polarization S may take any values at equilibrium. 
The authors of [23, 24] conclude that the problem lies with the 
Hartree approximation, because it neglects the antisymmetric 

Figure 6.  Relative electron magnetization as a function of the 
external magnetic field normalized to the Fermi energy, for a 
Fermi–Dirac equilibrium at temperature T = 300 K. Symbols 
represent the numerical results, while the red solid line is the 
theoretical curve for Pauli paramagnetism.
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character of the N-body wave function. But this is too strong 
a statement. As we have seen, one can still use the Hartree 
approximation, provided that the equilibrium is a FD distribu-
tion. This is sufficient to yield the correct (and small) value of 
the spin polarization.

We also point out that the Pauli spin polarization is small 
because it involves only electrons with an energy close to the 
Fermi energy. However, these are the very electrons that are 
important for all dynamical phenomena (see, for instance, the 
phase space portraits in [15]), whereas electrons situated well 
below the Fermi level play virtually no role. Therefore, even 
though only a fraction of the electron density is polarized, it 
may still have a significant impact on the transport properties.

6.3.  Relativistic effects

The electromagnetic field associated with a femtosecond 
laser pulse can be strong enough to induce relativistic effects, 
also contributing to the spin dynamics. For spin-1/2 particles, 
relativistic DFT and mean-field models based on the Dirac–
Maxwell equations were developed in the past [25–27], but 
they are in general rather complex to handle either analyti-
cally or numerically. More tractable models can be obtained 
by expanding the Dirac Hamiltonian in powers of 1/c [28–30]. 
Second-order effects include the spin–orbit coupling and the 
Darwin correction, which are crucial for the proper under-
standing of magneto-optical processes in nano-objects [1]. 
They also lead to extra polarization and magnetization terms in 
the charge density and current [30]. Recent attempts at incor-
porating relativistic effects include a fluid model derived from 
the Dirac equation  [31], as well as various semi-relativistic 
approaches, both fluid [32] and kinetic [33, 34]. Finally, for 
spin-0 particles, a kinetic model based on the Klein–Gordon 
equation  and the corresponding Wigner function was also 
derived in recent years [35].

7.  Conclusions

Solid-state metallic objects display many features similar to 
those observed in high-temperature plasmas, the most obvious 
example being electron oscillations near the plasma frequency. 
A fair amount of modeling can be performed using the semi-
classical approaches well known in the plasma physics com-
munity, ranging from kinetic equations  of the Vlasov type 
to fluid models. However, particularly for nanometer scale 
objects, the electron density is so large that quantum effects 
cannot be neglected, both in the particle statistics (Fermi–
Dirac, which can be incorporated into the semiclassical Vlasov 
approach) and in the dynamics (leading to quantum evolution 
equations such as the Hartree or DFT equations). Such high 
densities also imply that the electron gas in a metal is not col-
lisionless and therefore e–e correlations should be taken into 
account. This is a complex problem that is still being investi-
gated [36].

In addition, electrons possess not only an electric charge, 
but also a spin, which interacts with magnetic fields, both 
external and self-consistent. Phase-space models can be 

adapted to accommodate the spin effects in a fully quantum 
fashion, although this may be more subtle for hydrodynamic 
models. Finally, for strong enough laser excitations, the elec-
trons can be so violently accelerated by the laser fields that 
relativistic effects come into play, also contributing to the spin 
dynamics.
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