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A B S T R A C T

We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations
are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the
temperature proportionally to the computational cell size 𝛥𝑥 (𝑇 → 𝑇 𝛥𝑥∕𝑎eff, where 𝑎eff is the lattice constant)
[M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures 𝑇C that are in line with the
experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers
(2D), the Curie temperature varies with the smallest size 𝑑 of the system. We show that the difference between
the computed finite-size 𝑇C and the bulk 𝑇C follows a power-law of the type: (𝜉0∕𝑑)𝜆, where 𝜉0 is the correlation
length at zero temperature, and 𝜆 is a critical exponent. We obtain values of 𝜉0 in the nanometer range, also
in accordance with other simulations and experiments. The computed critical exponent is close to 𝜆 = 2 for all
considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger
than the values observed experimentally.
1. Introduction

Interest in nano-scale ferromagnetic objects (nanowires, nanolayers,
etc.) has grown dramatically in recent years, as these objects are
integrated into many current devices with the aim of storing, reading
and writing digital information. Hence, there is a growing need for
accurate numerical simulations capable of predicting the behavior of
such objects, and possibly predict new properties and features. Com-
putational models of ferromagnetic materials can be roughly divided
into two families. On the one hand, atomistic models such as VAM-
PIRE [1] describe the magnetic interactions microscopically, at the
natural atomic length scale of the material. Although in principle very
accurate, they demand a considerable computational cost and are thus
limited to relatively small systems.

In contrast, micromagnetism describes the structure and dynamics
of a ferromagnetic object at an intermediate mesoscopic scale, aver-
aging over a large number of atoms. Micromagnetic codes, based on
the Landau-Lifshitz-Gilbert (LLG) equation, describe the dynamics of
the average magnetic moment 𝒎(𝑡,𝒙), which is a continuous function
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of the spatial coordinate 𝒙. Notable projects in computational micro-
magnetism are the OOMMF project [2] (Object Oriented MicroMagnetic
Framework) for the development of a public micromagnetic program
in C++, the mumax3 project [3], a GPU-accelerated micromagnetic
simulation program, or else the tetmag project, a 3D micromagnetic
finite-element simulation software [4].

Here, we will adopt the micromagnetic approach (LLG equation) to
study the influence of the temperature on some fundamental proper-
ties of both 1D (nanowires) and 2D (nanolayers) ferromagnetic nano-
objects, for which thermal effects may become important. In order to
model thermal fluctuations in the context of micromagnetics, in 1963
Brown [5] proposed to add a stochastic term to the LLG equation, in
the form of a randomly fluctuating magnetic field with zero mean and
variance that is proportional to the temperature.

However, the Brown method suffers from a fundamental problem:
while the LLG equation is valid at a mesoscopic scale and the corre-
sponding magnetic moment 𝒎(𝑡,𝒙) represents an average over many
atomic spins, thermal fluctuations occur at the atomic level. Hence,
one is mixing two different levels of descriptions in the same LLG
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equation: the mesoscopic level for the deterministic terms, and the
microscopic level for the stochastic terms. Then, if applied without
further corrections, this procedure entails that temperature effects (for
instance, the numerically-calculated Curie temperature) depend on the
computational cell, which is obviously a spurious result.

Indeed, the computational cell size 𝛥𝑥 is noticeably larger than
he physical lattice constant 𝑎eff . Thermal fluctuations occur at the

length scale 𝑎eff , but are necessarily implemented at the scale 𝛥𝑥
n the micromagnetic codes. This induces an error in the computed
roperties, in particular near the Curie temperature 𝑇C, which can be
verestimated by one order of magnitude or more [6].

In order to mitigate this spurious effect, several strategies have been
roposed. In one approach [7,8], the magnetization at saturation 𝑀𝑠

is scaled with the temperature and the computational cell size, using
a Bloch-like law that is similar to the well-known temperature depen-
dence of 𝑀𝑠. By comparing the micromagnetic results to those obtained
with an atomistic model, the authors of [7,8] obtain a difference of
less than 1% in the estimation of the equilibrium magnetization, for a
temperature 𝑇 = 0.38 𝑇C and a computational cell size 𝛥𝑥 = 1.5 nm.

Another approach [6] consists in defining a rescaled temperature
o take into account the fact that thermal averages (coarse graining)
re performed on a computational cell that is larger than the lattice
onstant. In particular, the effective exchange constant varies with
he size of the coarse-graining block, and this dependence should be
aken into account. Grinstein and Koch [6] used renormalization-group
echniques to unravel this dependence. In the same spirit, Hahn [9]
roposed a simple scaling law between the physical temperature and a

‘numerical’’ temperature to be used in the micromagnetic code, which
epends on the ratio between the computational cell size and the lattice
onstant. This method was tested for nickel, cobalt and iron objects
sing the OOMMF code [2], and yielded Curie temperature that were

virtually independent on the computational cell and very close to the
experimental values.

A possible limitation of the LLG approach is that the amplitude of
the local magnetic moment |𝒎(𝑡,𝒙)| remains constant in time, which is
not necessarily true at high temperatures, notably near 𝑇C. Chubykalo-
esenko et al. [10] have investigated this issue using an atomistic
ime-dependent model and indeed they found that the modulus of
he magnetization varies in time (see figure 1 in [10]). However, this
ariation is limited to a dip during an initial transient, after which
𝒎(𝑡,𝒙)| recovers approximately its initial value. As our results are
btained by taking time-averages at longer times, this variation should
ot be too significant. But indeed, when studying transient phenomena,
t may be necessary to take this effect into account, for instance by using
Landau-Lifshitz-Bloch approach, as suggested in [10,11].

In the present work, we adopt Hahn’s method to model thermal
ffects [9] and use it to study the dependence of the magnetization
aw (in particular the Curie temperature) with the size of the system
nder consideration. We will focus on two nano-objects, namely one-
imensional (1D) nanowires and 2D nanolayers. Theoretical consider-
tions [12] indicate that the Curie temperature follows a power-law of
he type:

𝑇C(∞) − 𝑇C(𝑑)
𝑇C(∞)

=
(

𝜉0
𝑑

)𝜆
,

here 𝑑 is the smallest size of the system, 𝑇C(∞) and 𝑇C(𝑑) are the Curie
temperatures of the bulk and of the finite system respectively, 𝜉0 is the
correlation length at zero temperature, and 𝜆 is the critical exponent.
The main purpose of this work will be to validate the above law and
obtain the exponent and the correlation length from micromagnetic
simulations with thermal effects.

From an experimental point of view, several works considered this
problem. Early studies on thin nickel films, cobalt films and Co1Ni9
alloys yielded critical exponents 𝜆 = 1.25, 1.34 and 1.39, respec-
tively [13,14], while measurements on nickel films [15] revealed an
exponent 𝜆 = 1.4. Later work on nickel nanowires [16], with diameters
2

ranging from 30 nm to 500 nm, yielded 𝜉0 = 2.2 nm and 𝜆 = 0.94. More
ecent works [17,18] mention larger values for the exponent, up to
= 2.8.

On the theory front, statistical estimations based on a first-
rinciples-based Monte Carlo approach yielded a critical exponent
= 1.47 for Pb(Zr0.5 Ti0.5 O3) (PZT) thin films [19]. Similar values

were obtained using other approaches [20]. These exponents should
be compared to the theoretical values predicted by the 3D Heisenberg
and Ising models (respectively, 𝜆 = 1.4 and 𝜆 = 1.58). Atomistic cal-
culations [21] of FePt nanoparticles (cylindrically shaped, with height
and diameter in the range 2–9 nm), performed using either long-range
r nearest-neighbor exchange, showed values of the critical exponent
n the range 𝜆 = 1.18–1.25. In contrast, another atomistic mean-field
odel [22] yielded larger values, close to 𝜆 = 2 (range: 𝜆 ∈ [1.82–2.17]),

or magnetite nanoparticles of different shapes and sizes. As we shall
ee, our own work suggests a critical exponent close to 𝜆 ≈ 2, for both
anowires (1D) and nanolayers (2D). The observed correlation length
s found to be 𝜉0 ≈ 3 nm for nanowires and 𝜉0 ≈ 1.6 nm for nanolayers.

We further note that our results are obtained using a time-dependent
odel, in contrast to statistical and Monte Carlo approaches used in

ther studies [19]. In other words, we solve the time-dependent LLG
quation with thermal effects and, once a fluctuating equilibrium is
eached, we measure the relevant magnetic properties by performing
nsemble averages over many realizations and/or time averages over a
ertain duration. This approach is less computationally expensive than
ully atomistic simulations. In addition, it is amenable to investigating
he dynamical properties of magnetism, such as the propagation of
omain walls and other transient effects, which will make the object
f future work. Here, we have used this time-dependence to show that
tatistical fluctuations explode near 𝑇C, confirming the presence of a
hase transition at that temperature.

The present paper is organized as follows. Section 2 details the
athematical setting, namely the LLG equation at finite temperature.
fter recalling the various terms involved in the effective magnetic field

n Section 2.1, the following subsections are devoted to the modeling
f thermal effects through a stochastic magnetic field (Section 2.2) and
o the implementation of the temperature scaling [9] (Section 2.3).
ection 3 contains the details of the numerical scheme. Section 4 is
evoted to the validation of the numerical code with several test cases
Section 4.1), clearly proving that the Curie temperature does not
epend on the computational cell size or the time step (Section 4.2).
he validity of the Bloch law (at low temperatures, 𝑇 ≪ 𝑇C) and
urie law (at 𝑇 ≲ 𝑇C) are also tested (Section 4.3). Finally, Section 5
ontains the main results of this work, namely the size dependence of
he Curie temperature for two types of nano-objects: 1D nanowires and
D nanolayers. Conclusions are drawn in Section 6.

. Micromagnetic model at finite temperature

The present numerical study focuses on a ferromagnetic domain
odeled either as an infinite nanowire along the 𝒆𝑥 axis, where

𝒆𝑥, 𝒆𝑦, 𝒆𝑧) is the canonical orthonormal basis in R3, or an infinite
anolayer in the (𝒆𝑥, 𝒆𝑦) plane. For all times 𝑡 ≥ 0 and positions 𝒙 ∈ R3,
et 𝒎(𝑡,𝒙) ∈ S2 = {𝒎 ∈ R3, ‖𝒎‖ = 1} be the magnetic moment vector
ield normalized to the saturation magnetization 𝑀𝑠. Here, S2 is the
nit sphere. The precession dynamics of 𝒎(𝑡,𝒙) is described by the
andau-Lifshitz-Gilbert (LLG) equation:
𝜕𝒎
𝜕𝑡

= −𝛾0 𝒎 ×𝑯eff − 𝛾0𝛼𝒎 ×
(

𝒎 ×𝑯eff
)

, (1)

where 𝑯eff is the effective magnetic field. Here, 𝛾0 = 𝛾𝜇0 > 0 is the
scaled gyromagnetic ratio, with 𝛾 = 𝑒∕2𝑚 (where 𝑒 > 0 and 𝑚 are
the charge and mass of the electron, respectively), and 𝛼 > 0 is the
dimensionless damping constant [23]. Table 1 lists all the physical
variables used in this work, their units, and their numerical values.
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Table 1
Top: Values of the universal constants used in this work. Bottom: Magnetic parameters
for bulk cobalt, iron, and nickel.
Source: [24–26].

Universal constants

𝛾 Gyromagnetic ratio 1.76 × 1011 rad s−1 T−1

𝜇0 Vacuum permeability 4𝜋 × 10−7 NA−2

𝛾0 Rescaled gyromagnetic ratio 𝛾𝜇0 mA−1 s−1

𝑘𝐵 Boltzmann constant 1.38 × 10−23 J K−1

Magnetic bulk parameters Cobalt Iron Nickel

𝐴 Exchange constant 3 × 10−11 J m−1 2.1 × 10−11 J m−1 9 × 10−12 J m−1

𝐾 Anisotropy constant 5.2 × 105 J m−3 4.8 × 104 J m−3 −5.7 × 103 J m−3

𝑀𝑠 Saturation magnetization 1.4 × 106 A m−1 1.7 × 106 A m−1 4.9 × 105 A m−1

𝑎eff Lattice constant 0.25 nm 0.286 nm 0.345 nm
𝑯ani Anisotropy field Uniaxial Cubic Cubic
𝑇C Curie temperature 1388 K 1043 K 627 K
𝛼 Damping parameter 0.5 0.5 0.5

2.1. Effective magnetic field 𝑯eff

The effective magnetic field 𝑯eff results from the sum of the ex-
change field 𝑯exch and the anisotropy field 𝑯ani:

𝑯eff = 𝑯exch +𝑯ani .

The exchange field is due to the Heisenberg exchange interaction and
is written as

𝑯exch = 2𝐴
𝜇0𝑀𝑠

𝛥𝒎, (2)

with 𝐴 > 0 the exchange constant and 𝜇0 > 0 the vacuum permeability
(see Table 1).

The anisotropy field is due to the existence of preferred directions
in the magneto-crystalline structure of the material. Throughout the
following, two cases of anisotropy field will be considered: uniaxial
anisotropy (for cobalt systems) and cubic anisotropy (for nickel and
iron systems), whose expressions are given below:

𝑯ani, uniaxial =
2𝐾

𝜇0𝑀𝑠
(𝒆𝑥 ⋅𝒎)𝒆𝑥, (3a)

ani, cubic = − 2𝐾
𝜇0𝑀𝑠

∑

(𝑖,𝑗,𝑘)∈𝐼

(

(𝒆𝑗 ⋅𝒎)2 + (𝒆𝑘 ⋅𝒎)2

+(𝒆𝑗 ⋅𝒎)2(𝒆𝑘 ⋅𝒎)2
)

(𝒆𝑖 ⋅𝒎)𝒆𝑖, (3b)

where 𝐼 = {(𝑥, 𝑦, 𝑧), (𝑦, 𝑧, 𝑥), (𝑧, 𝑥, 𝑦)} and 𝐾 > 0 is the anisotropy
constant (assumed identical in all three directions of space for the cubic
case), see Table 1.

In the following, we will assume that the ferromagnetic domain is
not subjected to any external magnetic field, so that no Zeeman energy
is present. The demagnetizing field (due to the magnetic field generated
by the nanowire or nanolayer itself) and the dipolar interactions are
also not taken into account.

2.2. Thermal fluctuations

The deterministic LLG equation considered above is valid in the
zero-temperature regime. However, thermal effects obviously influence
the magnetic properties, first and foremost by canceling out the spon-
taneous magnetization of a ferromagnetic material above a certain
critical temperature (Curie temperature 𝑇C). The material then goes
from a ferromagnetic to a paramagnetic state when 𝑇C is crossed.

In order to model thermal fluctuations, an additional random field
is added to the effective magnetic field, following the idea of W.F.
Brown [5], so that we have:

𝑯eff = 𝑯exch +𝑯ani +𝑯 stocha .

The random thermal field 𝑯 stocha is an isotropic Gaussian white-noise
2

3

vector process of variance 𝜈 ∈ R. More precisely, 𝑯 stocha may be
written as: 𝑯 stocha(𝑡)𝑑𝑡 = 𝜈 𝑑𝑾 (𝑡), where 𝑾 (𝑡) =
(

𝑊1(𝑡),𝑊2(𝑡),𝑊3(𝑡)
)T

s a classical time-continuous Wiener process.

iener process. The main properties of the stochastic field 𝑾 (𝑡) (and
o 𝑯 stocha(𝑡)) are listed below, denoting ⟨⋅⟩ = E(⋅) the statistical
verage [27–29]:

• Space homogeneity: 𝑾 only depends on 𝑡 and not on 𝒙,
• Continuous time random process: 𝑾 (𝑡),∀𝑡 ≥ 0,
• Null mean: ⟨𝑾 (𝑡)⟩ = 0,∀𝑡 ≥ 0,
• Decorrelated spatial components and vanishingly small autocor-

relation time: ⟨𝑊𝑖(𝑡)𝑊𝑗 (𝑡′)⟩ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′), ∀𝑖, 𝑗 ∈ {1, 2, 3} (the
indices of spatial components) and 𝑡, 𝑡′ ∈ R+. Here, 𝛿(⋅) is the
Dirac distribution and 𝛿𝑖𝑗 is the Kronecker symbol.

ariance. The standard deviation 𝜈 (and thus the variance 𝜈2) is di-
ectly related to the temperature 𝑇 thanks to the following relation,
btained by the fluctuation–dissipation theorem [5,29] adapted here
o the expression of Eq. (1):

2 =
2𝛼𝑘𝐵𝑇

𝛾0𝜇0𝑀𝑠𝑉
, (4)

where 𝑘𝐵 is the Boltzmann constant (see Table 1) and 𝑉 stands for a
characteristic volume that depends on the internal crystalline structure
of the material (which can be a Face-Centered Cubic lattice (FCC) as
in the case of nickel, a Body Centered Cubic lattice (BCC) as in iron,
or a Hexagonal Close-Packed lattice (HCP) for cobalt). Following the
notation of [9], the shorter lattice distance is called the lattice constant
𝑎eff and the corresponding characteristic volume is 𝑉 = 𝑎3eff.

Stochastic Landau-Lifshitz-Gilbert equation. Consequently, the Landau-
Lifshitz-Gilbert equation (1) is modified to take the form of a stochastic
partial differential equation (SPDE)

𝑑𝒎 = −𝛾0𝒎 ×
(

𝑯eff𝑑𝑡 + 𝜈𝑑𝑾
)

− 𝛾0𝛼𝒎 ×
[

𝒎 ×
(

𝑯eff𝑑𝑡 + 𝜈𝑑𝑾
)]

. (5)

All physical constants used in the forthcoming simulations are summa-
rized in Table 1.

In order to preserve the constraint that the magnetic moment 𝒎 be
on the unit sphere, i.e. ‖𝒎(𝑡,𝒙)‖ = 1, ∀𝒙 ∈ R3 and 𝑡 ≥ 0, we interpret
the above stochastic LLG equation in the Stratonovich sense; see [30]
for the issues posed by using Itô’s approach.

2.3. Temperature scaling with the computational cell size

The variance of the stochastic magnetic field used to model thermal
effects depends not only on the temperature 𝑇 , but also on the char-
acteristic volume 𝑉 , see Eq. (4). In principle, this volume is related
to the lattice constant, i.e. 𝑉 = 𝑎3eff, but in practice 𝑎eff is much
smaller than the spatial step 𝛥𝑥 used in the simulations. However,
if one takes instead 𝑉 = 𝛥𝑥3, the simulation results will depend on
the computational cell size, which is not an acceptable situation. At a
fundamental level, this is due to the fact that the effective exchange
constant varies with the size of the coarse-graining block [6].

In order to suppress this unwanted numerical effect, we follow the
procedure recently suggested by Hahn [9], which relies on a scaling of
the temperature with the spatial step 𝛥𝑥. The argument goes as follows:
near the Curie temperature, the ferromagnetic behavior disappears
because the energy density of the thermal fluctuations 𝑘𝐵𝑇 ∕𝑉 , which
favor random orientations of the spin, becomes similar to the energy
density of the exchange interactions 𝐴|∇𝒎|

2, which favor magnetic
order. Hence, we write:

𝑘𝐵𝑇
𝑎3

∼
𝐴|𝒎|

2

𝑎2
, (6)

where 𝑎 is a characteristic length that can be either the lattice constant
𝑎eff or the computational cell size 𝛥𝑥. From Eq. (6) it is clear that, in
order for the magnetic moment to be independent on the averaging
volume 𝑎3, the temperature must scale as 𝑇 ∼ 𝑎.
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Fig. 1. Illustration of the two generic geometries corresponding to a 1D nanowire (left) and a 2D nanolayer (right).
Table 2
Numerical parameters used in the Python code.
Discretization time and space parameters

𝛥𝑡 Time step 10 fs
𝑡𝑓 Final time of the simulation 50 ps
𝑁 Number of time iterations 5000
𝑛 Time index 0 ≤ 𝑛 ≤ 𝑁

𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 Space size of the meshes 1.0 nm
𝑑 Small size parameter 11.0 nm ≤ 𝑑 ≤ 41.0 nm
𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧 Size of the ferromagnetic object Nanowire (𝐿𝑥 = 6000 nm, 𝐿𝑦 = 𝐿𝑧 = 𝑑 nm)

Nanolayer (𝐿𝑥 = 𝐿𝑦 = 600 nm, 𝐿𝑧 = 𝑑 nm)
𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧 Number of mesh points Nanowire (𝐽𝑥 = 6000, 𝐽𝑦 = 𝐽𝑧 = ⌊𝑑⌋)

Nanolayer (𝐽𝑥 = 𝐽𝑦 = 600, 𝐽𝑧 = ⌊𝑑⌋)
𝑖, 𝑗, 𝑘 Space indices 0 ≤ 𝑖 ≤ 𝐽𝑥 , 0 ≤ 𝑗 ≤ 𝐽𝑦 , 0 ≤ 𝑘 ≤ 𝐽𝑧
Numerical variables

𝒎0 Initialization of the magnetic moments
⎛

⎜

⎜

⎝

1
0
0

⎞

⎟

⎟

⎠

for all points (𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)

𝑚1(𝑡) Spatial average of one realization 1
𝐿𝑥𝐿𝑦𝐿𝑧 ∫[0,𝐿𝑥 ]×[0,𝐿𝑦 ]×[0,𝐿𝑧 ]

𝑚1(𝑡,𝒙)𝑑𝒙

𝜏 Transient time behavior of 𝑚1(𝑡) 40 ps

𝑀tot Total magnetization (spatial and stochastic averages at 𝑡𝑓 ) 1
𝑡𝑓 − 𝜏 ∫

𝑡𝑓

𝜏

1
𝐿𝑥𝐿𝑦𝐿𝑧 ∫[0,𝐿𝑥 ]×[0,𝐿𝑦 ]×[0,𝐿𝑧 ]

𝑚1(𝑡,𝒙)𝑑𝒙𝑑𝑡

𝑡conv Convergence time for 𝑚1(𝑡) to reach its plateau state 𝑀tot inf
𝑡∈[0,𝑡𝑓 ]

|𝑚1(𝑡) −𝑀tot| < 0.1
Therefore, we define a ‘‘numerical’’ temperature as

𝑇num = 𝛥𝑥
𝑎eff

𝑇 .

According to the above considerations, taking a volume 𝑉 = 𝛥𝑥3

together with the temperature 𝑇num should give results that are in-
dependent on 𝛥𝑥 and identical to those obtained using the ‘‘physical’’
volume 𝑉 = 𝑎3eff and the real temperature 𝑇 . This approach was recently
tested by Hahn [9], who indeed observed near independence of 𝑇C on
the cell size up to 𝛥𝑥 = 4 nm for ferromagnetic thin films. Following this
procedure, the numerical variance of the fluctuating field is defined as

𝜈2num =
2𝛼𝑘𝐵

𝛥𝑥
𝑎eff

𝑇

𝛾0𝜇0𝑀𝑠𝛥𝑥3
, (7)

which replaces Eq. (4) in the simulations. This expression may also be
interpreted as meaning that the numerical characteristic volume to be
taken into account is 𝑉 = 𝑎eff𝛥𝑥2.

3. Computational method

The stochastic LLG equation (5) is solved numerically using a
Python code.1 The simulations are performed on the time interval
[0, 𝑡𝑓 ], with 𝑡𝑓 the final time, and on a 3D finite domain [0, 𝐿𝑥]×[0, 𝐿𝑦]×
[0, 𝐿𝑧]. To mimic a 1D nanowire, this numerical domain is taken with a
small square cross-section in the (𝒆𝑦, 𝒆𝑧) plane: [0, 𝐿𝑥]×[0, 𝑑]×[0, 𝑑], with
𝑑 ≪ 𝐿𝑥. To mimic a 2D nanolayer, the 3D domain is taken with a small
thickness in the 𝒆𝑧 direction: [0, 𝐿𝑥] × [0, 𝐿𝑦] × [0, 𝑑], with 𝑑 ≪ 𝐿𝑥, 𝐿𝑦.
Fig. 1 illustrates those two geometries. All numerical parameters are
listed in Table 2.

1 Available at: https://gitlab.math.unistra.fr/llg3d/llg3d.
4

Discretization. Numerically, let 𝛥𝑡 > 0 and 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 > 0 be the time
step and the space steps in each space direction, respectively. We define
time-discrete and space-discrete points with 𝑁 = ⌊

𝑡𝑓
𝛥𝑡 ⌋, 𝐽𝑥 = ⌊

𝐿𝑥
𝛥𝑥 ⌋,

𝐽𝑦 = ⌊

𝐿𝑦
𝛥𝑥 ⌋, 𝐽𝑧 = ⌊

𝐿𝑧
𝛥𝑥 ⌋

𝑡𝑛 = 𝑛𝛥𝑡, 0 ≤ 𝑛 ≤ 𝑁

and

(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) = (𝑖𝛥𝑥, 𝑗𝛥𝑥, 𝑘𝛥𝑥), 0 ≤ 𝑖 ≤ 𝐽𝑥, 0 ≤ 𝑗 ≤ 𝐽𝑦, 0 ≤ 𝑘 ≤ 𝐽𝑧.

The numerical solution 𝒎𝑛
𝑖,𝑗,𝑘 approximates the exact one 𝒎(𝑡𝑛, 𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)

on each discrete point.
As the LLG equation (1) is valid at mesoscopic – and not atomistic

– length scales, the spatial steps 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 are each much larger than
the lattice constant 𝑎eff, and the continuous magnetic moment vector
filed 𝒎(𝑡,𝒙) actually represents an average of the atomic spins over a
volume 𝛥𝑥𝛥𝑦𝛥𝑧.

Time evolution: Heun method. For consistency with the continuous prob-
lem, the stochastic LLG equation (5) must be discretized using a numer-
ical method whose solution converges to the Stratonovich continuous
solution. For this purpose, the modified Heun method [31] is chosen
for the time integration and a second-order finite difference method is
used for the discretization of the Laplacian operator.

Following [32], for further simplicity, we rewrite Eq. (5) as

𝑑𝒎 = 𝑭 (𝒎, 𝑡)𝑑𝑡 +
∑

𝑗∈{1,2,3}
𝑮𝑗 (𝒎) 𝜈 𝑑𝑊𝑗 (𝑡), (8)

with

𝑭 (𝒎, 𝑡) = −𝛾 𝒎 ×𝑯 − 𝛾 𝛼𝒎 ×
(

𝒎 ×𝑯
)

0 eff 0 eff

https://gitlab.math.unistra.fr/llg3d/llg3d
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being the deterministic part and 𝑮𝑗 =
⎛

⎜

⎜

⎝

𝐺1,𝑗
𝐺2,𝑗
𝐺3,𝑗

⎞

⎟

⎟

⎠

the factor term of the

stochastic process, with

𝐺𝑖,𝑗 = 𝛾0𝑚𝑘𝜖𝑖,𝑗,𝑘 − 𝛾0𝛼(𝑚𝑖𝑚𝑗 − 𝛿𝑖𝑗 ),

where 𝜖𝑖,𝑗,𝑘 is the Levi-Civita symbol.
After initializing the magnetization at the initial time 𝑡 = 0: 𝒎0

𝑖,𝑗,𝑘 =

⎛

⎜

⎜

⎝

𝑚1
𝑚2
𝑚3

⎞

⎟

⎟

⎠

0

𝑖,𝑗,𝑘

= 𝒎(0, 𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), the (stochastic) Heun method consists in the

following steps to go from the time step 𝑛 to the time step 𝑛 + 1:

• Generate a random vector 𝑹𝑛 ∈ R3 according to a reduced
centered normal distribution, using a pseudo-random number
generator. Define 𝛥𝑾 𝑛 =

√

𝛥𝑡𝑹𝑛;
• Compute 𝜈num, the numerical version of the standard deviation 𝜈,

see Eq. (7);
• Define 𝜿1 = 𝑭 (𝒎𝑛, 𝑡𝑛) and 𝒔1,𝑗 = 𝑮𝑗 (𝒎𝑛);
• Define 𝜿2 = 𝑭 (𝒎𝑛 + 𝛥𝑡𝜿1 +

∑

𝑗∈{1,2,3} 𝒔1,𝑗𝜈num𝛥𝑊 𝑛
𝑗 , 𝑡

𝑛 + 𝛥𝑡) and
𝒔2,𝑗 = 𝑮𝑗 (𝒎𝑛 + 𝛥𝑡𝜿1 +

∑

𝑗∈{1,2,3} 𝒔1,𝑗𝜈num𝛥𝑊 𝑛
𝑗 );

• Update 𝒎𝑛+1 = 𝒎𝑛 +
(

1
2𝜿1 +

1
2𝜿2

)

𝛥𝑡 +
∑

𝑗∈{1,2,3}

(

1
2 𝒔1,𝑗 +

1
2 𝒔2,𝑗

)

𝜈num𝛥𝑊 𝑛
𝑗 ;

• Renormalize the magnetic moment: 𝒎𝑛+1 = 𝒎𝑛+1

‖𝒎𝑛+1
‖

, so that it
remains on the unit sphere S2.

A mid-point numerical technique would be also possible alternative
to the Heun method, see [28,29].

The choice of a time-explicit discretization of the Laplacian op-
erator induces a restrictive condition on the time step 𝛥𝑡 and the
pace step 𝛥𝑥 to ensure the stability of the scheme: 𝛥𝑡 ≲ 𝛥𝑥2∕2

(Courant–Friedrichs–Lewy condition).
At the domain boundaries, we take the usual Neumann condition:

𝜕𝒎∕𝜕𝒏 = 0, where 𝒏 is the outgoing normal vector.

. Numerical code validation

In the forthcoming simulations, three types of ferromagnetic ma-
erials will be considered: (i) nickel with a FCC lattice and cubic
nisotropy, (ii) iron with a BCC lattice and a cubic anisotropy, and
iii) cobalt with a HCP lattice and uniaxial anisotropy. For each case,
e shall study both 1D nanowires and 2D nanolayers. All physical
arameters are listed in Table 1.

Here, we will perform several tests to validate our numerical code.
n the following sections, we will focus on the scaling of the Curie
emperature with the size of the system, for each type of nano-object.

e recall that our code relies on the time-dependent LLG equation.
e solve numerically this equation with a fully magnetized initial

ondition, where 𝒎(𝑡 = 0) is uniform and directed along the 𝒆𝑥 axis,
nd a given temperature. Then, we wait that magnetic moment relaxes
o a lower value under the effect of the temperature and determine its
alue by averaging over a sufficiently long period of time.

The forthcoming test cases show that the present method is capable
f reproducing the correct Curie temperature with a relative accuracy
f about 5%, despite the simplicity of the underlying model and, most
mportantly, the fact that it does not depend on any free adjusting
arameter. This is close to the accuracy obtained with more elaborate
nd computationally demanding atomistic models [21,33,34]. In addi-
ion, the latter can only deal with small nanostructures, with typical
ize ≲103 nm3 (see, e.g., [21]), or 203 nm3 but using periodic boundary

conditions, see [33]. In contrast, we could push our calculations up to
503 nm3 for cubic structures or 6002 ×40 nm3 for 2D films. We also note
hat, without the temperature scaling adopted here (see Section 2.3),
he error on 𝑇C would be much higher, possibly one order of magnitude
r so [6].
5

0

4.1. Test-case details

Except for the following Section 4.2 – where the independence of
the results on the space and time discretizations are tested on a 3D
cube – all numerical simulations are preformed on three ferromagnetic
materials (cobalt, iron and nickel) and two geometries (see Fig. 1):

• 1D nanowire with small square cross-section in the (𝒆𝑦, 𝒆𝑧) plane:
[0, 𝐿𝑥] × [0, 𝑑] × [0, 𝑑] with 𝐿𝑥 = 6000 nm and 11 nm ≤ 𝑑 ≤ 41 nm;

• 2D nanolayer with small thickness in the 𝒆𝑧 axis: [0, 𝐿𝑥]×[0, 𝐿𝑦]×
[0, 𝑑] with 𝐿𝑥 = 𝐿𝑦 = 600 nm and 11 nm ≤ 𝑑 ≤ 41 nm.

The numerical parameters are always fixed to (see Table 2):

𝛥𝑡 = 10 fs, 𝑡𝑓 = 50 ps, 𝑁 = 5000, 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 1 nm.

The initialization of the magnetic moments 𝒎0 is chosen uniform and

directed along the 𝒆𝑥 axis in all test cases: 𝒎0
𝑖,𝑗,𝑘 =

⎛

⎜

⎜

⎝

1
0
0

⎞

⎟

⎟

⎠

for all 𝑖, 𝑗, 𝑘.

With the choice of initialization, the magnetization is initially equal
to 1 (when the magnetic moments are all aligned and have a norm
equal to 1), then falls to zero at the Curie temperature (when the
magnetic moments are randomly aligned due to the thermal noise).
Since Eq. (5) is stochastic, the average of the magnetic moments 𝒎
over the entire ferromagnetic domain may differ from one realization to
another, so this average should be calculated over several realizations.
Since the initialization is oriented along the 𝒆𝑥 axis and in the absence
of any external magnetic field, the average of 𝒎 along this direction,
i.e. 𝑚1, is enough to characterize the magnetic state of the system.
Hence, we define the total (in space) magnetization

𝑀tot =

⟨

1
𝐿𝑥𝐿𝑦𝐿𝑧 ∫[0,𝐿𝑥]×[0,𝐿𝑦]×[0,𝐿𝑧]

𝑚1(𝑡𝑓 ,𝒙)𝑑𝒙

⟩

, (9)

with ⟨⋅⟩ denoting the statistical average over many realizations. In order
o simplify this calculation, we assume that the stochastic process of
q. (5) is ergodic, so that the statistical average may be replaced by the
ime average for a single, sufficiently long realization. In practice, we
lot several realizations, look at the time 𝜏 after which the transient
egime gives way to the stationary regime, and finally take the time
verage from this transient time 𝜏 up to the final time 𝑡𝑓 . Thus, the total
agnetization is now defined as

tot =
1

𝑡𝑓 − 𝜏 ∫

𝑡𝑓

𝜏

1
𝐿𝑥𝐿𝑦𝐿𝑧 ∫[0,𝐿𝑥]×[0,𝐿𝑦]×[0,𝐿𝑧]

𝑚1(𝑡,𝒙)𝑑𝒙𝑑𝑡

= 1
𝑡𝑓 − 𝜏 ∫

𝑡𝑓

𝜏
𝑚1(𝑡)𝑑𝑡. (10)

Fig. 2 illustrates the spatial average of the 𝑥 component of the
agnetic moment 𝑚1(𝑡) = 1

𝐿𝑥𝐿𝑦𝐿𝑧
∫[0,𝐿𝑥]×[0,𝐿𝑦]×[0,𝐿𝑧]

𝑚1(𝑡,𝒙)𝑑𝒙 for one
tatistical realization, for cobalt (top), iron (middle) and nickel (bot-
om). Two geometries of nanowire are tested: [0, 1680] × [0, 11] × [0, 11]
ith 𝛥𝑥 = 1 nm (left column) and [0, 120]×[0, 41]×[0, 41] with 𝛥𝑥 = 1 nm

(right column). Other numerical parameters 𝛥𝑡, 𝑡𝑓 and 𝑁 are defined
n Table 2. Different temperatures are used (represented with different
olors) and lead to the same conclusion for all test cases: 𝜏 = 0.8 𝑡𝑓 =
0 ps is a correct choice both for reaching the stationary state and
or having enough time left for a representative average (this choice
epresents a time average over the last 1000 time steps, and 𝑡𝑓 − 𝜏 = 10
s in Eq. (10)).

In practice, the Curie temperature is determined numerically by
lotting 𝑀tot as a function of the temperature 𝑇 , and defining 𝑇C as the
emperature for which 𝑀tot is smaller than a certain threshold, fixed to
.1, i.e., 𝑇 ∶= argmin [𝑀 (𝑇 )] < 0.1.
C 𝑇 tot
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Fig. 2. Spatially averaged 𝑥 component of the magnetic moment 𝑚1(𝑡) for one statistical realization, as a function of time 𝑡 for a ferromagnetic nanowire. Colors correspond to
different temperatures, as indicated on the figure. Top panels: cobalt; middle panels: iron; bottom panels: nickel. The left column corresponds to nanowires with dimensions (in
nm): 1680 × 11 × 11, the right column to nanowires with dimensions (in nm): 120 × 41 × 41.
4.2. Dependence on the numerical parameters

Here, we show that our results do not depend on either the time
step 𝛥𝑡 or the computational cell size 𝛥𝑥.

Fig. 3 shows the total magnetization 𝑀tot as a function of the
temperature for different cell sizes, going from 1 nm to 5 nm, for a cubic
object of dimensions 50 nm×50 nm×50 nm, for cobalt, iron and nickel.
All other parameters are identical (𝛥𝑡 = 10 fs, 𝑡𝑓 = 50 ps, 𝑁 = 5000
and 𝜏 = 40.0 ps). The results are indeed independent on 𝛥𝑥, and
the computed Curie temperatures are very close to the experimental
values for the bulk materials (see Table 1). A slight discrepancy starts
occurring for iron at 𝛥𝑥 = 5 nm.

Fig. 4 shows the dependence of the numerical results with respect
to the time step 𝛥𝑡, again for cubic nano-objects of side 50 nm, with
6

computational cell size 𝛥𝑥 = 1 nm. The final time is always 𝑡𝑓 = 50 ps,
so that the number of time steps is 𝑁 = 5 × 103 for 𝛥𝑡 = 10 fs (blue
curve), 𝑁 = 104 for 𝛥𝑡 = 5 fs (red curve), and 𝑁 = 2 × 104 for 𝛥𝑡 = 2.5
fs (green curve). According to the value of 𝛥𝑡, the time-averaged 𝑀tot
in Eq. (10) includes the last 1000, 2000 or 4000 time iterations. The
computed Curie temperature varies only slightly with the time step, and
appears to have converged for 𝛥𝑡 = 5 fs.

However, the results are already quite satisfying, albeit not perfect,
for 𝛥𝑡 = 10 fs. For this reason, and since we need to perform a large
number of runs in order to deduce the scaling with size (see Section 5),
all forthcoming simulations will be performed with 𝛥𝑡 = 10 fs. This
value is in line with the earlier simulations of Hahn [9]. One should
further keep in mind that, without the temperature scaling adopted
here and detailed in Section 2.3, the error on 𝑇 would be much higher,
C
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Fig. 3. Total magnetization 𝑀tot, from Eq. (10), as a function of the temperature, for cubic cobalt (left panel), iron (right panel) and nickel (middle panel) nano-objects with
dimensions 50 nm × 50 nm × 50 nm. The different symbols and colors stand for different computational cell sizes 𝛥𝑥, going from 1 nm to 5 nm. The black vertical dash-dotted
lines represent the bulk Curie temperatures as given in Table 1.
possibly one order of magnitude [6]. The values we obtain are thus
a good trade-off between accuracy and computational efficiency. We
also note that the experimental bulk values of 𝑇C displayed on Fig. 4
as vertical lines are given for reference, but never used in practice to
determine the size effects. Instead, the effective ‘‘bulk’’ values of 𝑇C that
we use are those obtained computationally with the largest structure
that we consider (see Section 5 for details).

4.3. Magnetization curve: Bloch’s law and Curie’s law

In this section, we check that the numerically calculated magnetiza-
tion 𝑀tot(𝑇 ) satisfies the standard Bloch’s and Curie’s laws, respectively
at low temperatures 𝑇 ≪ 𝑇C and near the Curie temperature, 𝑇 ≲ 𝑇C.
As we have already verified that the spatial and temporal steps do not
influence the result, 𝛥𝑡 and 𝛥𝑥 will be fixed as specified in Table 2,
i.e. 𝛥𝑡 = 10 fs and 𝛥𝑥 = 1 nm.

Fig. 5 illustrates the behavior of the magnetization curve 𝑀tot(𝑇 )
for the two geometric configurations considered here (nanowires and
nanolayers), for iron (red triangles), cobalt (blue circles) and nickel
(green crosses). Results are in broad agreement with the expected mag-
netization curves, and the computed Curie temperatures are close to the
experimental values found in the literature for bulk materials [24], see
Table 1.

Bloch’s law states that total magnetization 𝑀tot(𝑇 ), for low temper-
atures, behaves as follows:

𝑀tot(𝑇 ) ∼
𝑇→0

1 −
(

𝑇
𝑇C

)3∕2
,

which can be rewritten as: log(1 − 𝑀tot) ∼
3
2 log

(

𝑇 ∕𝑇C
)

. Fig. 6 checks
this behavior on a log–log scale, for a nanowire (left) and a nanolayer
7

(right), with sizes corresponding to the two extreme cases in Table 3,
i.e. 𝑑 = 11 nm and 41 nm. The theoretical 3∕2 slope is represented as a
solid black line and matches the numerical results quite well.

Next, we check the Curie law, valid near 𝑇C:

𝑀tot(𝑇 ) ∼
𝑇→

<
𝑇C

(

1 − 𝑇
𝑇C

)1∕2
,

which may be rewritten as: log(𝑀tot) ∼ 1
2 log

(

1 − 𝑇
𝑇C

)

. Fig. 7 shows
the behavior of the magnetization 𝑀tot as a function of 1 − 𝑇 ∕𝑇C in
logarithmic scale, for the same cases as those of Fig. 6. Again, the
numerical results match rather well the theoretical 1∕2 slope.2

5. Finite-size effects on the Curie temperature

This section is devoted to the study of the influence of size effect on
the magnetization curve and Curie temperature for nanometric objects,
both in 1D (nanowires) and 2D (nanolayers). The objective is to vary
the cross-section of the nanowire or the thickness of the nanolayer and
study the variations induced in the Curie temperature. Throughout this
section, numerical parameters are chosen as listed in Table 2.

2 A visible deviation from linearity appears to occur for the Cobalt nanowire
of size 𝑑 = 11 nm. We note that this is the smallest structure we considered, and
thus the most subject to fluctuations. Indeed, closer inspection of Fig. 8 (top
right panel, blue curve) reveals that the corresponding magnetization curve is
noisier than the others. We have no detailed explanation of why this occurs for
Cobalt and not for the other materials, but it may signal that we are reaching
the size limit at which a micromagnetic description is appropriate. Also note
that the correlation length for these structures is about 3 nm, hence not much
smaller than their smallest size 𝑑 = 11 nm (see Section 5).
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Fig. 4. Total magnetization 𝑀tot, from Eq. (10), as a function of temperature, for a cobalt (left), iron (right) or nickel (middle) nanowire with dimensions 50 nm × 50 nm ×
50 nm. The different symbols stand for different time steps 𝛥𝑡 = 2.5 fs (green crosses), 5 fs (red circles), and 10 fs (blue crosses). The computational grid size is 𝛥𝑥 = 1 nm. The
black vertical dash-dotted lines represent the bulk Curie temperatures as given in Table 1.
Fig. 5. Total magnetization 𝑀tot (10) with respect to temperature with numerical parameters detailed in Table 2. The Curie temperature corresponds to the first temperature at
which magnetization falls to zero. Simulation results are represented by dots, the solid curves are an interpolation based on cubic splines.
5.1. Size effects on the magnetization curve

For all tested geometries, the computed Curie temperatures are
close enough to the experimental values reported in the literature.
This is achieved thanks to the scaling of the fluctuating thermal field
as detailed in Section 2.3. Nevertheless, we observe small variations
with the size parameter 𝑑, which corresponds to the side of the square
cross-section of a nanowire or the thickness of a nanolayer. Figs. 8
(for nanowires) and 9 (for nanolayers) show the magnetization curves
𝑀tot(𝑇 ), and illustrate how the Curie temperature increases with in-
creasing size 𝑑. The computed values of 𝑇 are summarized in Table 3.
8

C

We also observe greater variability in 𝑀tot(𝑇 ) for nanowires than
for nanolayers. Size effects then appear to be stronger for lower-
dimensional structures.

5.2. Power-law scaling of the Curie temperature

Theoretical considerations [12] indicate that the Curie temperature
should vary with the size 𝑑 following a power-law of the type:

𝑇C(∞) − 𝑇C(𝑑) =
(

𝜉0
)𝜆

, (11)

𝑇C(∞) 𝑑
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Fig. 6. Bloch’s law. Behavior of 1−𝑀tot(𝑇 ) as a function of 𝑇 ∕𝑇C in logarithmic scale. The materials are represented by different colors: iron (red), cobalt (blue) and nickel (green).
The left panel corresponds to nanowires and the right panel to nanolayers, with sizes 𝑑 = 11 nm (crosses) and 𝑑 = 41 nm (dots). Each curve was multiplied by a multiplicative
factor in the 𝑦-axis for easier reading (1 for cobalt, 1.6 for iron and 2.5 for nickel). The black solid lines represent the theoretical 3∕2 slope.
Fig. 7. Curie’s law. Behavior of 𝑀tot(𝑇 ) as a function of 1−𝑇 ∕𝑇C in logarithmic scale. The materials are represented by different colors: iron (red), cobalt (blue) and nickel (green).
The left panel corresponds to nanowires and the right panel to nanolayers, with sizes 𝑑 = 11 nm (crosses) and 𝑑 = 41 nm (dots). Each curve was multiplied by a multiplicative
factor in the 𝑦-axis for easier reading (1 for cobalt, 1.6 for iron and 2.5 for nickel). The black solid lines represent the theoretical 1∕2 slope.
Table 3
Curie temperatures (in Kelvin) obtained from the numerical simulations, for nanowires (left) and nanolayers (right) of different sizes and
different materials.
Nanowire 𝐿𝑥 × 𝑑 × 𝑑 with 𝐿𝑥 = 6000 nm Nanolayer 𝐿𝑥 × 𝐿𝑦 × 𝑑 with 𝐿𝑥 = 𝐿𝑦 = 600 nm

𝑑 [nm] Cobalt Iron Nickel 𝑑 [nm] Cobalt Iron Nickel

41 1427.26 1090.05 579.62 41 1433.91 1095.33 582.39
36 1423.74 1087.57 578.13 36 1432.20 1093.41 581.67
31 1421.56 1085.81 577.23 31 1430.68 1092.13 581.01
26 1414.62 1082.05 573.87 26 1428.68 1091.49 579.81
21 1406.83 1076.85 571.05 21 1422.79 1087.65 578.07
20 1401.23 1072.13 569.31 20 1421.75 1087.25 577.71
19 1397.04 1073.01 568.05 19 1421.27 1087.49 577.41
18 1395.52 1069.65 566.91 18 1419.85 1085.01 576.33
17 1391.72 1069.17 564.45 17 1416.14 1083.41 575.61
16 1385.55 1062.61 561.69 16 1415.10 1082.05 574.71
15 1382.13 1062.45 560.67 15 1413.20 1080.53 573.63
14 1375.19 1053.65 558.15 14 1410.35 1080.13 572.73
13 1360.18 1045.89 552.69 13 1406.55 1076.37 570.87
12 1352.11 1043.65 549.33 12 1400.37 1072.21 568.95
11 1342.04 1036.53 544.83 11 1398.09 1071.33 567.33
where 𝜆 is the critical exponent, 𝜉0 is the correlation length at zero
temperature, 𝑇C(∞) is the Curie temperature of the bulk, and 𝑇C(𝑑) the
Curie temperature of a finite nano-object of size 𝑑. This type of power-
law has been observed in many experiments [13–18] and numerical
simulations [19,22]. Experimental works yielded correlation length 𝜉0
of the order of a few nanometers, with critical exponents in the range
𝜆 ∈ [1 − 1.6]. In contrast, an atomistic mean-field model [22] yielded
larger values, close to 𝜆 = 2 (range: 𝜆 ∈ [1.82–2.17]), for magnetite
9

nanoparticles of different shapes and sizes. These values are also to be
compared to those obtained from the 3D Heisenberg model (𝜆 = 1.4)
and the 3D Ising model (𝜆 = 1.58).

In the analysis of our simulation results, the Curie temperature of
the bulk 𝑇C(∞) is in fact replaced by the Curie temperature of the
largest structure that we consider 𝑇C(𝑑max), that is 𝑑max = 41 nm, see
Table 3. Figs. 10 (for nanowires) and 11 (for nanolayers) illustrate this
power-law behavior for the three materials considered here, both on
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Fig. 8. Total magnetization 𝑀tot(𝑇 ) as a function of the temperature for nanowires of different materials, with cross-section sizes going from 𝑑 = 11 nm to 𝑑 = 41 nm. Top panels:
cobalt; middle panels: iron; bottom panels: nickel. The right column is a zoom near the Curie temperature.
a linear scale (left panels) and on a logarithmic scale (right panels).
Blue circles correspond to the numerical results 𝑇C(𝑑) extracted from
Table 3. The red solid lines correspond to the theoretical power-law,
Eq. (11). The exponent 𝜆 is deduced by fitting a log–log straight line
through the numerical points using a least-square method, and then 𝜉0
is obtained by finding the intercept 𝜆 log 𝜉0 of this line with the vertical
axis. The last two or three points further to the right deviate from the
power-law, and were therefore discarded in the fitting procedure. The
computed values of the correlation length 𝜉0 and the critical exponent
𝜆 are reported on each figure.

The error estimate of the linear regression procedure is calculated
with the standard error (SE) on the coefficients of the regression. Our
regression curve is: 𝑦𝑖 = 𝜆 log 𝜉0 − 𝜆𝑥𝑖 ≡ 𝑎 + 𝑏𝑥𝑖, where 𝑥𝑖 = log 𝑑𝑖 and
𝑦 = log

(

𝑇𝐶 (∞)−𝑇𝐶 (𝑑𝑖)
)

for a given size 𝑑 . We first compute the standard
10

𝑖 𝑇𝐶 (∞) 𝑖
errors on 𝑎 and 𝑏 with the usual formulae:

SE(𝑎) =

√

√

√

√

∑𝑁𝑑
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

(𝑁𝑑 − 2)

(

1
𝑁𝑑

+ 𝑥̄2
𝑆𝑥𝑥

)

,

SE(𝑏) =

√

√

√

√

∑𝑁𝑑
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

(𝑁𝑑 − 2)𝑆𝑥𝑥
,

where 𝑆𝑥𝑥 =
∑𝑁𝑑

𝑖=1(𝑥𝑖 − 𝑥̄)2, with 𝑁𝑑 the number of tested sizes 𝑑, 𝑥̄ =
1
𝑁𝑑

∑𝑁𝑑
𝑖=1 𝑥𝑖 denotes the mean of 𝑥𝑖, and 𝑦𝑖 is the estimate of 𝑦𝑖 obtained

by the linear regression. Then, the SEs on 𝜆 and 𝜉0 are computed as:

SE(𝜆) = SE(𝑏); SE(𝜉0) =
𝜉0
𝜆

[

SE(𝑎) + log 𝜉0 SE(𝑏)
]

. (12)

These standard errors are listed in Table 4.
In our simulations, the correlation length 𝜉0 ranges from 2.77 nm

to 3.02 nm for nanowires, while for nanolayers it varies from 1.55 nm
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Fig. 9. Total magnetization 𝑀tot(𝑇 ) as a function of the temperature for nanolayers of different materials, with thicknesses going from 𝑑 = 11 nm to 𝑑 = 41 nm. Top panels: cobalt;
middle panels: iron; bottom panels: nickel. The right column is a zoom near the Curie temperature.
Table 4
Standard errors (SE) on the coefficients 𝜆 and 𝜉0 of the linear regression, from
Eq. (12).

Nanowire Nanolayer

Material SE(𝜆) SE(𝜉0) Material SE(𝜆) SE(𝜉0)

Cobalt 8.15 × 10−2 4.42 × 10−1 Cobalt 6.37 × 10−2 1.76 × 10−1

Iron 1.17 × 10−1 5.75 × 10−1 Iron 1.03 × 10−1 2.68 × 10−1

Nickel 7.04 × 10−2 3.85 × 10−1 Nickel 4.98 × 10−2 1.52 × 10−1

to 1.82 nm. The differences are mostly within the error range shown
in Table 4. These values are broadly in good agreement with those
observed in the experiments.

As to the critical exponent, we obtain 𝜆 = 2.12–2.14 (a range
that is within the numerical uncertainty, see Table 4) for all three
materials in the case of nanowires. For nanolayers, we obtain 𝜆 =
11
1.90, 1.92 and 2.00, for cobalt, iron and nickel, respectively. Within
the statistical errors (Table 4), all exponents are compatible with the
value 𝜆 = 2, which is also the value observed in atomistic mean-field
simulations [22].

5.3. Nonequilibrium properties

Although we have used our code to study steady-state phenomena,
such as the dependence of the magnetization curve and Curie tempera-
ture with size, our approach is fundamentally time-dependent. Indeed,
to obtain our results we solved numerically the time-dependent LLG
equation (with thermal effects) and then deduced steady-state quanti-
ties through time and/or ensemble averages. However, the code could
be used to investigate nonequilibrium properties, such as transient
behaviors, the motion of domain walls, instabilities, etc. Over more
commonly used statistical methods, this dynamical approach has the
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Fig. 10. Behavior of the Curie temperature as a function of the cross-section size 𝑑, for nanowires of different materials: cobalt (top panels), iron (middle panels) and nickel
(bottom panels). Numerical results are shown as blue dots, while the solid blue and red lines represent the theoretical power-law of Eq. (11). The left column shows results on a
linear scale, while the right column on a log–log scale. The correlation length 𝜉0 and critical exponent 𝜆 can be read on each figure of the right column as: (𝜉0∕𝑑)𝜆.
further advantage of being well-suited to study the fluctuations that
appear in the vicinity of phase transitions. These fluctuations play a
key role in finite systems, particularly when their dimensionality is low.
This vast realm is left to future investigations. Here, we conclude our
work by searching for a signature of the phase transition occurring at 𝑇C
in the dynamical behavior of the magnetization. We do this by looking
at the convergence time towards the equilibrium state.

In Fig. 2, we observed that the convergence time to the plateau state
depends on the temperature. More precisely, we define the convergence
time as the first time at which the 𝑥 component of the spatially-
averaged magnetic moment 𝑚1(𝑡) becomes sufficiently close to the total
magnetization 𝑀tot (which corresponds to its plateau):

𝑡conv = inf |𝑚1(𝑡) −𝑀tot| < 𝜀, (13)
12

𝑡∈[0,𝑡𝑓 ]
with the tolerance parameter 𝜀 fixed to 0.1. Fig. 12 illustrates schemat-
ically this convergence time 𝑡conv, and also shows the transient time
𝜏, which is the time used to compute the average magnetization, see
Eq. (10).

Fig. 13 shows the convergence time, as a function of the tem-
perature, for nanowires of size 6000 × 𝑑 × 𝑑 nm3 and nanolayers of
size 600 × 600 × 𝑑 nm3, for two values of 𝑑. First, we note that the
convergence time 𝑡conv is always smaller than the transient time 𝜏 taken
to compute the average 𝑀tot (𝑡conv has a maximum value around 20 ps,
which is always smaller than 𝜏 = 40 ps). This confirms that convergence
to the plateau state takes place before 𝜏 and hence that the calculation
of 𝑀tot is correct.

This figure also shows that the convergence time peaks near the
Curie temperature [35]. This is a dynamical signature that large fluc-
tuations near 𝑇 translate into longer times taken by the system to relax
C
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Fig. 11. Behavior of the Curie temperature as a function of the thickness 𝑑, for nanolayers of different materials: cobalt (top panels), iron (middle panels) and nickel (bottom
panels). Numerical results are shown as blue dots, while the solid blue and red lines represent the theoretical power-law of Eq. (11). The left column shows results on a linear
scale, while the right column on a log–log scale. The correlation length 𝜉0 and critical exponent 𝜆 can be read on each figure of the right column as: (𝜉0∕𝑑)𝜆.

Fig. 12. Evolution of the spatially-averaged 𝑥 component of the magnetic moment 𝑚1(𝑡) for a nickel nanowire of cross-section 𝑑 = 11 nm, for three different temperatures, 𝑇 = 510 K,
𝑇 = 587 K and 𝑇 = 650 K. The corresponding convergence times (𝑡conv = 1.9 ps, 6.2 ps, and 11.1 ps) are shown on the figure. We also show the transient time 𝜏 = 40 ps, which is
the same for all simulations (time used to average the total magnetization 𝑀tot).
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Fig. 13. Convergence time 𝑡conv, from Eq. (13), as a function of the temperature for cobalt (top panels), iron (middle panels) and nickel (bottom panels). Left column: nanowire
geometry with 6000 nm × 𝑑 nm × 𝑑 nm; right column: nanolayer geometry with 600 nm × 600 nm × 𝑑 nm. Two values of 𝑑 are considered: 𝑑 = 11 nm (blue solid curve) and
𝑑 = 41 nm (orange dash curve). The vertical lines correspond to the numerical Curie temperatures reported in Table 3, for 𝑑 = 11 nm (blue vertical line) and 𝑑 = 41 nm (orange
vertical line).
to its equilibrium state. The rapid increase of the relaxation time close
to 𝑇C is known as critical slowing down [10,36], an effect which is
characteristic of second-order phase transitions.

Moreover, Fig. 13 illustrates the effect of size on this phase tran-
sition. The structures with the smallest size (𝑑 = 11 nm, blue curves)
have longer convergence times 𝑡conv and larger widths than the larger
structures (𝑑 = 41 nm, orange curves). Also, the convergence times and
the widths are larger for 1D nanowires than for 2D nanolayers. One can
deduce that fluctuations near the transition temperature 𝑇C are stronger
for smaller and lower-dimensional structures.

6. Conclusion

In this work, we developed a computational code (written in
Python) that solves the LLG equation of micromagnetism, including
14
finite-temperature effects. By adopting an appropriate temperature scal-
ing with the computational cell size 𝛥𝑥 [9], it was possible to recover
magnetization curves and Curie temperatures that match closely the
experimental ones for cobalt, nickel and iron nano-objects. Compared
to fully atomistic simulations, our micromagnetic approach has the
advantage of being less computationally expensive, as it relies on
a mesoscopic description at a scale 𝓁 much larger than the lattice
constant: 𝓁 ≫ 𝛥𝑥 ≫ 𝑎eff. It is also more easily amenable to dynamical
simulations to study, for instance, the motion of domain walls or other
time-dependent phenomena.

Using this accurate computational tool, we investigated the size-
dependence of the Curie temperature for 1D nanowires and 2D nanolay-
ers, by varying the smallest size 𝑑 of the system. We confirmed that the
difference between the computed finite-size 𝑇 and the bulk 𝑇 follows
C C
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a power-law of the type: (𝜉0∕𝑑)𝜆, where 𝜉0 is the correlation length at
ero temperature and 𝜆 is a critical exponent. We obtained values of 𝜉0
n the nanometer range, also in accordance with other simulations and
xperiments. The computed critical exponent was found to be close to
= 2 for all considered materials and geometries, which is the expected

esult for a mean-field approach, but slightly larger than the values
bserved experimentally. Finally, the time-dependent model developed
ere represents an effective tool for studying thermal fluctuations near
he ferromagnetic phase transition.

All in all, the behavior of 1D and 2D ferromagnetic nano-objects,
s a function of both temperature and size, was recovered with good
recision and a relatively low computational cost in comparison to
ully atomistic simulations. This computational tool may therefore be
pplied in the future to more complex configurations, involving for
nstance 3D structures and dynamical effects.

RediT authorship contribution statement

Clémentine Courtès: Writing – original draft, Software, Inves-
igation. Matthieu Boileau: Software, Methodology. Raphaël Côte:

riting – review & editing, Investigation, Funding acquisition, Concep-
ualization. Paul-Antoine Hervieux:Writing – review & editing, Super-
ision, Investigation, Conceptualization. Giovanni Manfredi: Writing

– review & editing, Writing – original draft, Supervision, Investigation,
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Raphaël Côte reports financial support was provided by French Na-
tional Research Agency. If there are other authors, they declare that
they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this
paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors gratefully acknowledge partial support by the ANR
project MOSICOF ANR-21-CE40-0004. R. Côte acknowledges support
from the University of Strasbourg Institute for Advanced Study (USIAS)
for a Fellowship within the French national programme ‘‘Investment
for the future’’ (IdEx-Unistra). This work of the Interdisciplinary The-
matic Institute IRMIA++, as part of the ITI 2021–2028 program of the
University of Strasbourg, CNRS and Inserm, was supported by IdEx
Unistra (ANR-10-IDEX-0002), and by SFRI-STRAT’US project (ANR-20-
SFRI-0012) under the framework of the French Investments for the
Future Program. The authors would like to thank Jérôme Lelong and
Bertrand Dupé for a suggestion that helped improve the computer code,
and Guillaume Ferriere, Ludovic Godard-Cadillac and Yannick Privat
for the enriching discussions throughout the project. We also thank
Riccardo Hertel for his thorough reading of the manuscript and many
insightful comments.

References

[1] R.F.L. Evans, D. Meilak, A. Naden, A. Biternas, VAMPIRE, User Manual, Technical
report, Department of Physics, The University of York, Heslington, York, 2018.

[2] M. Donahue, D. Porter, OOMMF User’s Guide, Version 1.0, Interagency Re-
port 6376, Technical report, National Institute of Standards and Technology,
Gaithersburg, 1999.

[3] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B.
Van Waeyenberge, The design and verification of MuMax3, AIP Adv. 4 (2014)
15

107133.
[4] R. Hertel, Tetmag, 2023, https://github.com/R-Hertel/tetmag.
[5] W.F. Brown, Thermal fluctuations of a single-domain particle, Phys. Rev. 130

(1963) 1677.
[6] G. Grinstein, R. Koch, Coarse graining in micromagnetics, Phys. Rev. Lett. 90

(20) (2003) 207201.
[7] M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, J. Fidler, Cell size

corrections for nonzero-temperature micromagnetics, J. Appl. Phys. 97 (2005)
10E301.

[8] M. Kirschner, T. Schrefl, G. Hrkac, F. Dorfbauer, D. Suess, J. Fidler, Relaxation
times and cell size in nonzero-temperature micromagnetics, Physica B 372 (1)
(2006) 277–281, Proceedings of the Fifth International Symposium on Hysteresis
and Micromagnetic Modeling.

[9] M.B. Hahn, Temperature in micromagnetism : cell size and scaling effects of the
stochastic Landau–Lifshitz equation, J. Phys. Commun. 3 (2019) 075009.

[10] O. Chubykalo-Fesenko, U. Nowak, R.W. Chantrell, D. Garanin, Dynamic approach
for micromagnetics close to the Curie temperature, Phys. Rev. B 74 (2006)
094436.

[11] U. Atxitia, D. Hinzke, U. Nowak, Fundamentals and applications of the
Landau-Lifshitz-Bloch equation, J. Phys. D: Appl. Phys. 50 (3) (2016) 033003.

[12] M.E. Fisher, M.N. Barber, Scaling theory for finite-size effects in the critical
region, Phys. Rev. Lett. 28 (1972) 1516–1519.

[13] C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J. de Miguel, R. Miranda,
Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically
flat Cu(100) surfaces, Phys. Rev. Lett. 64 (1990) 1059–1062.

[14] F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis, Finite-size scaling behavior of
ferromagnetic thin films, J. Appl. Phys. 73 (10) (1993) 6760–6762.

[15] Y. Li, K. Baberschke, Dimensional crossover in ultrathin Ni(111) films on W(110),
Phys. Rev. Lett. 68 (1992) 1208–1211.

[16] L. Sun, P.C. Searson, C.L. Chien, Finite-size effects in nickel nanowire arrays,
Phys. Rev. B 61 (10) (2000) 6463(4).

[17] R. Zhang, R.F. Willis, Thickness-dependent Curie temperatures of ultrathin
magnetic films: Effect of the range of spin-spin interactions, Phys. Rev. Lett.
86 (2001) 2665–2668.

[18] J. Wang, W. Wu, F. Zhao, G.-M. Zhao, Finite-size scaling behavior and intrinsic
critical exponents of nickel: Comparison with the three-dimensional Heisenberg
model, Phys. Rev. B 84 (2011) 174440.

[19] E. Almahmoud, I. Kornev, L. Bellaiche, Dependence of Curie temperature on the
thickness of an ultrathin ferroelectric film, Phys. Rev. B 81 (2010) 064105.

[20] C. Yang, Q. Jiang, Size and interface effects on critical temperatures of ferro-
magnetic, ferroelectric and superconductive nanocrystals, Acta Mater. 53 (11)
(2005) 3305–3311.

[21] O. Hovorka, S. Devos, Q. Coopman, W.J. Fan, C.J. Aas, R.F.L. Evans, X. Chen, G.
Ju, R.W. Chantrell, The Curie temperature distribution of FePt granular magnetic
recording media, Appl. Phys. Lett. 101 (5) (2012) 052406.

[22] C. Penny, A.R. Muxworthy, K. Fabian, Mean-field modelling of magnetic nanopar-
ticles: The effect of particle size and shape on the Curie temperature, Phys. Rev.
B 99 (2019) 174414.

[23] T. Gilbert, A phenomenological theory of damping in ferromagnetic materials,
IEEE Trans. Magn. 40 (6) (2004) 3443–3449.

[24] C. Kittel, P. McEuen, Introduction to Solid State Physics, John Wiley & Sons,
2018.

[25] W.P. Davey, Precision measurements of the lattice constants of twelve common
metals, Phys. Rev. 25 (1925) 753–761.

[26] F. Ono, H. Maeta, Determination of lattice parameters in Hcp cobalt by using
X-Ray bond’s method, J. Phys. Colloques 49 (C8) (1988) C8–63.

[27] G. Klughertz, P.A. Hervieux, G. Manfredi, Autoresonant control of the magne-
tization switching in single-domain nanoparticules, J. Phys. D: Appl. Phys. 47
(2014) 345004.

[28] M. d’Aquino, C. Serpico, G. Coppola, I.D. Mayergoyz, G. Bertotti, Midpoint
numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics, J. Appl.
Phys. 99 (2006) 08B905.

[29] C. Ragusa, M. d’Aquino, C. Serpico, B. Xie, M. Repetto, G. Bertotti, D. Ansalone,
Full micromagnetic numerical simulations of thermal fluctuations, IEEE Trans.
Magnet. 45 (2009) 10.

[30] S. Labbé, J. Lelong, Stochastic modelling of thermal effects on a ferromagnetic
nano particle, J. Dyn. Differ. Equ. 32 (2020) 1273–1290.

[31] W. Rüemelin, Numerical treatment of stochastic differential equations, SIAM J.
Numer. Anal. 19 (3) (1982) 604–613.

[32] G. Klughertz, Ultrafast Magnetization Dynamics in Magnetic Nanoparticles (Ph.D.
thesis), University of Strasbourg, 2016.

[33] R.F.L. Evans, U. Atxitia, R.W. Chantrell, Quantitative simulation of temperature-
dependent magnetization dynamics and equilibrium properties of elemental
ferromagnets, Phys. Rev. B 91 (2015) 144425.

[34] R.F.L. Evans, W.J. Fan, P. Chureemart, T.A. Ostler, M.O.A. Ellis, R.W. Chantrell,
Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens.
Matter 26 (10) (2014) 103202.

[35] E. Maurat, P.-A. Hervieux, Thermal properties of open-shell metal clusters, New
J. Phys. 11 (10) (2009) 103031.

[36] P. Peczak, D.P. Landau, Dynamical critical behavior of the three-dimensional
Heisenberg model, Phys. Rev. B 47 (1993) 14260–14266.

http://refhub.elsevier.com/S0304-8853(24)00331-7/sb1
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb1
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb1
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb2
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb2
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb2
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb2
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb2
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb3
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb3
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb3
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb3
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb3
https://github.com/R-Hertel/tetmag
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb5
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb5
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb5
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb6
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb6
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb6
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb7
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb7
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb7
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb7
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb7
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb8
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb9
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb9
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb9
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb10
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb10
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb10
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb10
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb10
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb11
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb11
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb11
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb12
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb12
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb12
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb13
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb13
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb13
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb13
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb13
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb14
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb14
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb14
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb15
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb15
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb15
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb16
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb16
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb16
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb17
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb17
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb17
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb17
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb17
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb18
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb18
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb18
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb18
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb18
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb19
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb19
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb19
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb20
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb20
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb20
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb20
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb20
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb21
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb21
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb21
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb21
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb21
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb22
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb22
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb22
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb22
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb22
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb23
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb23
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb23
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb24
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb24
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb24
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb25
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb25
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb25
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb26
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb26
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb26
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb27
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb27
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb27
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb27
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb27
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb28
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb28
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb28
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb28
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb28
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb29
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb29
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb29
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb29
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb29
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb30
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb30
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb30
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb31
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb31
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb31
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb32
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb32
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb32
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb33
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb33
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb33
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb33
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb33
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb34
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb34
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb34
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb34
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb34
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb35
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb35
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb35
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb36
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb36
http://refhub.elsevier.com/S0304-8853(24)00331-7/sb36

	Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers
	Introduction
	Micromagnetic model at finite temperature
	Effective magnetic field Heff
	Thermal fluctuations
	Temperature scaling with the computational cell size

	Computational method
	Numerical code validation
	Test-case details
	Dependence on the numerical parameters
	Magnetization curve: Bloch's law and Curie's law

	Finite-size effects on the Curie temperature
	Size effects on the magnetization curve
	Power-law scaling of the Curie temperature
	Nonequilibrium properties

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


