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Abstract. We have studied the transport of test particle ensembles moving in turbulent
electrostatic fields governed by the Hasegawa–Mima (HM) equation. As a result of the interplay of
the linear dispersive term and the nonlinear term in the HM equation, ‘strange kinetics’ emerge: the
poloidal particle transport undergoes a qualitative transition from diffusive, through supradiffusive,
to ballistic.

1. Introduction

There is increasing interest in the possibility that ‘strange’ (non-Gaussian) kinetics, including
Lévy processes [1–3], may underly some aspects of energy and particle transport and
confinement in magnetic fusion plasmas. It has long been realised that behaviour more complex
than standard (Gaussian) diffusion can occur in Hamiltonian dynamics. In Gaussian diffusion,
it is assumed that the motion can be described by a random walk dominated by short-step
events, whose distribution has a finite variance. This, by the central limit theorem, ensures
that the distribution of an ensemble of ‘random walkers’ tends (for large times) to a Gaussian,
which acts as an attractor. By contrast, there are cases where the statistics are dominated by
long-step events, such that the probability distribution has an infinite variance. In such cases,
the distribution of the random walkers tends to an attractor which, instead of a Gaussian, is
rather a Ĺevy distribution. This is described by a characteristic function (Fourier transform of
the probability distribution) of the typeP(q) = K exp(−c|q|α), where 0< α < 2 andK and
c are constants. In real space, Lévy distributions display an algebraic tail|x|−α−1, implying
that there is no characteristic size for the random walk steps [1, 4]. The only exception is the
Gaussian, which corresponds to the valueα = 2, and whose moments are all finite. Numerical
and experimental evidence for strange kinetics has been obtained in the past for ordinary fluids
[5, 6]. Experiments with two-dimensional (2D) rotating fluids [6] are particularly relevant to
our study, since it is well known that the Hasegawa–Mima (HM) equation (on which our results
are based) is formally identical to the Charney equation for 2D rotating fluids [7]. In plasma
confinement physics, there is emerging, albeit incomplete, evidence for an unexplained nexus
that may encompass strange kinetics, Lévy processes, various forms of power law spectra, and
self-organized criticality: see for example [8–14].
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Since anomalous transport in magnetic fusion plasmas is believed to be driven by
underlying turbulent processes, it is worthwhile to investigate mathematical models to see
whether evidence for supradiffusive (perhaps Lévy) transport can emerge naturally from first-
principles models of plasma turbulence. For the case of magnetic turbulence in plasmas, which
is significant for particle and energy transport in certain fusion contexts (for a recent review
see [15]), it has already been shown that supradiffusion can arise. For example, in a seminal
paper modelling the anomalous transport of cosmic ray electrons in magnetic turbulence in
terms of a continuous time random walk, Ragot and Kirk [16] demonstrated mathematically
the emergence of supradiffusion, and suggested that observations of diffuse radio emission
from the Coma cluster can best be interpreted in terms of supradiffusive transport of cosmic
ray electrons. It is therefore timely to investigate whether supradiffusion can also arise in
electrostatic turbulence, which is believed to play a dominant role in most aspects of anomalous
transport in magnetic fusion plasmas. Accordingly, in the present paper we investigate the
implications for particle transport of a simple but widely studied paradigmatic model for
strong 2D electrostatic turbulence in magnetized plasmas, the HM equation [17].

The physics of the HM equation is dominated by theE × B drift and involves low-
frequency (compared to the ion cyclotron frequencyωci) waves driven unstable by the presence
of a density or temperature gradient. In order to study the basic features of particle transport,
we use the HM equation to provide a nonlinear model for drift turbulence in real space, whose
output is the time-dependent electrostatic potential. This potential then acts as an input for
the equations of motion of ensembles of test particles, whose orbits we follow and whose
statistical properties we then infer. We have previously investigated radial particle transport in
this way [18, 19], and found that nonlinear coupling significantly reduces the level of transport
compared to the linear regime: this reduction was mainly ascribed to the formation of radial
gradients in the velocity field. Now we turn to the poloidal component, and show that the HM
model yields evidence for supradiffusive poloidal particle transport.

A similar problem was studied by Benkaddaet al [20]. The main difference is that their
electrostatic potential is made of a small number of interacting waves, whereas we focus our
attention on broad-band turbulence (the reader should compare figure 3 of [20] with figures 3
and 4 of [19]). In addition, they do not distinguish explicitly between poloidal and radial
dispersion. The amplitude of the waves is described by Benkaddaet al in terms of a small
set of differential equations, similar to the Lorenz model in fluid dynamics, and the nature of
the resultant transport (normal or subdiffusive) is governed [20] by the presence of strange
attractors.

The HM equation [17] is a relatively simple 2D model for the turbulent electrostatic field in
the(x, y) plane perpendicular to the magnetic field (B ≡ Bẑ), and has many wider physical
applications [21]. The model assumes cold ions:Ti � Te (Ti(e) being the ion (electron)
temperature), with negligible inertia parallel toB. The quasineutrality conditionni ' ne

is satisfied, whereni(e) is the ion (electron) density; the electrons are assumed to have an
immediate adiabatic response, with Boltzmann distribution; their background density depends
only ony, equivalent to the radial direction in a tokamak,n0 ≡ n0(y). The HM equation is
then written [17–19]:

∂

∂t
(φ −∇2φ)− γ {φ,∇2φ} − β ∂φ

∂x
= 0 (1)

where x and y are normalized to the ion thermal Larmor radiusρs = cs/ωci, where
cs =

√
Te/mi is the speed of sound andmi the ion mass; the timet is normalized toL/cs ,

whereL is a characteristic length of the system;φ is the electrostatic potential normalized to
(Te/e)(ρs/L); {A,B} = ∂xA∂yB − ∂yA∂xB is the Poisson bracket; and

β =| ∂y ln[n0(y)] | (2)
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is a parameter measuring the anisotropy of the background density gradient. The coefficientγ

has been introduced as a useful switch in order to vary the relative magnitude of the linear and
nonlinear terms, and particularly for comparison with the purely linear case, for whichγ = 0.
The linear limit of (1) is equivalent to the evolution of a collection of independent drift waves,
each obeying the dimensionless dispersion relation

ωk = − βkx

1 + k2
. (3)

We have implemented [18, 19] equation (1) in a computational box of areaLx × Ly
= 20× 20, which is finite in they-direction and periodic in the direction of propagation of
drift waves,x, equivalent to the poloidal direction in a tokamak. To the right-hand side of
(1) a dissipation termD has been added, both for high and low wavenumbers, for reasons of
numerical stability, and also a forcing termS in order to reach a quasi-stationary state [18, 19].
These terms have the following form in Fourier space:

Dk = −(νk4 + α)(1 + k2)φk Sk = Akδ(k − kf ) (4)

whereν andα are dissipation coefficients respectively at high and low wavenumbers;Ak and
kf are the amplitude and the wavenumber of the forcing (note that this is localized at high
wavenumbers,kf � 1). Equation (1) is solved numerically by means of a hybrid spline-
spectral method coupled to a leap-frog integrator in time. Typically a mesh 512× 512 is
used.

By varying the magnitude of the coefficientsβ and γ in (1), one can control the
relative importance of the nonlinear terms (which are isotropic) compared to the linear terms
(anisotropic). The model is thus well suited to study the influence of anisotropy (a linear
dispersive effect) on the poloidal transport of test particles. Even for moderate values ofβ, the
electrostatic potential develops an anisotropic spectrum, shallower inky and steeper inkx [22].
This is a signature of the presence of ‘zonal flows’, or potential structures elongated in the
direction of propagation of drift waves (x), which have already been shown to have an impact
on particle transport in the direction of the density gradient (y) [18, 19]. The HM equation can
also support drifting nonlinear vortex structures. Such structures can trap particles for relatively
long times, and therefore affect their diffusion rate. This effect has recently been studied by
Naulinet al[23], who use a model similar to ours (the Hasegawa–Wakatani equations), but with
different boundary conditions, periodic in both directions. It appears that with such boundary
conditions the effect of zonal flows is reduced. Particles are trapped within the vortices for
some time, but ultimately they become untrapped, so that the computed diffusion in [23] is
approximately normal for both the radial and the poloidal directions.

2. Particle transport

In order to analyse the transport of test particles moving in the HM field, we create an ensemble
of 3000 particles, whose motion is given by theE ×B drift,

dr

dt
= B × ∇φ

B2
. (5)

Hereφ is the electrostatic potential resulting from the numerical solution of the HM equation,
and we neglect the polarization drift. The equations of motion are Hamiltonian in form, with
the real space(x, y) coinciding with the phase space andH(x, y, t) = φ(x, y, t)/B. The test
particles are non-interacting and without inertia, so that we consider only their guiding centre
motion and not Larmor radius effects (but compare [18, 19]). They are initially randomly
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distributed within a narrow vertical band. Recall that for normal diffusion (a classical random
walk), the mean squared displacement

〈1x2〉 =
∑N

i=1(xi − 〈x〉)2
N

(6)

is proportional to time:〈1x2〉 ∼ t . If transport is anomalous (‘strange kinetics’ [1–3]), this
becomes〈1x2〉 ∼ tµ: for 0 < µ < 1, we have sub-diffusion; for 1< µ < 2, supradiffusion;
and forµ = 2, ballistic motion—particles move with constant velocity. The main purpose of
the present paper is to evaluate the exponentµ for poloidal transport in turbulence governed
by different regimes of the HM equation. We shall see that, for several such regimes,µ can
be larger than unity—a clear signature of supradiffusive motion.

The equations of motion, equation (5), are solved numerically by means of a second-order
leap-frog scheme, which displays little numerical diffusion. TheE ×B velocity field at the
particle locations is computed by linear interpolation. The overall numerical scheme has been
tested by taking a ‘frozen’ velocity field: in this case, the particles should simply rotate inside
the vortices on closed orbits, with no diffusion. The scheme has correctly reproduced this
behaviour, within good approximation, over a large number of rotations.

We performed two sets of computer experiments. First, holdingγ fixed, we ran a series of
simulations for different values ofβ, including the isotropic caseβ = 0. These simulations are
carried out in a driven–damped regime, in order to achieve a quasi-stationary turbulent state.
In a second series of simulationsβ is kept fixed, and several runs are performed for different
values ofγ , starting from the linear case,γ = 0. Since the reference case is now linear
(therefore there is no mixing between wavenumbers), these runs are carried out in a slowly
decaying regime (no forcing, small dissipation). The interest of these two approaches is that
they are somewhat complementary: in the first set of runs, we start from a purely nonlinear
case, and slowly add anisotropic wave propagation; in the second, we begin with a purely
linear regime, and slowly add nonlinear effects. For both sets of runs, we study the transport
of test particles in the periodic (poloidal) directionx, i.e. the direction of propagation of drift
waves. The transport in the finite (radial) direction has already been studied in [18, 19], where
the main result was that the combination of linear and nonlinear terms suppresses the radial
diffusion.

2.1. Quasi-stationary turbulence

To analyse the effect of anisotropy on the poloidal transport of particles, we ran the HM test
particle code for a range of values ofβ. The forcing and dissipation parameters defined in (4)
are the following:ν = 6× 10−7, α = 1× 10−4, Ak = 4 andkf ' (40, 40). All simulations
are run for times much longer than the eddy turnover timescale of the turbulence [22]

τE = γ−1

(
1

LxLy

∫
Lx

∫
Ly

|∇2φ|2 dr

)−1/2

(7)

which is of orderτE ' 10 for all the cases studied in this section.
Whenβ = 0, i.e. the background density is isotropic, the diffusion appears normal. In

figure 1 we plot the position of the diffused particles at a later time (t � τE), when the
initial conditions have been ‘forgotten’. Figure 1(a) shows that, whenβ = 0, the particles
approximately follow the underlying vortex structure, while occasionally jumping from one
vortex to the next, which yields normal diffusion. Whenβ is increased, the vortices start to
move and mix, due to the (dispersive) drift motion introduced by the termβ∂xφ in the HM
equation. The distribution of particles is shown in figures 1(b) and (c) for β = 0.05 and
β = 0.25, respectively.
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(a)

(b)

(c)

Figure 1. Position of the diffused particles in the forced case, withγ = 1 and box dimensions
Lx × Ly = 20× 20: (a) β = 0, the particles roughly show the underlying vortex structure;
(b) β = 0.05; and (c) β = 0.25.

The mean square displacement of the particles〈1x2〉 is shown in figure 2, divided bytµ,
with the value ofµ chosen to give the best fit to a constant curve at large times. As anticipated
above, forβ = 0 the diffusion appears normal,µ ' 1. Whenβ is increased the particles
undergo supradiffusion, yieldingµ ' 1.7 forβ = 0.05. Ifβ is increased up to 0.25 or beyond,
the motion of test particles becomes ballistic, withµ = 2.

For a normal random walk, the particle distribution should be Gaussian at large times. A
measure of the proximity of a distribution to a Gaussian is given by its kurtosis (peakedness),
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(a)

(b)

(c)

Figure 2. Plots of〈x2〉/tµ against time, withµ chosen to give the best fit to a constant curve.
Forced case,γ = 1 and box dimensionsLx ×Ly = 20× 20: (a) β = 0,µ ' 1, normal diffusion;
(b) β = 0.05,µ ' 1.7, supradiffusion; and (c) β = 0.25,µ ' 2, ballistic motion.

which we define here asK = 〈1x4〉/3〈1x2〉2. A Gaussian distribution hasK = 1, whereas
a more peaked distribution hasK > 1, and a flatter-than-Gaussian distribution hasK < 1;
for example, the kurtosis of a rectangular distribution is 0.6. We have plotted the poloidal
distribution of test particles for the cases studied above. It appears that the distribution is rather
close to a Gaussian forβ = 0, figure 3(a), whereas it is significantly flatter forβ = 0.25,
figure 3(c); the caseβ = 0.05, figure 3(b), is a transition between the other two. This is reflected
in the measured value of the kurtosis, which isK ' 1.2 for β = 0. The small difference may
be due to the large vortex present aroundx = 0, which causes the distribution to be slightly
more peaked than a Gaussian (figure 3(a)). Forβ = 0.25, we findK ' 0.73, which is rather
close toK = 0.6, the kurtosis of a rectangular distribution. Indeed, for a population of particles
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(a) (b)

(c)

Figure 3. Distribution of test particles. Forced case,
γ = 1 and box dimensionsLx × Ly = 20 × 20:
(a) β = 0, a Gaussian of the same width is superimposed;
(b) β = 0.05; and (c) β = 0.25.

starting from a central band and all having ballistic motion, the resulting distribution should
be rectangular. The peak visible on figure 3(c) (and, to a lesser extent, also figure 3(b)) seems
to be due to a group of particles that move coherently in the velocity field. Such a peak is
also present in the largeβ runs presented in the next section. This could suggest that, in the
presence of a significantβ-effect (i.e. a steep equilibrium density gradient), the separation of
neighbouring trajectories is slower than exponential.

2.2. Decaying turbulence

We now turn to the study of poloidal transport in a slowly decaying turbulent field. Note that
the decay time is much longer than the typical diffusion time for the test particles, so that, for
practical purposes, the turbulence can still be regarded as quasi-stationary. Keepingβ fixed
and equal to 0.1, we select increasingly large values for the parameterγ in the HM equation,
thus raising the relative strength of the nonlinear effects. The reference run is now purely linear
(γ = 0), and the relevant time scaleτL is therefore given by the inverse of a typical value of the
linear frequency (equation (3)). Since thek-spectrum is dominated by small and intermediate
wavenumbersk < 5, a typical time scale isτL ' 20. All simulations are run for times much
longer thanτL. The forcing and dissipation parameters in (4) are the following:Ak = α = 0
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(a)

(b)

(c)

Figure 4. Plots of〈x2〉/tµ against time, withµ chosen to give the best fit to a constant curve.
Decaying case, withβ = 0.1 and box dimensionsLx × Ly = 20× 20: (a) γ = 0, µ ' 1,
approximately normal diffusion; (b) γ = 0.1, µ ' 1.3, supradiffusion; and (c) γ = 0.5, µ ' 2,
ballistic motion.

(no forcing and no large scale dissipation) andν = 1×10−7. The initial electrostatic potential
chosen for this set of runs has a broad isotropic spectrum, roughly decaying ask−3.

We ran the code for three different cases. Whenγ = 0 the HM equation is purely
linear, and the particles evolve in a field which is made of a collection of independent drift
waves. In this case the diffusion is approximately normal, figure 4(a), as was observed in
previous simulations [24]. However, even for moderate values ofγ , supradiffusion is observed,
figures 4(b) and 4(c). The exponentµ is measured to be roughly 1.3 forγ = 0.1, while for
γ = 0.5 or larger, we again observe ballistic motion (µ = 2).
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(a) (b)

(c)

Figure 5. Distribution of test particles. Decaying case,
with β = 0.1 and box dimensionsLx × Ly = 20× 20:
(a) γ = 0, a Gaussian of the same width is superimposed;
(b) γ = 0.1; and (c) γ = 0.5.

The particle distributions display similar trends to those observed in the first set of
simulations. Figure 5(a) shows the poloidal distribution of particles forγ = 0, which appears
to be close to a Gaussian. Its kurtosis also approaches unity for sufficiently long times (K ' 1).
For γ = 0.1, however, the particle distribution is not Gaussian (figure 5(b)) andK ' 0.77.
Forγ = 0.5 the particle distribution is even flatter (figure 5(c)), and its kurtosis isK ' 0.68.

3. Conclusions

We have studied the transport of test particles in turbulent HM fields along the (poloidal)
direction of propagation of drift waves. Two sets of simulations have been performed, for
which the reference run is either a purely nonlinear or a purely linear case, and we change the
balance between the linear and nonlinear effects by varying appropriate control parameters.
This enables us to study poloidal particle transport in purely linear, purely nonlinear, and
intermediate regimes. We find that, in the purely linear and purely nonlinear cases, the diffusion
is normal, i.e.〈1x2〉 ∼ tµ, with µ ' 1. However, when both linear and nonlinear terms are
simultaneously present, we find a regime of enhanced diffusion (supradiffusion), leading to
an exponentµ > 1. Finally, when both terms are of comparable magnitude, the transport is
ballistic (µ = 2). It therefore appears that supradiffusion in the poloidal direction results from
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the combined effects of the nonlinearity and the linear dispersive term in the HM equation.
However, we have observed that supradiffusive or even ballistic transport occurs when the
effect of the linear wavelike term (theβ term) is still quite low. The potential fields of the
three cases treated in both section 2.1 (driven–damped turbulence) and section 2.2 (decaying
turbulence) do not differ much from each other. In particular, the third case of both sections
does not appear to be dominated by zonal flows—although some differences are visible in the
wavenumber spectra, indicating that some zonal flows are indeed present. Therefore, our study
suggests that even a low level of linear wave effects can significantly affect particle transport
in the direction parallel to wave propagation (poloidal direction). Particle transport in the
perpendicular (radial) direction has already been studied in [18, 19], where the main result is
that the combination of linear and nonlinear effects strongly reduces diffusion. We conclude
from combining the results of the present study with those of [18, 19] that, at least for the
model considered here, the simultaneous presence of nonlinearity and a background density
gradient leads to enhanced ‘strange kinetic’ transport of particles in the poloidal direction,
but reduces particle transport in the radial direction. The observed ‘strange kinetics’ poloidal
transport might be associated with a non-Gaussian probability distribution of the step sizes
in the underlying random walk. Such step sizes may appear as long jumps in the particle
trajectories, leading to a Lévy-type distribution for the test particles. The relation between the
distribution of the step sizes and the observed supradiffusive exponentsµ will be the subject
of future work.
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