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Simulation of relativistic electron generation
in under-dense laser plasma experiments
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The generation of relativistic electrons by nonlinear coupling of a laser beam to an under-
dense plasma is simulated. An Eulerian Vlasov code is used, which enables direct solution
of the fully nonlinear Vlasov-Maxwell system in real space. The impact of stimulated
Raman and Compton scattering on the electron velocity distribution is investigated. Sim-
ulations show that electrons can be accelerated to energies of several MeV. The role of
induced scattering processes is analyzed in detail, using electromagnetic field spectra and
electron phase-space information as diagnostics. The effects of density gradients in the back-
ground plasma are also quantified.

1. Introduction

One of the most topical aspects of laser-plasma interactions is the production of ener-
getic electrons in laser-driven plasma accelerators (Joshi et al. 1984) and in laser fusion
experiments (Kruer 1988). In laser-plasma acceleration experiments at low density, mea-
surements of MeV electrons have been made (Joshi et al. 1984; Modena et al. 1995), and
attributed to resonant acceleration by large amplitude Langmuir waves nonlinearly excited
by the laser beams. In laser fusion, considerable attention has focused on indirect drive
schemes, where the laser beams ablate the inside wall of a hohlraum creating a hot plasma.
Fusion hohlraums are irradiated first with relatively long duration laser pulses and there-
fore fill with large (— a few mm) under-dense plasmas with densities ne ~ O.lncr, where ncr

is the critical density at which the plasma frequency would equal the laser frequency, and
temperatures in the keV range (Tabak et al. 1994). During this phase, parametric instabilities
can occur, in particular stimulated Raman instabilities, producing waves that may accel-
erate energetic electrons (Decker et al. 1994). To simulate wave excitation and electron accel-
eration in these scenarios, the combined effect of three types of instability is studied here
using the ID Eulerian Vlasov code developed by Ghizzo and Bertrand (Ghizzo et al. 1993;
Bertrand et al. 1994). These instabilities are stimulated Raman backscattering (SRBS)
(Offenberger et al. 1982) and forwardscattering (SRFS) (Kruer 1988; McKinstrie & Bing-
ham 1992), which are both resonant processes, and stimulated Compton scattering (SCS),
which is a nonresonant process (Lin & Dawson 1975).

In ID SRBS, the Langmuir wave has a wave number kp equal to the sum of the incident
laser wave number ko and the wave number of the stimulated backscatter electromagnetic
wave ks such that kp= \ko\ + \ks\. This Langmuir wave, which has a phase velocity much
less than the speed of light, propagates in the same direction as the incident laser beam and
can accelerate thermal electrons to higher velocities.

For plasma temperatures of several keV, the Debye length is sufficiently large that the
plasma wave associated with SRBS has a wave number such that kp\De - O( l ) . In con-
sequence, Landau damping starts to play a crucial role, and such a wave can no longer
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develop as a normal mode of the plasma. However, part of the energy of the incident laser
beam can be directly transferred to the background electrons as incoherent thermal motion,
thus producing a suprathermal tail in the electron distribution function. This process is
known as stimulated Compton scattering. We also note that a similar process, the decay
of SRBS into SCS via plasma wave breaking, has been the subject of recent experimental
studies (Everett et al. 1995).

In SRFS, the incident laser beam couples to a high-phase velocity plasma wave produc-
ing an upshifted anti-Stokes (kAS = ko + kp) electromagnetic wave and a down-shifted
Stokes (ks — ko — kp) electromagnetic wave. All waves in SRFS travel in the same direc-
tion, namely that of the incident laser beam. In an underdense plasma (wo » upe, where
wpe is the electron plasma frequency), the plasma wave generated by SRFS has a phase
velocity that is close to, but less than, the speed of light (vph < c). This wave is responsi-
ble for the resonant acceleration to MeV energies of the nonthermal electrons already accel-
erated from the thermal background, for example, by the SCS process. These MeV electrons
can be used as a diagnostic of the Raman processes described above, as well as generating
high-energy X-ray and 7-ray signatures. They could also cause photoneutron production
in surrounding materials, via bremsstrahlung.

In this paper, we simulate the acceleration of electrons to relativistic velocities, using
the ID Eulerian Vlasov code of Ghizzo et al. (1993), which is described in more detail in
the Appendix. In section 2, we describe the physical model adopted here and discuss the
assumptions leading to our equations. The main results are presented in section 3: for
plasma parameters that are broadly comparable to those of laser fusion experiments, we
observe the production of highly energetic electrons, up to 7 MeV. The role of Raman and
Compton instabilities is investigated through the analysis of the electron motion in phase
space, and the spectra of the electromagnetic fields. A second important issue, namely the
presence of a small gradient in the plasma density, is analyzed at the end of section 3: it
is shown that a smaller fraction of electrons is accelerated to high energies.

2. Model and numerical code

We consider a linearly polarized electromagnetic wave propagating along the x direction,
described by the electric field Ey and the magnetic field Bz. The wave interacts with a
plasma, in which all quantities are taken to be functions of the longitudinal coordinate x
and of time only. In our ID model, the electron plasma is described by the relativistic Vlasov
equation for f(x,px,t):

_,_ x f uyBz) — = 0, (1)
3/ 7m o* dp*

where 7 = (1 +p2/m2c2)l/2 and/?* = /W7«*. We shall restrict attention to time-scales that
are short compared to the ion plasma period, so that the ions are taken to be immobile.
Indeed, in our simulations, we typically study electron dynamics over a time t = 200cope\
which is t = 4.6upjl, if m,/me = 1836 (proton to electron mass ratio). The transverse veloc-
ity uy, generated by the electromagnetic field of the laser, is nonrelativistic and obeys

duy e
-77 = Ey (2)
dt m

This expresses conservation of the transverse canonical momentum py = uy — (e/m)Ay>

with Ey = -dAy/dt. Relativistic effects are fully taken into account in the longitudinal
direction, which is the direction of acceleration of the electrons. However, in equation (2),
which governs the transverse dynamics, the Lorentz factor 7 has been neglected. This
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assumption does not affect the evolution in any appreciable way. The reason is that the
coupling between the longitudinal and transverse directions (which is the crucial nonlin-
ear effect) is largely dominated by the cold background population of electrons, for which
7 = 1 . For the electrons participating in the plasma wave, y > 1, and it should in principle
be included in the equations: however, the resulting correction is negligible, because the
longitudinal force eEx is much larger than the Lorenz force euyBz. In other words, the
term euyBz needs to be treated to high accuracy only for the cold electrons, for which
7 = 1 is a good approximation. This assumption was used by Bertrand et al. 1994.

The longitudinal electric field is obtained self-consistently from Poisson's equation,

d2<b e
— 3 = [ni(x)-ne(x,t)]> (3)
dx

<•
dt

dEy

Jy

y
dx

pi £
dx

— —ene(x,t)u

1

y(X,t)

with ne = /J'dpx and Ex = —d<t>/dx. The transverse electromagnetic fields obey Maxwell's
equations,

a/? arr
(4)

(5)

which can be written more conveniently in terms of the forward and backward electromag-
netic fields E± = Ey ± cBz:

/^-±c^-)E± = --Jy. (6)
dt dx) eo

The preceding equations constitute our mathematical model. Most numerical codes for the
Vlasov equation (1) rely on particle-in-cell (PIC) techniques: a large number of particles
are advanced along the characteristics of the Vlasov equation, and the electron density is
reconstructed at each time step to solve the Poisson equation. The major drawback of PIC
techniques lies in the fact that, often, the most interesting phenomena occur in regions of
phase space where the number of particles is very small, and resolving coherent structures
becomes a difficult task.

Here, we shall make use of an Eulerian Vlasov code (Ghizzo et al. 1993), which is
described in more detail in the Appendix. In Eulerian codes, the entire phase space is cov-
ered with a uniform mesh, and the Vlasov equation is solved by means of a splitting scheme,
which alternately advances the distribution function in the x and in \hz px directions. These
codes allow very fine resolution in phase space even in regions where the electron density
is low, as for example in the extended tail of an energetic electron distribution function.

3. Numerical results

In this section, we make use of the numerical code previously described to simulate the
interaction of laser light with an underdense plasma. By writing the pertinent equations in
a dimensionless form, three dimensionless quantities appear to play a crucial role: wo/u:p,
the ratio of laser to plasma frequency; vth/c, the electron thermal velocity; and vosc/c =
eE0/moi0c, the "quiver" velocity, where Eo is the laser electric field. In the simulations
that we will present, these parameters take the values wo/wp = 3.35, vosc/c = 0.239 and
v(h/c = 0.09. The corresponding value of ko is 3.2a)pc~x.
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Furthermore, a small fraction a of the electron population commences the simulation
with a higher temperature rhot. Such a hot population can be created by the interaction
of the plasma with the laser itself, as was indeed observed in some experiments (Aithal
et al. 1987). A possible mechanism, as suggested in the introduction, could be SCS.

The total length of the plasma is L - 120Xo = 255.25cco~', where Xo = 2ir/ko is the laser
wavelength, and ko satisfies w2, = w2, + c2k2. The background density profile is plotted in
figure 1: this represents the density of the immobile ions as well as the initial electron den-
sity. A region of vacuum occupying a length Lvac = 5XO is present at both sides of the
plasma.

The initial condition for the distribution function is:

f(x,px,t = 0) = iti(x)Fo(px)

V2 71772 r c
exp - 2mTcoU

+ aA exp I —mc2(y -
'hot

(7)

(8)

where a = 0.05, and A is a constant chosen so that / Fo dpx = 1.
If we assume a plasma density n ~ 1020 cm"3, the dimensionless parameters introduced

above correspond to the following dimensional values: rcoid = 4.1 keV, Thot = 31.6 keV
corresponding to a characteristic velocity 0.24c for the small hot fraction, o)p — 5.7 X
1014 s~\ Xo = 1.03 /im and w0 = 2 x 1015 s"1. The laser intensity Io = eoE%c/2 takes
the value 7.7 x 1016 Wcm"2. Two simulations are presented, the first with a flat den-
sity profile as illustrated in figure 1, and the second with a small density gradient such that
\o\Vn/n\ « 1.

In figure 2, the momentum distribution function, averaged over different spatial regions,
is plotted at different times. The hot electron tail is most pronounced for L/4 < x < L/2
(figure 2b) because when the plasma wave enters this region, it has almost reached its max-
imum amplitude, so that the electrons can be accelerated with high efficiency. The region
0 < x < L/A (figure 2a) is crossed by the plasma wave when it is still growing and, for
the times considered here, the wave has hardly had the time to penetrate into the region
L/2 < x < 3L/A (figure 2c): this explains the smaller number of accelerated electrons in
these regions. The maximum electron energy is roughly 7 MeV. Note that in the simula-
tions we normalize time to u j 1 , space to cup1 and momentum to me: this is reflected in
the captions to all subsequent figures. We also note that, for ultrarelativistic electrons,
E/mc2 =p/mc, and me2 = 0.5 MeV, where m is the electron rest mass. The value of 7 MeV

Initial Density

nil , , I
0 64 126 193 256

x

FIGURE 1. Initial electron density profile for the first simulation.
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is significant, since it is the threshold energy for generating bremsstrahlung photons of suf-
ficient energy to extract a neutron from its nucleus (photoneutron production). The frac-
tion of electrons accelerated to multi-MeV energies is typically 1% of the total population.

Snapshots of the electrostatic and electromagnetic fields at various times are shown
in figure 3. The electrostatic field grows linearly in the first part of the simulation, up to
o)pt = 150: this results in a neat wave-packet with wave number kp, traveling at its group
velocity. At subsequent times, nonlinear effects cause saturation of the instability, and the
plasma wave develops a more complex structure with a broader wave number spectrum.
The saturation mechanism can be due to the detuning of the plasma wave by two main
effects: density depletion induced by the wave itself and relativistic increase of the electron
mass, both leading to a modification of the local plasma frequency. Saturation could also
arise from electron trapping by the plasma wave, or wave breaking. Note that we have sup-
pressed the component of the E + field corresponding to the pump wavenumber ko (equal
to 3.2ojpC~' in our case), so that the residual E+ represents the Stokes and anti-Stokes
waves with wave numbers ko ± kp (see also figure 4). From figures 3b and 3c (bottom
frame), we note that the anti-Stokes wave (k0 + kp) is localized in the front of the packet,
while the Stokes wave (ko — kp) is localized in the rear. E~, the electromagnetic field trav-
eling backwards, develops a long wavelength structure around saturation, more clearly seen
in wave number space (figure 4). Using the dimensionless parameter set described above,
the Stokes, anti-Stokes and respective plasma waves have wave numbers, for the SRFS case:
ks = 2.\2up/c, kp = ko-ks~ 1.07wp/c, kAS = 4.23op/c; and k'p = -k0 + kAS = 1.03up/c.
The Stokes and anti-Stokes components are visible as sidebands of the pump wave in
the spectrum of the forward electromagnetic field E +. Their respective plasma waves are
almost superposed at kp = o^c"1. Other modes with k — o)pc~l and k — 5o)pc~' are visible
in the E+ spectrum at later times, and these originate from nonlinear couplings of ks and
kAS with the plasma wave.

The spectrum of E~ is more difficult to interpret: we observe excitation at wave
numbers similar to those of E+, but in E~ modes with a smaller wave number are more
strongly excited. The mode k — 2upc~l could be due to SRBS, for which we have ks =
2A2wpC~l and kp = k0 — ks — 5.3copc~' (the sign of ks is irrelevant, because E_k = El,
E being a real quantity). The corresponding plasma wave is strongly damped, because
kp\D - 0.48, and thus does not appear in the spectrum. The time evolution of the E~
spectrum shows that the mode k = 3wpc~' appears first, followed by k = 2u)pc~l and
finally k = copc~'. We suggest that the mode k = 3u>pC~' comes from the coupling between
the pump wave k0 and a strongly damped plasma wave k'p = 2k0 arising from Compton
scattering, which gives rise to a scattered wave

ks = k0-kp=-k0 = -3.2wpc-i. (9)

This scattered wave is the one observed in the E~ spectrum. This process can also be
viewed as the partial reflection of the pump wave: the incident (ko) and reflected (-k0)
waves then combine to produce a plasma wave with wave number k'p = 2ko = 6.4wpc~',
which is strongly Landau damped, because 2ko\D = 0.58. To check our hypothesis, we
have repeated the simulation with a lower electron temperature (i>th = 0.02c) to reduce the
efficiency of Landau damping. In this case 2ko\D = 0.13, and a plasma wave at ke = 2k0

is indeed observed very early in the evolution, as shown in figure 4d.
Once the scattered wave ks = —ko has been created, it couples to the plasma wave

kp — upc~l to excite the mode k — 2upc~x. In a similar way this mode couples again with
the plasma wave to give rise to the mode k = upc~l. At each step of this cascade, the
amplitude of the electromagnetic wave grows larger because it couples to a plasma wave
with higher amplitude. This is the opposite of what happens in the ordinary Stokes and
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FIGURE 4. Squared modulus of the electrostatic field (top frame), backscattered field E (middle
frame) and forwardscattered field E+ fields (bottom frame) in wave number space (units are o!pc~'),
at times (a) <jipt = 98; (b) upt = 147. (See p. 205 for continuation of figure 4.)

anti-Stokes processes, in which the scattered wave has a smaller amplitude than the pump
wave.

In figure 5 we show the time history of the electrostatic field at two different points in
space. The dominant frequency ue= (<xip + 3v?hkg)l/2 is clearly visible. For x = L/4 (fig-
ure 5a), saturation occurs at oipt = 150; then a much slower modulation appears, with
w = 0.08wp. The plasma wave arrives at x = L/2 (figure 5b) after saturation has already
occurred, so that no further growth is visible. The same pattern is observed in the time evo-
lution of the spatially integrated electrostatic and kinetic energies, shown in figure 6a. In
figure 6b the electrostatic energy is plotted on a logarithmic scale (in base 10) to evaluate
the growth rate of the instability. In the initial evolution, two stages are clearly visible, begin-
ning at (j)pt — 10 and upt — 60, with growth rates, respectively, 7, — 0.016wp and 72 =
0.029u3p. At wpt = 150 the growth has saturated. A simple analytical estimate (Mori 1994),
which neglects the electron temperature, gives the following growth rate, for a typical qua-
dratic quantity such as the energy:

7 = (10)
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time
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(b)

200

FIGURE 6. (a) Time history of the kinetic energy (solid line) and of the electrostatic energy (times a
factor four, broken line), both integrated over the whole plasma length, (b) Time history of the elec-
trostatic energy on a log scale in base 10.
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FIGURE 7. Initial electron density profile for the second simulation.
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t = 240.
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P
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FIGURE 8. Longitudinal momentum distribution function averaged over the region L/2 <x< 3L/4
at the end of the simulation (upt = 240).

merits. Numerical simulations have been performed in a range of parameters comparable
to those of laser plasma experiments (Modena et al. 1995). In our case, the electron tem-
perature is 3 keV, co0/cop = 3.35 and Io = 7.7 x 1016 W cm"2. The results show that a high
energy tail of multi-MeV electrons is indeed created as a result of stimulated Raman scat-
tering. These energetic electrons can emit photons through bremsstrahlung, which in turn
may be responsible for photoneutron production.

Our simulations have shown, for the first time to our knowledge, the development of
stimulated Compton scattering at a very early stage of the laser-plasma interaction. Stim-
ulated Compton scattering generates a plasma mode with wave number of 2k0, which,
however, is strongly Landau damped (in our case 2ko\D = 0.58). Therefore, the corre-
sponding plasma wave cannot develop, and the energy is directly transferred to thermal
electron motion (this is often referred to as a "quasi-mode"). Although, in our simulation,
a high-temperature component of the electron population was already present as an ini-
tial condition, stimulated Compton scattering could provide an efficient mechanism for pre-
heating the plasma, thus improving the efficiency of the forward Raman instability in
electron energization. In our case, the laser is so intense that it can extract the electrons
directly from the hot tail (7"hot = 31.6 keV) and accelerate them to ultrarelativistic veloci-
ties. Energies up to 7 MeV have been observed in the simulation.

The analysis of the electromagnetic spectrum has been particularly interesting. While the
forward electromagnetic field reveals the expected Stokes and anti-Stokes sidebands at
k0 ± upc~\ the backward field possesses a more complex structure. This structure has
been interpreted as a cascade originating, in the first place, from a Compton backscattered
wave, which couples to the plasma wave giving rise to another backscattered light wave with
a smaller wave number, and so forth. This long wavelength pattern is localized well inside
the bulk of the plasma, and does not seem to propagate toward the boundary.

Finally, we have investigated the same problem in the presence of a small density gradi-
ent in the plasma profile. The result is that the electrons are accelerated to lower energies

https://doi.org/10.1017/S0263034600010880 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034600010880


Relativistic electron generation in under-dense laser plasma

Time = 240.

209

2 3 4
wavenumber

1.00

0.75

0.50

0.25

0 00

-

-

\
\

w \ . . . J F V A. . . . •

FIGURE 9. Squared modulus of the electrostatic field (top frame), E (middle frame) and E+ (bot-
tom frame) fields in wave number space at aipt = 240.

(~3.5 MeV), because the plasma is globally less under-critical than in the previous case.
Also, the plasma frequency now being a function of position, we have observed a shift of
wave number in the electrostatic and electromagnetic spectra.

As a concluding remark, we note that our simulations suggest that non-negligible pro-
duction of high-energy electrons can be expected in the range of physical parameters con-
sidered. The numerical code that we have used is a potentially valuable tool in investigating
possible configurations for indirect drive laser fusion experiments, hopefully reducing the
number of accelerated electrons.
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APPENDIX: THE NUMERICAL CODE

Vlasov Eulerian codes are based on a splitting scheme which, for the present case, involves
three main steps:

Step 1: Between /„ and tn+w2 shift the distribution function in x-space for a time At/2

f*(x,px,tn+l/2) =f[x- *L -,px,t\. (Al)
\ my 2 )

Step 2: Compute the fields at time tn+W2, then shift the distribution function in px space
for a time At.

r*(x,px,tn+W2) =f\x,px + eAt{Ex + uyBz),tn+W2). (A2)

Step 3: Between tn+i/2 and /„ shift again in x-space for a time At/2

f(x,px,tn+i) =flx- — ^,Px,tn+i/X (A3)
\ my 2 J

This scheme enables us to compute the distribution function at time tn+i, when its value
at time /„ is known. It is correct to second order in At. To perform the shifts, we need an
interpolation technique, which is provided by a cubic spline method.

Furthermore, when performing Step 2, we require knowledge of the electromagnetic
fields. To obtain the longitudinal electrostatic field, the Poisson equation is solved via a
cubic spline scheme, correct to order Ax4. The Maxwell equations (4) and (5) are solved
between tn_U2 and tn+W2 using a time-centered scheme:

At T I At \ /AJX

- EHxX-1/2) = Jy[x±c—,tn). (A4)c o

Choosing a time step such as Ax = cAt allows us to advance equation (5) exactly, provided
an interpolation for the right hand side is given. We have chosen the following scheme to
interpolate Jy along the vacuum characteristics:

Jy[x ± y - ' / n ) = ~\ t" e ( x ± A*. 'n+i/2)M* ± Ax,fn) + ne{x,tn_1/2)uy(x,tn)]. (A5)
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