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1.  Introduction

Many technological applications of magnetic nano-objects 
(nanomagnets) require to accurately control their magnetiza-
tion dynamics [1–5]. This can be achieved in several ways, 
including static or oscillating magnetic fields, thermal effects, 
and spin-torque transfer (STT). The latter technique consists 
in injecting a spin-polarized current into a nanomagnet; the 
electron spins transfer some of their angular momentum to 
the magnetic material by applying a torque on its magnetic 
moment and thus inducing the switch. This technique was 
first proposed theoretically by Slonczewski [6] and Berger 
[7] and later realized experimentally and further developed 
by many others [8–11]. In the last decade, STT has given 
rise to new technological developments such as STT-based 
random-access memory [12] and spin-torque nano-oscillators 
(STNOs) [13]. Still more recent investigations in this field 
have been focussing on spin-Hall effects [14].

Achieving optimal switching of the magnetization is a com-
promise between Joule heating of the sample and reversal time. 

Although dc currents are the most widespread method to achieve 
fast switching [15, 16], recent theoretical and experimental work 
has shown that an ac current tuned at the resonant precession fre-
quency could be even more efficient [17–19]. Various combina-
tions of ac and dc currents and microwave magnetic fields were 
implemented to improve the efficiency of the switching [20–23]. 
A spin current excitation can also be used to induce persistent 
precession of the magnetic moment, thus enabling magnetic 
nanostructures to behave as tunable radiofrequency oscillators 
[24, 25]. Analyzing the tunability and stability of such devices in 
the presence of intrinsic effects (damping, magnetic anisotropy, 
thermal fluctuations) is therefore of utmost importance.

In this work, we will demonstrate that an oscillating spin 
current with slowly variable frequency (chirp) is a very effi-
cient tool for manipulating the magnetization dynamics in a 
magnetic material. We will focus on two important effects: (i) 
the fast switching of the magnetic moment and (ii) the precise 
control of its precession frequency.

A classical nonlinear oscillator can be excited and con-
trolled by a chirped oscillating force using a well-known 
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effect called autoresonance, which has been exploited for very 
diverse applications ranging from plasma [26] and atomic [27] 
physics to semiconductor nanostructures [28]. Autoresonant 
excitation occurs when a nonlinear oscillator starting in equi-
librium is driven by a force F(t) = ε cos[

∫
ωd(t)dt], with a 

time-dependent frequency ωd(t) that slowly passes through 
the linear frequency ω0 of the oscillator. It can be shown 
that, for the driving amplitude ε above a certain threshold εth 
(scaling as εth ∼ α3/4, where α = dωd/dt is the chirp rate), 
the oscillator frequency ‘locks’ to the driving frequency con-
tinuously, so that the resonance condition is preserved for a 
long time. In that case, the amplitude of the oscillations grows 
without saturation, until of course some other effects kick in.

In two earlier studies [29, 30], we made use of the autores-
onance mechanism to control the magnetization switching of 
a magnetic nanoparticle using a chirped microwave field. This 
technique was shown to reduce the static switching field and 
to work well even in the presence of damping, thermal noise, 
and dipolar interactions. Here we show that chirped spin cur
rents can be used efficiently to induce the stable precession of 
the magnetization at a given frequency or to trigger its com-
plete reversal on a nanosecond timescale.

2.  Model and autoresonant excitation

In the macrospin approximation, the magnetization dynamics 
is governed by the Landau–Lifshitz–Slonczewski (LLS) equa-
tion [6, 7]:

ṁ = ΓLL + ΓG + ΓST,� (1)

where a dot denotes time differentiation, m = M/µs is the 
normalized magnetic moment of magnitude µs, and ΓLL, 
ΓG, and ΓST are the torques induced by the effective magnetic 
field, the Gilbert damping and the polarized spin current, 
respectively:

ΓLL = −γµ0m × Heff,� (2)

ΓG = −γµ0λm × (m × Heff),� (3)

ΓST = −γm × (m × Is),� (4)

where γ = 1.76 × 1011 rad T−1s−1 is the gyromagnetic ratio, 
and Is = ISep is the spin current polarized in the direction 
ep, expressed in the units of a magnetic field (T). Here, we 
neglected the field-like torque term (which is generally small 
with respect to the spin torque ΓST) as well as the angular 
dependence of the spin torque term, which is also usually 
small.

The effective field is the sum of an external field and 
the anisotropy field, Heff = H0 + Han. In the present work, 

we will assume a uniaxial anisotropy along ez  so that 
Han = 2KV

µ0µs
mzez , where K is the anisotropy constant and V 

the volume. We neglect for the moment the external magnetic 
field (H0 = 0), which will be considered later in section 4.1.

Equation (1) can be rewritten as: ṁ = H̃ × m, where

H̃ = γµ0 [Heff + λ(m × Heff)]− γIs × m.� (5)

We shall adopt an approach due to Feynman [31], which 
exploits the analogy between the magnetization dynamics and 
a two-level quantum-like system and was used earlier to study 
the autoresonant control of the magnetization dynamics [30]. 
The LLS equation  is equivalent to a system of two coupled 
equations for the complex quantities A1 and A2:

iȦ1 =
κ0

2
A1 + κA2,� (6)

iȦ2 = −κ0

2
A2 + κ∗A1� (7)

where κ0 = H̃z, κ = 1
2 (H̃x − iH̃y), and m is related to A1,2 

through the expressions:

mx = A1A∗
2 + A∗

1 A2,
my = i (A1A∗

2 − A∗
1 A2) ,

mz = |A1|2 − |A2|2 .

�

(8)

In this formalism, the switching corresponds to a popu-
lation transfer from, say, level 1 to level 2. Note that 
|A1|2 + |A2|2 = |m| = 1, so that the total population (i.e. the 
total magnetic moment) is conserved.

If we write A1,2 = B1,2eiϕ1,2, where B1,2 are real functions 
and B2

1 + B2
2 = 1, we obtain:

mx = 2B1B2 cos∆ϕ,
my = −2B1B2 sin∆ϕ,

mz = B2
1 − B2

2,
�

(9)

which shows that, in the Feynman representation, the system 
is fully described by the real amplitudes B1,2 and the phase 
difference ∆ϕ = ϕ2 − ϕ1.

In order to illustrate the autoresonant technique, we 
first consider the simple case where damping is neglected 
(λ = 0) and the frequency varies linearly with time, 
ωd(t) = ω0 − αt . Other effects—including damping, thermal 
noise, and an external magnetic field—will be added in sec-
tions 3 and 4.

We focus on the case of an ac spin current of constant ampl
itude, polarized orthogonally to the axis of easy magnetization, 
i.e. γIs = J⊥(t)ex, with J⊥(t) = 2ε cosϕd and ωd(t) = ϕ̇d(t) 
is the chirped driving frequency. In this case, it follows from 
equation  (5) that H̃ = (ωrmz − J⊥my)ez + J⊥mzey, where 
ωr = 2γKV/µs is the resonant precession frequency. The 
autoresonance mechanism requires that the time-dependent 
drive frequency crosses the resonant frequency from above, 
so we set the initial driving frequency ω0 > ωr.

We seek solutions to equations (6) and (7) under the ini-
tial conditions A1 = 1 and A2 = 0, i.e. m = ez. Using equa-
tions (9), we obtain:

Ḃ1 = ε(B2
1 − B2

2)B2 cosφd cos∆ϕ� (10)

Ḃ2 = −ε(B2
1 − B2

2)B1 cosφd cos∆ϕ� (11)

∆ϕ̇ = ωr(B2
1 − B2

2) +
ε

B1B2
cosφd sin∆ϕ.� (12)
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We then define φ = ∆ϕ− ϕd − π/2, and use the rotating 
wave approximation (neglecting the high frequencies) to 
derive the equations for the coupled variables B2 and φ:

Ḃ2 = (ε/2)(1 − 2B2
2)B1 sinφ� (13)

φ̇ = ωr − ωd − 2ωrB2
2 + ε/(2B1B2) cosφ,� (14)

where we recall that B1 =
√

1 − B2
2 . Focussing on the weakly 

nonlinear regime (B1 ≈ 1 and B2 � 1), we obtain:

Ḃ2 = (ε/2) sinφ� (15)

φ̇ = ωr − ωd − 2ωrB2
2 + (ε/2B2) cosφ.� (16)

The above equations are typical of systems that can be driven 
into autoresonance [30]. Previous work [32] showed that the 
system is captured into autoresonance when the excitation 
amplitude ε exceeds a certain threshold

ε > εth = 0.82(2ωr)
−1/2α3/4.� (17)

When the above condition is satisfied, the chirped spin cur
rent stays locked with the precession oscillations, and drives 
the magnetic moment away from the anisotropy axis even in 
the nonlinear regime. These theoretical results are in agree-
ment with numerical simulations of the full LLS equation, 
carried out for a nanomagnet with volume V = 2 × 10−24 m3 
(20 nm × 20 nm × 5 nm), anisotropy constant K = 2.2 × 105 
J m−3, and magnetic moment µs = 3.35 × 10−18 J T−1 
(see figure 1). For these parameters, the resonant frequency 
is ωr/2π = 7.36 GHz. In this and all subsequent numerical 
results, the chirped current was applied for the entire dura-
tion of the simulation. The numerical solutions were obtained 
using a standard second-order predictor-corrector method 
(Heun’s scheme).

Note that, according to equation (13), the time derivative of 
B2 vanishes when B1 = B2. Thus, when mz = 0, it is impos-
sible to further populate the level B2. This implies that one 
cannot fully reverse the magnetization (i.e. reach mz = −1) 
using such spin current. The largest precession angle attain-
able with this technique is θ = 90◦ (where θ is the angle 
between the magnetic moment and the z axis) as can be seen 
from figure 1. In the absence of damping and thermal noise, 
the magnetic moment will precess indefinitely perpendicular 
to the anisotropy axis ez .

However, we will show in section  4.1 that, by adding a 
small (≈ 10 mT) external magnetic field antiparallel to the 
anisotropy axis, it is possible to fully reverse the magneti-
zation using the autoresonant technique described above. A 
second reversal technique, based on the combination of two 
spin currents, parallel and perpendicular to ez , will be illus-
trated in section 4.2.

3.  Autoresonant control of the precession

We now show that the autoresonant technique can be used to 
bring the magnetic moment to rotate around the anisotropy 
axis at a certain target angle and precession frequency. This 

is an important feature that allows to convert an electric cur
rent into high-frequency magnetic rotation, with potential 
applications to nanoscale devices such as STNOs. In par
ticular, we want to study the stability of the forced precession 
regime using a spin current, including the effect of the Gilbert 
damping term ΓG and thermal fluctuations.

To this end, we enforce a fixed precession angle by chirping 
the excitation frequency exponentially, from the initial value 
ω0 towards the asymptotic value ωf :

ωd = ϕ̇d = ωf + (ω0 − ωf )e−t/τ .

However, we emphasize that the particular form of the func-
tion ωd(t) is not important—the autoresonant mechanism 
works in any case as long as the frequency variation is suf-
ficiently slow. The required slowness is determined by equa-
tion (17), which can be recast as

α3/4 < 1.22 (2ωr)
1/2ε = 0.86 γISω

1/2
r ,� (18)

where we recall that α = dωd/dt is the chirp rate and 
IS = 2ε/γ . Thus, the slowness of the chirp is related to both 
the precession frequency and the current intensity.

3.1.  Gilbert damping and stability properties

We proceed from equations (13)–(14), where we add a small 
dissipative term (λωr/ε � 1). Assuming that, for ωd < ωr 

0 5 10 15 20
t(ns)

-1

-0.5

0

0.5

1

m
x, m

y

m
x

m
y

Figure 1.  Magnetization dynamics for a system subjected to a 
polarized spin current with amplitude ε = 3εth, initial frequency 
ω0/2π = 20 GHz, and linear chirp rate α = 2 GHz ns−1. Top 
panel: evolution of mz. The inset shows the threshold amplitude 
Is,th  against α3/4. The blue dots are numerical results obtained by 
solving the full LLS equation, while the red line represents the 
theoretical formula equation (17). Bottom panel: evolution of mx 
and my.
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(i.e. after crossing the linear resonance), the system is suffi-
ciently excited so that B2 is finite and ε/(B1B2) � 1, we can 
neglect the cosφ term in equation (14). Then we get:

ẋ = −εF(x) sinφ− 2λωrG(x)� (19)

φ̇ = ∆− 2ωrx, ∆ > 0� (20)

where x = B2
2, ∆ = ωr − ωd , F(x) = (1 − 2x)

√
x(1 − x)  

and G(x) = (1 − 2x)x(1 − x). The steady state of this system 

is x0 = ∆/(2ωr), φ0 = 2ωrλ
ε

G0
F0

, where F0 = F(x0) and 
G0 = G(x0). We now discuss the stability of this steady state 
with respect to small perturbations, by writing x = x0 + δxeiνt 
and φ = φ0 + δφeiνt. Equations  (19) and (20) lead to the 
characteristic equation  ν2 − 2iλωrf0ν + 2εωrF0 = 0, where 
f0 ≡ G′

0 − F′
0(G0/F0) = (1 − 2x0)

2/2 (the prime denotes 
differentiation with respect to x), yielding two characteristic 
frequencies

ν± = iλωrf0 ± i
√

2εωrF0 + (λωrf0)2.� (21)

As the last term in the square root is small and f0 is positive, 
both roots ν± have a positive imaginary part, which guaran-
tees stability. Thus, the autoresonant regime is always stable, 
despite the fact that the damping tends to bring the magnetic 
moment back to the anisotropy axis.

We have checked numerically, by solving the full LLS 
equation, that stable precession of the magnetic moment can 
indeed be forced for any angle in the range [0,π/2] using 
the autoresonance technique. Some examples are shown in 
figure 2, for final frequencies ωf /2π = 4 GHz and 0.2 GHz, 
which correspond respectively to angles θ = 57◦ and 88◦ 
between the magnetic moment m and the anisotropy axis ez . 
In the same figure, we also show the effect of the chirp time τ. 
The latter can be used to control precisely the magnetization 
dynamics, so that the magnetic moment reaches its final pre-
cession orbit with the desired speed. For instance, in figure 2, 
two cases are shown for ωf /2π = 4 GHz with the asymptotic 
precession being achieved in either  ∼20 ns or 80 ns.

The small oscillations visible in figure 2 are due to oscilla-
tions of the frequency mismatch φ in equations (19) and (20). 
The frequency νmis of these oscillations can be calculated by 

neglecting dissipation in equation (19) and differentiating equa-
tion (20), which yields: ν2

mis = 2εωrF(x) = ωrγIS sin(2θ)/4, 
and the corresponding oscillation period τmis = 2π/νmis. For 
two of the cases shown in of figure 2, we obtain: (i) θ = 88◦, 
IS = 11.3 mT, τmis = 4.96 ns (red curve), and (ii) θ = 57◦, 
IS = 6.3 mT, τmis = 1.84 ns (black curve). From the simula-
tions, one can extract the periods: τmis = 2.5 ns (θ = 88◦) and 
τmis = 1.88ns (θ = 57◦). The latter value is in very good agree-
ment with the theory, while the former is less precise, although 
the trend is correct. This may be due to the fact that the theor
etical period is proportional to sin(2θ), and thus more sensitive 
to the variations of θ around 90◦ than for smaller angles.

In contrast, when the magnetization dynamics is excited 
with a chirped oscillating magnetic field (usually in the 
microwave range [29]), a similar analysis yields instability for 
θ > 45◦. Numerical simulations of the full Landau–Lifshitz–
Gilbert equation, similar to those we performed in an earlier 
work [29], confirm this result, as can be seen from figure 3. It 
is observed that the stability threshold is around θ∞ ≈ 50◦, 
slightly larger than the theoretical value.

An important advantage of the autoresonant drive is that 
the ac current can be arbitrarily small provided the chirp rate 
is slow enough, as is apparent from the threshold condition 
equation (18). For instance, for the nano-magnets considered 
in the preceding section, a current density of 3 mT in magn
etic field units corresponds3 to roughly 7 × 106 A cm−2, 

Figure 2.  Time evolution of mz for a polarized chirped spin current 
with initial frequency ω0/2π = 10 GHz. The final frequencies and 
currents are: ωf /2π = 4 GHz, IS = 6.3 mT (black and blue curves) 
and ωf /2π = 0.2 GHz, IS = 11.3 mT (red curve). The chirp time 
is τ = 2.5 ns for the 0.2 GHz case. For the 4 GHz cases, we used 
τ = 2.5 ns (black curve) and τ = 7.5 ns (blue curve).

Figure 3.  Evolution of mz for a system excited with a chirped ac 
magnetic field, for an unstable case with ω∞

f /2π = 4 GHz (top 
frame) and a stable case with ω∞

f /2π = 4.5 GHz (bottom frame). 
The inset show the temporal profile of the drive frequency ωd(t). 
The results were obtained through numerical simulations of the full 
Landau–Lifshitz–Gilbert equation.

3 The conversion is: j[A m−2] = j[T]× (2eµsd)/(V�), where d is the thick-
ness of the magnetic layer.
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which is a standard value for STNOs [33]. For this current, the 
threshold chirp time α−1/2 is of the order of 0.5 ns (the actual 
time to reach the asymptotic precession angle will be a mul-
tiple of this time), as can be deduced from the inset of figure 1. 
But since the threshold current decreases almost linearly with 
decreasing α, using a slower chirp can reduce the required 
current by a significant factor. For instance, decreasing α by a 
factor of 10, cuts the threshold current by a factor 103/4 ≈ 5.6, 
while it increases the time to induce the precession by a factor 
101/2 ≈ 3.2. Since the energy is proportional to the current, 
the autoresonant procedure can be helpful to reduce the 
energy required to achieve complete magnetization switching. 
Of course, there is a trade-off to be made between the rapidity 
of the overall process and the intensity of the required current 
(or energy), but it is clear that competitively low currents can 
be achieved if one accepts to lengthen the time to induce the 
precession.

3.2. Thermal effects

In the results reported above, temperature effects were 
neglected. However, previous theoretical [29, 34] and exper
imental [35] studies showed that the autoresonant mechanism 
is rather robust against thermal noise. In order to check that 
the same conclusion holds in the present case, we introduced 
thermal fluctuations in our model. As is usually done [29], 
thermal fluctuations at temperature T are represented as a 
random magnetic field b̃(t) with zero mean and autocorrela-
tion function given by:

〈b̃i(t)b̃j(t′)〉 =
2λkBT

(1 + λ2)γµs
δijδ(t − t′),� (22)

where i, j denote the cartesian components (x, y, z), δij is the 
Kronecker symbol (meaning that the spatial components of 
the random field are uncorrelated), and δ(t − t′) is the Dirac 
delta function, implying that the autocorrelation time of b̃ 
is much shorter than the response time of the system. The 
temperature is thus proportional to the autocorrelation func-
tion of the fluctuating field.

In figure  4, we plot results at room temperature 
(T = 300 K) for a 25 nm-diameter nanoparticle (blocking 
temperature  ∼5000 K) with damping λ = 0.01 and 
ωf /2π = 4 GHz. There is no external magnetic field. The 
three curves correspond to different values of the oscillating 
spin current amplitude. The amplitude IS = 6.3 mT is just 
above the autoresonant threshold in the absence of thermal 
fluctuations and can thus control the precession in a stable 
way, as was done in figure 2 (black curve). However, this is 
no longer true at finite temperature (figure 4), where thermal 
noise drives the magnetic moment back to the z axis. In order 
to induce a stable precession, the current needs to be increased 
slightly, up to 8 mT or higher.

The above phenomenon is consistent with what was 
observed in the past for finite-temperature systems that are 
excited autoresonantly [29, 34, 35]. In particular, the ability 
to hold the precession for increasing driving amplitude IS 
(figure 4) can be explained as follows. The autoresonant 
system is formally equivalent to a quasiparticle trapped in an 
effective potential well of height V0 proportional to IS [34]. 
The noise drives the quasiparticle out of the well, on a time 
scale proportional to exp(V0/kBT) if the quasiparticle is ini-
tially deeply trapped in the well [36]. Therefore, increasing 
IS (and thus V0) amounts to reducing the effect of the thermal 
noise, in accordance with figure 4. In addition, thermal fluc-
tuations also modify the threshold phenomenon. At zero 
temperature, there exists a sharp threshold for the excitation 
amplitude IS above which the system is always captured into 
the autoresonant regime. In the present work the existence 
of such a threshold, which depends on the chirp rate α, was 
confirmed in figure 1 (see inset). At finite temperature, the 
threshold is no longer sharp, but instead displays a certain 
width that is proportional to the square root of the temper
ature [29]. All these effects were observed in our numerical 
simulations in full agreement with the general autoresonance 
theory.

The above results show that the autoresonant technique is 
very stable against thermal fluctuations. Such stability proper-
ties are of great importance in real STT devices [37], where 
phase fluctuations due to the presence of thermal noise can 
have a disruptive effect. Here, we showed thermal fluctuations 
do not disrupt the autoresonant drive of the precession, pro-
vided the spin current is increased slightly above the nominal 
(zero-temperature) threshold. In addition, the autoresonant 
excitation is not sensitive to the precise temporal profile of the 
chirped current frequency, the only requirement being that the 
frequency varies slowly in time.

We also note that many simulations of STNOs were per-
formed at zero [38] or very small [39] temperature, or they 
involved large nano-objects [40] (diameter > 100 nm) for 
which the blocking temperature is very high and therefore 
the effect of thermal noise is minor even at T = 300 K. The 
present autoresonant technique has proven to preserve the sta-
bility of the oscillations even for much smaller nano-objects 
(25 nm) at room temperature. It may therefore be more advan-
tageous for such ultrasmall nano-oscillators.

0  50 100
t(ns)

0.4

0.6

0.8

1

1.2

m
z

6.3 mT

7 mT

8 mT

Figure 4.  Finite temperature effects (T = 300 K): time evolution 
of mz for a polarized chirped spin current with initial frequency 
ω0/2π = 10 GHz and final frequency ωf = 4 GHz, for three values 
of the spin current: IS = 6.3 mT (red curve, theoretical threshold at 
T = 0), IS = 7 mT (black), and IS = 8 mT (blue).
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3.3.  Phase locking

The standard way to induce a precession at a given frequency 
is to use a dc spin current, which counteracts the Gilbert 
damping term, thus preventing the magnetic moment to relax 
back to easy axis [38, 39, 41, 42]. Although a dc current 
may be easier to implement, our approach has some specific 
advantages. First, it is possible (by modulating the frequency 
variation) to control precisely the trajectory of the magnetic 
moment towards the desired precession angle. Second, the 
method is rather stable against damping and thermal fluctua-
tions, as was shown in the preceding paragraphs.

Now, we show that the autoresonant technique is also 
useful to induce phase locking between the external signal and 
the response of the STNO. Usually, phase locking (or injec-
tion locking) is achieved by combining an external dc current 
with an ac drive signal [43]. When the ac drive is close enough 
to the natural frequency of the STNO, then the latter starts 
oscillating in phase at the same frequency of the drive. For a 
given dc current, phase locking is achieved only for a narrow 
range of drive frequencies.

Using our approach, it was possible to phase-lock the drive 
(chirped ac current) to the STNO precession response, without 
any external dc currents and for a wide range of precession fre-
quencies. Indeed, the autoresonant technique was originally 
devised exactly for such a purpose: to bring a system to oscil-
late at a specified nonlinear frequency by slowly sweeping 
the frequency of the drive. This should work for any target 
frequency, provided the threshold condition, equation (17), is 
satisfied. Importantly, the threshold condition also tells us that 
the driving ac current can have a very small amplitude, pro-
vided the frequency variation rate is slow enough.

To demonstrate phase locking between the drive and the 
STNO precession, we plot in figure  5 (top) the difference 
between the drive frequency ωd(t) and the instantaneous pre-
cession frequency ωmx(t). As expected for an autoresonant 
process, the two frequencies remain close together for all 
times after the system has been captured in autoresonance. 
The bottom panel of figure  5 shows the phase difference 
between the drive and the precession, which remains remark-
ably constant after about 8 ns. Importantly, the phase locking 
appears to be robust against thermal fluctuations, as these 
simulations were performed for the case corresponding to 
room temperature conditions. Such robustness and flexibility 
should make the proposed technique competitive with respect 
to other approaches.

4.  Magnetization reversal

As a further application, we propose two procedures to com-
pletely switch the magnetic moment from parallel to antipar-
allel to the anisotropy axis ez . The first procedure is based on 
an external static magnetic field antiparallel to the anisotropy 
axis, combined with the autoresonant spin current described 
in the preceding sections. The second method relies on the 
combination of two types of spin currents (ac and dc) polar-
ized in different directions.

4.1.  External magnetic field

The presence of an external magnetic field H0 = H0ez affects 
the magnetization dynamics in two ways, through the torques 
ΓLL and ΓG. As to ΓLL, its primary effect is to move the peak 
of the energy barrier (the point where the instantaneous pre-
cession frequency vanishes) away from θ = 90◦ (i.e. mz = 0), 
towards values θ < 90◦ (mz > 0) for an external field anti-
parallel to ez , and θ > 90◦ (mz < 0) for a field parallel to ez  
(figure 6). As to ΓG, the part of the Gilbert torque that is due 
to the external field can be written:

Γext
G = −γµ0λm × (m × H0) = −γµ0λH0(mzm − ez).

Therefore, the z component of the magnetic moment evolves 
under the action of Γext

G  as follows:

ṁz = γµ0λH0(1 − m2
z ) + . . .� (23)

Of course, many other terms (notably the spin current) also 
affect the evolution of mz. From the above expression, we see 
that the effect of Γext

G  is to drive the magnetic moment towards 
mz = −1 when H0 < 0 and towards mz = 1 when H0 > 0.

However, according to equation (13), the autoresonant con-
dition is always lost at θ = 90◦ (when B1 = B2, or mz = 0), 
irrespective of the external field. Thus, we have two possible 
scenarios, depending on the orientation of the external field 
(see figure 6):

	 1.	If H0 < 0 (antiparallel) the peak of the energy bar-
rier is situated at a position 1 > m�

z > 0. Starting from 

Figure 5.  Phase locking at room temperature T = 300 K  and 
IS = 8 mT. Top panel: instantaneous frequency difference between 
the drive frequency ωd(t) and the precession frequency ωmx(t). 
Bottom panel: instantaneous phase difference.
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mz = 1, the autoresonant excitation induces precession 
with decreasing mz and can bring the magnetic moment 
to overcome the energy barrier. Subsequently, the 
autoresonant phase locking is lost and the external-field 
Gilbert torque Γext

G  drives the magnetic moment towards 
mz = −1.

	 2.	If H0 > 0 (parallel) the peak of the energy barrier is 
situated at a position m�

z < 0. The autoresonant excita-
tion can never bring the magnetic moment to cross the 
mz = 0 plane and thus it can never overcome the barrier. 
In this case, Γext

G  brings the magnetic moment back to to 
its initial value mz = 1 [see equation (23)].

In figure 7, we present some numerical results that confirm 
the above scenarios. We consider an external field of inten-
sity H0 = ±50 mT, oriented either parallel or antiparallel to 
the anisotropy axis z. Other parameters are identical to those 
corresponding to the red curve on figure 2. When the magn
etic field is antiparallel to ez , the magnetic moment first starts 
precessing at increasing azimuthal angle until it crosses the 
barrier, which is located around θ = 79◦ (m�

z = 0.19, visible 
on figure 7 as the point where the autoresonant phase locking 
is lost). Subsequently, the magnetic moment relaxes towards 
mz = −1 under the action of the external-field torque. In con-
trast, when H0 is parallel to ez , the magnetic moment goes 
back to its original position mz = +1, in agreement with the 
second scenario of our analysis.

For H0 < 0 we were able to reverse the magnetic moment, 
in contrast to the case with no external field, for which the 
plane mz = 0 could not be crossed. Thus, adding a small 
antiparallel magnetic field seems to be a good strategy to 
obtain complete reversal of the magnetization on a nano
second timescale using the proposed autoresonant technique. 
Note however that the switching is triggered by the chirped 
AC current and not by the static field, which is far too small 
to induce alone the magnetization reversal. For instance, com-
plete reversal can be achieved for H0 = −10 mT, for which 
the energy barrier is situated at θ = 88◦ (not shown here). The 
role of the magnetic field is just to break the symmetry that 
places the maximum of the energy barrier at θ = 90◦ in the 
absence of an external field.

4.2.  Parallel spin current

The procedure is again based on the autoresonance technique 
and requires two spin currents polarized in the parallel and 
perpendicular directions with respect to ez . Let us first con-
sider a purely parallel spin current: γIs = −J‖(t)ez. The effec-
tive field is then given by (we neglect damping for simplicity):

H̃ = ωrmzez − J‖(myex − mxey).

Using the two-level formalism described above, one can 
derive a closed-form solution for the real amplitude B2:

B2
2(t) =

B2
2(0)e

2Γ

B2
1(0) + B2

2(0)e2Γ
,� (24)

where Γ(t) =
∫ t

0 J‖dt . Thus, for sufficiently large times, one 
obtains that B2 → 1, i.e. complete reversal of the magnetiza-
tion by means of a dc spin current collinear with the aniso
tropy axis. From equation (24), it appears that the magnetic 
moment must be tilted away from the anisotropy axis at the 
initial time, i.e. B2(0) �= 0, in order for the reversal pro-
cess to work. This suggests a way to combine two types 
of ac and dc spin currents in order to shorten the reversal 
time. Starting with a magnetic moment oriented along ez , 
a chirped current polarized along ex first tilts the moment 
of a certain angle with respect to the anisotropy axis (this 
is the technique described earlier in this work); next, a dc 
current polarized along ez  completes the reversal according 
to equation (24).

Numerical simulations confirm this scenario (figure 8). 
Here, we show three cases where the J⊥ and J‖ currents 
are applied either separately or together: J⊥ alone can tilt 
the magnetic moment only up to 90◦ (mz = 0); J‖ alone  
(3 mT in this case, with an initial tilt of 1◦) can reverse the 
magnetization completely in about 15 ns; finally, when both 
currents are combined, the switching time is reduced to  
8 ns. In the combined case, we used an ac spin current of 
magnitude 6 mT, although the theoretical threshold ampl
itude is close to 9 mT. This shows that the simultaneous use 
of the two types of excitations leads to a reduction of both 
the switching time and the autoresonance threshold for the 
J⊥ component.

Figure 6.  Schematic view of the energy barrier as a function of mz 
for two cases with external field parallel (H0 > 0) or antiparallel 
(H0 < 0) to the z axis. m�

z  denotes the peak of the barrier in either 
case. The point mz = 0 cannot be crossed through autoresonant 
excitation. The magnetic moment starts at mz = +1 and evolves 
right to left.

0 30 60
t(ns)

-1

-0.5

0

0.5

1
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z
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0
= -50 mT
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0
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Figure 7.  Evolution of the mz component of the magnetic moment 
for a case with external magnetic field parallel (µ0H0 = 50 mT, red 
curve) or antiparallel (µ0H0 = −50 mT, blue curve) to the z axis. 
The driving spin current is IS = 11.3 mT for the parallel case and 
IS = 40 mT for the antiparallel case.
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5.  Conclusion

In this work we explored the potential use of chirped spin cur
rents to manipulate and control the magnetization dynamics. 
Such chirped currents could be produced by means of com-
mercially available arbitrary waveforms generators, which 
can now reach the desired frequency range4.

We have shown that a chirped spin current polarized in the 
direction normal to the anisotropy axis can capture the magn
etic moment into autoresonance and drive its precession to a 
stable angle (up to 90◦ with respect to the anisotropy axis) on 
a nanosecond timescale. The precession time (time it takes 
to bring the magnetization to precess at a certain angle) can 
also be finely controlled. Finally, thermal noise does not alter 
the basic features of this scenario, and only requires a slightly 
larger spin current. Thus, the autoresonant approach is par
ticularly flexible and robust (it only requires that the spin- 
current frequency varies slowly, irrespective of the specific 
form of this variation), and should be capable of controlling 
with high finesse the magnetization oscillations even in very 
small nano-objects.

In addition, we showed that, by adding a small static magn
etic field antiparallel to the anisotropy axis, it is possible to 
fully reverse the magnetization using a chirped spin current 
polarized in the direction perpendicular to the anisotropy axis. 
A second method to switch the magnetization relies on the 
combination of different types of spin currents. Different sce-
narios that combine chirped microwave fields with ac or dc 
spin currents could also be envisaged [21, 23] in the future.
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