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Collective Effects Triggered by Individual
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Abstract: The relationship between individual and collective effects in a two-component

plasma is investigated in the case of an unstable equilibrium given by a cold two-stream

distribution. The full dynamics of this system is solved using an exact N-body code. As

the graininess parameter is large, such a cold plasma should be dominated by individual

effects. Indeed, during an initial phase much longer than the plasma period, ions and

electrons simply oscillate around each other forming neutral “molecules.” Sub-

sequently, however, the system switches to a regime where collective effects are

important: the two-stream configuration becomes unstable and phase space structures

appear. On a longer time scale, the streams are destroyed and the system evolves

towards thermal equilibrium. The present results show that collective effects can

emerge even in a plasma dominated by individual interactions, provided that the

initial distribution is unstable.

Keywords: Strongly correlated plasmas, two-stream instability, numerical simulations

1. INTRODUCTION

A plasma is a system composed of a large number of charged particles inter-

acting via Coulomb forces (electromagnetic effects will be neglected here).
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For such a system, interactions can be divided into collective (i.e., resulting

from the mean field created by all other particles) and individual (i.e.,

binary collisions). The importance of collective versus individual effects is

measured using the so-called graininess parameter

g ¼
1

nlD
; ð1Þ

defined, for a one-dimensional (1D) plasma of density n, as the inverse of the

number of particles contained in a Debye length lD ¼ vT/vp. Here,

vT ¼
p
(kBT/m) is the thermal speed and vp ¼ (ns2/m10)1/2 is the plasma

frequency; m and s are the mass and charge per unit area, respectively. Col-

lective effects are dominant when g� 1, in which case the plasma is said to be

collisionless, and its dynamics is accurately described by a Vlasov equation

(coupled to Poisson’s equation to compute the electrostatic mean field). The

graininess parameter is also related to G, the ratio of total potential to

kinetic energy. For a 1D plasma at thermal equilibrium, one has G¼g/2.

For a stable equilibrium, individual effects are described, to first order in

g, by the collision integral of Lenard (1960) and Balescu (1960), which was

tested numerically (Rouet and Feix 1991; Ricci and Lapenta 2002) for a

stable “water-bag” type equilibrium. First-order effects in the graininess

parameter g were studied by Dawson (1962) in the case of a one-

component plasma at thermal (Maxwellian) equilibrium, and more recently

by Rouet and Feix (1998, 1996) for two other Vlasov equilibria (double

water-bag and Lorentzian velocity distributions). Numerical results

recover with good accuracy the theoretical predictions for the electric field

fluctuation spectrum, and even for the shape of the dynamical cloud of

a test particle, which is the central concept in the description of a weakly

correlated plasma.

The standard Lenard–Balescu theory should not apply to an unstable

equilibrium, as a crucial assumption is that the dispersion relation possesses

no poles with positive imaginary part (Balescu, 1963). A generalization of

the theory was attempted by Balescu (1963): it yields extremely complicated

equations that are manageable only for weakly unstable plasmas, which is not

the case for the instability considered here. In the present work, our aim is to

perform numerical simulations that clarify the relationship between individual

and collective effects in the case of a one-dimensional, two-component plasma

(ions and electrons will have the same mass and charge in absolute value) for

an unstable two-stream equilibrium. Finally, for a theoretical study of the

equilibrium statistical mechanics of a 1D plasma, we refer the reader to the

works of Kunz (1974) and Choquard (1980).

Our strategy is to study the plasma dynamics as a full N-body problem,

without making any assumptions on the dominance of individual or collective

effects. In order to do so, we shall use a numerical code that solves the exact

N-particle dynamics (Rouet and Feix 1991) without any numerical
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approximations other than the inevitable truncation errors resulting from the

finite number of bits used to represent real numbers. This powerful tool

enables us to follow the plasma evolution over very long time scales.

The two-stream instability is a well-known process occurring in collision-

less (Vlasov) plasmas and has received a lot of attention in the last few

decades (see, for instance, Knorr 1968; Freidberg and Armstrong 1968;

Biskamp and Chodura 1973; Goldman 2000). More recently, a quantum

version of the two-stream instability was also studied both analytically and

numerically (Haas 2000). The initial condition is given by a two-stream dis-

tribution, with half of the particles (both electrons and ions) traveling to the

right with velocity a, and the other half traveling to the left with velocity

2a. The instability rate can be computed from the linearized Vlasov-

Poisson equations, and numerical results obtained from Vlasov simulations

are in agreement with the theoretical estimate (Ghizzo et al. 1988). For com-

pletely cold streams (vT ¼ 0), only perturbations for which kl�,1 are

unstable, and their growth rate is:

gk ¼ vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2l2

� �
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 8k2l2

�

qr
ð2Þ

where l� ¼ a/vp. The maximum growth rate gmax ’ 0.35vp is obtained for

kl� ’ 0.6. Although the Vlasov picture should not, in principle, be appropri-

ate for the case of zero-temperature streams, we shall see that Equation (2)

does reproduce well the observed growth rate, even for plasmas that are rela-

tively far from the Vlasov limit (g ’ 1).

In this article, we shall study the full N-body problem in a regime corre-

sponding to a graininess parameter g.1. In order to gain some insight, let us

first consider the case of a single cold stream with zero velocity. If the

positions of the ions and electrons are initially distributed at random, the

total potential energy of the system will generally be large (because clumps

of positive or negative charge can be formed). As soon as the system is let

to evolve, this potential energy will turn into kinetic energy thus destroying

the stream structure. The potential energy can be reduced by matching ions

and electrons one by one to form ion-electron pairs. If the ion and the

electron in each pair are close enough, the system is in fact constituted of

neutral “molecules.” Further, in 1D, the electric field outside each molecule

will be equal to zero, so that no interactions between the molecules should

occur. As the one-stream distribution is stable from the viewpoint of Vlasov

theory, the plasma will remain indefinitely in this configuration and no collec-

tive effects are expected to emerge. In order to have interaction between two

neighboring molecules, the size of either of them should be large enough, so

that one of its particles can penetrate into the other molecule. By progressively

increasing the size of the molecule, Bonomi (1978) studied numerically the

propagation of a wave into a one-component plasma at zero temperature.
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In the two-stream case, we prepare the system in an similar way, by

matching ions and electrons one by one on each stream. Therefore, each

molecule has a velocity equal to either a or 2a. For the same reasons as

given in the previous paragraph, molecules belonging to the same stream

should not directly interact with each other. However, two molecules from

different streams can indeed interact when they cross each other. In this

case, it is possible that, after a number of collisions, the molecules are

somehow destroyed, leading to a change in physical behavior. This interaction

mechanism is naturally of an individual (not collective) nature. Therefore, it is

not obvious that it will lead to the excitation of the same two-stream instability

as observed in collisionless systems. This question will be investigated in the

rest of this article.

2. NUMERICAL METHOD

Numerical simulations have been performed to follow the evolution of a 1D

two-component plasma: the system is composed of N/2 ions and N/2

electrons of equal mass m and charge s (in absolute value) by unit area,

and periodic boundary conditions are assumed. Note that these 1D

“particles” correspond (in 3D) infinite parallel plane sheets normal to the x

axis. The restriction to 1D systems is justified for our purposes, as the

relevant physical ingredient are still present in the 1D model. Further, this

assumption allows us to follow the exact trajectories of the N particles

without any approximations (Rouet and Feix 1991). This is because: (a) a

relation of order between the positions of the particles exists in a 1D

geometry, and (b) the electric field created by the particles is piecewise

constant. The motion of a particle is thus uniformly accelerated until it

reaches its neighbor on either side. When such an event occurs, as the 1D

electric field has no divergence, the particles are allowed to cross each

other. After the crossing, the field is changed locally and the particles will

experience a new constant acceleration until the next crossing event. The

code follows the trajectories of the N particles without any numerical approxi-

mations, except the round-off errors due to the finite number of bits used to

code a real number on the computer (Rouet and Feix 1991). We stress that

this is not a particle-in-cell (PIC) simulation: PIC codes solve the Vlasov

mean-field dynamics by integrating the orbits of a large number of discrete

particles, whereas our code solves the exact N-body dynamics, including

both mean-field and individual effects.

The initial condition is prepared as follows: the ion-electron pairs

(molecules) are spaced regularly on each stream and all pairs have a

velocity close to either a or 2a. The ion and the electron in each pair are

located at a distance +d from the center of mass of the molecule, with d

chosen at random with equiprobability in the interval [0, D]. Here, D rep-

resents the average size of a molecule and is also proportional to its total
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energy in the reference frame of the stream. The field generated by a pair

of planar particles separated by a distance 2d is spatially uniform and equal

to s/10. The corresponding potential energy is Epot ¼ s2d/10. All

molecules are given the same total energy in the reference frame of the

stream: Etot ¼ mv2
þ s2d/10 ¼ s2D/10 (the latter equality is obtained by

noting that v ¼ 0 when d ¼ D). The particle velocity is thus given by the

expression

v2 ¼
s2

m10

ðD� dÞ ¼ v2
p

D� d

n
: ð3Þ

With the above prescriptions, all molecules will initially oscillate with the

same amplitude (proportional to D) and random phases.

As an approximate measure of the thermal speed of the streams, we take

the maximum velocity that can be obtained from Equation (3): vT
2 ¼ vp

2D/n.

This leads to the following expressions for the Debye length lD ¼
p

(D/n)

and, using Equation (1), for the graininess parameter

g ¼
1ffiffiffiffiffiffi
nD

p : ð4Þ

The latter expression implies that, if the size of a molecule 2D is smaller than

the average distance between two molecules (2n21), then g . 1 and the

plasma is dominated by individual effects. For a single cold stream, this

means that the molecules cannot, in this case, cross each other, and thus

they preserve their identity over indefinitely long times. For a two-stream dis-

tribution, molecules from different streams are allowed to collide, so that the

intermolecular distance can in principle change in time. In order to switch to a

collisionless regime (g , 1), the molecules size must become larger than the

intermolecular distance: but this means, in practice, that the molecules are

destroyed. It is clear, therefore, that the existence of stable ion-electron

pairs (molecules) is linked to the observed plasma regime (collective or

individual). The details of this link will become apparent in the forthcoming

simulation results.

In the simulations, time is normalized to vp
21 and lengths are normalized

to the inverse density n21, which in practice amounts to assuming vp ¼ n ¼ 1.

For the following numerical results, we have taken N ¼ 8000 particles (N/2

ions and N/2 electrons), a ¼ 500/2p ’ 80vp/n, L ¼ N/n ¼ 8000 and

nD ¼ 0.08. This yields l� ’ 80 n21, vT ’ 0.28vp/n, and g ’ 3.54. As

g . 1, we are are in a regime where individual effects can play a significant

role. The fundamental Fourier mode of the system has wave number

k0l� ¼ 0.0625, so that a large number of modes are unstable (all those with

0 , kl� , 1).
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3. NUMERICAL RESULTS

Figure 1 shows the trajectories of seven pairs of particles in the reference

frame of the stream they belong to. Initially, the ion and the electron of

each molecule simply oscillate around each other with an amplitude D

(however, some slight changes in the oscillation amplitude and period are

observed during this phase). Although each molecule of a stream interacts

(briefly, but frequently) with all the molecules of the other stream, this oscil-

lating regime is very robust and persists on a long time scale (until vpt ’ 700).

During this phase, the molecules preserve their identity and the plasma

remains locally neutral, so that individual effects clearly dominate the

dynamics. This “individual” regime suddenly breaks down around

vpt ¼ 700, when the amplitude of the oscillations increases rapidly leading

to the destruction of the pairs

Figure 2 shows the time-evolution of the system in the phase space. The

two streams remain unperturbed up to vpt ’ 680, when the system enters a

violently unstable regime. This event corresponds to the destruction of

neutral molecules observed in Figure 1. After this time, the streams are

quickly destroyed and coherent phase-space structures appear briefly: these

are reminiscent of the vortex structures observed in Vlasov simulations

(Ghizzo et al. 1988). Subsequently, such structures are damped away by colli-

sional diffusion in phase-space, which drives the system towards thermal

Figure 1. Trajectories x(t) (normalized to l�) of seven ion-electron pairs in the

streams reference frame, for a system with N ¼ 8000 ion and electrons, a ’ 80,

L ¼ 8000 and nD ¼ 0.08.
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equilibrium, as shown in the last picture of Figure 2 (vpt ¼ 1500) (Lenard

1960; Balescu 1960; Rouet and Feix 1991; Ricci and Lapenta 2002). After

thermalization, the plasma remains essentially Maxwellian with a thermal

speed close to the original stream velocity a. At this stage, as the streams

have been completely destroyed, the original graininess parameter g is no

more relevant to describe the collisionality of the plasma. One should

instead use

g� ¼
1

nl�
; ð5Þ

obtained by replacing the streams thermal velocity vT with a, and therefore the

original Debye length lD with l�. Such modified graininess parameter takes

the value g� ¼ 0.0125, so that the plasma is now mainly collisionless,

although collisional effects still persist over long time-scales.

According to the Lenard–Balescu theory (Lenard 1960; Balescu 1960;

Rouet and Feix 1991; Ricci and Lapenta 2002), the thermalization time tth

is proportional to the inverse of the square of the graininess parameter, as

was verified numerically in Rouet and Feix (1991) and Ricci and Lapenta

(2002). However, the Lenard–Balescu theory is only valid for stable equili-

bria and in the limit of small g (whereas here g ¼ 3.54). Since the initial

two-stream distribution is quickly destroyed after the occurrence of the

Figure 2. Phase-space evolution for the same run as in Figure 1. For each snapshot,

the left frame shows the particle density in velocity space (i.e., integrated over x), the

dashed line representing a Maxwellian with thermal speed equal to the stream velo-

cities a; the right frame shows the particles in the phase-space (x, v). In this figure,

lengths are normalized to l� and velocities are normalized to a.
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instability, it seems more appropriate to use g� as the relevant graininess

parameter. With this choice, one obtains: vptth ¼ g�
22 ¼ 6400, which is in

better agreement with the results of Figure 2. However, a more detailed

analysis should be performed in order to check this issue properly.

In Figure 3 we show the ratio G of the potential energy to the kinetic

energy of the system. As expected, G approaches g�/2 at the end of the simu-

lation, indicating that g� is indeed the relevant graininess parameter during the

thermalization phase. The small value of G at the beginning of the run is due to

the large kinetic energy contained in the streams velocity, which is equal to

a2/2 ¼ 3200 per particle. Neglecting the thermal energy of the streams

(which is small compared to a2), and estimating the potential energy per

particle as Epot ¼ s2D/(410) ¼ 0.02, one obtains G(t ¼ 0) ¼ 0.02/3200

’6 � 1026, in agreement with Figure 3.

We now consider the destruction of the “individual regime” occurring

around vpt ’ 700. As we had anticipated, this effect is linked to the destruc-

tion of the neutral molecules. From Figure 1, it appears that the size of a

molecule increases shortly before the onset of the instability, probably

because of collisions with molecules from the other stream. According to

Equation (4), the graininess parameters should decrease with increasing

molecular size. At some point, g must become small enough for collective

effects to take over and trigger the two-stream instability. A typical

signature of collective effects is the presence of oscillations at the plasma

frequency, at least for long wavelengths (the thermal correction

ka ¼ 0.0625 is indeed negligible). Figure 4 shows the squared amplitude of

the space and time Fourier transform of the particle density r(k0, v), where

Figure 3. Ratio G of the potential energy to the kinetic energy for a run with the same

parameters as Figure 1. The dashed horizontal line represents the value g�/2.
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k0 ¼ 2p/L is the smallest wave number accessible to the simulated system

(fundamental mode). The left frame shows jr(k0,v)j2 in the individual

regime (100 , vpt , 600). It displays a broad spectrum corresponding to the

different periods of oscillation of the molecules, but no excitation

for v ¼ vp is observed. The right frame of Figure 4 shows jr(k0,v)j2 after

the excitation of the instability (600 , vpt , 1100). A single peak at

v ’ vp is now clearly visible, indicating that collective effects are indeed

playing a major role. The previous results demonstrate that a collective

phenomenon (the two-stream instability) can be triggered by individual

effects (which dominated before the onset of the instability).

Figure 4. Square of the density fluctuation spectrum jr(k0,v)j2 for the fundamental

mode k0 for the same run as Figure 1. Left frame: fluctuation spectrum before the

instability (100 , vpt , 600); right frame: fluctuation spectrum after the instability

(600 , vpt , 1100).

Figure 5. Time evolution of the Fourier mode with k ¼ 10k0 of the electric field. The

straight line represents the growth rate given by Vlasov theory, g ¼ 0.353vp.
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A more precise measure of the impact of collective effects is given by the

growth rate of the instability. Figure 5 shows the time-evolution of the most

unstable Fourier mode of the electric field Ek(t) on a semi-log graph. It is

given for k ¼ 10k0, i.e., kl� ¼ 0.625 (the maximum growth rate is attained

for kl� ’ 0.61, but wave numbers are discrete in a periodic system). The

growth rate predicted by Vlasov theory (given in Equation (2)) is equal to

g ¼ 0.353vp and is represented by the straight line on the figure: it fits well

the computational result during the instability phase. It is therefore

clear that the effect observed in Figure 5 is indeed the standard Vlasov

two-stream instability.

The same kind of behavior (neutral individual regime followed by a violent

Vlasov two-stream instability, and eventually thermalization) has been

observed in other simulations performed with different values of a, L, and D.

4. CONCLUSION

The full N-body dynamics has been solved for a 1D, two-component plasma in

the case of a cold two-stream initial condition. We have found that, although

individual effects are not strong enough to induce macroscopic (large-scale)

phenomena, they are able to trigger collective effects. Indeed, after a

transient period during which the ion-electron pairs oscillate, a collective

regime appears suddenly. The signature of collective effects is the appearance

of long wavelength oscillations at the plasma frequency. Moreover, the growth

rate of the instability is in agreement with the one given by the Vlasov theory.

After the onset of the instability, coherent structures appear in the phase space,

as was previously observed in Vlasov numerical simulations (Ghizzo et al.

1998). Here, these structures are quickly destroyed because of individual

effects which, on a longer time-scale, drive the system towards thermal

equilibrium.

In summary, the above results point out that standard arguments based on

the plasma temperature and/or the graininess parameter should be taken with

care when dealing with unstable equilibria such as the two-stream distribution

considered here. Indeed, even when the plasma is strongly coupled (g . 1),

the collisionless, two-stream instability may still be excited by small individ-

ual interactions. This instability, in turn, triggers the growth of large collective

modes, which are eventually damped away by collisional phase-space

diffusion, leading to thermal equilibrium. Thus, the plasma has gone

through a sequence of three different phases: (i) the initial “individual”

regime (oscillating neutral molecules); (ii) a collective nonneutral

regime characterized by the instability and oscillations at frequency

vp; and, finally, (iii) relaxation towards neutral thermal equilibrium on a

longer time-scale: in this final stage, both collective and individual

effects coexist, as demonstrated by the persistence of oscillations at the

plasma frequency.
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