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The diffusion of test particles in a turbulent electrostatic field is investigated numerically. The field
is obtained by solving the Hasegawa–Mima model for two-dimensional drift turbulence. It is shown
that nonlinear coupling significantly reduces the level of transport compared to the linear regime,
and the physical mechanisms leading to this effect are analyzed in detail. Finite Larmor radius
effects, relevant to alpha-particle transport in tokamaks, also reduce the diffusion rate. The scaling
of the diffusion coefficient with Larmor radius is derived from a closure theory, and the predictions
are compared to results from computer experiments. It is suggested that measured diffusion rates of
particles with different Larmor radii can be used to obtain information about the turbulence.
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I. INTRODUCTION

Electrostatic drift turbulence is believed to play an im
portant role in the physics of magnetized plasmas.1–4 It is
dominated by theE3B drift, and involves low-frequency
waves, which are driven unstable by the presence of a t
perature or density gradient. At present, drift turbulence
promising candidate to explain from first principles the hi
levels of energy and particle transport observed in tokam
~anomalous transport!. Recent results from realistic kineti
and fluid simulations seem to support this conjecture.5–9

On the other hand, a good understanding of the confi
ment properties of energetic alpha particles is of gro
ing importance as tokamak plasmas approach the igni
regime.10 Because the Larmor radii of alpha particles born
fusion reactions greatly exceed those of the thermal io
their response to a turbulent field in the plasma can be
nificantly different. For example, the larger scale of gyro a
drift motion will smooth out the effects of short waveleng
turbulence, creating a differential response for particles
different energies. Given a theoretical understanding of
differential effect, observations of alpha-particle tran
port may yield information on the characteristics of t
turbulence.11

Here, we shall consider the general plasma physics q
tion of the impact of nonlinear coupling and finite Larm
radius on test particle transport in strong electrostatic d
turbulence. As a simple paradigm for drift turbulence w
shall use the Hasegawa–Mima equation,4 whose scope and
limitations are discussed in Sec. II. It incorporates b
strong nonlinearity and linear dispersion in its description
the drift turbulent electrostatic field, thus going beyond t
existing literature dealing with the stochastic diffusio
induced by a collection of linearly independent dr
waves.12–16 In addition, most earlier work does not take in
account finite Larmor radius effects, whose impact on
particle transport will be one of our main concerns in th
paper.

Early numerical studies reported results either for
small number of waves,12 or for many waves oscillating a
the same frequency13 ~while, for real drift waves, frequency
and wave number are not independent, but obey a sim
628 Phys. Plasmas 4 (3), March 1997 1070-664X/97/4(3
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dispersion relation!. In more recent studies,16 the correlation
length~lc! and time~tc! of a stochasticE3B field are speci-
fied, and the author determines the scaling of the diffus
coefficient with the Kubo numberK5vEtc/lc , wherevE
measures the amplitude of the velocity field. Early theore
cal results were based on a closure approximation,17 in which
the electric field is assumed to have Gaussian statistical p
erties in wave number space. With this assumption, the
fusion coefficient can be computed from the field spectru
which gives correct results in the quasilinear regime~D}K
for K!1!. In the opposite limit of large Kubo numbers, clo
sure theory predicts the diffusion coefficient to be indep
dent of K. This is obviously incorrect, sinceK5` corre-
sponds to a ‘‘frozen’’ field, which, in two dimensions, onl
allows for closed, periodic orbits, and therefore no diffusio
More sophisticated results,18,19 derived from percolation
theory, reproduce the correct behavior within good accura
as was verified in the simulations reported in Ref. 16.

The above studies give a satisfactory picture of the s
chastic diffusion of test particles with zero Larmor radius
a field composed oflinearly independentwaves. However,
these studies disregard the fact that such waves interact
linearly with one another, and this greatly restricts th
range of applicability, especially when considering large a
plitude waves. Nonlinear effects can, in principle, pr
foundly alter the spectrum of the electrostatic field and the
fore lead to substantially different diffusion rates. Recently11

we showed that, for a simple model of two-dimension
strong drift turbulence, nonlinear couplings virtually su
press the diffusion of test particles. In the present paper,
provide more evidence about this phenomenon, and try
identify a mechanism leading to it. Our interpretation is th
strongly nonlinear couplings rapidly modify the initial spe
trum during the very early stages of the evolution. The mo
fied spectrum arising from this early phase is one that le
to mainly periodic orbits, and very weak diffusion.

The present paper is organized as follows. In the n
section, we describe the model we adopt for strong drift t
bulence, namely the Hasegawa–Mima equation. Section
contains the main numerical results and their interpretat
In Sec. IV we discuss the impact of large Larmor radius
)/628/8/$10.00
¬AIP¬copyright,¬see¬http://ojps.aip.org/pop/popcpyrts.html.
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particle transport, and show how knowledge of this eff
can be utilized to infer properties of the turbulent field. Co
clusions are drawn in Sec. V.

II. A BASIC MODEL FOR DRIFT TURBULENCE

Our aim is to analyze the motion of test particles in
strongly turbulent magnetized plasma. In order to do so,
need a nonlinear model for drift turbulence in real spa
whose output is the time-dependent electrostatic poten
The potential will then act as an input for the equation
motion of the test particle guiding centers, which follow t
E3B drift: dr /dt5B3“f/B2. This motion is thus uniquely
determined by the turbulent field at all times. It is wor
noticing that the equations of motion are Hamiltonian
form, with the real space (x,y) coinciding with the phase
space, andH(x,y,t)5f(x,y,t)/B. Our technique for ex-
tending this approach to the case of finite Larmor radius
described in Sec. IV.

For the sake of simplicity, and to concentrate on t
relevant issues, we adopt here a long-established mode
drift turbulence, the Hasegawa–Mima~HM! equation:4

]

]t
~f2¹2f!2@“f3ez–“#¹2f5

]f

]x
. ~1!

This equation describes two-dimensional drift turbulence
the plane perpendicular to the magnetic field directionez ,
and can be derived from the ion continuity equation w
E3B and polarization drifts, and assuming an adiabatic
sponse for the electrons. Time is normalized toLn/Cs ~Cs

5 ATe /mi is the sound speed!, space to the thermal Larmo
radius rs5CsV i

21 (V i5eB/mi), and the potential to
(Te/e)(rs/Ln); Ln is a typical scale of variation of the equ
librium density profile. The generalized vorticit
W5f2¹2f is the actual quantity transported by the flo
The linear limit of Eq.~1! is equivalent to the evolution of a
collection of independent drift waves obeying the~dimen-
sionless! dispersion relationvk5kx/(11k2). The computa-
tional box is periodic in thex direction (0,x,Lx) and finite
in y ~2Ly,y,Ly ; both f andW vanish aty56Ly!. A
dissipative term, of the formn¹2W, is added to the right-
hand side of Eq.~1! to control the numerical noise at sma
wavelengths, although no forcing is included at this sta
~freely decaying turbulence!. The initial condition is taken to
be a random vorticity distribution

W~x,y,t50!5(
n

(
m

A

~n21m2!1/2

3sinF p

2Ly
m~y2Ly!GcosS 2p

Lx
nx1bmnD ,

~2!

wherebmn are random phases andA is the amplitude. This
choice corresponds to a spectrumufku}k

23.
Although the HM model Eq.~1! captures some of the

basic properties of drift waves, such as the dispersion r
tion and the main nonlinearities, it is important to be awa
of its limitations. In particular, the HM equation assum
cold ions ~thus ruling out finite gyroradius effects!, perfect
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adiabatic response for the electrons, and purely tw
dimensional ~2D! turbulence. The first two hypothese
should not affect our main conclusions on the transport
test particles. Three-dimensionality might play an importa
role. For example, the existence of an inverse cascade~en-
ergy condensing at the smallest wave number! is a typical
feature of 2D turbulence,20,21 and this may affect the diffu-
sion of test particles. A second, important difference is th
in three-dimensions~3D!, a time-independent field can trig
ger test particle diffusion, whereas this is forbidden in 2D.
present, the stochastic diffusion of test particles in a 3D fi
is a largely unexplored domain, which certainly deserves
ture investigation. Despite these limitations, one must bea
mind that, since magnetized plasmas are strongly an
tropic, the 2D assumption is often a reasonably good
proximation. In the present paper, we have not include
source~forcing! term for the turbulence. Such a term wa
included in our treatment in Ref. 11, to which we refer f
details: for that particular choice of source terms, the res
were basically the same as for the freely decaying turbule
considered here. The number of instabilities that could g
erate the turbulence is very large, and the mathematical
mulation and parametrization of the corresponding sou
terms would be very varied. Omission of a source term th
has the further benefit, for the present general plasma phy
purposes, of minimizing the number of free parameters
enabling us to isolate the basic problem of particle transp
in the turbulent field. It can also be seen from the simulatio
below that the particle diffusion time exceeds the turbulen
decay time 1/n by at least an order of magnitude, so that t
turbulent state is effectively stationary for each test partic

III. NUMERICAL RESULTS

In a recent communication,11 we showed that nonlinea
field coupling greatly reduces particle transport. Let us n
try to identify the main mechanisms leading to the suppr
sion of diffusion. In the present example the sums in Eq.~2!
are in the ranges 2<m<10, 2<n<10, with Lx52Ly520rs
and n50.001DGB, whereDGB5rs

3V i /Ln is the gyro-Bohm
diffusion coefficient. The test particles are initially located
a narrow band aroundy50, and uniformly distributed inx.
After following the trajectories of 3000 particles, we com
pute several statistical quantities. In particular, the me
square displacementY2(t), the diffusion coefficient in they
~nonperiodic! directionDy(t), and the kurtosisK(t) are de-
fined by

Dy~ t !5
Y2~ t !

2t
5

^@y~ t !2y~0!#2&
2t

,

~3!

K~ t !5
^@y~ t !2y~0!#4&
3^@y~ t !2y~0!#2&2

,

where the angular brackets denote an average over all
ticles, andK51 for a Gaussian distribution. For a truly dif
fusive process, the diffusion coefficient should be asympt
cally time independent.

The time history ofY2(t) is plotted in Fig. 1, both for
the linear and the nonlinear cases, showing clearly that n
linear coupling does suppress the diffusion. The kurto
629G. Manfredi and R. O. Dendy
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after a short transient, takes a value close to unity for b
cases~Fig. 2!. In Ref. 11, we attributed the suppression
stochastic diffusion to the large scale structures that are
ated in the nonlinear evolution as a result of the inve
cascade. As mentioned in Sec. I, this is essentially a t
dimensional effect, closely related to the conservation of
strophy. These large scale structures are clearly visible f
the vorticity contours att5200Ln/Cs ~Fig. 3, compare with
Fig. 4 which results from the linear evolution!. Their impact
on the level of transport may be due to the fact that, for lo
wavelengths, all linear waves propagate with the same ph
velocity, which can be eliminated by a Galilean transform
tion, thus suppressing all time dependence in the poten
The nonlinear terms are also negligible whenrskx!1. There-
fore, particles trapped in these large vortices follow the fi
lines adiabatically, and are less likely to ‘‘jump’’ from on
vortex to another; nonadiabatic motion is indeed recogni
as the origin of stochastic diffusion.12

More precisely, we conjecture that the nonlinear terms
the HM equation induce a rapid transition in the field sp
trum at an early stage of the evolution. At the end of t
transition, the nonlinear terms have become negligible~be-
cause long wavelengths dominate!: however, the field
emerging from this process is, for the same reason, one
leads to very low particle transport.

In order to verify this conjecture, we perform the follow
ing numerical experiment. The nonlinear simulation
stopped att5200Ln/Cs ; the particle positions are reinitial

FIG. 1. Mean square particle displacement in the nonperiodic direction
the linear~a! and nonlinear~b! case.

FIG. 2. Time evolution of the kurtosis in the same case as Fig. 1. The s
curve~a! refers to the linear case and the broken curve~b! to the nonlinear
one. For a Gaussian distribution of particles the kurtosis is equal to on
630 Phys. Plasmas, Vol. 4, No. 3, March 1997
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ized aroundy50; then the simulation is restarted from th
state to which it has evolved, but now suppressing the n
linear terms. In practice, we are doing a linear simulation
which the initial condition is the one of Fig. 3. If our con
jecture is correct, the subsequent evolution should lead
very small diffusion coefficient even if the nonlinear term
are not present: this would mean that the above-mentio
transition is already completed att5200Ln/Cs . The results,
shown in Fig. 5, confirm our prediction@Fig. 5~b!#. In order
to avoid all spurious effects~due, for example, to dissipa
tion!, the same experiment has been conducted on the o
nally linear simulation, the one leading to the vorticity fie
of Fig. 4. As expected, in this case diffusion takes place@Fig.
5~a!#, although at a smaller rate than in Fig. 1, because
field has been decaying fromt50 to t5200Ln/Cs due to the
viscous term~in this case,n50.001DGB!. Finally, if we keep
the nonlinear terms throughout the second phase of the
periment, we again observe no diffusion@Fig. 5~c!#, just as in
the case of Fig. 5~b!. This reinforces our belief that, after th
transition has occurred, the nonlinear terms play a neglig
role. These results are even more compelling if we grea
reduce the viscosity in the second phase of the simula
~n50.0001DGB!, which is feasible since the nonlinear term
are suppressed~Fig. 6!.

The same experiment is repeated by stopping the si
lation at t550Ln/Cs and reinitializing the particles as abov
~Fig. 7!. In this case, the transition is not complete, and so

r

id

FIG. 3. Contour plot of the generalized vorticity at the end of the nonlin
evolution. Elongated structures parallel to thex axis are visible.

FIG. 4. Contour plot of the generalized vorticity at the end of the line
evolution. No anisotropy is observed.
G. Manfredi and R. O. Dendy
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residual diffusion is still observed in the simulation whic
uses the field arising from the nonlinear evolution@Fig. 7~b!#.

When nonlinearities are present, the test particle mo
shows highly coherent patterns. This is clearly illustrated
initially locating the particles within a small square at t
center of the computational domain, with a uniform distrib
tion. Since the particle motion is Hamiltonian, the area of
square is preserved, although its shape is free to cha
Chaotic motion, and stochastic diffusion, arise when
shape of the square is so distorted and intricate that, w
allowance is made for coarse graining arising from the d
creteness of the particles, its effective surface area is m
larger than the original area of the square. This is what h
pens in the case of linear evolution~Fig. 8!: after some time,
the original shape is lost and stochastic diffusion takes pla
For nonlinear evolution~Fig. 9!, in contrast, the coherence o
the motion is preserved over the entire simulation. The sh
is deformed, but never loses its identity as a single obj
This clearly indicates that nonlinear effects preclude the p
sibility of chaotic trajectories for the particles.

The importance of nonlinear effects in Eq.~1! is deter-
mined by the amplitudeA in Eq. ~2! and by the spectrum o
the initial vorticity distribution. For the same spectrum,

FIG. 5. Mean square particle displacement in the nonperiodic direction.
linear and nonlinear runs of Fig. 1 have been stopped att5200Ln/Cs and
then restarted from their evolved state, but suppressing the nonlinear t
Case~a! comes from the originally linear run and case~b! from the origi-
nally nonlinear run. Case~c! ~broken line! is the continuation of the nonlin-
ear run, including the nonlinear terms.

FIG. 6. The same computer experiment as Figs. 5~a! and ~b!, but with a
smaller viscosityn51024DGB . Both cases are linear fromt5200Ln/Cs on,
but case~a! was also linear fromt50 to t5200Ln/Cs , while ~b! was non-
linear.
Phys. Plasmas, Vol. 4, No. 3, March 1997
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smaller value ofA corresponds to weaker nonlinear effect
and the solution of Eq.~1! should be closer to that obtaine
in the corresponding linear case. On the other hand, the
fusion coefficient also scales with the amplitude~for ex-
ample, in the quasilinear regime,D}A2!. In order to com-
pare the relative strength of these two competing effects,
performed a simulation withA50.5 ~in the previous ex-
amples we hadA51!. It turns out that nonlinear effects ar

e

s.

FIG. 7. The same computer experiment as Figs. 5~a! and 5~b!, but restarting
the run att550Ln/Cs . Case~a! comes from the originally linear run and
case~b! from the originally nonlinear run. Some residual diffusion is no
observed in case~b!.

FIG. 8. Particle distribution for a typical linear case. Although the area
the original small box is preserved, chaotic motion spreads the particles o
the entire computational domain.
631G. Manfredi and R. O. Dendy
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still strong enough to prevent particle diffusion. The sa
result is obtained with a larger amplitudeA52, which cor-
roborates the hypothesis that nonlinear effects, howe
small, lead eventually to coherent, nondiffusive motion.

So far, we have concentrated our attention on the di
sion in the nonperiodic directiony. Turning to the periodic
directionx, which is the direction perpendicular to the equ
librium density gradient, we define the mean square displa
mentX(t) through

X2~ t !5^@x~ t !2^x~ t !&#2&. ~4!

FIG. 9. Particle distribution for a typical nonlinear case. Particle trajecto
are not chaotic, and coherent motion is observed.

FIG. 10. Mean square particle displacement in the periodic directionx for
the nonlinear~a! and linear~b! cases. Note that, contrarily toY, X is larger
in the nonlinear regime.
632 Phys. Plasmas, Vol. 4, No. 3, March 1997
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The time history ofX(t) is shown in Fig. 10, and reveals tha
the test particles travel alongerdistance when nonlinear ef
fects are switched on. This is the opposite of what was
tained in they direction. There is, however, no contradictio
since the motion alongx is not diffusive, but rather coheren
as shown in Fig. 11, where the patterns of the underly
field are clearly revealed by the particle trajectories. Th
the coherent motion occurring in the nonlinear regime allo
the particles to travel for short distances iny, but much
longer distances inx. This anisotropic effect arises from a
asymmetry in the original HM equation, in which the tw
coordinates are not equivalent, since the equilibrium den
gradient is directed along they axis. Contour plots of the
vorticity also reveal the presence of structures elongate
thex direction~Fig. 3!. The anisotropy of the turbulence ca
be quantified by comparing the average unidirectional v
ticity spectra

W̄kx
5E

2Ly

Ly
uWkx

~y!udy, W̄ky
5E

0

Lx
uWky

~x!udx, ~5!

where, for exampleWkx
(y) is obtained fromW(x,y) by Fou-

rier transforming overx. The spectra defined in Eq.~5! are
plotted in Figs. 12 and 13, and show that short scales

s
FIG. 11. Particle distribution in a nonlinear case. The computational dom
extends fromx50 tox5Lx520rs , but the particles are allowed to leave th
periodic domain in order to visualize their motion inx. Particles travel
longer distances inx than iny.
G. Manfredi and R. O. Dendy
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FIG. 12. Unidirectionalx spectrum of the vorticity as defined in Eq.~5! on
a linear scale~a! and a logarithmic scale~base 10! ~b!. Large scale structures
are more strongly excited.

FIG. 13. Unidirectionaly spectrum of the vorticity as defined in Eq.~5! on
a linear scale~a! and a logarithmic scale~base ten! ~b!. The peak observed
in ~a! is centered at a higher wave number compared to thex spectrum of
Fig. 12~a!. Small scale structures are globally more strongly excited.
Phys. Plasmas, Vol. 4, No. 3, March 1997
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more strongly excited in the direction of the density gradie
y. The mean square wave numbers in each direction
^kx

2&1/251.27 and̂ ky
2&1/253.87.

The different spectra reflect the existence of differe
correlation lengths for the two directions. It should also
noted that, due to the different boundary conditions, op
flow lines can only exist in thex direction, and we have
indeed observed some of them in the vorticity contou
Along an open flow line, the correlation length is virtual
infinite, and, for a frozen field, a particle moving on such
line would travel an infinite distance inx, with a finite ex-
cursion iny.

This behavior is a signature of the so-called ‘‘zon
flows,’’ or elongated structures in the direction perpendicu
to the density gradient, which are visible in Fig. 3. In a
early paper, Hasegawa, Maclennan, and Kodama22 specu-
lated that zonal flows may inhibit particle transport acro
the flow, and our numerical results support such a conject

IV. FINITE LARMOR RADIUS (FLR) EFFECTS

For energetic alpha-particles, the guiding-center mo
described above is no longer valid, and effects due to th
large Larmor radii must be taken into account. The simpl
model for FLR is obtained by ‘‘spreading’’ the particle ove
a ring centered at the position of its guiding-center, and i
accurate as long as the gyration frequencyV i5eB/mi is
much larger than the drift frequencyv!5V irs/Ln . This
model can be implemented numerically by defining the el
tric field acting on a particle as the average field calculate
Ngyro points distributed over a ring whose radius is equal
the Larmor radius.23 The averaging operation tends to su
press the smaller-scale components of the electric field~a
similar effect could arise from the banana orbits, induced
the inhomogeneity of the magnetic field in tokamak geo
etry!. This point has been raised in the context of electr
diffusion in a stochastic magnetic field.24 We have already
shown11 how FLR can greatly reduce the transport of te
particles. We now try to quantify this reduction more pr
cisely, and suggest a computer experiment in which this
fect is used to extract information about the underlying t
bulent field.

According to the closure theory of Refs. 13 and 17, t
test particle diffusion coefficient takes one of the followin
dimensionless forms, in the quasilinear~small amplitude!
and frozen turbulence~large amplitude! regimes, respec-
tively:

D2}(
k

1

vk
2 ^Ek~ t !•E2k~0!&2, ~6a!

D2}(
k

1

k2
^Ek~ t !•E2k~0!&, ~6b!

where now angular brackets denote average over the ran
phases. Thus the diffusion coefficient scales as the squa
the field amplitude in the quasilinear regime, and linearly
the amplitude in the frozen turbulence regime. The na
‘‘frozen turbulence’’ is a reminder that the limit of larg
amplitudes is equivalent to that of small wave frequenci
633G. Manfredi and R. O. Dendy
¬AIP¬copyright,¬see¬http://ojps.aip.org/pop/popcpyrts.html.
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The more sophisticated results of Refs. 16, 18, and 19 pre
a dependence slightly weaker than linear in the large am
tude case (D}uEu0.7). However, the important point is tha
two different regimes can be clearly distinguished.

It can be shown25 that our model for finite Larmor radiu
is equivalent to replacing the true field spectrumEk with an
effective J0(rk)Ek , whereJ0 is a Bessel function andr is
the Larmor radius. This enables us to scale the diffus
coefficient with Larmor radius, at least in the limitrk@1,
for which the Bessel function can be expanded
J0(rk)}(rk)

21/2. Thus, in the limit of large Larmor radii
the diffusion coefficient scales asr21 in the quasilinear re-
gime @Eq. ~6a!#, and asr21/2 in the frozen turbulence regim
@Eq. ~6b!#. Observation of the diffusion properties of alph
particles of different energies~and therefore different Larmo
radii! should provide information about the turbulence a
discriminate between the two regimes.

The effective amplitude of the velocity field is measur
by a normalized amplitudea, which we now define. The
root-mean square~rms! electric field is

Erms
2 5^uEu2&5

1

2LyLx
E
0

Lx
dxE

2Ly

Ly
dy E2~x,y,0!; ~7!

Erms quantifies the amount of electric energy contained in
system. In a similar fashion, we also define a rms freque
v rms
2 5 ^vk

2&. Then, the normalized amplitude is given by t
following expression:

a5
2p

Lxv rms

Erms

B
. ~8!

This definition is very close to the one used by Misgui
et al.17 in the case of a single frequency. In our first examp
we set A525, Lx52Ly5120, which givesa50.36, and
therefore expect to be in the quasilinear regime. We h
followed eight groups of particles with different Larmor r
dii. The measured diffusion coefficients are shown in F
14~a! on a logarithmic scale. The slope521 line, corre-
sponding to the quasilinear estimate, is a reasonably accu
fit to the computational curve, and certainly better then
slope520.5 line, which holds in the frozen turbulence r
gime. The oscillations arise from the behavior of the Bes
function J0. WhenA5100,Lx5120, andLy5150, the nor-
malized amplitude isa51.24, and Fig. 14~b! shows that the
diffusion coefficient still scales asr21. For a52.45 @Fig.
14~c!# we are at the boundary between the two regim
while for a54.6 @Fig. 14~d!# the diffusion coefficient scale
asr21/2 as expected in the high-amplitude frozen turbulen
case. In actuality, the slope520.35 line, which is the resul
obtained in Ref. 19 in the large amplitude limit, appears
give an even better fit, although it is difficult to discrimina
between the two regimes.

In summary, we have been able to reconstruct som
the properties of a turbulent field simply by measuring
diffusion rates of test particles with different Larmor radii.
may be possible to devise techniques, based on this princ
which could be used to determine experimentally the leve
turbulence in a magnetized plasma.
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V. CONCLUSIONS

Anomalous transport in tokamak plasmas most proba
arises from low-frequency, electrostatic, drift turbulen
driven by ion-temperature-gradient instabilities. To date, i
not yet clear which kind of field spectra can be sustained
drift turbulence in a realistic three-dimensional, toroidal g
ometry. An open and important question, for example,
whether the dynamics will be essentially two-dimension
~due to the strong anisotropy induced by the magnetic fie!,
or fully three-dimensional. An essentially 2D behavior c
have a significant impact on the structure of the spectr
~2D turbulence admits an inverse energy cascade!, and this in
turn can profoundly influence the transport of test particle

In this paper, we have discussed the impact of nonlin
coupling and finite Larmor radius on the transport of te
particles. Our numerical results show that nonlinear fi
coupling can greatly reduce the particle diffusion coefficie
A detailed study of the physical mechanism leading to t
effect shows that the nonlinear terms rapidly modify the fie
spectrum, and give rise to a new field which induces v
small particle diffusion. This is therefore a practical examp
of how 2D turbulence can affect the transport of test p
ticles.

By comparing the evolution of an initially localize
packet of particles in a linear and nonlinear field, we ha
also shown that chaotic motion occurs only in the form
case, while in the latter we observe regular, coherent
terns. The transport is found to possess different propertie
the two directions perpendicular to the magnetic field. T
anisotropy arises from a fundamental asymmetry in

FIG. 14. Scaling of the diffusion coefficient against Larmor radius on
logarithmic scale~base 10! for four values of the normalized amplitude
a50.36 ~a!; a51.24 ~b!; a52.45 ~c!; anda54.6 ~d!. The slope520.5 line
~dotted line! corresponds to the large amplitude scaling, while t
slope521 line ~broken line! corresponds to small amplitude scaling. In~d!
the slope520.35 is also indicated, which corresponds to the result of R
19 for large amplitude. The different regimes of small and large amplit
are clearly visible.
G. Manfredi and R. O. Dendy
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Hasegawa–Mima equation, reflecting the fact that along
of these directions (y) an equilibrium density gradient i
present. The degree of anisotropy is quantified by mean
the unidirectional field spectra, and they spectrum is found
to be peaked at a larger wave number, with small scale st
tures more strongly excited than in thex spectrum. This cor-
responds to the appearance of ‘‘zonal flows’’ parallel to
periodic directionx, which play a role in the nonlinear sup
pression of stochastic diffusion that we have observed.

Finally, we have investigated the impact of finite Larm
radius on test particle transport. The FLR effects must
taken into account when considering the transport of al
particles which are born at high energy in fusion reactio
With the help of a simple picture for FLR and a theoretic
model relating the diffusion coefficient to the structure of t
electric field, it is possible to derive a scaling law for th
diffusion coefficient against the Larmor radius. This scali
law varies according to the amplitude of the field, and th
enables us to discriminate between two different regimes:
quasilinear~or low amplitude! and the frozen turbulence~or
high amplitude! regime. Computer experiments confirm th
existence of these two regimes, and reproduce the sca
exponents predicted by the theory. Although our model d
not include banana orbits, the results obtained appear t
generic and, in real experiments, this technique could be
ploited to obtain information about the level of turbulence
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