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Abstract. For a special class of potentials, the dynamical
evolution of any quantum wavepacket is entirely
determined by the laws of classical mechanics. Here, the
properties of this class are investigated both from the
viewpoint of the Ehrenfest theorem (which provides the
evolution of the average position and momentum), and
the Wigner representation (which expresses quantum
mechanics in a phase space formalism). Finally, these
results are extended to the case of a charged particle in a
uniform magnetic field.

1. Introduction

After sixty years since the first consistent formulation
of the principles of quantum mechanics (QM), a con-
siderable amount of disagreement still exists on the
very foundation of the theory. It should be noted that
no other physical theory has ever undergone such a
never-ending debate about its theoretical interpre-
tation (apart, perhaps, from statistical mechanics: it 1s
probably not a coincidence that a great many of the
puzzling features of oM arise from its intrinsic statisti-
cal nature).

On the other hand, there is a virtually universal
agreement on the practical use of the rules of QM.
Indeed, the mathematical machinery of the theory
plus the so-called Copenhagen interpretation, have
proved to be two extremely good tools in the descrip-
tion of the microscopic world.

It is out of the scope of this article to consider the
possible alternatives to the Copenhagen interpre-
tation: readers who are interested in the philosophical
implications of QM can refer to a recent review by
Omnes (1992).

Here, we shall concentrate on a particular aspect of
the debate, namely the conditions under which the
evolution of a quantum system follows exactly the
laws of classical dynamics. Moreover, we shall deal
with some mathematical connections between dif-
ferent representations. It is our feeling that propress
on the foundations of QM will also come from these
‘technical’ manipulations.

Résumé Pour une classe particuliére de potentiels,
I'evolution de tout paquet d’onde est entiérement
déterminée par les lois de la mécanique classique. On a
etudié les propriétés de cette classe i 'aide du théoréme
d’Ehrenfest (donnant I'évolution de la position et du
moment moyens) et de la représentation de Wigner (qui
exprime la mécanique quantique en terme d’une
distribution de probabilités dans 'espace des phases). Ces
résultats sont ensuite étendus au cas d’une particule
chargée dans un champs magnétique uniforme,

The paper will be structured as follows. We shall
restate the well known Ehrenfest theorem, and show
how, for a special class of Hamiltonians, it reduces to
the Newtonian equations of motion. An analogous
result will be proved to hold also for classical statisti-
cal mechanics (sectior 2). In section 3, we shall
introduce the Wigner representation, which allows us
to express QM in a phase space formalism: the
previously obtained results will then be analysed from
this point of view. Finally, in sections 4 and 35 the
family of Hamiltonians inducing a classical behavior
will be enlarged to include the case of a charged
particle in a uniform magnetic field.

2. Ehrenfest’s theorem

The dynamical evolution of 2 quantum state is given
by the time-dependent Schrodinger equation:

., 0P n 8y

ik T zma?- + 'y {1}
A remarkably simple analogy between quantum and
classical evolution laws comes from the Ehrenfest
theorem, which is undoubtely the oldest result in this
domain. It is also the most widely known, and it
appears in almost all textbooks on elementary om
{Messiah 1965, Schiff 1965, with the remarkable
exception of Landau and Lifschitz 1969). The theo-

rem reads as:
d {py d _ v
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where the symbol {.) denotes mean values as usually
defined in QM. As a matter of fact, equation (2) are
void of meaning in this form, since, in order to cal-
culate the mean value of §V/éx, we need knowledge of
the entire wavefunction.

Nevertheless, there is a special case for which the
system (2) becomes self-contained, namely when the
following condition is fulfilled:

14 v
<é}.> =-EC- x-(.x). (3)

Clearly, equation (3) holds only when §V/0x is a
linear function of x, so that I must be a quadratic
pelynomial in x, possibly time-dependent:

Vix, ) = a(f) + b()x + c()x’. 4)

Qbviously, three physically relevant cases are the free
particle, the uniform field and the harmonic oscil-
lator. Moreover, this result is readily extended to
higher dimensions.

When the relation (4) is fulfilled, the Ehrenfest
theorem allows a dramatic simplification of the quan-
tum dynamical laws. As a matter of fact, we have
passed from the Schrédinger equation (z partial dif-
ferential equation in one spatial dimension plus the
time), to a system of ordinary differential equations.
We shall say that we have reduced the difficulty of our
problem from dimension=1 (Schrodinger), to
dimension = zero {Ehrenfest).

In the next section, we shall derive from the
Schrodinger equation a representation of oM which is
based on a distribution function in the phase space
(x, p). According to our definitions, such a representa-
tion has a dimension equal to two. These concepts will
provide an interesting insight into the relationship
between guantum, classical and statistical mechanics.

The Ehrenfest theorem is well known in the frame
of M. It might be interesting to show that the same
result can be derived from the principles of classical
statistical mechanics. The latter is based on the
Liouville equation, which gives the evolution law for
the probability distribution in the phase space
flxp.8)

¥, oY VY _
8t méx Bxap 0 )

Let us multiply (5) Brst by x and integrate over x and
P, then by p and integrate again. A little algebra shows
that we obtain once again the system (2), where the
mean value of a dynamical variable 4(x,p) is now
defined by the following relation:

(4) = [ A(xp)f(v,p, ) dxdp (©)

Once again, the system is not self-contained, except
for the special family of quadratic potentials. In this
latter case, the quantum mechanical and the classical
descriptions for the mean values are strictly identical.
If we introduce the force £ = —@¥/dx, the system

reads, both in the classical and quantum cases, as:
d
& L =EE) )

which is identical to the equations of motion in New-
tonian dynamics.

The fact that the Ehrenfest relations can be derived
both from QM and classical statistical mechanics
should not, however, convey the idea that they
express some ‘profound’ truth about physical
phenomena. On the contrary, their physical meaning
is, to a Iarge extent, quite limited, and they can be at
most considered as a formal property common to any
statistical description of phenomena.

dr <x> =

3. The Wigner piclure of am

As we have seen, the description of phenomena pro-
vided by classical statistical mechanics is based on the
concept of phase space. The probability distribution
f(x,p,t) obeys the Liouville equation (5), and the
average of any dynamical variable A{x,p) is cal-
culated as in equation (6). In oM, owing to the uncer-
tainty principle, the very concept of phase space loses
its meaning. In spite of this, in 1932 Wigner proposed
a version of @M in which each quantum state is
represented by a quasi-probability distribution in
phase space that we shall hereafter designate as
Wix,p. 0. If a ‘good’ definition of B is taken, the
mean value of any dynamical variable can be cal-
culated just as in the classical fashion, by making use
of equation (6), where fis replaced by W. The ‘good’
definition for Wx, p 1) is the following:

jexp(lig)?*(x + %, t)

x'{"(x—g,r)dé )

W(x 2 t) -

Moreover, W(x,p,7) satisfies an equation that has
some analogy with the Liouville equation (5):

W paW_

ot Y max Jd“"""plﬁ(” )

Zrch

x{V(x—%)— V(x+%)} Wx,p',np, (9

This is known as the Wigner or quantum Liouville
equation, and it is directly derived from the Schrd-
dinger equation through the definition (8).

Indeed, it would seem that the evolution equation
(9) plus the two definitions (6) and (8) provide a frame
in which oM can be treated on the same grounds as
classical statistical mechanics. As a matter of fact, a
few points need to be clarified.

(i) The Wigner functions, although it is always real,
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assumes negative values in nearly all cases, and
consequently it cannot be interpreted as a classical
joint probability distribution of x and p.

(i) If, and only if, ¥(x) is a Gaussian wavepacket,
the Wigner function is non-negative for every x and p.
Yet, even if a non-negative initial condition is chosen
for equation (9), W(x,p,#) will take unavoidably
negative values after a certain time.

(ili) In order to represent a quantum pure state, the
Wigner function must correspond to a wavefunction
i through the formula (8). Nevertheless, in the treat-
ment of statistical mixtures, we are often interested in
functions W{x, p) that do not derive from any (it
can be shown that a mixture is represented by the sum
of Wigner functions of pure states). In this sense, one
can state that the Wigner equation goes beyond the
strict frame of the Schrodinger picture.

(iv) Since some terms of a dynamical variable
A(x, p) may not commute, it is necessary to establish
a well determined, non-ambiguous correspondence
rule between classical variables and quantum oper-
ators (Weyl’s rule).

However, if one pays sufficient attention to the four
points mentioned above, the Wigner function can be
used operationally as a classical probability distri-
bution to calculate mean values as in equation (6). In
particular, by integrating W{(x, p) over p, we recover
the usual quantum probability distribution for the
position:

[ W) dp = (#GF

and, integrating over x, we find the probability
distribution for the momentum

[ Wi py ax = %};o(%)z

where @ is the Fourier transform of .

The derivation of all the preceding formulae (8)-
(10), as well as extended physical discussions, can be
found in a review by Tatarskii (1983), and in the first
chapters of Balescu (1973).

For the present purposes, we note that if the poten-
tial ¥(x,r) is a quadratic polynomial in x as in (4),
then the Wigner equation (9) becomes identical to the
Liouville equation (5), as can be proved by directly
substituting equation (4) in equation (9).

Therefore, for the class of potentials described by
the relation (4}, the evolution of any wavepacket can
be treated in terms of classical statistical physics. On
the other hand, all quantum features of the system are
contained in its initial condition. In other words, for
the particular case of a quadratic potential, we can
construct a classical statistical ensemble that is
equivalent to our guantum system. Notice however
that the ‘probability density’ on such an ensemble can
take negative values, and does not have therefore an
immediate physical interpretation. The correspond-
ence between a single quantum oscillator and an
ensemble of classical oscillators was pointed out by

(10}

Pippard (1983), by direct construction of the statisti-
cal ensemble: the Wigner approach is however more
perspicuous insomuch as it immediately provides the
probability density and its evolution equation.

The links between the different representations of
QM that we mentioned in the previous section are now
clear. On the one hand, when the potential is a
quadratic polynomial, the Schrédinger equation can
be reduced to a set of opE (dimension = zero) for the
centre of mass of the wavepacket, which thus follows
Newtonian dynamics. On the other hand, it can be
extended to a phase space formalism (dim = 2),
which, under the same conditions, obeys the Liouville
equation of classical statistical mechanics.

4. Particle in a uniform magnetic field

In this section we will generalize the preceeding results
to the case of a charged particle moving in a uniform
magnetic field. Although the proof is quite straight-
forward, this result is rarely mentioned in the
literature on the Wigner equation (see, for example
Canivell and Seglar (1978): they show that the non-
negativity of a Wigner function is conserved if the
Hamiltonian is quadratic (which includes the case of
the uniform magnetic field): such a property will be a
straightforward consequence of our results).

The magnetic field B is taken to be uniform and
directed along the z axis: the motion is then bidimen-
sional in the {x,y) plane. A suitable choice of the
vector potential A4 is the following (Landau and Lif-
schitz 1969, section 111):

A = —By A,=0. (11)
The canonical momentum p is defined, as usual, by
p=rnwv+ed (12)

(e and m are respectively the charge and the mass of
the particle); the resulting Hamiltonian is

a2 ;mem _ A +P5 imatP v o, (1)

where w = eB/m is the cyclotron frequency.
If our phase space is spanned by the four canonical
variables x, p., ¥, p,, the Liouville equation for

f(xspxu J’,Py) reads as:

I N S N S
6z‘+m6x+ oy & mp’@p =0

moy e’y ap
(14)

From (13) the Schrédinger equation is clearly:

v # ( i S O

. v
Ilet-= - P )-f— mat Y — zhcoya
(15)

In two dimensions, the Wigner function is defined as



104 G Manfredi et a/

follows

Wix,y,p..p,,8) = (2—:{)—5”“{-‘(1 -

'f 1 )
* 2 iA
x ¥ (x+2,y+2,t

1)

% expi(ép;, + 4p,) didn. (16)

In equation (16) and in the following ones, we have
taken, for simplicity, i =m = 1.

It is a matter of straightforward algebra, by means
of the definition (16), to express each term of (14)
through ¢ and yr*. This results in:

oW v el )G(e,n) d& dn

Tl

p5r = oo [| (G ¥~ ¥ 5 ) 66 & an

yay (2:1:)22H( Y- ‘{’*a;;)cf(é,rx) d¢ dn

a7

[(+27 (-2 Jweroien azo
(1% ~r5) = oo
By (2m)

BEAYR: S
"”[(y 3 ‘*’*aﬁ()’*i)"’ﬁ‘]

x G(£,7) d&dy

where
G(¢,n) = exp[i(ép, + np,)1-

In relations (17)  is always understood to be
evaluated at the point (x — &/2,» — n/2), whereas y*
is evaluated at {x + £/2,y + n/2). With the help of
equation (15} and its complex conjugate it is easy to
show that W(x, p. {) obeys the Liouville equation (14).
We have therefore proved that the motion of a
charged particle in a uniform magnetic field can be
expressed in terms of classical statistical mechanics,
just as in the free particle, uniform force and harmonic
oscillator cases.

In fact, 2 posteriori, this result is not too surprising,
because the Hamiltonian (13) is still a quadratic form
in x, y, p, and p,, although the proof is not triviat
because of the mixed term yp,.

5. Ehrenfest’s theorem for a magnetic field

It might be interesting to show that the Ehrenfest’s
refations stifl hold for a charged particle moving in'a

magnetic field B(r), and that they reduce to a closed
system of OpE (identical to the classical equations
of motion) when the magnetic field is uniform
(Zimmermann 1989). Again, these relations can be
derived both from the Liouville and the Schrodinger
equation.

Let us begin with the classical case. We write the
Liouville equation in the more usual form, in which
Sf(r, v, §) is a function of the position r and the velocity
v, and the magnetic field is described by B rather than
by the vector potential:

., & VB
GO T RO B = (1)

We multiply (18) first by r and integrate on r and v,

then by » and integrate again. After some integrations
by parts, we obtain;

%{r} = (@) = [vf drdo

+

%@) =§T-<v x BY = %Iv x Bfdrde. (19)

The refations (19) are the analogue for a magnetic
field of the Ehrenfest relations (2).
The second of equations (19) can be written as:

d (o)
" dr

=j1x3dr (20)

where we have defined the current density:

Kr,)=¢ J' f(r,o, o du.

Equation (20) shows that the ‘centre of mass’ of the
distribution {denoted by {¢> and (o)) moves under
the action of a force which is the sum of all elementary
Lorenz forces acting on each element of current J dr.

When the magnetic field is uniform, it can be taken
out of the integral in the second of equations (19),
which become 2 closed system of ODE:

Ky L2_Layxa

(21)

We now turn to the quantum mechanical case. The
Heisenberg equations for the operators of position
and velocity are given in Schiff (1985, section 24), for
the case of a particle in a magnetic field B{r). They
read

a“_,
de dt

Note that the two last terms are identical classically,
but differ in oM, since v and B do not commute. In
equation (22) r, B and A are multiplication operators,
while

Ie .
=§E(Ux B—-Bxwv). (22)

1 1 .
0=;(p—-eA)—E(—lhv—€A).

From equation (22) we can easily write the Ehrenfest



Quantum systems that follow classical dynamics 105

relations for the mean values. Explicitly we have:

&di<'> - () = %f{—iw*vw — ed¥P) dr
me (@) =50 x B~ Bx o)
=ﬁj‘{’*[(-ihv—e¢4) % B
— B x (—ihV — ed)]¥ dr
= —g'ﬂ‘PFA x B dr

'h"jlp*[vX(wHWxs]dr

23

We define, as usual, the current density (see Landau
and Lifschitz 1969, Section 114, and also Feynman et
al 1970, Section 21, for a deeper insight into the
meaning of the current in the presence of a magnetic
field):

ihe & e
J= — 5 -(PPVE —WVP*) - A

Using the previous definition, the second of equations
{23) becomes:

d{w) _

which is formally identical to the classical formula
(20).

Once again, when B is uniform, the equations (23)
for the mean values become a closed system of ODE,
identical to equation (21).

In summary, in this section we have extended the
Ehrenfest relations to the case of a magnetic field. The
results are in accordance with what had been found in
the previous paragraphs. Moreover, they can be easily
generalized to the most general case of a time-depen-
dent electromagnetic field,

24)

4. A numerical simulation

In order to get a visual picture of the motion of a
charged particle in a uniform magnetic field, we have
solved numerically the bidimensional Schrédinger
equation (15). The initial condition is a localized
Gaussian wavepacket:

1 172
%mﬁ=@mm)
¥

(x = %) (J’-J’o)z)_ @)

402 + 407
It should be noted that (25) represents a wavepacket

for which the mean value of the canonical momentum
p is zero. Yet the mean values of the x and y com-

xexp—(

ponents of the velocity are (see equation (12)):

@ =Lpd—eta =Sy, =

[C) 2

@) == (P> — 4, ) = 0. (26)
where we have made use of equations (11) and (25).

A classical partlcle with initial posmon (x5, ¥o) and
initial velocity given by (26}, immersed in a uniform
magnetic field parallel to the z axis, will rotate with
constant angular velocity ¢ arcund the point (%, 0),
describing a circle of radius R = | p,}.

According to the previous theorem, the ‘centre of
mass’ of the quantum wavepacket must describe the
same circle as the classical particle. The wavefunction
will be deformed during the evolution, but it must
come back exactly to its initial condition after one
period T = 2xfw.

In the numerical simuiation we have chosen x, = 0,
so that the particle turns around the origin. The other
parameters are:

h=m=1 }'0=20
©=0.lx (T = 20)
g, =2 a,=2,

Figure | gives the time evolution of the densxty
¥(x, )P at time intervals A¢ = 2. Each picture is
formed by five isodensity contour levels. Indeed, we
recover the classical motion, and the packet comes
back io the initial condition after one period,

Figure 1. Evolution with time of & wavepacket in a
uniferm magnetic field. Each picture represents the
spatial density, al time intervais of At = 2.

30 T T T

-15 0 15 3o



106 G Manfredi et af

6. Conclusion

Thousands of papers have been written on the
ultimate structure of Qu, its relation to classical phys-
ics, a possible statistical interpretation, the meaning
of phase space, etc. The reader can legitimately ask
the reasons for this new one. Let us attempt its
justification.

Most of the existing literature deals with stationary
states, and focuses on the eigenvalues and eigenfunc-
tions—usually to interpret spectroscopic data. It is
indeed in this domain that the standard theory of gM
has proved to work extremely well. A much mere
limited number of papers focuses on time-dependent
situations, and among them very few mention the
Wigner function and Wigner equation. Due to the fact
that it introduces negative probabilities (and also,
perhaps, because of a too strict application of the
Copenhagen school ideas), many authors are reluc-
tant to consider it other than a curious mathematical
object, possessing very little physical meaning, if any.

In our opinion, two reasons render the Wigner
representation particularly interesting.

First, when dealing with pure states, it is strictly
equivalent to the Schrodinger representation, pro-
vided the initial condition can be derived from a
wavefunction through the formula (8). For a wider
class of initial conditions, the Wigner equation pro-
vides the evolution of a statistical mixture. In fact, the
possibility to treat both pure and mixed states via the
same evolution equation seems to us an appealing
property of the Wigner representation.

Secondly, the mathematical properties of the
Wigner function make it an ideal tool to investigate
the classical limit of M. Instead of worrying about the
ncgative probabilities it introduces, an interesting
challenge would be to interpret their meaning by a
suitable generalization of the traditiona! probability
theory. Qur present goals were however more modest
and, as we said before, more technical, concentrating
on the links between the different representations.
They are resumed on the scherme. We distinguish three
types of representations, and require each of them to
be self-contained.

At the lowest (simplest) level of dimension zero, we
have an opE describing either the deterministic
motion of a classical particle or the motion of the
centre of mass of the wavepacket for the quadratic
Hamiltonians (free particle, uniform force, harmonic
oscillator and uniform magnetic field).

At the next level (dimension one) we get the
Schrédinger equation, fundamental in oM, which
resumes, by the aid of just one coordinate, our infor-
mation on both position and momentum. It has no
classical counterpart.

The Ehrenfest relations are a step toward the lower
level, but in the general case they are void of meaning,
since to apply them one needs the knowledge of the
wavefunction. On the other hand, these formal rela-
tions are also obtained in the classical case, when a

statistical approach has to be used either to describe
many particles or our ignorance about the initial state
of one particle,

At the highest level (phase space, dimension two),
we find the Liouville equation for classical systems
and the Wigner equation for quantum-mechanical
ones (both pure states and mixtures). When the
Hamiltonian is a quadratic form, these two equations
coincide, and all the difference between classical and
quantum physics is contained in the initial condition
(arbitrary in the former case, but not in the latter).

Consequently, the class of quadratic Hamiltonians
displays two interesting properties. First, it allows us
to construct a self-contained obE for the centre of the
wavepacket, which behaves as a classical particle. On
the other hand, the details of the wavefunction can be
obtained by considering a classical phase space
problem, in which the probability density, although
involving negative values, is invariant along the classi-
cal trajectories.

(In the scheme, the double boxes stand for the most
fundamental equations. A full line means implication
in general, whereas a broken line means that the
implication is valid only for the special class of
quadratic Hamiltonians).

QUANTUM CLASSICAL
Phase Space
Wigner > Liouville (dim = 2)
Eherenfest's Configuration
Schréidinger 1> relations £ space
{dim = 1)
hi
Closed QDE
system of (d¢im = 0)
QDE
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