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I.  Introduction

In magnetic fusion devices such as tokamaks, the confining 
magnetic field is designed so that the field lines that intersect 
some machine components do so with near grazing incidence 
in order to maintain power deposition within sustainable 
limits. Due to the large difference in inertia between the ions 
and the electrons, the latter tend to be lost to the absorbing 
wall faster than the former, leading to the formation of a thin 
(a few Debye lengths wide) positively-charged transition layer 
in front of the wall, the so-called Debye sheath (DS) (see [1] 
for a large-scope review on the topic). The resulting large 

electric field in the DS repels the electrons and accelerates 
the ions, leading to a sustainable steady-state with zero net 
current at the wall.

In the presence of a magnetic field whose direction is not 
normal to the wall, the structure of the transition is more intri-
cate. The magnetic field maintains the ions flow aligned with 
its own direction, while the electric field tends to accelerate 
them normally to the wall, leading to a competition between 
these two effects. In the case of nearly grazing incidence, the 
particle motion along the normal to the wall is essentially 
cyclotronic, resulting in a strongly reduced net flow in that 
direction. The efficiency of the confinement decreases when 
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Abstract
When an unmagnetized plasma comes in contact with a material surface, the difference in 
mobility between the electrons and the ions creates a non-neutral layer known as the Debye 
sheath (DS). However, in magnetic fusion devices, the open magnetic field lines intersect 
the structural elements of the device with near grazing incidence angles. The magnetic field 
tends to align the particle flow along its own field lines, thus counteracting the mechanism 
that leads to the formation of the DS. Recent work using a fluid model (Stangeby 2012 Nucl. 
Fusion 52 083012) showed that the DS disappears when the incidence angle is smaller than 
a critical value (around 5° for ITER-like parameters). Here, we study this transition by means 
of numerical simulations of a kinetic model both in the collisionless and weakly collisional 
regimes. We show that the main features observed in the fluid model are preserved: for 
grazing incidence, the space charge density near the wall is reduced or suppressed, the ion 
flow velocity is subsonic, and the electric field and plasma density profiles are spread out over 
several ion Larmor radii instead of a few Debye lengths as in the unmagnetized case.  
As there is no singularity at the DS entrance in the kinetic model, this phenomenon depends 
smoothly on the magnetic field incidence angle and no particular critical angle arises.  
The simulation results and the predictions of the fluid model are in good agreement, although 
some discrepancies subsist, mainly due to the assumptions of isothermal closure and 
diagonality of the pressure tensor in the fluid model.
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one approaches the wall, as more and more Larmor orbits 
intersect the wall. As the electrons are more strongly con-
fined than the ions, there exists a new transition layer, the 
so-called Chodura sheath (CS) or magnetic pre-sheath [2], 
where the imbalance between the ionic and electronic flows 
is sufficiently compensated by the difference in confinement 
to maintain quasi-neutrality. This transition layer, between a 
fully magnetized plasma flow and the wall is typically a few 
ion Larmor radii thick. Since generally i Dρ λ�  the plasma-
wall transition is globally smoother than in the purely electro-
static case, with smaller spatial gradients for the electric field 
and plasma density near the wall.

In the most general case, the DS and the CS coexist: the 
imbalance between the ionic and electronic parallel flow still 
requires the formation of a positively charged DS in order to 
ensure ambipolarity at the wall. The boundary between the 
CS and the DS is characterized by the breakdown of quasi-
neutrality and the onset of a supersonic ion flow velocity at the 
entrance of the DS. For unmagnetized plasmas, this reduces 
to the well-known Bohm criterion [3, 4]. A similar criterion 
was derived by Chodura [2] in the magnetized case, which 
requires the parallel ion flow velocity at the entrance of the 
CS to be supersonic.

In the landmark study by Chodura [2], the main features 
of the CS–DS transition were described using both a fluid 
model and numerical results from particle-in-cell (PIC) simu-
lations. Further studies of the plasma-wall transition, focus-
sing on its stability, were performed with PIC simulations  
[5, 6]. The fluid model was later extended with friction terms 
to encompass both the magnetic and collisional presheath [7] 
(and more recently [8]). This model was recently used to show 
some partial agreement with experimental data [9] in a dif-
ferent regime ( coll i Dλ ρ λ≈ � ) with respect to the one consid-
ered here ( coll i Dλ ρ λ� � ).

In a recent work [10], Stangeby also used a fluid model to 
examine the CS–DS transition for low values (a few degrees) 
of the incidence angle of the magnetic field, i.e. in the range 
relevant to the plasma-divertor interaction in fusion devices. 
Importantly, this study showed the existence of a critical inci-
dence angle under which the plasma-wall transition occurs 
without the need for the formation of the DS. As a result, 
the electric field and the plasma density gradients are not 
restricted to the (very thin) DS, but extend much further (a 
few ion Larmor radii) into the CS. This effect is significant 
enough to have a non-negligible impact on prompt redeposi-
tion of sputtered neutrals in a tokamak scrape-off-layer (SOL) 
[11, 12].

This potentially important application warrants a more 
detailed analysis of this phenomenon, going beyond the simple 
fluid approach that was used in [10]. The main objective of 
the present paper is to examine the robustness of Stangeby’s 
results by means of numerical simulations of a kinetic model 
[13]. Various effects that can have an impact on the transi-
tion will be analyzed in details, such as the magnitude and 
incidence of the magnetic field, the effect of collisions, and 
isotopic effects. Generally speaking, Stangeby’s results are 
confirmed: the DS disappears for small angles of incidence  
(1°–5°), although the transition is not as clear-cut as in the fluid 

model. Note that we will not consider here the extreme case 
m m/ 1e iα< ≈ ° (for deuterium), for which the ions reach the 

wall faster than the electrons, and consequently the sheath 
structure changes considerably [14].

The present paper is organized as follows: In section II, 
we summarize the results obtained by Stangeby using a 
fluid model. In section  III, we describe the kinetic model 
and the numerical method and parameters. In section IV, we 
examine the CS–DS transition using a collisionless model, 
with parameters and boundary conditions chosen to match 
as closely as possible those of [10]. In section V, we directly 
compare the spatial profiles obtained from the fluid model 
and kinetic simulations. In section VI, we introduce a col-
lision operator in our kinetic model, and use it to check the 
robustness of the observations made in the collisionless 
regime. In section VII, we summarize the main conclusions 
of this study and mention some of the key issues that remain 
to be addressed.

II.  Stangeby’s result from fluid theory

Stangeby [10] considered a plasma composed of electrons of 
charge  −e and a single ion species of charge q Z ei i= . The 
plasma is bounded by a fully absorbing wall on one side, 
while thermal equilibrium is assumed far from the wall (see 
figure 1). Noting x the direction corresponding to the normal 
to the wall, the system is assumed invariant by translation in 
the (y, z) plane parallel to the wall. The plasma is magnetized 
by an external magnetic field B0, constant in space and time, 
whose direction is normal to ez and makes an angle α with 
the wall, i.e. BB e esin cosx y0 0( )α α= + . The self-consistent 
magnetic field generated by plasma currents is neglected.

The main result of [10] is the existence of a critical angle cα  
for which there is strictly no Debye sheath, or more precisely 
the average flow along the normal to the wall never becomes 
sonic. We will first reestablish this result with slightly more 
relaxed assumptions in order to treat both sonic and super-
sonic regimes, and then examine the actual simulation results. 
Though the model used in [10] is a fluid one, the result is actu-
ally quite generic. From the ion flux conservation ∂ =j 0x xi  
we have:

v x
j

n x

Z j

n x e/
,x

xi
W

xi
W

i
i

i

e
⟨ ⟩ ( )

( ) ( ) ρ
= =

+
� (1)

Figure 1.  Geometry of the model.
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where vx i⟨ ⟩  is the mean ion velocity, jxi is the mean ion current, 
ni,e is the ion (electron) number density, and e Z n ni i e( )ρ = −  
is the charge density. The superscript ‘W’ refers to the wall 
and ⟨ ⟩⋅  stands for the averaging operator over velocity space. 

Using the ambipolarity condition at the wall Z j jxi
W

xe
W

i =  we 
have

v x v
n

n x x e
v esin cos

/
.x

W
x

W
W

i e e
e

e
⟨ ⟩ ( ) [⟨ ⟩ ⟨ ⟩ ]

( ) ( )∥ α α
ρ

= + ⋅
+

⊥

�

(2)

Now we make two assumptions. The first is on the ratio 
n

n x x e/

W
e

e( ) ( )ρ+
, which we will take to be less than unity. Such 

condition is fulfilled in the case of a quasi-neutral region 
( 0ρ≈ , as in the CS) or a positively charged region ( 0ρ> , as 
in the standard DS), subject to the condition of a decrease of 
the electron density when one approaches the wall ( n 0x e ⩽∂ ). 
This is clearly the case for Boltzmann electrons and a nega-
tively charged wall, as was assumed in [10]. Whatever the 

exact assumptions, as long as 1n

n x x e/

W
e

e
⩽

( ) ( )ρ+
 we obtain a 

bound on the ion flow velocity

v x v v esin cos .x
W

x
W

i e e⟨ ⟩ ( ) ⩽ ⟨ ⟩ ⟨ ⟩∥ α α| | | + ⋅ |⊥� (3)

The second assumption is that the electrons are perfectly 

magnetized up to the wall, i.e. v e 0x
W
e⟨ ⟩⋅ =⊥ . This becomes 

obviously false for distances smaller than the electron Larmor 
radius eρ  from the wall, but can be considered a reasonable 
approximation as long as the electron flow variation is mild. 
We then have

v x vsin .x
W

i e⟨ ⟩ ( ) ⩽ ⟨ ⟩∥α| | | |� (4)

For sufficiently small α, the bound of equation (4) may pre-
vent the ion mean velocity vx i⟨ ⟩  from becoming supersonic, in 
which case no DS is required to guarantee ambipolarity. This 
happens when α is equal or smaller than the critical value cα  
defined as

c

v
sin .c

s
W
e⟨ ⟩∥

α =
| |� (5)

In the case of a half-Maxwellian electron parallel velocity 

distribution at the wall, one has v T m/ 2W
ee 0 e⟨ ⟩ ( )∥ π=  and 

the result of [10] is readily obtained. The underlying physical 
phenomenon is essentially the limitation of the electron cur-
rent at the wall by the magnetic field, which entails a limita-
tion of the ion current. For sufficiently small α, an ambipolar 
flow along x can be maintained at the wall without requiring 
strong ion acceleration, so that there is no need for a DS.

A few points of importance should be noted:

	 1.	While the bound on the CS ion flow velocity in equa-
tion  (3) is quite generic, the notion of a well-defined 
critical angle stems from two assumptions: a Bohm crite-
rion on the ion velocity for the existence of the sheath (i.e. 

v cx si⟨ ⟩ ⩾| |  at the sheath entrance) and perfect magnetiza-
tion of the electrons. In a kinetic model such as the one 
considered later on in this paper, the relationship between 

the mean ion flow velocity and the sheath stability is not 
as direct as the simple Bohm criterion.

	 2.	A second point is the fact that the bound of equation (4) 
and the critical angle do not depend explicitly on the flow 
at the CS entrance, and are thus valid in the CS in both  
the sonic and supersonic regimes. This is in contrast with 
the result presented in appendix A of [10] which relies 
on the erroneous use in a supersonic case of the potential 
drop in the CS that had been established for a sonic case 
(equation (33) in [10], used in conjunction with equa-
tion (A3) of the same paper).

	 3.	As was noted in [10], in a model accounting for the finite 
electron Larmor radius, the angular dependency of the 
electron current would be more complex than the simple 
sinα behaviour considered here.

III.  Kinetic model and numerical parameters

In the kinetic model considered here, the dynamics of the 
ions is described by the evolution of the phase-space distri-
bution function f t x v v v, , , ,x y zi ( ) obeying the collisional Vlasov 
equation

⎛
⎝
⎜

⎞
⎠
⎟f v f

q

m
f C fE v e ,t x x z vi i

i

i
ci i i i( )ω∂ + ∂ + + × ⋅ ∇ =� (6)

where Z eB m/ci i 0 iω =  is the ion cyclotron frequency. 
In all results presented hereafter the collision operator, 
whenever present, is a Bathnagar–Krook–Gross (BGK) 
linear relaxation operator [15], which drives the distribu-
tion function to an isotropic Maxwellian distribution, i.e. 

C f f f M
i i i i( ) ( )ν= − −  where iν  is the ion relaxation rate 

and f n expM
i

m

T

m v

Ti 0 2

3/2

2i i

i

0

i
2

0( ) ⎡
⎣

⎤
⎦= −

π
. At the wall (x  =  0), an 

absorbing boundary condition is assumed in x for the incoming 
part of the distribution function, i.e. f t v v v, 0, , , 0x y zi ( ) =  for 
vx  >  0. On the plasma side (x  =  L), the incoming particle 

distribution is prescribed by f t L v v v f v v v, , , , , ,x y z x y zi i
in( ) ( )=  

for vx  <  0. In the collisional simulations f i
in is simply a 

Maxwellian with bulk plasma parameters (the same that is 
used for the BGK operator). In the collisionless simulations, 
it is a field-aligned drifting distribution with parallel velocity 
that satisfies the Chodura criterion at the CS entrance (see 
section IV.A).

The electrostatic field E ex xφ= −∂  is computed from the 
electrostatic potential by solving the Poisson equation

e
Z n n 0xx

2

0
i i e( )φ∂ + − =

ε� (7)

with a Dirichlet boundary condition 0φ =  at x  =  L and a Von 
Neumann condition E /x 0σ= ε  at the wall. The wall charge 
surface σ is computed by integrating in time the outgoing net 
electric current:

e Z j t x t, 0 d ,
t

s i e
s xs

0 ,

( )∫ ∑σ = − =′ ′

=
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with j v f vdxs x s
3∫= . The full electron kinetic dynamics is not 

resolved, but instead a Boltzmann law is assumed for the elec-
tron density n n e Texp / ee ref ref 0[ ( ) ( )]φ φ= − . The reference 
quantities are defined at x  =  L by 0refφ =  and n n Lref i( )= . 
The outgoing electron flux at the wall is computed by assuming 
a half-Maxwellian distribution and is given by

j
T

m
n e Tsin

2
exp / .xe

W e
e

0

e
ref ref 0[ ( ) ]α

π
φ φ= − −� (8)

The latter relation does not take into account finite electron 
Larmor radius effects, as it is assumed that j jsinxe e∥α= .

All numerical simulations were performed using the 
Eulerian code described in [13]. The numerical scheme is 
based on a split-operator technique for the time-stepping 
algorithm, with interpolations performed with a positive 
flux conservative (PFC) scheme [16]. In all cases, starting 
from a uniform Maxwellian plasma, the system is left to 
relax towards a stationary state. A first set of simulations 
were run in a collisionless regime ( 0iν = ) over a spatial 
domain limited to the CS+DS region, covering a few ion 
Larmor radii. A second set of simulations were run in a col-
lisional regime where the full transition from an isotropic 
Maxwellian plasma to the wall is considered, including the 
collisional presheath. In both cases, parametric scans with 

2 , 3 , 4 , 5 , 10 , 15 , 30 , 45 , 60 , 90{ }α∈ ° ° ° ° ° ° ° ° ° °  were performed.

IV.  Collisionless plasma-wall transition

The parameters of the first set of simulations were set in order 
to match as closely as possible those of the fluid model used 
in [10]. The simulation box length is between L 120 Dλ≈  and 
L 800 Dλ≈ , depending on the strength of the magnetic field 
(in Stangeby’s quasi-neutral model, since the Debye length 
vanishes, the CS entrance is located at x → ∞). Parametric 
scans in the incidence angle α were performed for hydrogen 
(m mi H= ) and deuterium (m m2i H= ). The magnetic field 
intensity is such that 0.05 piciω ω= , i.e. 20i Dρ λ= . For all 
simulations, we assumed equal temperatures T Ti e0 0= . For 
brevity, the local value of any quantity X expressed at the wall 

(x  =  0) and at the magnetic presheath entrance (x  =  L) will be 
tagged respectively as XW and X CSE.

IV.A.  Boundary conditions

At the plasma boundary, i.e. the CS entrance, the incoming 
ion flux should be supersonic (Chodura criterion) and aligned 
with the magnetic field direction. To this end, we prescribe the 
following distribution function at x  =  L:

f KH v
v

v

v

v
exp

2
,i

in

thi

2

thi
2

( )∥
∥⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥= −

| |
−
| |β

� (9)

where H is the Heaviside function, v T m/ithi 0 i= ,  

( )= Γ
π

β β− +K 2n

v2

1
2

1

2
i0

thi
3

, with Γ the Euler gamma function.  

The average parallel velocity corresponding to f i
in is 

〈 〉 ( ) ( )∥ = − Γ Γβ β+ +v v 2 /thi
2

2

1

2
. In the results presented in 

this section the β exponent was set equal to 2, leading to an 
average flow v v1.6 thi⟨ ⟩∥ = − , i.e. slightly supersonic. Smaller 
values of the parallel velocity may run the risk of destabilizing 
the transition. The above distribution is compatible with fluid 
models that assume a sonic or slightly supersonic flow at the 
entrance of the CS. In addition, it is also compatible with the 
velocity distribution obtained self-consistently from a kinetic 
model that incorporates weak collisions, as we shall show in 
section VI.

In figure 2(a) the vx dependency of the incoming distribu-
tion function is shown for a few values of α. The case 90α = ° 
corresponds to v vx ∥= . One should note that the parallel 
velocity distribution is not a Maxwellian, and that its effec-

tive ‘temperature’ T P n T/ 0.45 ii
in in

0
∥

∥∥= ≈  is smaller than Ti0. 

In a magnetic-field-aligned basis such as b e b e, ,z z( )× , the 
kinetic pressure tensor is diagonal but anisotropic. In the (x, 
y, z) basis, it is not even diagonal anymore and the various 
components of the pressure tensor vary with α. For instance, 
the xx component of the pressure tensor, for 2β = , is equal to 
P n T 1 0.55 sinxx i i

in
0 0

2( )α≈ − .

Figure 2.  (a) Prescribed ion distribution functions at x  =  L averaged over v v,y z( ), for a few values of the incidence angle α (the distributions 
are normalized to the peak value of the 90α = ° case); (b) total potential drop in the CS and DS as a function of α.

(a) (b)
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In a collisionless model, the total potential drop from the CS 
entrance to the wall is independent on the angle α. However, 
for very small angles, numerical errors (due to the presence of 
a small but non-zero electric field near x  =  L) slightly break 
this invariance. This entails a small variation with α of the 
total potential drop, as seen in figure 2(b). However, this small 
error does not affect the main physical conclusions that can be 
drawn from the forthcoming numerical simulations.

IV.B.  Effect of the angle of incidence

We will now consider the parametric dependency of the 
CS–DS transition with the magnetic field incidence angle α. 
Figure 3(a) shows that the space charge density near the wall 
decreases rapidly with decreasing α. Although the charge 
density does not strictly vanish (nor changes sign), the strong 
limitation of the space charge density is a clear signature that 
the DS progressively disappears at small incidence angles. In 
addition, the spatial profile of the electric potential (figure 3(b))  
evolves from a two-scale profile at large α—typical of the 
CS–DS transition—to a smooth evolution at low α. As a con-
sequence, although the peak of the electric field decreases 
strongly as the DS vanishes (figure 4(a)), its extension reaches 
much further into the plasma, several ion Larmor radii from 

the wall. As discussed in [10], this is of significant importance 
for the estimation of the prompt redeposition of sputtered 
impurity ions: indeed, while the overall electric field intensity 
decreases with α, it will affect sputtered neutrals ionized far-
ther from the wall and increase prompt redeposition.

The ion (and thus plasma) density drop is also spread out 
and reaches lower values with decreasing α (figure 4(b)). This 
depletion of the plasma density near the wall (for regions such 
that x i⩽ ρ ) entails a lower ionization rate for sputtered neu-
trals, thus lowering prompt redeposition.

Let us now consider the ion mean flow perpendicular to 
the wall (figure 5). Due to both the anisotropic nature of the 
kinetic pressure tensor and the non-uniformity of the ‘tem-
peratures’ (see section V for a discussion of the fluid closure), 
we refrain here from normalizing the flow to the usual sound 
speed c T T m v/ 1.4s i e0 0 i thi( )= + ≈ , which is strictly valid 
only in the case of an isothermal closure for the Pxx com-
ponent of the kinetic pressure tensor. In our case, the sound 

speed can be roughly estimated (from f i
in) as ranging from 

v1.2 thi to v1.4 thi when α ranges from 90° to 2°, and is very close 
to v1.4 thi for the lowest range ( 15α< °) of angles considered.

Figure 5 clearly shows that the peak (absolute) value of 
the ion mean velocity decreases with decreasing α and is 
limited to subsonic values for low angles of incidence, below 

Figure 3.  Spatial profiles of the charge density (a) and the electric potential (b), for a collisionless case with deuterium ions.

(a) (b)

Figure 4.  Spatial profiles of the electrostatic field (a) and the ion density (b), for a collisionless case with deuterium ions.

(a) (b)

Plasma Phys. Control. Fusion 58 (2016) 025008
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approximately 5°. Together with the disappearance of the 
space charge in front of the wall (figure 3(a)), these results 
confirm Stangeby’s conclusion that no DS forms below a cer-
tain angle of incidence. The limitation of both the ion density 
and the average velocity with decreasing α are clearly vis-
ible when examining directly the vx velocity profile of the ion 
distribution function (averaged over vy and vz), as shown in 
figure 6.

We will now examine more closely the behaviour with 
α of a few important quantities measured at the wall. The x 
component of the electrostatic field at the wall is shown in 
figure 7 as a function of sinα. As expected from the above 
observations, it is an increasing function of α. For the smallest 
angles 2 , 3 , 4 , 5 , 10{ }α∈ ° ° ° ° °  (inset of figure 7), the evolution 
is roughly linear in sinα, but the overall behaviour for the full 
range of angles is less obvious.

The space charge density at the wall clearly exhibits a 
linear dependency in sinα (figure 8(a)). This fact allows us to 
obtain a semi-empirical fit for the ion perpendicular velocity 
at the wall. Indeed, taking equation  (2) at the wall with an 

electron current j v nsin / 2xe
W W

the e( )α π= −  we obtain

v
v

en

v

2

sin

1 / 2

sin

1 sin
,x

W
W Wi

the

e

the⟨ ⟩
( )π
α

ρ π
α
κ α

| |=
+

=
+� (10)

where κ is a fitting parameter. To obtain equation  (10), we 
have assumed that sinWρ α∝  (see figure  8(a)) and that 
nW

e  is independent of α. An interesting fact here is that the 
coefficient κ can be computed in the normal incidence case 
( 90α = °), which does not require a full 1D3V model but only 
a far simpler 1D1V simulation. Once κ has been determined, 
the ion perpendicular flow for any incidence angle can be 
computed using equation (10). Some examples of this semi-
empirical fit are shown in figure 8(b), for both hydrogen and 
deuterium ions.

IV.C.  Effect of the magnetic field amplitude at fixed angle 
(α = °2 )

In the simulations considered so far, the scaling 
20i D Dρ λ λ= �  (or / 0.05 1piciω ω = � ) was valid. In that 

regime, decreasing the magnetic field intensity B0 will essen-
tially result in a rescaling of the CS, whose thickness increases 
with growing iρ . This is clear from figure 9, for instance in 
the case 0.01 piciω ω=  ( 100i Dρ λ= ), where the velocity pro-
file stretches out to several hundred Debye lengths. At the 
same time, the charge separation near the wall decreases 
with decreasing magnetic field, and almost disappears for 

0.01 piciω ω=  (figure 10). This is because, the CS being larger, 
the whole potential drop can more easily occur within the 
CS, with hardly any need for a non-neutral DS. Thus, in the 
large /i Dρ λ  regime, the disappearance of the DS predicted by 
Stangeby is even more apparent.

In contrast, increasing B0, and thus decreasing iρ , results in 
a progressive breaking of the above scaling (see [17] for a dis-
cussion of the scales entering the transition). For the case of low 
incidence angles, the consequences are twofold. On the one 
hand, we observe a stronger limitation of the ion flux perpen-
dicular to the wall, as can be seen from figure 9. On the other 
hand, the charge separation near the wall tends to increase with 
B0 (figure 10). These observations can be explained as follows. 
With increasing B0, the CS extension becomes of the same 
order as that of the DS, so that the two sheaths overlap. Since 
the total potential drop remains constant, the overall width 
of the transition zone becomes too narrow to allow a quasi-
neutral transition. Consequently, the almost quasi-neutral tran-
sition previously observed for low magnetic fields at grazing 
incidence (curve corresponding to / 0.05piciω ω =  in figure 10) 
disappears, and the formation of a sheath is again required to 
ensure a smooth plasma-wall transition. This effect may be 
interpreted as the appearance of a ‘new’ type of non-neutral 
sheath, whose thickness is of the order of the ion Larmor 
radius, when the scaling i Dρ λ≈  is satisfied.

IV.D.  Non-floating (biased) wall

So far, we have considered stationary states for which the wall 
potential was left floating. We will now examine the effect 

of biasing the wall to a fixed potential W
biasφ  below (i.e. more 

negative than) the floating value W
floatφ . Strictly speaking, the 

behaviour of the system in this case is not governed anymore 
by the ambipolarity condition at the wall, which was at the 
basis of the bounds obtained in section II. However, the ambi-
polarity condition can be reintroduced using the fact that the 
ion current density is the same in both situations, because it is 
fixed by the boundary condition at the CS entrance.

Still considering the electrons as perfectly magnetized up 
to the wall, we have

⎛
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Figure 5.  Spatial profiles of the average ion flow velocity 
perpendicular to the wall, for a collisionless case with deuterium 
ions.
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Unsurprisingly, the bound on the ion flow velocity becomes 
less and less restrictive as the wall potential is set to lower 
values. For a given target velocity, the corresponding critical 
angle decreases accordingly. Starting from a floating case, 
with a given (small) angle α for which the DS has nearly 
vanished, we can expect it to reappear as biasφ  is decreased. 
Considering for instance the deuterium case with 2α = °, for 

which e T2.5W
efloat 0φ ≈− , several biased-wall simulations were 

performed with different values of W
biasφ . An increase of the 

charge density near the wall is indeed observed (figure 11(a)), 
resulting in the growth of the electric field (not shown here) and 
the ion flow velocity perpendicular to the wall (figure 11(b)).

We also analysed the case of a wall biased at a potential 
above (i.e. less negative than) the floating value, a situation rele-
vant to tokamak divertors where the divertor tiles may be biased 
positively with respect to the floating potential. The results are 
depicted in figure 12. For grazing incidence ( 2α = °), a small 
bias above the floating potential is sufficient to remove com-
pletely the charge separation near the wall or even to reverse 
its sign. At the same time, the ion velocity at the DS entrance 
drops well below the sound speed. The conclusion here is that, 
for grazing incidence, a small bias above the floating potential 
can remove any remnants of the DS, so that the transition to the 
wall is truly charge-neutral and subsonic. For almost normal 
incidence, the necessary bias would have been much larger.

V.  Comparison between the fluid model and kinetic 
simulations

The results of Stangeby [10] were obtained using simple fluid 
model that had been proposed earlier by Chodura [2] and 
Riemann [7], and further developed in [8]. Although its pre-
dictions are basically correct, most notably the disappearance 
of the DS for low incidence angles, it would be interesting to 

Figure 6.  Ion velocity distribution function in vx for several positions (indicated on top of each curve, in units of Dλ ) and three values of α: 
(a) 3α = °, (b) 30α = °, and (c) 90α = °. For each value of α, all distributions are normalized to their peak value at the entrance of the CS 
(x 117.3 Dλ= ).

(a)α = 3◦ (b)α = 30◦

(c)α = 90◦

Figure 7.  Electric field magnitude at the wall as a function of the 
incidence angle, for a collisionless case with hydrogen or deuterium 
ions. The inset is a zoom at small angles.
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test its limitations by comparing the fluid results to those of 
our kinetic code.

Taking the velocity moments of equation  (6) up to first 
order yields the following fluid system in the stationary state

n u n nx x ii i i 0( ) ( )ν∂ = − −� (13a)
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where u v k x y z, , ,k k⟨ ⟩= = , sinx ciω ω α= , cosy ciω ω α= , and 
ni0 is the bulk density. In the Chodura–Riemann–Stangeby 
(CRS) model for the collisionless magnetic presheath, we 
have 0iν =  and two assumptions are made: (i) the non-
diagonal components of the kinetic pressure tensor (terms 
in braces in equations (13)(c)–(d)) are neglected and (ii) the 
xx component of the pressure tensor is assumed to follow an 

isothermal closure P T nxx 0 i= , with constant T0. Combined 
with the quasi-neutrality relation and the Boltzmann law for 
the electron density, the system of equations (13)(a)–(d) can 
be integrated easily [2, 10]. In [10], the system is integrated in 
x starting from the CS exit. In our case, as the kinetic simula-
tion encompasses both the CS and the DS, defining the CS exit 
would require setting a somewhat arbitrary threshold on the 
charge separation. Thus, in order to compare our simulation 
results with the CRS fluid model, we integrate the fluid equa-
tions starting from the CS entrance at x  =  L. In order to com-
pare with the kinetic results, the constant temperature T0 of 
the fluid model is set equal to the value of T P n/xx xx≡  obtained 
from the ion distribution f in at the CS entrance, given in equa-
tion (9)1. For clarity, as our notation differs from that used in 
[10], the explicit form of the CRS fluid equations is given in 
appendix A.

In figure 13 we compare the average velocity vx⟨ ⟩ extracted 
from the simulation data with ux computed from the fluid 
model for a few values of α. While the agreement is quite 
good for 3α = ° and 5°, discrepancies appear for larger angles. 

1 In our case, we have ( )α= −T T 1 0.55 sini0 0
2 , where =T Ti e0 0 is the param-

eter appearing in equation (9).

Figure 8.  Charge density (a) and ion mean velocity (b) at the wall as a function of the incidence angle. The coefficient κ of equation (10)  
is obtained from the simulation data for 90α = °.

(a) (b)

Figure 9.  Ion flow velocity perpendicular to the wall for various 
amplitudes of the magnetic field B0 and 2α = °. Collisionless 
simulations with deuterium ions.

Figure 10.  Charge density profile for various amplitudes of the 
magnetic field B0 and 2α = °. Collisionless simulations with 
deuterium ions.
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It is important to note that those discrepancies arise before 
charge separation becomes significant, i.e. when the plasma 
can still be reasonably considered as quasi-neutral (x 10 Dλ> ). 
Proceeding to the same comparison for the y and z components 
of the average velocity (figures 14(a) and (b)), we observe 
quite similar discrepancies on uz but far larger and system-
atic ones for uy on nearly the whole domain. Thus, as far as 
only the ux profiles are concerned (and consequently also the 
potential profiles), the predictions of the fluid model in the CS 
can be considered as rather good for the lowest range of inci-
dence angles. The somewhat large and systematic discrepan-
cies observed for the other velocity components would require 
closer scrutiny. They probably arise from the violation of both 
assumptions made in the fluid model.

To refine our comparison, we computed, from the kinetic 
simulations, the various terms entering the y and z components 
of the momentum balance equations (13)(c)–(d). The compar-
ison indicates that the contribution of the non-diagonal terms 
of the pressure tensor is not negligible. Focusing in particular 
on the equation for uy, figure 15 shows that the term containing 
Pxy is comparable to the other terms, even in the CS. In con-
trast, the term Pxz (not shown here) is indeed negligible. We 

emphasize the fact that the non-diagonal nature of the pres-
sure tensor is not an artifact due to the choice of coordinates, 
which could be eliminated by using a field-aligned basis: 

Figure 11.  Collisionless case for D+ , 2α = °, and 0.05 piciω ω=  with prescribed wall potential Wφ  below the floating value T2.5W
efloat 0φ ≈− . 

(a) Charge density profiles; (b) ion flow velocity perpendicular to the wall.

(a) (b)

Figure 12.  Collisionless case for D+ , 2α = °, and 0.05 piciω ω=  with prescribed wall potential Wφ  above the floating value T2.5W
efloat 0φ ≈− . 

(a) Charge density profiles; (b) Ion flow velocity perpendicular to the wall.

(a) (b)

Figure 13.  Ion mean flow perpendicular to the wall from the 
collisionless kinetic simulations (continuous lines) and the CRS 
model (dashed lines), for various values of α, and deuterium ions. 
Note that the CRS model, being quasi-neutral, is not meaningful in 
the DS.
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although the distribution at the CS entrance is indeed sepa-
rable in v v,( )∥ ⊥ , this separability is lost during the transition.

Let us now consider the validity of the isothermal closure 
for the Pxx component of the pressure tensor. In the normal 
incidence case, for which only the DS exists, the temperature 
Txx (i.e. the variance along vx) decreases as the ion popula-
tion is accelerated towards the wall by the electric field. This 
well-known ‘acceleration cooling’ [18, 19] persists in the 
magnetized case. More importantly, as the electric field pro-
file is spread out with decreasing α, Txx has a non-negligible 
variation over both the DS and CS. This is clearly visible in 
figure 16 showing the evolution of Txx relative to its value at 
the CS entrance (we recall here that T xx

CSE depends on α, see 
section IV.A). As a consequence, though the isothermal clo-
sure may be considered a reasonable approximation (outside 
the DS) for the large-to-intermediate angle range, it becomes 
clearly invalid in a large part of the transition layer for smaller 
angles of incidence.

Having established that the isothermal closure does not 
fit the actual behavior of the distribution for low α, one 
may hope to fit a slightly more general polytropic closure 
d P d nln lnxx( ) ( )γ= . A typical constant polytropic coefficient 
γ  can be obtained by linear regression for each value of α 

(figure 17). We observe a large variation with α, as can be 
expected when going from the two-scale behaviour at large 
α to the smoother transition at low α (see figure  16). For 

90α = °, the CS disappears altogether and the quasi-neutral 
fluid model cannot be meaningfully compared to the kinetic 
results. Alternatively, one could compute a local polytropic 
coefficient x P nd ln /d ln( ) ( ) ( )γ =  [20], but this yields very 
large variations over the domain and with α, and is prone to 
numerical instability in the low-gradient zones.

We also tried to use the computed exponent γ to improve 
the match between the kinetic and the fluid models (using, in 
the latter, a polytropic equation of state, P nxx i∝ γ), but this does 
not seem to work well for ux (figure 18). The profiles of the 
mean velocities along y and z are not improved either, which is 
not surprising as their discrepancy with the kinetic data comes 
primarily from the assumption of isotropic pressure. The main 
conclusion here is that it is not possible to match the kinetic 
simulation data with a simple polytropic closure.

All in all, the comparison between the simulation results 
and the predictions of the fluid model leads us to conclude 
that: (i) a rather good agreement is obtained for the ux pro-
file (and consequently for the potential profile) for the lowest 
values of α, but (ii) a worse agreement is observed for the 

Figure 14.  Same as figure 13 for uy (a) and uz (b). Note that, in the left panel (a), the continuous curves for 3α = ° and 5° are virtually 
indistinguishable.

(a) (b)

Figure 15.  Various terms of the momentum balance equation along 
y (equation (13)(c)) computed from the collisionless kinetic 
simulations, for 3α = ° and deuterium ions.

Figure 16.  Spatial variation of the temperature Txx normalized to 
its value at the CS entrance T xx

CSE, for collisionless simulations with 
deuterium ions.

Plasma Phys. Control. Fusion 58 (2016) 025008



D Coulette and G Manfredi﻿

11

other components of the mean velocity, due to the violation of 
some of the assumptions of the fluid model.

VI.  Collisional simulations

In the preceding collisionless simulations, the field-aligned 
ion flow velocity at the CS entrance was imposed through an 
ad hoc boundary condition. In order to ensure that such results 
are not specific to the collisionless regime, we performed a 
series of collisional simulations. In this case, the simula-
tion domain is much larger (typically 2 104

Dλ× ) in order to 
encompass the full transition from the the plasma bulk to the 
wall. The ion velocity distribution in the bulk is an isotropic 
Maxwellian with temperature T Ti e0 0= . Then, the distribution 
function at the CS entrance is no longer imposed as a boundary 
condition, but rather arises self-consistently in the collisional 
presheath located upstream the DS. A thorough character-
ization of the transition, using the same kinetic model, was 
performed by Devaux et al [21]. Here, we will focus on the 
question whether collisions modify the results obtained in the 
collisionless regime for grazing incidence.

As in the collisionless simulations, parametric scans 
in α were performed for the same range of angles for 

0.05 piciω ω= , with three values of the collision frequency 
v5 10 , 10 , 5 10i

4 3 3
th D

1{ }ν λ∈ × ×− − − − . For this range of 
parameters the transition is characterized by the scaling 

D i mfpλ ρ λ� � , where v /mfp th iλ ν= . This is the interme-
diate B0 regime described in [17, 21, 22], for which the col-
lisional presheath, Chodura sheath, and Debye sheath are well 
separated.

As a preliminary benchmark, we use the collisional simula-
tions to check the validity of the boundary condition that we 
prescribed at the entrance of the CS in the collisionless runs 
(equation (9)). For this, we need a criterion to define the CS 
entrance. In the collisional presheath, the mean ion velocity 
is aligned with the magnetic field: the CS entrance corre-
sponds to the location where this alignment breaks down.  

Figure 17.  (a) Determination of an average polytropic index γ  by linear regression of P f nln lnxx ( ( ))=  for 2 , 30 , 60{ }α∈ ° ° ° . Simulation 
data are plotted as dashed lines and regression results as continuous lines; (b) behaviour of the average index γ  with α.

(a) (b)

Figure 18.  Ion mean velocity profile vx⟨ ⟩ for the kinetic simulation, 
the fluid CRS isothermal model ( 1γ = ), and the fluid polytropic 
model ( 1.74γ = ). Deuterium ions with incidence angle 3α = °. Figure 19.  Ion velocity distribution functions at the CS entrance, 

for various angles of incidence, v5 10i
4

th D
1ν λ= × − −  and deuterium 

ions. The position of the CS entrance is indicated in the inset. In 
order to facilitate the comparison, each distribution function is 
normalized in such a way that it has the same maximum as the 
prescribed collisionless distribution of same incidence angle  
(figure 2(a)).
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As a quantitative criterion, we took a deviation of 0.25° with 
respect to the angle of incidence α. The computed distribution 
functions are shown in figure 19 and look very much like the pre-
scribed distributions used in the collisionless runs (figure 2(a)).

We can now verify the robustness of Stangeby’s result in 
the collisional regime. First and foremost, we still observe a 
decrease of the charge density near the wall for decreasing 
angles of incidence (figure 20), with similar consequences 
on the electric field and potential profiles near the wall (not 
shown). The principal effect analysed in this work is thus not 
destroyed by the presence of collisions.

Second, the nearly linear dependency of the wall charge 
density with sinα (which was observed in the collision-
less case, see figure  8(a) is slightly perturbed by the colli-
sion terms as shown in figure 21 (note that here the charge 
density is normalized to the value n0 in the bulk plasma, 
whereas in the preceding sections  the normalization value 
n0 referred to the density at the CS entrance). A marginal 
sign inversion of ρ near the wall can even be observed in the 

v2 , 5 10i
3

th D
1( )α ν λ= ° = × − −  case. Despite this perturbation, 

the ion perpendicular flow as a function of α may still be 
roughly fitted by the same semi-empirical law as in the col-
lisionless case (figure 22).

Last, let us extend the analysis of the various terms entering 
the fluid momentum balance in equations (13)(b)–(d). Setting 
aside the additional impact of the friction terms specific to 
our collision model, we still observe a non-negligible impact 
of the non-diagonal term of the pressure tensor Pxy in the 
fluid momentum balance along the y axis (figure 23). As was 
the case for the collisionless regime, the Pxz cross-term (not 
shown here) is indeed small outside the space-charge region 
near the wall.

VII.  Conclusions and pending issues

The main focus of this paper was on the observation, made by 
Stangeby [10], that the Debye sheath should disappear when 
the plasma is immersed in a magnetic field with grazing angle 
of incidence with respect to the wall. Stangeby’s result was 
deduced from a simple 1D fluid model with Boltzmann elec-
trons and isothermal closure for the ions. Thus, it was worth 
to check whether the result holds under less stringent condi-
tions on the ion model, namely using a kinetic rather than fluid 
approach.

Figure 20.  Charge density profiles near the wall for two collisional simulations with deuterium ions. The collision frequencies are 
v5 10 /i

4
th Dν λ= × −  (a) and v5 10 /i

3
th Dν λ= × −  (b).

(a) (b)

Figure 21.  Charge density on the wall as a function of the 
incidence angle α, for three values of the collision frequency iν . 
Deuterium ions.

Figure 22.  Ion flow velocity on the wall as a function of 
the incidence angle α, for a collisional case with frequency 

v5 10 /i
4

th Dν λ= × − . The numerical coefficient 7.31κ =  of the 
semi-empirical law equation (10) is computed by exact interpolation 
from the case 90α = °. Deuterium ions.
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Our calculations showed clearly that the main result holds: 
the charge separation progressively disappears for smaller and 
smaller angles of incidence, and the ion flow velocity perpen-
dicular to the wall is limited to subsonic speeds. Though no 
critical angle arises due to the lack of singularity at the DS 
entrance in the kinetic model, the overall behaviour is con-
sistent with the predictions of [10]. We also confirmed the 
increased spreading, with decreasing α, of the electric field 
and plasma density over distances of several Larmor radii 
from the wall. These features appear in both collisionless and 
collisional simulations, and may thus be considered as robust, 
provided the scaling coll i Dλ ρ λ� �  is satisfied.

As noted by Stangeby [10], the spreading of the electric field 
and plasma density further from the wall (compared to what is 
usually expected from simpler models) has important conse-
quences on the recycling of sputtered particles in a tokamak 
edge. It should be taken into account, whenever possible, in 
the computational codes that deal with plasma edge recycling.

Further, by comparing the kinetic and fluid profiles, we 
found that, although a rather good quantitative agreement on 
the ion flow velocity perpendicular to the wall can be obtained 
for small angles, the assumptions of a scalar pressure tensor 
and isothermal closure in the fluid model are clearly violated. 
These findings point at the limitation of the fluid models usu-
ally employed to study this type of scenarios.

Finally, in all simulations apart from the most collisional 
ones, we observed a rather robust linear scaling of the charge 
density at the wall with sinα. As a consequence, the value of 
the ion mean flow velocity perpendicular to the wall obeys  

the simple semi-empirical law: 〈 〉 ( )π α κ α= +v v / 2 sin / 1 sinx
W
i the , 

where κ is a coefficient that can be determined from a single 
simulation at normal incidence.

All the previous considerations are correct as far as the 
various simplifying assumptions made both in the fluid and 
kinetic models are satisfied. The first concerns the electrons, 
which were assumed to be perfectly magnetized up to the wall 
and to follow a Boltzmann law. For very small angles of inci-
dence ( 1α< °), these assumptions cease to be valid and the 
electron dynamics should be treated with a fully kinetic model.

A second assumption lies in the reduction of the system to 
one dimension in space. For divertor targets, the determination  
of the CS and DS structure near the inter-tile gaps would require 
at the very least a two-dimensional model in space, encompassing 
the full incidence plane of the magnetic field (i.e. the plane  
(x, y) in our geometry, see figure 1) in order to properly deter-
mine both the structure of the electric field and the particle flows 
in those regions. Of course, an extra spatial dimension would 
increase dramatically the complexity of the present kinetic code. 
Nevertheless, it is an important feature that needs to be addressed 
for quantitative comparisons with tokamak measurements.
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Appendix A.  Collisionless fluid model

The following relations are established from the fluid system 
(13) in the collisionless case ( 0iν = ) using a diagonal pres-
sure tensor (P P 0xy xz= = ) and an isothermal closure P  =  n T0.  
Exact neutrality n ni e=  and a Boltzmann law for electrons are 
assumed. The integration of the system follows the same pat-
tern as in [2, 10], the only difference being in the fact that no 
assumptions were made on the value of the boundary condi-
tions (i.e. they are a priori unrelated to cs).

Starting from a reference point x0 with fluid velocities 
u u u0, ,x y z0 0 0( )< , the position x x1 0<  where ux reaches the 

value ux1 is obtained through the integral expression:
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and U u u ux y y0
2

0
2

0
2

0
2= + + , c T T m/s e

2
0 0 i( )= + . The above rela-

tions are obviously valid only as long as D(u) does not vanish 
in the integration range. Here, the cs factor arises solely from 
the isothermal closure for the ions, and does not depend on the 
boundary conditions.

From a numerical point of view, the velocity profile ux(x) 
is reconstructed as follows: a uniform discrete velocity 
grid u n N, 0n( )= …  is generated between u ux0

CSE=  and 
u u umax ,N sing bound( )= −| | − , where using is the singular 
velocity cancelling D(u) and ubound is the velocity bound 
obtained from equation  (4). Starting from u u,0 1[ ] equa-
tion (A.1) is integrated over each pair u u,n n 1[ ]+ . The end result 

Figure 23.  Various terms in the momentum balance equation  
along y, equation (13)(c). Collisional simulation with D+ ions, 

3α = °, and v5 10 /i
4

th Dν λ= × − .
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is a sequence x x, , N0[ ]…  of positions matching the velocities 
u u, , N0[ ]… . The uy profile is obtained directly using equa-
tion (A.3). The velocity uz is recovered from ux using

u
u d u c
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