
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: manfredi

IP Address: 130.79.154.135

This content was downloaded on 21/10/2014 at 09:13

Please note that terms and conditions apply.

Autoresonant control of the magnetization switching in single-domain nanoparticles

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys. D: Appl. Phys. 47 345004

(http://iopscience.iop.org/0022-3727/47/34/345004)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3727/47/34
http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Journal of Physics D: Applied Physics

J. Phys. D: Appl. Phys. 47 (2014) 345004 (9pp) doi:10.1088/0022-3727/47/34/345004

Autoresonant control of the magnetization
switching in single-domain nanoparticles

Guillaume Klughertz, Paul-Antoine Hervieux and Giovanni Manfredi

Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, CNRS and Université de
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Abstract
The ability to control the magnetization switching in nanoscale devices is a crucial step for the
development of fast and reliable techniques to store and process information. Here we show
that the switching dynamics can be controlled efficiently using a microwave field with a slowly
varying frequency (autoresonance). This technique allowed us to reduce the applied field by
more than 30% compared to competing approaches, with no need to fine-tune the field
parameters. For a linear chain of nanoparticles the effect is even more dramatic, as the dipolar
interactions tend to cancel out the effect of the temperature. Simultaneous switching of all the
magnetic moments can thus be efficiently triggered on a nanosecond timescale.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The fast and reliable control of the magnetization dynamics
in magnetic materials has been a topical area of research
for the last two decades. In particular, single-domain
magnetic nanoparticles have attracted much attention, both
for fundamental research on nanoscale magnetism and
for potential technological applications to magnetic data
storage, which is expected to increase to several petabit/inch2

(1015 cm−2) in the near future [1, 2]. For the fast processing
and retrieval of the stored information, a precise control of the
magnetization switching dynamics is a necessary requirement
[3–7]. Single-domain nanoparticles with uniaxial anisotropy
possess two stable orientations of the magnetic moment along
the anisotropy axis, separated by an energy barrier proportional
to the volume of the particle. This feature renders them
particularly attractive as information-storage units. However,
for very small particles the barrier can be of the same order
as the temperature, so that the magnetic moment switches
randomly between the two orientations under the effect of the
thermal fluctuations [8], thus precluding any fine control of
the magnetization dynamics. This phenomenon is known as
superparamagnetism.

A potential solution would be to use nanoparticles
with high magnetic anisotropy [9]. But an increased

anisotropy requires larger fields to reverse the magnetization
of the nanoparticle, which is currently difficult to achieve
experimentally and causes unwanted noise. In order to
elude this limitation, a microwave field can be combined
to the static field [10, 11]. For cobalt nanoparticles, it was
shown that a monochromatic microwave field can significantly
reduce the static switching field [12] and that the optimal
field should be modulated both in frequency and amplitude
using a feedback technique [13]. However, the use of such
a feedback mechanism can be costly and cumbersome in
practical situations. Some authors also pointed out that the
onset of chaos in the magnetization dynamics can facilitate the
reversal of the magnetic moment [14].

Here, we propose a more effective technique that relies on
the concept of autoresonance. This approach was originally
devised for a simple nonlinear oscillator (e.g., a pendulum)
driven by a chirped force with a slowly varying frequency
[15–17]. If the driving amplitude exceeds a certain threshold,
then the nonlinear frequency of the oscillator stays locked to
the excitation frequency, so that the resonant match is never
lost (until, of course, some other effects start to kick in).
Importantly, the autoresonant excitation requires no fine-tuned
feedback mechanism.

Autoresonant excitation has been observed in a wide
variety of environments, including atomic systems [18, 19],
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plasmas [20, 21], fluids [22], and semiconductor quantum
wells [23]. Some authors also noticed the beneficial effect
of a chirped pulse on the magnetization dynamics in a
nanoparticle [24–26], but lacked the analytical tools provided
by the autoresonance theory. The autoresonance theory was
used in the past to study the excitation of high-amplitude
magnetization precession in ferromagnetic thin films [27]
and the dynamics of localized magnetic inhomogeneities in a
ferromagnet [28]. However, those authors did not investigate
realistic physical systems and their analysis remained very
abstract.

In the present work, we concentrate on a specific physical
system that has long been studied experimentally in the past
[12], namely single-domain magnetic nanoparticles. We will
show how the autoresonant mechanism can be fully exploited
to control the magnetization reversal dynamics in a coherent
fashion, on a timescale of a few tens of nanoseconds. Although
this is longer that the picosecond switching time that can be
achieved in principle with all-optical techniques [33], the latter
require the use of finely tailored laser pulses and are thus more
complex to implement in practice.

Our analysis takes into account, within the framework
of the macrospin approximation, the majority of important
physical mechanisms, such as the temperature (which
is deleterious for the coherent control) and the dipolar
interactions between nanoparticles (which turn out to favour
coherent switching). With the proposed method, we are able
to reduce the switching field by more than 30% compared to
competing microwave approaches, with no need to fine-tune
the field parameters.

2. Model

Our treatment can be applied to a variety of physical
systems that can be described by a macroscopic magnetization
(macrospin). As a concrete example, we consider an isolated
magnetic nanoparticle with uniaxial anisotropy along ez

in the macrospin approximation (|M | is constant), in the
presence of an external static field collinear to the anisotropy
axis1. An oscillating ac microwave field of varying frequency
will constitute the autoresonant excitation. The adopted
configuration is sketched on figure 1.

The evolution of the macroscopic moment M = µSm,
of constant amplitude µS and direction along m, is governed
by the Landau–Lifshitz–Gilbert (LLG) equation:

dM

dt
= − γ

(1 + λ2)
(M × Beff)

− γ λ

(1 + λ2)µS
[M × (M × Beff)], (1)

where γ = 1.76 × 1011 (Ts)−1 is the gyromagnetic ratio,
λ = 0.01 the phenomenological damping parameter in the
weak damping regime, and Beff the effective field acting on
the particle. The latter is the sum of the anisotropy field

1 We also tried other directions of the dc magnetic field. It appears that,
as long as Bdc does not deviate too much from the z-axis, the results are
unchanged. A systematic analysis of the influence of this angle goes beyond
scope of the present work.

Figure 1. Geometric configuration of the nanoparticle with its
magnetic moment M(θ, φ), the static field Bdc, and the
time-dependent ac field Bac(t). The case of an ac field rotating in
the (ex, ey) plane is shown on the figure.

Ban = (2KV/µ2
S)Mzez, the static field Bdc = −bdcez and

the oscillating microwave field Bac. Here, K is the anisotropy
constant, V is the volume of the nanoparticle, and µS is the
magnetization at saturation. The LLG equation is integrated
using the Heun scheme. We will study the consequences of two
kinds of oscillating fields: a field with fixed direction (along
ex) and varying amplitude

Blin
ac (t) = bac cos[�(t)]ex,

and a field with constant amplitude rotating in the (ex, ey)

plane

Brot
ac (t) = bac cos[�(t)]ex + bac sin[�(t)]ey,

where �(t) = 2π(f0t + α
2 t2), f0 is the initial frequency, and

α is the frequency sweeping rate. Note that the purpose here
is not to analyse the different impact of these two types of
fields, but rather to show that the autoresonance mechanism is
sufficiently general and does not depend on the exact form of
the oscillating field.

For the autoresonant excitation to work, the instantaneous
frequency f (t) = f0 + αt must at some instant become equal
to the linear resonant frequency of the system fr [15], which
in our case is given by the precession frequency. Thus, our
strategy is to start from an initial frequency slightly larger than
the resonant frequency (i.e. f0 > fr ) and take α negative.
When f (t) ≈ fr the magnetic moment starts being captured
into autoresonance and its precession amplitude (i.e., the polar
angle θ defined in figure 1) keeps increasing, thus entering the
nonlinear regime. Thanks to the autoresonant mechanism, the
excitation frequency f (t) remains subsequently locked to the
instantaneous nonlinear frequency, which is no longer equal to
fr . Therefore, the resonance condition is never lost, and the
precession angle keeps growing until the magnetic moment
switches to the −ez direction.
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3. Results for isolated particles

In order to fix the ideas and analyse the autoresonant excitation
in its simplest form, we start with a single isolated nanoparticle,
neglecting the effect of temperature and dipolar interactions.
As a typical example [34], we consider a 3 nm diameter Co
nanoparticle, with K = 2.2 × 105 J m−3, V = 14.1 nm3, and
magnetization at saturation equal to µS = 1500 × 1.7 ×µB =
2.36 × 10−20 J/T, where µB is Bohr’s magneton. Initially,
the magnetic moment M is directed along the positive z-
axis. Therefore, f0 is determined by computing the resonant
frequency fr = γBeff/2π(1 +λ2) around θ = 0 (θ is the polar
angle defined in figure 1). Using bdc = 0.1 T and bac = 10 mT,
we find fr � 4.56 GHz. As the resonant frequency decreases
with growing amplitude, we must choose α < 0 and f0 slightly
above fr . In the following, we shall use f0 = 5 GHz.

Figure 2(a) shows the evolution of each component of the
magnetic moment M for a rotating field (for a field parallel to
the x-axis the result is basically identical). For both cases, Mx

and My oscillate in quadrature (this is the precession motion
around the effective field Beff ) while growing in amplitude,
whereas Mz drops from +µS down to −µS. The magnetization
switching occurs on a typical timescale of about 20 ns.

According to the theory [15], the autoresonant mechanism
is activated only if the amplitude of the excitation is above
a threshold bth

ac ∝ |α|3/4, which is proportional to the
frequency chirp rate α. At zero temperature, the transition
to the autoresonant regime around the threshold is very sharp
and this scaling law is nicely confirmed by the numerical
simulations (figure 2(b)). We note that a microvawe field
rotating in the plane perpendicular to the anisotropy axis is
slightly more efficient (i.e., it has a lower threshold) than
a field oscillating along a given axis. Figure 2(c) displays
the instantaneous frequency of the microwave excitation (a
straight line, since the frequency varies linearly with time)
together with the instantaneous frequency of the precessing
magnetic moment. Both frequencies stay closely locked
together, in accordance with the autoresonant mechanism.
The instantaneous frequency was computed with an algorithm
based on the Hilbert transform [29].

Assuming that the amplitude is larger than bth
ac, the

switching time is determined by the frequency sweeping rate α.
Once the magnetic moment is captured into autoresonance, its
nonlinear precession frequency is locked to the instantaneous
excitation frequency f (t) = f0 + αt (remember that α < 0).
If we define the switching time τ as the time it takes for
the moment to cross the energy barrier and knowing that
the frequency vanishes at the top of the barrier2, we find
τ = −f0/α. Therefore, if we want the moment to switch
rapidly we need a large sweeping rate α. However, increasing
the value of α also increases the required microwave field (see
figure 2(b)). Beyond a certain value of α, one would lose
the benefit of field reduction provided by the autoresonance
mechanism.

Our switching times can be compared to other methods,
such as ballistic magnetization reversal [30, 31], which relies

2 At the top of the energy barrier, the precession reverses from counter-
clockwise to clockwise, thus the (instantaneous) precession frequency goes
through zero.
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Figure 2. (a) Evolution of the three components of the magnetic
moment M for a rotating field B rot

ac . (b) Threshold amplitudes for a
rotating field (red circles) and for an oscillating field with fixed
direction (blue triangles) as a function of |α|3/4. (c) Instantaneous
frequencies of the My component of the magnetic moment (blue
line) and of the applied rotating field B rot

ac (straight green line).

on a dc magnetic field that is switched on and off very rapidly.
Ballistic reversal can be achieved in sub-nanosecond times,
but requires a much larger field (>1 T), and the pulse duration
must be within a tight time window, although the latter can be
broadened using a spin-polarized current when dealing with
large magnetic objects [32].

In contrast, our approach is not dependent on any form
of feedback control, nor a precise tailoring of the external
magnetic field (static or oscillating) and, being based on a

3
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resonant phenomenon, requires only small magnetic fields. As
mentioned above, the autoresonant reversal time could also
be shortened by using a larger chirp rate, at the expense of a
stronger applied ac field.

4. Temperature effects

So far, we have only considered the zero-temperature
(deterministic) case. In this section, we study the influence
of thermal effects on the magnetization reversal. In isolated
single-domain magnetic nanoparticles, the magnetization
reversal by thermal activation is well described by the
Néel–Brown model [35, 36]. According to this model, the
thermal fluctuations cause the magnetic moment to undergo a
Brownian-like motion about the axis of easy magnetization,
with a finite probability to flip back and forth from one
equilibrium direction to the other. The Néel–Brown model
is well validated experimentally—see [37] for the case of
25 nm cobalt nanoparticles, and [38] for smaller nanoparticles
(1–2 nm).

However, the temperatures that we consider here
(T < 20 K) are not large enough to produce this flipping effect,
so that for all cases that we study the magnetization is initially
(almost) aligned with the z-axis. Nevertheless, even if they
are not capable of reversing the magnetization by themselves,
thermal effects still have an influence on the efficiency of
the switching technique, as we shall see in the forthcoming
paragraphs.

For an isolated single-domain particle, Brown [36]
proposed to include the thermal fluctuations by augmenting
the external field with a fluctuating field b̃(t) with zero mean
and autocorrelation function given by:

〈b̃i (t)b̃j (t
′)〉 = 2λkBT

(1 + λ2)γµS
δij δ(t − t ′), (2)

where i, j denote the Cartesian components (x, y, z), δij is
the Kronecker symbol (meaning that the spatial components
of the random field are uncorrelated), and δ(t − t ′) is the
Dirac delta function, implying that the autocorrelation time
of b̃ is much shorter than the response time of the system. The
temperature is thus proportional to the autocorrelation function
of the fluctuating field.

At finite temperature, the thermal fluctuations drive
the magnetic moment away from the z-axis and bring it
to a randomly distributed orientation (θ0, φ0) before the
autoresonant field is activated. The initial amplitudes θ0

will then be described by a Rayleigh distribution f (θ0) =
θ0
σ 2 exp(− θ2

0
2σ 2 ) where σ is the scale parameter of the

distribution. This randomness in the initial distribution creates
a finite width in the transition to the autoresonant regime,
so that the threshold is no longer sharp as in the zero-
temperature case. This behaviour was already observed in
celestial dynamics [39, 40] and superconducting Josephson
resonators [41]. Note that the thermal fluctuations are active
all along the simulations, although their main effect is to
randomize the magnetization direction before the autoresonant
field has had time to act. During the autoresonant excitation

the thermal effects are present, but their effect is negligible
compared to the oscillating field, at least for the range of
temperatures considered here (T < 20 K).

This effect can be quantified by the capture probability
P(bac), defined as the probability for a magnetic moment to
switch under the action of an autoresonant field of amplitude
bac (figure 3(a)). Following the calculations detailed in the
appendix, one can write this probability as

P(bac) = −1

4
erf

(
c0 − bac√

2κσ

) [
erf

(
c0 − bac√

2κσ

)
+ 2

]
+

3

4
,

(3)

where c0 is the threshold amplitude for θ0 = 0, and κ is
a numerically determined constant. The finite-temperature
transition is no longer sharp, but instead displays a certain
width �bac, which is mathematically defined as the inverse
slope of P(bac) computed at the inflexion point of the curve. It
is also possible to derive an analytical expression for the width
�bac as a function of the temperature and the volume of the
nanoparticle (see the appendix for details). One obtains:

�bac ∝
√

kBT

V
. (4)

We note that this dependence is the same as the one obtained
from the Néel–Brown model [35, 36] for the fluctuating
magnetic field arising from the random motion of the magnetic
moment under the effect of the temperature.

The capture probability curves of figure 3(a) are fitted
using the analytical expression of equation (3) (the fitting
parameter is the product κσ ), with excellent agreement
between the simulation data and the analytical estimate.
Figure 3(b) shows that the transition width scales as the
square root of the temperature, as predicted by equation (4),
but the proportionality constant (i.e., the slope) depends
on the volume of the nanoparticle. Plotting the slope as
a function of the volume, it can be easily verified that
�bac ∝ V −1/2, thus confirming both scalings of equation (4).
Therefore, increasing the size of the nanoparticle diminishes
the effect of the temperature on the transition width, making the
autoresonant switching observable at experimentally reachable
temperatures.

The above results are of course limited by the applicability
of the macrospin approximation, which will cease to be valid
for large enough volumes. Nevertheless, for nanoparticles
of size 15–30 nm (which covers the range considered in
our study), Wernsdorfer and co-workers [37] found that the
macrospin approximation is still acceptable. The validity of
the macrospin approximation was also estimated in [2]; for
cobalt nanoparticles, it is expected to break down for a diameter
larger than roughly 32 nm (see table 6.1 in [2]).

5. Dipolar interactions

All the preceding results were obtained in the case of a single
isolated nanoparticle. For an assembly of densely packed
nanoparticles, dipolar interactions may play a significant role,
as was proven in recent numerical simulations [42]. The effect
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Figure 3. (a) Probability to capture the moment into autoresonance
as a function of the microwave amplitude for a 25 nm diameter
nanoparticle and different temperatures. Symbols: numerical
simulations. Solid lines: theoretical results from equation (3).
The transition width �bac is shown for the case with T = 10 K.
(b) Threshold transition width versus T 1/2 for various diameters.
(c) Volume dependence of the parameter A defined as
�bac = AT 1/2 . The straight line has a slope equal to −1/2.

of dipole–dipole interactions on the relaxation time and, more
generally, on the reversal process has been studied in several
works, both theoretical [43–45] and experimental [46–49].
Nevertheless, it is still a controversial issue, as opposite
dynamical switching behaviours have been reported.

Here, we consider an assembly of interacting particles
regularly distributed on a lattice with sites located at

0 1 2 3 4
−1

−0.5

0

0.5

ξ

S

Figure 4. The S(ξ) function for an assembly of nanoparticles with
the easy axes oriented along the ez direction (solid blue line) or
normal to the ez direction (dashed red line).

r = d1(n1ex + n2ey) + d2(n3ez), where d1 and d2 are the
centre-to-centre distances between particles in the (ex, ey)

plane and in the ez direction, respectively, and n1, n2 and n3

are integers not simultaneously equal to zero. The assembly
is supplemented by a number of identical ‘replicas’ in order to
minimize the effect of the boundaries.

At the instant of capture, the moments are close to
the ez axis, and in the case of an ez-oriented assembly of
nanoparticles, the dipolar field acting on each moment is also
oriented along ez. In this configuration, the dipolar interactions
can be taken into account via a self-consistent mean dipolar
field [50, 58] BD = 8(µ0/4π)S(ξ)d−3

1 Mzez that acts on all
the nanoparticles. Here, Mz is the z component of the mean
magnetic moment of the system and S(ξ) is a structure function
describing the geometry of the assembly, defined as:

S(ξ) = 1

8

∑
n1,n2,n3

2ξ 2n2
3 − n2

1 − n2
2

(n2
1 + n2

2 + ξ 2n2
3)

5/2
, (5)

with ξ ≡ d2/d1. The sign of S determines if the moments will
order ferromagnetically (S > 0, for essentially 1D systems
where ξ < 1) or antiferromagnetically (S < 0, for 2D systems
where ξ > 1). The behaviour of the function S(ξ) is shown in
figure 4 (solid blue line).

We studied two typical distributions of the nanoparticles:
a 1D chain oriented along the ez axis (ξ → 0, S → ∞),
and a two-dimensional configuration in the (ex, ey) plane
(ξ → ∞, S → −1.129). These configurations are represented
schematically in figure 5. Intermediate values of ξ correspond
either to a set of stacked 2D arrays (when ξ > 1), or a set of
parallel 1D chains of nanoparticles (when ξ < 1).

It must be noted that the above considerations only apply
to the cases where the easy axes are oriented along the z

directions, i.e., parallel to the chain in the 1D case, and normal
to the plane in the 2D case. In other cases, the nature of
the magnetic equilibrium may be different. For instance, a
chain of particles with their easy axes oriented perpendicularly
to the chain direction would behave antiferromagnetically;
conversely, a 2D array of nanoparticles with the easy axes
parallel to the plane of the array would display a ferromagnetic
behaviour at equilibrium. Indeed, for such cases, the

5
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Figure 5. Schematic view of the nanoparticle configurations.
(a) One-dimensional chain along the ez axis: the particles are
ordered ferromagnetically, with small tilts off the ez axis due to the
temperature. (b) Two-dimensional film in the (ex, ey) plane with
antiferromagnetic order.

function S(ξ) displays an opposite behaviour compared to the
configurations of figure 5, namely it is negative for ξ < 1 (1D
antiferromagnetic) and positive for ξ > 1 (2D ferromagnetic)
(see figure 4, red dashed line).

Nevertheless, in our mean-field approach all the
information about the geometry is included is the function
S(ξ). Different configurations that have the same value of S

behave identically in the mean-field limit. Therefore, in order
to fix the ideas, in the remainder of this section we will focus
on the geometries sketched in figure 5, which are described by
the solid blue curve on figure 4.

5.1. Two-dimensional planar configuration

The autoresonance mechanism is ineffective in a 2D
configuration where the easy axes of the particles are oriented
in the direction normal to the plane. The reason is that such
a planar configuration naturally leads to an antiferromagnetic
order, with half the moments pointing in the +ez direction,
and the other half in the −ez direction. We have preformed
a numerical simulation in order to illustrate this fact (see
figure 6), using an assembly of nanoparticles with diameter

Figure 6. Magnetization dynamics in a planar assembly. Evolution
of the Mz component for a nanoparticle whose moment has reversed
due to the dipolar interactions (blue) and for a nanoparticle whose
moment stays aligned along +ez (red curve). The oscillating field is
switched on at t = 15 ns (vertical dashed line).

equal to 25 nm and interparticle distances d1 = 50 nm and
d2 → ∞.

We start, as usual, from a state where all moments are
parallel to +ez, and then let the dipolar interactions create
the antiferromagnetic order. Very quickly (t ≈ 5–10 ns), the
dipolar interactions create an antiferromagnetic order: half of
the moments reverse, while the other half stays parallel to +ez.
We look at two representative moments: one that has switched
to the −ez direction (blue curve in figure 6) and one that has
not (red curve).

At t = 15 ns, once the magnetic order is settled, the
rotating field is switched on and tries to capture and maintain
the moments in autoresonance. The magnetic moment that
had reversed to the −ez direction (blue curve in figure 6) is
maintained in that direction by the rotating autoresonant field,
because this moment naturally precesses in the opposite way,
so that the rotating field tends to counteract its precession.
But the same rotating field is also unable to reverse a moment
that points in the +ez direction (red curve), because the
interaction with its four nearest neighbours (all pointing along
−ez) destroys the phase-locking even for bac well above the
threshold (≈10bth

ac). This moment can be driven slightly away
from its original +ez axis (see the red curve at t ≈ 15–
20 ns), but soon the dipolar interactions become too strong
and restore the antiferromagnetic order. The autoresonant
technique is therefore inefficient for a planar assembly of
magnetic nanoparticles.

5.2. One-dimensional linear chain

In contrast, a linear chain of nanoparticles with the easy axes
oriented along the chain displays a ferromagnetic behaviour,
because S > 0 for ξ < 1 (see figure 4, solid blue line).
At equilibrium, all the moments are oriented parallel to the z

direction, apart from small fluctuations due to the temperature
(figure 5(a)). Therefore, there is a chance that the autoresonant
mechanism may work in this type of configuration. In order
to fix the ideas, we concentrate on a 1D chain of magnetic
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Figure 7. Capture probability as a function of the microwave
amplitude for a chain of 25 nm diameter nanoparticles at T = 10 K,
for different interparticle distances: d2 = 1 µm (black circles),
36 nm (red triangles), and 26 nm (blue squares). The corresponding
values of S(ξ) are indicated on the figure.

moments with fixed interparticle distance in the (x, y) plane
(d1 = 1 µm) and vary the distance d2 along the z-axis from
1 µm to 26 nm, so that ξ varies between 0.026 and 1.

The effect of the dipolar interactions on the autoresonant
switching is summarized in figure 7, which shows the capture
probability as a function of the microwave amplitude for
a 25 nm diameter nanoparticle at T = 10 K, for different
interparticle distances along the z-axis. With decreasing
interparticle distance (i.e., increasing dipolar interactions),
the transition width shrinks, as was also observed for other
physical systems [51]. The dipolar interactions can almost
completely erase the effect of the temperature for dense enough
particle assemblies, as in the case with d2 = 26 nm in figure 7.

In reality, the self-consistent dipolar field does not stay
aligned along z during the reversal, so that the mean-field
approximation fails at some point. However, its main effect
occurs before the magnetic moment has reached the top of
the barrier, and until then the approximation is valid. In
other words, the dipolar interactions help the moments to
be captured into autoresonance; once they are captured, the
mean-field approximation is no longer accurate, but then the
effect of the external field far outweighs that of the dipolar
field, so that the error is irrelevant. Exact calculations for N

interacting moments (much more computationally demanding)
also confirmed the above picture.

The dipolar interactions also slightly lengthen the
switching time by increasing the effective potential barrier,
which makes the resonant frequency fr higher. As we have to
choose f0 > fr , the switching time τ ∼ f0/α also increases,
but still remains of the order of 10–100 ns for all the cases
studied.

6. Conclusions

We investigated the possibility to reverse the magnetization of
a single-domain Co nanoparticle by combining a static field
with a chirped microwave field. Using the LLG equation, we
produced convincing evidence in favour of the autoresonance

mechanism and showed that a chirped microwave field with a
very small amplitude (a hundred times smaller than the static
field) can efficiently reverse the magnetization.

Previous attempts [13] to use a microwave field to reverse
the magnetization showed that the microwave excitation should
be modulated both in frequency and amplitude. Using the
same parameters and configuration as in [13], but exploiting
the autoresonance mechanism, we were able to reverse the
magnetic moment with bdc = 0.1 T and bac = 11 mT,
reducing the amplitudes of both fields by roughly 30%. For
an assembly of many nanoparticles, dipolar interactions can
have a significant impact on the switching dynamics. The
most favourable configuration is that of a linear chain of
nanoparticles, for which the dipolar interactions can drastically
reduce the effect of the temperature.

Compared to competing microwave techniques that
use sophisticated feedback mechanisms, the autoresonance
approach requires no fine tuning of the excitation parameters
and thus appears to be a promising candidate for the fast control
of the magnetization dynamics in densely packed assemblies
of magnetic nanoparticles.
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Appendix. Autoresonance transition with thermal
noise

As discussed in more details in the article, the presence of noise
broadens the transition to the autoresonant regime. In the main
text, we mentioned that the transition width �bac, equation (4),
is proportional to

√
T/V , where T is the temperature and V

is the volume of the nanoparticle. Here, we derive the full
expression for �bac.

The critical amplitude bth
ac, beyond which the phase-

locking is complete, is periodic in φ0 (the azimuthal angle at
the onset of the oscillating field) and can therefore be expanded
in a Fourier series [51]:

bth
ac = c0 + κθ0 cos(φ0 + δ) + ..., (A1)

where the angles (θ0, φ0) define the initial moment orientation,
c0 is the threshold amplitude for θ0 = 0, and κ can be
determined numerically. For small initial amplitudes, one can
restrict the expansion to the lowest order in θ0. The capture
probability (i.e., the probability to activate and maintain the
autoresonant mechanism until magnetization reversal) can then
be defined as

P(bac) =
∫ ∞

0
P(θ0, bac)f (θ0) dθ0, (A2)

where P(θ0, bac) = (1/π) arccos[(c0 − bac)/(κθ0)] and

f (θ0) = θ0
σ 2 exp(− θ2

0
2σ 2 ) is the Rayleigh distribution

7
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characterizing the initial amplitudes resulting from the thermal
noise. Actually it is more convenient to calculate

∂P (bac)

∂bac
=

∫ ∞

0

∂

∂bac
(P (θ0, bac)f (θ0)) dθ0, (A3)

This calculation yields:

∂P (bac)

∂bac
= 1√

2πκσ
e

−(c0−bac)2√
2(κσ )2

[
1 − erf

(−(c0 − bac)√
2κσ

)]
,

(A4)

Then, taking the antiderivative:

P(bac) = −1

4
erf

(
c0 − bac√

2κσ

) [
erf

(
c0 − bac√

2κσ

)
+ 2

]
+ C.

(A5)

Now, knowing that lim
bac→∞

P(bac) = 1 we find the value of the

integration constant C = 3
4 . Finally:

P(bac) = −1

4
erf

(
c0 − bac√

2κσ

) [
erf

(
c0 − bac√

2κσ

)
+ 2

]
+

3

4
.

(A6)

The derivative of P(bac) gives a slope P ′ = (
√

2πσκ)−1 at
bac = c0, whose inverse is defined as the transition width �bac.

One can derive an analytical expression of the mean square
displacement of the moment during a short time �t under the
influence of the temperature, which is widely used in Monte
Carlo simulations [55–57]. One can write the linearized LLG
equation for the normalized moment m in the form:

dmx

dt
= Lxxmx + Lxymy, (A7)

dmy

dt
= Lyxmx + Lyymy, (A8)

with

Lxx = Lyy = − γ λ

(1 + λ2)
mzBz,eff , (A9)

Lxy = Lyx = − γ

(1 + λ2)
Bz,eff . (A10)

Also, close to the local energy minimum E0, one can write
the energy E = E0 + �E where �E = 1

2

∑
i,j Cijmimj is the

energy increase due to the small fluctuations of mx and my .
Because of the interactions between the different subsystems
the energy matrix Cij is nondiagonal, but it is possible to
perform a transformation to the normal coordinates of the
system and write C as a diagonal matrix C̃. One can then
write:

�E = 1

2
(C̃xxm

2
x + C̃yym

2
y) (A11)

with C̃xx = C̃yy = µS

mz
Bz,eff . The correlation matrix of the

random forces µij can be defined from C̃ij and Lij as µij =
−kBT

∑
k (LikC̃

−1
kj + LjkC̃

−1
ki ). Supposing that m2

z ≈ 1, the
calculation yields:

µxx = µyy = 2kBT λγ

(1 + λ2)µS
. (A12)

Finally, one finds the mean square displacement by integrating
over a finite time interval �t :

〈m2
x〉 = 〈m2

y〉 = µxx�t = 2kBT λγ

(1 + λ2)µS
�t. (A13)

On the other hand, the expectation value of θ0 computed
from the distribution f (θ0) is 〈θ0〉 = σ

√
π/2. As 〈θ0〉 =

arcsin(
√

〈m2
x,0〉 + 〈m2

y,0〉), one can write the transition width

as a function of the different system parameters:

�bac = 1

P ′ = 4κ(�t)

√
kBT λγ

(1 + λ2)MSV
�t, (A14)

where we have used the expansion arcsin(x) = x+o(x2), valid
for small initial amplitudes, and µS = MSV .

Note that �bac depends on �t only in the transient
regime. Once the initial amplitude distribution has reached the
Rayleigh equilibrium, the numerically determined ‘constant’
κ(�t) exactly balances the term

√
�t , so that �bac does not

depend on �t anymore.
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[36] Brown W F 1963 Phys. Rev. 130 1677
[37] Wernsdorfer W et al 1997 Phys. Rev. Lett. 78 1791
[38] Respaud M et al 1998 Phys. Rev. B 57 2925
[39] Wyatt M C 2003 Astrophys. J. 598 1321
[40] Quillen A C 2006 Mon. Not. R. Astron. Soc. 365 1367
[41] Naaman O, Aumentado J, Friedland L, Wurtele J S and

Siddiqi I 2008 Phys. Rev. Lett. 101 117005
[42] Kesserwan H, Manfredi G, Bigot J-Y and Hervieux P-A 2011

Phys. Rev. B 84 172407
[43] Hansen M F and Morup S 1998 J. Magn. Magn. Mater.

184 L262

[44] Garcia-Otero J, Porto M, Rivas J and Bunde A 2000 Phys. Rev.
Lett. 84 167
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