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Nyquist method for Wigner-Poisson quantum plasmas
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By means of the Nyquist method, we investigate the linear stability of electrostatic waves in homogeneous
equilibria of quantum plasmas described by the Wigner-Poisson system. We show that, unlike the classical
Vlasov-Poisson system, the Wigner-Poisson case does not necessarily possess a Penrose functional determining
its linear stability properties. The Nyquist method is then applied to a two-stream distribution, for which we
obtain an exact, necessary and sufficient condition for linear stability, as well as to a bump-in-tail equilibrium.
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I. INTRODUCTION modes of the system, which equals the number of times the
origin is encircled by the diagrafii4]. For example, using
The topic of quantum plasmas has recently attracted corthe Nyquist method, one can show that equilibrium distribu-
siderable attentiofil—9]. A central reason for this accrued tions that are monotonically decreasing functions of the en-
interest derives from the importance of quantum effects irergy are stable against small perturbations. Moreover, for
the performance of today’s microelectronic devices, forsymmetric equilibria with at most two maxima, the sign of
which classical transport models are not always adequate ithe so-called Penrose functiorfd4,15 determines the lin-
view of the increasing miniaturization level that is now en- ear stability of the classical Vlasov-Poisson system.
tering the submicron domain. Hence, it is desirable to |n view of the utility of Nyquist's method for classical
achieve a good understanding of the basic properties gflasmas, it seems desirable to investigate whether it can be
quantum transport models. The Wigner-Poisson sy$fé  applied to the quantum case too. This approach is justified,
12] is a quantum transport model that has proven to be suitsince the linear stability of waves in the Wigner-Poisson sys-
able in the treatment of quantum devices like the resonanem is described by a dispersion relation, and is therefore
tunneling diodg 1]. Moreover, it has been referr¢tl3] to as  amenable to Nyquist's treatment. However, we carnpti-
perhaps the onlkinetic quantum transport model amenable ori expect to obtain a result as general as in the classical
to detailed numerical simulation. In the present work, wecase. Indeed, as we shall see, the question of stability is
address the question of the stability of small-amplitudesubtler in the quantum framework, a typical example being
waves, described by the Wigner-Poisson system. provided by the two-stream instabilifgt6]. For simplicity, in
A convenient tool to investigate the linear stability of sys-the present work we shall only consider homogeneous equi-
tems having a dispersion relation is provided by the Nyquistibria for one-dimensional electrostatic plasmas consisting of
method[14,15. Let us briefly review the basis of this ap- mobile electrons. An immobile ionic background guarantees
proach. LetD(w,k) =0 be the dispersion relation, whe&e  overall charge neutrality.
and k are the frequency and wave number for small- This paper is organized as follows. In Sec. Il, we develop
amplitude oscillations. In most practical cases, it is imposthe fundamentals of the Nyquist method as applied to quan-
sible to solve exactly the dispersion relation feras a func-  tum plasmas described by the Wigner-Poisson system. The
tion of k, some kind of approximation being necessary.stability properties of quantum plasmas are determined by
Hence, the imaginary part of the frequency, which deterthe specific form of the quantum dispersion relatiaid,18].
mines the stability properties of the system, can be obtainede show that there are a rich variety of possible behaviors in
only in an approximate way. However, exact results can bguantum systems, which are not present in classical Vlasov-
found by splitting D in its real and imaginary parts, Poisson plasmas. In particular, in Sec. Ill, we prove that a
D(w,k)=D,(w,k)+iDi(w,k). Then, for fixedk and realw, = quantum analog of the Penrose functional cannot exist. To
by varying o from minus to plus infinity we can draw a show this, we consider symmetric equilibria with at most
diagram in theD, X D; plane. The resulting curve, known as two maxima. Nevertheless, the Nyquist method can still be
the Nyquist diagram, determines the number of unstableised for Wigner-Poisson plasmas. This is explicitly shown in
Sec. IV, where we study a two-stream equilibrium, described
by a bi-Lorentzian distribution function, which is amenable

*Email address: ferhaas@Incc.br to exact calculations. We find an exact criterion for stability,
"Email address: giovanni.manfredi@Ipmi.uhp-nancy.fr which reduces to the classical criterion when quantum effects
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stroy the instability occurring in the purely classical case. In

Sec. IV, we also include the example of the physically rel- F(v)
evant distribution corresponding to a bump-in-tail equilib-

rium. Our conclusions are given in Sec. V.

II. QUANTUM DISPERSION RELATIONS

If f(x,v,t) is the Wigner quasidistribution angl the sca-
lar potential, then the Wigner-Poisson systgi—12 reads

ot + ot J dv'K(v' t)f(v’,x,t 1
E U(?_X_ v (U v,X, ) (U X, )l ( ) , ”
v Vimax Vo v v
é’2¢ e FIG. 1. Graphical representation of the geometric meaning, of
Ix2 = 8_0 dvf—ng|, ) [solution of Eq.(8)] for a one-humped distribution function. The

distance betweeny and bothv’ andv” is equal toH. The Wigner
function is represented on the vertical axis and the velocities on the

whereK (v’ —v,x,t) is a functional of the scalar potential, ) ' ) .
horizontal axis. Units are conveniently rescaled.

Ko’ . _emf da im(v'—v)\ )
RS 2 Di(k,w)z——mp(d—':) +O(#?). %)
\ A nok? 1 v /e
X| ¢ x——,t)—¢ x+—,t”. 3
2 2 Moreover, no matter what the value 6f for |w|—« we

haveD,—1 andD;—0, as in the classical case.
The topology of the Nyquist diagram is determined by the
sign of D, at the points wher®;=0. As mentioned in the

Here, ngy is a background ionic density; e and m are the
electron charge and magsijs the scaled Planck constant and

go IS the vacuum dielectric constant. Wfl ta;kel periodic|niraduction, the number of unstable modes equals the num-
boundary conditions in space and assume that for largé’ o of times the Nyquist curve encircles the origin. There-

and all its velocity derivatives tend to zero. We also assume, o unstable modes can only exisDif <0 for at least one
that the initial Wigner function is everywhere positive. How- of the points wher®,=0. In the classical case, the zeroes of

ever, the time evolution determined by E#) may force the o imaginary part of the dispersion function are determined

ngner functlon to assume negative v_alugs. 'Her_m(.a, a Str'cﬁy the points at which the distribution function has zero de-
interpretation off as a true probability distribution is impos- rivative. In the quantum case, according to E), the deci-
sible. In spite of that, the Wigner function may be used as g, points are the real root:s)’ of ’

useful mathematical tool to compute macroscopic quantities

such as the charge density and electric current. F(vo+H)=F(vo—H). (8)
The linear stability of a plasma, be it classical or quantum,

is determined by the dispersion relation, which is obtained4ere and in the following,

after Fourier transforming in space and Laplace transforming

in time. Following this procedure, we obtdit7] for a fre- ) ik
quencyw and a wave numbek vo=p H=5. 9)
D(k,w)=D,(k,w)+iD;(k,w)=0, (4)

The geometrical interpretation of EB) is simple: we have
to find the pointa ( that are equidistant to any two points at
which F has the same valusee Fig. L The corresponding
w2 dvF(v) distance isH. In a sense, Eq(8) is the finite difference
D,(k,w)=1— P f , (5) version of the classical conditia/dv (v =v,)=0. Finally,
nok?J P(v — w/k)?—.2k*/4m? as Nyquist's diagram is obtained taking exclusively real fre-
quencies, only the real roots of E@) are relevant.
The basic tasks we have to perform are first solving Eq.
}- (6) (8), obtaining all real roots o for a givenH, and then study-
ing the sign ofD, at each such root, taking=Kkuv,. Using
Eq. (5), we have

where the dispersion functidd (k,w) is given by

me?

Dy(kw)=— ——
i(k,w) ﬁ80k3

k T2m) Flx 2m

ol

In Eqg. (5), P stands for the principal value symbol aR¢v)

denotes the(spatially homogeneoluisequilibrium Wigner 5 Fo)
; — 2 1/2 ¢ (O] v
function. Also, w,=(nge“/meg) ™~ is the usual plasma fre- D, (kw=kvg)=1— pzf d . (10)
quency. nok<Jp  (v—vy)"—H
The quantum formulas reduce to the classical oneé as
—0. In particular, Now, in the Cauchy principal value sense,
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do F(v)
—F—=0. 11
L'(U_UO)Z_HZ -y

Using this fact, we can rewrite the real part of the dispersion
function in the more convenient way

w} f i F(UO-I-H)—F(U)'

Nok® (v—vg)®—H?

Dr(k,w:kvo):1+

\

12

In this form, the principal value symbol is not needed any-
more, since the integrand is regular @asgoes tovy*=H. ‘ ‘
Indeed, using the fact th&t(vo+H)=F(vo—H) from Eq. -V Va2 Vi v
(8), we find that

FIG. 2. Semiclassical up=*v,, solid horizontal lines and
purely quantumd,= *v,, dashed horizontal linesolutions of Eq.
(13) (8) for a symmetrical two-stream equilibrium. Also note that
=0 (dotted ling is always a solution. Units are conveniently res-
caled.

F(votH)—F(v) 1 dF(
= 5 — —
vovgrH (v —vg)?—H? 2H dv

UoiH)

is a finite quantity. A similafbut not identical regularization
procedure holds in the classical case [hd).

Equations(8) and(12) are the fundamental equations for
Nyquist’s method for one-dimensional quantum plasmas, in
which only electrostatic fields are present. So far, the treat- P[F]:f do F(vmin) —F(v) (14)
ment has been completely general. Let us now consider some (Vmin—v)%

particular equilibria in order to analyze the consequences of
Egs.(8) and(12). which determines the stability properties of the system. The

inequality P[F]<0 is a necessary and sufficient condition
for instability, for appropriate wave numbers. This can be
easily seen from the classical lintit—0 of Eq.(12). Clas-

If the equilibrium Wigner functionF(v) has a single sically, the pointsv, where D;=0 are the maxima
maximumu ,,x, then the geometric meaning of is suffi-  (*v a0 and the minimum«,;,) of the equilibrium distri-
cient to show that Eq8) has always one, and only one, real bution. Forvg= *v ., the integrand in Eq12) is always
solutionv, for any value ofH (see Fig. 1L Depending on the positive, and thus cannot lead to instability. RQy= v min,
shape off, this solution can differ considerably from,,,x ~ the real part of the dispersion function reducesDip=1
(one hasvgy=vmax When F is symmetric with respect to +(w§/n0k2)P[F]. If the Penrose functional is positive, in-
Umay) - HOwever, add goes to zero, and again from geometri- stability is ruled out. If it is negative, one can always choose
cal arguments, we can convince ourselves #fggpproaches k small enough so thdD,<0 and therefore some unstable
Umax- INdeed by definition is equidistant to the points’ modes must exist. This completes the proof of the necessary
andv” for whichF(v')=F(v"). The corresponding distance and sufficient Penrose criterion.

diagram for this situation leads to the construction of the
so-called Penrose functional

Ill. EQUILIBRIA WITH ONE OR TWO MAXIMA

from v, to eitherv’ orv” is H. The natural question now is whether there exists an ana-
Furthermore, for ¢—vg)>>H? we have F(vo+H) log Penrose functional for the quantum case. For simplicity,
>F(v) and for @ —vo)?<H? we haveF(vo+H)<F(v). in the following we restrict our discussion to Wigner equi-

Hence, the integrand in E¢L2) is always positive, implying libria that are symmetric about,,;,, the point at whichF

that the real part of the dispersion function is a positive quanattains its minimum value. By a Galilean transformation, this
tity. Also, for |w|—= we haveD,—1 andD;—0. Since point can be taken as,;,=0 without loss of generality. We
there is only one root for E48), we deduce that the Nyquist first notice that, in the classical case, one only has to consider
diagram cannot encircle the origin, and therefore no unstablthe three velocities for which the equilibrium distribution
modes can exist for an equilibrium with a single maximum.function has zero derivative. In the quantum case, however,
Thus, no matter how strong quantum effects are, the concludepending on the shape of the equilibrium Wigner function,
sion is the same as for the classical case. there can be more than three roots for Ej, with fixed H.

Let us now consider equilibria with a single minimum, For instance, in Fig. 2, roat; (connecting one increasing
Umin (see Fig. 2 This is equivalent to consider equilibrium and one decreasing branch of the distributican be ob-
Wigner functions with only two maxima, as on physical tained from the local maximum,,,, by varyingH continu-
grounds the equilibrium function must decay to zerdwds ously from zero to a certain value. The ragt (connecting
—o0, Physically, such equilibria correspond to a situationtwo decreasing branches of the distribujiggof a different
where two counterstreaming electron populatiomish simi-  nature, arising only for sufficiently largd. Indeed, it is not
lar temperaturesco-exist. In the classical case, the Nyquist difficult to realize that, in the case of two maxima, there are
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always only three roots for E@8) if H is small enough, and obtained from the positive maximum &, and the same
up to five roots for larger values éi. Also notice that, for argument holds for the symmetric roetv,. This is analo-
symmetric equilibria, the point =0 is always a root, irre- gous to the classical result shown above, according to which
spective of the value ofl. For a givenH, possessing one, D, is positive at the two maxima d¥(v). Indeed, the roots
three or five real roots depends on the details of the equilib=v; coincide with*v 5 WhenH—0.
rium. It is not difficult to prove that, in the case of a two-  However, this is not the end of the story for the quantum
humped distribution, a sufficieribut not necessajycondi-  case. Indeed, for sufficiently large valuesHyfit is possible
tion for having five roots to Eq@8) is thatF(v,,,) =0. This  to access the roots v, (connecting two decreasing branches
can be shown by plotting the left- and right-hand sides of Eqof the distribution shown in Fig. 2[This is not in contra-
(8) as a function ob(, and looking at the intersections of the diction with the above statement that some equilibria only
two curves. In general, we obtain that one can have fivalisplay three solutions to E@8). Solutions of the type,
solutions whenrF (v ) is smaller than a certain threshold. always exist, although they may correspondliiferent val-
Note however that five roots only appear for sufficiently ues of Hthanv 4, so that for a fixedH there are indeed only
large values of; for small enougtH, there are always only three root$ For the rootstv,, which are of a strictly quan-
three roots. In Sec. IV, we shall examine a bi-Lorentziantum nature, we cannot anymore obtainpriori, D,>0. For
distribution possessing at most three solutions. In additioninstance, for the particular choice o§ shown in Fig. 2, the
we shall discuss another two equilibria, which possess fiveegion —v,—H<v<-—uv,+H contributes a negative value
solutions for sufficiently large. to D,(k,w=kuv,). The same is true for the roetv,. This is
Let us now consider the question of the existence of @ecause, over most of the regierv,— H<v<-—v,+H one
quantum Penrose functional. We need to examine the sign ¢fasF(v,+H)<F(v) and @ —v,)>>H?, implying that the
D, at the different solutions of Eq8). The rootvo=vnin  integral in Eq.(12) is negative. Another choice af, may
=0 always exists and can yield either a positive or a negahave yielded the opposite result, so that the sigh gk,
tive value for the integral in Eq12), depending on the shape =ky,) cannot be determined priori. As the parameteH
of the equilibrium and the value dfi. One can actually depends on the wave number, it is always possible to choose
prove that the integral can be negative onlyiit<v™, where  k so as to access a root of the type ,, for which the sign
v* is the positive solution of the equatidf(0)=F(v*). of D, is undetermined. The conclusion is that therenis
We now analyze the other roots of E@). Letv, be the  quantum Penrose functional, since the topology of the Ny-
root obtained from the maximum &fat the right ofb =0 by quist diagram can be changed, in an essential way, by the
varying continuouslyH from zero to some particular value value of D, at the quantum roots for E@8). Each specific
(see Fig. 2 Referring to Fig. 2 and to Eq12) (with vy  equilibrium must be studied in detail. In the following sec-
=v,), we conclude that the integrand B is negative for tion, we shall illustrate the previous theory using some con-
—v;—H<v<-v;+H. Thus, in principle, the real part of crete examples.
the dispersion function can be negative. However, one could
imagine that the negative contribution forv,—H<v IV. EXAMPLES OF TWO-STREAM AND BUMP-IN-TAIL
<—v;+H is compensated by a positive contribution corre- EQUILIBRIA
sponding tov; —H<wv<wv,+H. Let us examine this possi-

bility. Using the fact thaF is even, we obtain Let us consider a two-humped equilibrium given by

f_vl+HdU F(U1+H)_F(U) - _noA 1 . 1 L
TaH o (vog)toH? D= 2r omatrar wrapeaz)
+ f”ﬁHdv FvitH)—F(v) where A is a measure of the dispersion of the distribution
vy—H (v—v,)?—H? anda is a parameter associated with the distance between the
s 2 o two possible maxima. [8?<A?/3 this bi-Lorentzian distri-
:zfvﬁH [F(vi+H)=F(v)](v+vi—H?) bution degenerates into a one-humped equilibrium, which is
vy—H v [v2—(H+v1)2][v2— (H-vy)?] ' consequently stable against linear perturbations, both in clas-

sical and quantum cases. The major advantage of dealing
(15 with Eq. (17) is that it is amenable to exact calculations, thus
providing an appropriate example of the use of the Nyquist
method for quantum plasmas. Moreover, it models the physi-
cally relevant situation of two counterstreaming electron
populations that co-exist within the same plasma.
Inserting Eq.(17) into Eq. (8), we obtain the following

For v;—H<v<v;+H, we have F(v)>F(v,+H), v?
>(H-v,)? andv?®<(H+uv,)2. Hence, the integrand in Eq.
(15), which can give the only negative contribution for ,

is negative provided

v2<H2—v§, (16) solutions:
0_
which is impossible in the prescribed range of velocities, as vo=0, (18)
v1>H by construction. Therefore, we always have(k, w
=kv,)>0, wherev, is the (semiclassicalroot for Eq.(8) vp=*(H?-a?-A?+2\a’+A%/a?-H)'Z (19

026413-4



NYQUIST METHOD FOR WIGNER-POISSON QUANTUM PLASMAS

V3= = (H?—a?— A2— 2 @7+ A%\ 2= F) 2

It is easy to check that the roots given in EBQ) are always
complex, whatever the values bff a, andA. However, the
roots(19) can be real, provided

(20

1 2
a?>z(H?=A%)+ (AT H2AZHHD Y2 (2D)

Thus, there can be one or three relevant roots, according t

condition (21). This inequality, when satisfied, can also be
seen to implya®>A?/3, which is the same as the condition

for the existence of two maxima. Hence, there can be three

real roots if and only ifF is two humped, which is not sur-

prising in view of the arguments given in the preceding sec-

tion.

An equivalent and illuminating way to rewrite E@1) is
H2<v2 .\, (22)

where v .« denotes thgpositive point whereF is maxi-
mum,

Umax= (82 + A2 2a—a?+ A%, (23

Hence, H cannot exceed the distance between the twaq

maxima ofF. Notice that the right-hand side of E@®3) can
be real only ifa>>A?/3, that is, if there are two maxima,

which is again a natural result. For very large quantum ef

fects, only the roovg=0 survives.
As there is no quantum Penrose functional, it is necessa
to calculateD, at all possible root$18) and(19). We obtain

D,(k,w=kv3=0)
) (A2+H2-a?)
k? (H2—a%)2+2A%(H?+a?)+ A%
(24)

w2
P

which can be negative if and only if
a’>A%+H?2. (25)
In addition

2
_ 1 @p
D,(k,w==*kvy)=1+16

JaZ+AZ%(a?~H?)a?s

k2U®

(26)

where § andU?® are the positive-definite quantities

S5=\a’+A?—a’—H? (27
U8={[(vg—H)?— a2+ 2A7(v,—H)?+a%]+ A%
X{[(vo+H)2—a%]?+2A2[(vo+H)2+a?]+ A%
(28)

We can show that Eq21) implies a>>H?, so thatD, as
given by Eq.(26) is indeed always positive.

PHYSICAL REVIEW B4 026413
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FIG. 3. Nyquist diagrams for the two-stream equilibrium of Eq.
(17 witha=3,A=1, k=0.2, andh =0.001(a), 25(b), 27(c), and
40 (d) (units for whiche=gy=m=ny=1 are usefl Diagrams(c)
and (d) indicate that quantum effects have suppressed the instabil-

ity.

=

In view of Egs.(24) and (26), we see that Eq25) is a
necessary and sufficient condition for linear instability. That
this condition is sufficient can be easily proven: suppose that

we have found a wave numbky satisfying Eq.(25); then

any k<<kgy will also satisfy it; by takingk small enough, we

ryam make the second part of the rhs of E2¢) (which is

egative arbitrarily large in absolute value and therefore ob-
tain D,<0. Note, however, that putting an equality sign in
Eg. (25 and solving fork doesnot provide the transition
wave humber between stable and unstable behavior. In order
to obtain it, one has to set E(R4) to zero and solve fok.

Equation(25) means that the plasma can become unstable
for sufficiently largea (the two maxima are sufficiently far
apar}, smallA (small dispersionor smallH (small quantum
effect9. We also notice that, a3 depends on the wave num-
ber, quantum effects can suppress the instability for small
wavelengths. The instability condition E5) confirms the
numerical results by Suét al.[19]. Here, however, we have
derived anexactanalytical criterion for quantum linear sta-
bility of a two-stream equilibrium.

On Fig. 3, we have plotted the Nyquist diagrams for the
two-stream equilibrium of Eq(17) with a=3, A=1, k
=0.2 and four different values df (units for whiche=¢
=m=ny=1 are usefl We observe that stabilization of the
k=0.2 mode occurs somewhere betwéen25 ands =27.
This is in agreement with the previous formulas: indeed,
with this set of parameters, it is found thtr(k,w=kv8)
changes sign fofi=25.5. Furthermore, Fig. 3 also shows a
change in the topology of the Nyquist diagram. For Figs.
3(a)—3(c), the diagram intersects the horizontal axis in three
points [excluding the point(1,00 that corresponds taw
=*o]; note that two such points coincide, because of the
symmetry of the distribution. For Fig.(@, only one inter-
section survives. This change in topology corresponds to
having one or three solutions to E®), which is determined
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by Eqg. (21). The transition is found to occur fok =30,
which is in agreement with the diagrams of Fig. 3.

Finally, we point out that large quantum effects are not
necessarily stabilizing. For the two-stream equilibrium of Eq.
(17), with a=3 and A=1, the wave numbek=0.287 is
classically stable. However, increasirg one finds that
Dr(k,wzkvg) becomes negative on an interval approxi-
mately given by 7 <11.8. This can be easily verified by
plotting Eq.(24) as a function of: or by direct substitution
of the above values. However, this destabilizing effect occurs
for rather limited ranges ofi and k. For example, wave
numbersk<<0.28 are classically unstable and are stabilized
for large enough# (as in our previous example witk
=0.2); on the other hand, wave numbé&rs0.29 are classi-
cally stable and remain stable for any valueiofOnly wave
numbers very close to the valke- 0.287 display the unusual
behavior described above. For this reason, we can still con-
clude that the most likely outcome of quantum effects is
stabilization.

We now show that we can explicitly write a distribution
function for which there can exist five real roots for E§). v
Consider the two-humped equilibrium

FIG. 4. Plot of the left-hand sidgsolid line) and right-hand side
2n, (dashed lingof Eq. (30) as a function ob, fora=1 andH=0.7 (a)
F(v)= —302 exp(—v?/a?), (299 andH=1.2(b). The inset is a zoom of the region 8:9 <1.4 for
\/;a case(b), showing in detail the extra solutions arising fd>a.

wherea is a parameter related to the equilibrium tempera- . o )
ture. AsF(0)=0, we should expect that Eq8) possesses aspects of the problem, by using Nyquist diagrams. The so

five real roots for somélarge enoughH. We now give an called bump-in-tail equilibrium has a single minimum, but,
o : 9 gnn. ow g as there is no quantum Penrose functional, we are lead to
explicit proof of this fact for the above equilibrium. The

solutions to Eq(8) are obtained in this case from the e ua_compute the real part of the dispersion function at all critical
tion q q points (zeroes of the imaginary part of the dispersion func-

tion). Nevertheless, the Nyquist technique is less expensive
than, for instance, direct calculation of the dispersion rela-
tan)‘( _) =G(v:H), (30) tion, since it requires the value &f, at a few points only.
2 To model the bump-in-tail equilibrium, we use the follow-
ing distribution(see Fig. %

2ny [1-2(v/a)]?
F= :
(30 3ma [1+(v/a)?]?

where we have defined

2Huv (33

Gv;H)=——.
( v?+H?
Apart from the obvious root =0, we can have two or four wherea>0 is a reference velocity that can be scaled to unity
additional real roots. By plotting the left- and right-hand sideWithout loss of generality. Henceforth, we set 1. The dis-

of Eq. (30) as a function of (see Fig. 4, we can show that tribution of Eqg.(393) is a particular case of a one-parameter
there will be a total of five real roots if and only if

dG d 2Hv
E(UZO)<$'[&H ? (v=0). (32

F(v)
oo (W] =

This implies that there can be five real roots providéd

>a, that is, for sufficiently large quantum effects. Otherwise,

only three(semiclassicalsolutions are possible. 1
In the remaining part of this section, we address the ques- 0 . . . . .

tion of the quantum linear stability of an equilibrium charac- -6 -4 -2 0 2 4 6

terized by a large distribution of electrons plus a small bump v

in the tail. This is a standard problem in plasma physics, with  FIG. 5. Velocity distribution corresponding to the bump-in-tail

the small perturbation to the main distribution representing aquilibrium of Eq.(33) for a=ny=1. Units are conveniently res-

beam injected in the plasma. Here, we consider the quanturaled.
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6 2 D, [k,o=kv,(H)]<0, D,[k,o=kv,(H)]>0.
4 F - - - (37)
o2b-~-" z ]
5 0= This holds whatever the value &f. Remembering the de-
ot Tteol - ] pendence of on the wave number and taking into account
AN the explicit forms ofv,(H) andv, (H), it appears that the
—d TN < pair of conditiong(37) are very complicated expressionskof
-6 - ‘ and7. However, using appropriated units in whioh= o,
0 2 4 6 =m=1, we were able to solve E¢37) numerically for a
H few values ofs (measured in units orl'nazlwp). Forz=0,

FIG. 6. Plot of the roote of Eq. (34) as a function oH. The we foun.d that the unstaple modes sa.ltls_fy @:k&O'S.Z'
dashed lines represent the roats in Eq. (35); the solid lines Wher_e_k IS meqsured_ln unl_t_s Of)p/a' This is th‘? Class_l_cal
represent solutions of the cubic equati@). condltlpn for linear instability. Forhi=10, the instability

range is given by 0.20k<<0.36. We see that the total band
family of bump-in-tail equilibria whose classical linear sta- Of instability becomes smaller for a nonzero Planck’s con-
bility properties have been recently studied via Nyquist dia-Stant. Further increasirfg, taking# =100, we found that the
grams[20]. In the quantum case, there is no Penrose funcUnstable linear waves must satisfy 0s16<<0.17. For even

tional and the analysis is more involved. larger quantum eﬁegts_, there_ is_ virtually a suppression of aI_I
Inserting Eq.(33) into the determining equation, E¢g), ~ Unstable modes. This is again in agreement with the numeri-
we obtain the following equation fary: cal results of Suret.e.ll. [19], whe_re large quantum effects
were shown to stabilize all classically unstable modes for a
1— \/E(UOJF H) - +1— \/E(UO—H) a two-stream equilibrium.
1+ (votH)?2  1+(ve—H)? '

V. CONCLUSION
The plus sign yields the second-degree equatixﬁr'r: V2v,

—H2=0, with solutions In this paper, we have discussed the Nyquist method for

the study of the linear stability of spatially homogeneous
1 quantum plasmas described by the Wigner-Poisson system.
v.(H)==(\2x6+4H?). (35)  For classical Vlasov-Poisson plasmas, this method provides a
2 simple way to analyze the stability properties. Furthermore,
) o ) for the special case of two-stream equilibria, one can con-
Note that, in the limitH—0, these solutions correspond to gty ct a simple functionalknown as Penrose functional
the two maxima of the equilibrium distribution. Taking the \yhose sign determines whether unstable modes exist.

minus sign in Eq(34) yields the third-degree equation The main conclusion of the present work is that the sta-
3 5 5 bility analysis of quantum plasmas is generally subtler than
V2v3-vi+V2(1-H?)v— (1+H?)=0. (36) in the classical case. In particular, we have shown that no

simple analog of the Penrose functional can be constructed in
It is easy to prove that Eq36) has one real solution fai  order to determine the stability properties of a two-humped
<3 and three real solutions fét=3. Furthermore, the larg- equilibrium. Hence, a detailed analysis is necessary for each
est of such solutions is always positive, and coincides witlparticular case, with generic and universal conclusions being
the minimum of the equilibrium distribution wheti=0: we  more difficult to obtain. However, we were able to prove that
shall call this solutionv,(H). The other two solutions one-humped equilibridi.e., with a distribution that is a
(which are real only wheil=3) have no classical counter- monotonically decreasing function of the energye always
part, and will be called)1(H) andvy,(H). A graph of all  stable: this is the same result as for classical plasmas.

the roots of Eq(34) as a function oH is provided on Fig. 6. The main mathematical reason for the subtler behavior of
Again, the existence of five real roots for some valueBl®  quantum plasmas is that the wave number now enters the
a consequence of the fact tHafv i) =0. real part of the dispersion function through the parameter

As further calculations are rather cumbersome, we onlyH=#k/2m. This can change the topology of the Nyquist
report here the most relevant resultsostly obtained using diagram, not only by varying, but also by varying the wave
the mathematical packageApLE). For H=3, we have ob- number at fixedi. Physically, this means that new unstable
tained numerically, using Eq12), thatD,(k,o=kvq;)>0  modes can arise by resonant interaction between the quan-
andD(k,w=Kkuvy,)>0. At least for this particular example, tum velocity H and some other typical plasma velocity. In-
this can be shown to imply that the purely quantum solutionsleed, such purely quantum unstable modes have been ob-
are irrelevant to the linear stability properties of the equilib-served[16] for the special case of two-stream equilibrium
rium. Moreover, we have found numerically thBt[k,w
=kv_(H)]>0. After an involved analysis to determine the
ordering of all the solutions for E@8), the conclusion is that _No No
the uns%able modes satisfy ‘ Flv)=7dv—a)+ 5 dv+a, (38)
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where ¢ is the Diracé function and*=a the velocities of  stability criterion for such a bi-Lorentzian equilibrium. The

each stream. This equilibrium can be amenable to exact caNyquist technique was also applied to a classically unstable

culation[16]. bump-in-tail equilibrium. Again, large quantum effects were
Even when general or exact results cannot be obtaineghown to reduce the range of unstable wave numbers.

the Nyquist technique can be successfully used for the study

of particular equilibria, as was shown in Sec. IV. The bi-

Lorentzian equilibrium treated in that section has shown that We are grateful to P. Bertrand for valuable comments and

large quantum effects generally contribute to stabilize pertursuggestions. One of U§.H.) thanks the Laboratoire de Phy-

bations[19]. This is not always the case, however, and wesique des Milieux lonise for hospitality while part of this

have produced an explicit example of a wave number that isvork was carried out and the Brazilian agency Conselho Na-

classically stable and becomes unstable for finiteVlore-  cional de Desenvolvimento Ciefito e Tecnéogico (CNPg

over, the Nyquist method has enabled us to derive an exaéor financial support.
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