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Abstract. We present a dynamical model that successfully explains the
observed time evolution of the magnetization in diluted magnetic semiconductor
quantum wells after weak laser excitation. Based on the pseudo-fermion
formalism and a second-order many-particle expansion of the exact p–d
exchange interaction, our approach goes beyond the usual mean-field
approximation. It includes both the sub-picosecond demagnetization dynamics
and the slower relaxation processes that restore the initial ferromagnetic order in
a nanosecond timescale. In agreement with experimental results, our numerical
simulations show that, depending on the value of the initial lattice temperature, a
subsequent enhancement of the total magnetization may be observed within the
timescale of a few hundred picoseconds.
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1. Introduction

Ultrafast light-induced magnetization dynamics in ferromagnetic films and in diluted magnetic
semiconductors (DMS) is today a very active area of research. Subsequent to the observation of
the ultrafast dynamics of the spin magnetization in nickel films [1] and the analogous processes
in ferromagnetic semiconductors [2], special interest has been devoted to the development of
dynamical models able to mimic the time evolution of the magnetization on both short and
long timescales. In III–V ferromagnetic semiconductors such as GaMnAs and InMnAs, a small
concentration of Mn ions is randomly substituted by cation sites so that the Mn–Mn spin
coupling is mediated by the hole–ion p–d exchange interaction, allowing the generation of
a ferromagnetic state with a Curie temperature of the order of 50 K [3]. The magnetism can
therefore be efficiently modified by controlling the hole density through doping or by excitation
of electron–hole pairs with a laser pulse. In particular, unlike metals, in a regime of strong laser
excitation, total demagnetization can be achieved [4].

In the Zener model [5], which was originally developed to describe the magnetism of
transition metals, the d shells of the Mn ions are treated as an ensemble of randomly distributed
impurities with spin 5/2 surrounded by a hole gas or an electron gas. Unlike ferromagnetic
metals, III–Mn–V ferromagnetic semiconductors offer the advantage that they provide a clear
distinction between localized Mn impurities and itinerant valence-band hole spins, thus allowing
the basic assumptions of the Zener theory to be satisfied. Based on this hypothesis, a few
mean-field models have been successfully applied for modelling the ground-state properties
of DMS nanostructures. In particular, within the framework of the spin-density-functional
theory at finite temperature, relevant predictions of the Curie temperature have been obtained
[6, 7]. Ultrafast demagnetization in DMS is a phenomenon where the p–d exchange interaction
causes a flow of spin polarization and energy from the Mn impurities to the holes, which is
subsequently converted to orbital momentum and thermalized through spin–orbit and hole–hole
interactions [8]. Since energy and spin polarization transfer is a many-particle effect, the mean-
field Zener approach cannot provide a satisfactory explanation for the ultrafast demagnetization
regime that has been observed in DMS [4, 9].

A phenomenological approach able to take into account this energy flux is given in [1, 10]
where a model based on three temperatures is derived. More recently, a study of the coupling
of the electromagnetic laser field with the hole gas revealed the possibility of an ultrafast
demagnetization during the femtosecond optical excitation, due to light–hole entanglement [11].
A model capable of describing the dynamics of carrier–ion spin interactions is provided in
[12, 13]. This model generalizes the stationary theory of [10] and takes into account the
picosecond demagnetization evolution that occurs in a strong excitation regime, but neglects
the slow-in-time evolution of the spin dynamics. The mean p–d interaction is averaged out over
the randomly distributed positions of the Mn ions.

In this work, we derive a dynamical model based on a many-particle expansion of the p–d
exchange interaction in the pseudo-fermion framework. This formalism, originally developed
by Abrikosov [14] to deal with the Kondo problem, introduces unphysical states in the Hilbert
space for which impurity sites are allowed to be multiply occupied. Following the work of
Coleman [15], a suitable limit procedure is applied to our dynamical model in order to recover
the correct physical description of the magnetic impurities.

Our approach extends the Zener model beyond the usual mean-field approximation. It
includes both the sub-picosecond demagnetization dynamics and the slower cooling processes
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that restore the initial ferromagnetic order (which is achieved in a ns timescale). Moreover, in
agreement with recent experimental results [9], our simulations show that, depending on the
initial lattice temperature, a subsequent enhancement of the total magnetization is observed
within the timescale of 100 ps.

2. Pseudo-fermion formalism

We consider a volume V containing N hV holes with spin Sh
= 1/2 strongly coupled by

spin–spin interaction with N MV randomly distributed Mn impurities with spin SM
= 5/2. We

assume that the exchange interaction between localized ions and heavy holes dominates both the
short-range antiferromagnetic d–d exchange interaction between the ions and the s–d exchange
interaction between electrons in the conduction band and Mn ions (typical values for the s–d and
the p–d interactions in a GaAs are 0.1 and 1 eV, respectively [16]). Furthermore, electron–hole
radiative recombination, carrier–phonon interactions and interactions leading to the hole spin-
relaxation in the hole gas are included phenomenologically. The time evolution of the system is
governed by the Hamiltonian

H=

∑
k,s

εk,sa
†
k,sak,s +Hpd,

where a†
k,s (ak,s) is the creation (annihilation) operator of a hole with spin projection s and

quasi-momentum k. In the parabolic band approximation the kinetic energy of the holes reads
εk,s = Eh

−
h̄2k2

2 m∗ where Eh is the valence band edge. The Kondo-like exchange interaction Hpd

is given by

Hpd =
γ

V

∑
Jm′,m · σ s′,s

(
b†

η,m′bη,ma†
k′,s′ak,s

)
ei(k′

−k)Rη,

where the sum is extended over all indices, γ is the p–d coupling constant, and σ and J are
the spin matrices related to Sh and SM, respectively. The ion spin operator is represented in
the pseudo-fermion formalism [14, 15] in which b†

η,m (bη,m) denotes the creation (annihilation)
operator of a pseudo-fermion with spin projection m and spatial position Rη.

The Hpd Hamiltonian reproduces the correct ion–hole exchange interaction provided that

the ion sites are singly occupied, i.e. n̂η =
∑SM

m=−SM b†
η,mbη,m = 1 ∀η. Following [14, 15], this

constraint may be taken into account by adding a ‘fictitious’ ionic chemical potential

Hλ
=

∑
η

λη n̂η

to the original Hamiltonian and letting λη go to infinity at the end of the calculation.
The grand-canonical expectation value of a pseudo-fermion operator A related to the total

Hamiltonian H +Hλ reads

〈A〉λ =
1

Z λ
Tr

{
ρHe−β

∑
η λη n̂ηA

}
=

1

Z λ

∑
{nm

η }r

〈
nm

η

∣∣ ρHe−β
∑

η λη n̂ηA
∣∣ nm

η

〉
,
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where Zλ = Tr
{
ρHe−β

∑
η λη n̂η

}
, ρH = e−βH, and β = 1/kBT h, with kB being the Boltzmann

constant and T h the hole temperature. {nm
η }r = {n1

1, . . . , n(2SM+1)

1 , . . . , n(2SM+1)
r } denotes all

possible occupation numbers nk
η (= 0 or 1) for r ion sites. Since each site has (2SM + 1) available

pseudo-fermion states, the system will contain at most (2SM + 1)r pseudo-particles. The correct
expectation value of the operator A is obtained using the limit λη → ∞ [15]

〈A〉∞ =
1

Z∞

lim
{zη}→0

∂r
[
〈A〉λZλ

]
∂z1 · · · ∂zr

, (1)

where Z∞ = lim{zη}→0
∂rZλ

∂z1···∂zr
and zη = e−βλη .

In the next section, we will show that the time evolution of the spin of the ion–hole
system may be expressed in terms of the expectation value of the pseudo-fermion operator
b†

η,mbη,m(1 − b†
η,m′bη,m′) with m 6= m ′ and evaluated in the mean magnetic field S generated by

the holes. We have the general relationship (which also applies when the system is driven far
from equilibrium)

lim
{λη}→∞

〈
b†

η,mbη,m(1 − b†
η,m′bη,m′)

〉
λ
= lim

{λη}→∞

〈
b†

η,mbη,m

〉
λ
. (2)

When the system approaches thermal equilibrium, the quantity 〈b†
η,mbη,m〉∞ becomes the usual

spin thermal distribution. Using equation (1) we obtain〈
b†

η,mbη,m

〉
∞

= Q̃
eβmγ S

Z∞

, (3)

where Z∞ = Q̃
sinh

[
βγ S

2 (2SM+1)
]

sinh(βγ S/2)
and Q̃=Q|nm

η′=0,1;
∑

m nm
η′=1 with Q=

∏
m,η′ 6=η e−βmγ S nm

η′ .
In order to derive equation (3), we have used

lim
{zη}→0

∂r

∂z1 · · · ∂zr
Tr

{
ρHe−β

∑
η′ λη′ n̂η′ n̂m

η

}
= Q̃

∑
nm

η =0,1;
∑

m nm
η =1

nm
η e−βγ S mnm

η = Q̃ e−βγ S m

with ρH = e−βγ S
∑

η,m mn̂m
η and n̂m

η = b†
η,mbη,m .

3. Time evolution model

The Heisenberg equations of motion lead to a hierarchy of time evolution equations for the
mean densities nh

s =
1

N h

∑
k〈a

†
k,sak,s〉∞ and nM

m =
1

N M

∑
η〈b

†
η,mbη,m〉∞

d
[∑

k〈a
†
k,sak,s〉λ

]
dt

= N h N M
∑
m1

Ws,s,m1,m1, (4)

d
[∑

η〈b
†
η,mbη,m〉λ

]
dt

= N M N h
∑

s1

Ws1,s1,m,m, (5)

with

Ws,s,m,m =

∑
s′

1,m
′

1

(
Jm′

1,m · σ s′

1,s C̃m′

1,m,s′

1,s − Jm,m′

1
· σ s,s′

1
C̃m,m′

1,s,s
′

1

)
. (6)
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In the last equation, the mean correlation function reads

C̃m′,m1,s′

1,s1 = −
i

h̄

γ

V N h N M

∑
η,k1,k′

1

Cη,η,k′

1,k1

m′,m1,s′

1,s1
ei(k1−k′

1)Rη, (7)

where Cη′,η,k′,k
m′,m,s′,s = 〈b†

η′,m′bη,ma†
k′,s′ak,s〉λ. The time evolution equation of this quantity is given by

ih̄
dCm′,m,s′,s

dt
= 1EMF Cm′,m,s′,s +

γ

V

∑
m′

1,m1,s1,s′

1

δη1,η
′

1
Jm′

1,m1 · σ s′

1,s1

〈
BA−AtBt

〉
λ

ei(k′

1−k1)Rη1 , (8)

where the compact notations m ≡ (η, m), s ≡ (k, s), B ≡ b†
m′

1
bm1b

†
m′bm, Bt

≡ b†
m′bmb†

m′

1
bm1 ,

A≡ a†
s′

1
as1a

†
s′as, and At

≡ a†
s′asa

†
s′

1
as1 have been employed.

The mean-field contribution to the total energy is given by 1EMF = γ [(s ′
− s)M +

(m ′
− m)S] where M = N M

∑SM

m=−SM m nM
m and S = N h

∑Sh

s=−Sh s nh
s are the mean magnetic field

generated by the ions and by the holes, respectively.
The use of equation (8) combined with equations (4) and (5) leads to a non-Markovian time

evolution of the macroscopic dynamical variables such as the density and the magnetization.
By assuming an instantaneous spin–spin interaction, the Markov approximation can be easily
recovered. For further details of the justification of the Markovian approximation in a DMS
excited by a laser pulse, we refer the reader to [12].

By using the Dirac identity [17]
∫ t

−∞
e−iε(t−t ′)/h̄ dt ′

= −π h̄δ(ε) − ih̄P 1
ε
, where P denotes

the principal value, the integration of equation (8) with respect to the time leads to

C̃m′,m,s′,s = −iπ
γ

V

∑
m1,m′

1,s1,s′

1,k,k′

δ (1EMF) Jm′

1,m1 · σ s′

1,s1

〈
BA−BtAt

〉
λ

e
i
[
(k′

1−k1)Rη1 +(k′
−k)Rη′

1

]
, (9)

where 1EMF = εk′ − εk + 1EMF.
Since the matrix operators J · σ are real, it is clear from equation (6) that the imaginary part

gives no contribution to the equation of motion.
The many-particle expansion of the correlation function C̃ allows us to express equation (9)

in terms of the single-particle density matrix elements nh
s and nM

m . By using the commutation
rules of the creation and annihilation operators we obtain

〈
BA−BtAt

〉
λ
= δm1,m′δm,m′

1
δs1,s′δs′

1,s

〈(
b†

mbm − b†
m′bm′

)
a†

s as

(
1 − a†

s′as′

)
+ b†

mbm

(
1 − b†

m′bm′

) (
a†

s as − a†
s′as′

)〉
λ
.

Furthermore, as a closure hypothesis, we have assumed that the non-diagonal matrix elements
of the density-like operators a†

s′as and b†
m′bm with respect to the indexes η and k vanish. From

the above approximations and using the definition (4) and equation (9), we get∑
m1

Ws,s,m1,m1 =
2π

h̄N S N M

( γ

V

)2 ∑
s1,m′

1,m1

Jm′

1,m1 · σ s,s1Jm1,m′

1
· σ s1,s

×

∑
k,k′,η

δ (1EMF)
(
5λ

m1,m′

1,s,s1
− 5λ

m′

1,m1,s1,s

)
, (10)
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where

5λ
m1,m′

1,s,s1
=

∑
k,k1,η

〈(
1 − b†

η,m1
bη,m1

)
b†

η,m′

1
bη,m′

1
a†

k,sak,s

(
1 − a†

k1,s1
ak1,s1

)〉
λ
. (11)

A similar expression can be found for
∑

s1
Ws1,s1,m,m in equation (5). By using equation (2), we

recover the fermionic limit of 5, namely

5∞

m1,m′

1,s,s1
= N MnM

m′

1

∑
k,k1

〈
a†

k,sak,s

(
1 − a†

k1,s1
ak1,s1

)〉
∞

. (12)

In order to evaluate the time derivative of nh
s , equation (12) can be solved numerically. In the

following paragraphs, we show that equation (12) may actually be further simplified. According
to the Zener model the ground state of the system can be estimated by taking into account only
the mean-field interaction between the holes and the magnetic ions. The hole gas experiences
a mean magnetic field equal to M and in turn generates a mean field acting on the ions system
equal to S. By converting the sum over k and k1 in equation (12) into the corresponding integral
with respect to the energy variable E = εk , we obtain

5∞

V 2
= N MnM

m′

1
e
−

1EMF
kBT h

∫
fa h ρ(E)ρ(E − 1EMF) dE, (13)

where fa = 〈a†
s as〉∞(1 − 〈a†

s1as1〉∞), h =
1+e[γ s1M+εk ]/kBT h

1+e
[γ s1M+εk1

]/kBT h and ρ denotes the hole density of states.

In the limit γ S � γ M � εk we have

5∞

V 2
' N M N hnM

m′

1

(
2m∗

h̄2

)
3
√

3π 2 N he
−

1EMF
kBT h nh

s

(
1 − nh

s1

)
. (14)

In the next section, we will validate this approximation by comparing the time evolution of
the magnetization obtained by using either the approximate formula (14) or the exact one (12).
Finally, by inserting equation (14) into equation (10), we obtain

dnh
s

dt
= 2ξ N M s

|s|

SM
−1∑

m=−SM

(
SM

− m
) (

SM + m + 1
) (
Z1/2,−1/2

m −Z−1/2,1/2
m+1

)
, (15)

dnM
m

dt
= 2ξ N h

∑
σ=±1

(
SM

− σm + 1
) (

SM + σm
) (
Z−σ/2,σ/2

m −Zσ/2,−σ/2
m−σ

)
, (16)

where

Zs,s′

m = nM
m nh

s

(
1 − nh

s′

)
e−1EMF/kBT h

, (17)

with ξ = 2πγ 2 m∗

h̄3
3
√

3π 2 N h.

4. Spin evolution in DMS

In order to study the time evolution of the mean magnetization of a GaMnAs/GaAs DMS
heterostructure occurring after the interaction with a linearly polarized femtosecond laser pulse,
we have applied our time-dependent model consisting of equations (15) and (16). Based on the
experiment of [9], we consider a sample consisting of a 73 nm Ga0.925Mn0.075As layer deposited
on a GaAs buffer layer and a semi-insulating GaAs substrate. The background hole density
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is chosen to be 1020 cm−3. For details of the chemical composition of the sample we refer
the reader to [9]. We assume that before the laser is turned on, the ion–hole system is at
equilibrium with the phonon bath at the lattice temperature T L, so that the ground state can
be well described by the Zener-type model described in [7]. The laser excitation generates a
non-thermal electron–hole pairs distribution. By means of the Coulomb hole–hole interaction,
the hole distribution undergoes a quasi-instantaneous thermalization (within a few tens of
femtoseconds) towards a Fermi–Dirac distribution with temperature T h and a spin-dependent
chemical potential µh

s [18, 19]. The increase of the overall temperature T h of the hole gas is
determined by assuming that the excess of energy of the hot photo-created particles (which is
estimated as a fraction of the pump pulse energy) is redistributed among the total number of
holes. The photo-created particles are approximately 2% of the background hole density [9].
In particular, we consider an excitation by a monochromatic laser pulse tuned at the energy
El and having a pump fluence Pf. To estimate the energy Eex transferred initially from the
electromagnetic field to the kinetic energy of holes and electrons, following [12], we assume
that the fraction of the laser pulse energy imparted to the holes is 1/4 of the photon energy.
The total injected kinetic energy is thus Eex = N h

ex E ′

lη with E ′

l = El − Eg − (ε1
c + ε1

v) and ε1
c , ε

1
v

are the first eigenvalues of the valence and conduction bands. N h
ex is the density of photo-

created particles and η is the ratio of kinetic energy absorbed by the electron gas, which can
be estimated within the spherical band approximation as η = mhh

‖
/(mc

‖
+ mhh

‖
) [16] with mhh

‖

(mc
‖
) being the effective mass of the heavy hole (electron) in the parallel direction of the sample.

In figure 1, we show the normalized equilibrium ion magnetization M/N M as a function of
the temperature and parameterized by the hole density N h. In the figure, N h

0 indicates the initial
density of holes, and N h

= N h
0 + N h

ex. After the laser excitation, the magnetic impurities strongly
interact with the out-of-equilibrium hole gas by means of the Hpd exchange interaction, which
redistributes the spin polarization from one system to another while conserving the total spin
magnetization. Meanwhile, the itinerant hole spin is efficiently dissipated through spin–orbit
interactions (τSO ≈ 100 fs) and relaxation of the total magnetization can be observed. Short-
time spin relaxation of the holes is therefore an essential ingredient for explaining the observed
time-dependent changes of the magnetization in ferromagnetic semiconductors [4, 12].

By means of a standard relaxation model, we include both the spin–orbit mechanism
(or any other mechanisms leading to the hole-spin relaxation) and the other thermalization
effects, such as the cooling of the kinetic energy of the excited holes driven by the phonons,
and the radiative recombination of the electron–hole pairs. The corresponding equations read
as follows:

∂nh
s

∂t

∣∣∣∣
so

=
nh

s − nh
s

τSO
, (18)

∂ N h

∂t
=

N h
− N h

0

τRR
, (19)

∂T h

∂t
=

T h
− T L

τL
, (20)

where T h(t) and T L are the temperatures of the holes and the lattice, nh
s (n

M
m , T h) is the

self-consistent quasi-static equilibrium hole spin distribution computed from the Zener-type
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Figure 1. Temperature dependence of the normalized equilibrium ion
magnetization for two hole densities. Here N h

ex = 5 × 1019 cm−3.

model of [7], which depends parametrically on the time-dependent ion magnetization M.
The temperature relaxation rate τ−1

L = τ−1
OP + τ−1

AP takes into account both the acoustic phonon
scattering with τAP = 200 ps and the optical phonon scattering with τOP = 1 ps for T h > 50 K
and τOP = ∞ for T h < 50 K [19]. Equation (19) takes into account the radiative recombination
process characterized by a relaxation time τRR = 400 ps [19].

In figure 2, we present the time evolution of the normalized magnetizations, where the
vertical axis corresponds to S̄ = S/N h and the horizontal axis to M̄ = M/N M. In agreement
with the experiment of [9], we consider a regime of small excitation (laser pump fluence
of 1 µJ cm−2) and a lattice temperature of 70 K. The point A represents the initial spin
polarization, which is suddenly shifted (instantaneously in our model) to point B. This is due
to the laser excitation, which abruptly enhances the hole density and consequently changes
the normalization of S̄, so that S̄(0−) =

S(0−)

N h
0

and S̄(0+) =
S(0−)

N h . Our numerical simulations
reveal the presence of different time evolution regimes: (i) 0 < t < 50 fs: during this initial
phase the magnetization evolution is nearly coherent (semi-coherent regime SC in figure 2).
Indeed, since the photoexcited holes experience efficient spin-flip scattering with the localized
Mn magnetic moments, a net spin polarization is transferred from the ion impurities to the
holes leading to a significant increase of the hole spin polarization. Correspondingly, due to
the large difference in densities between the two populations, only a small decrease of the ion
magnetization is observed: (ii) 50 fs < t < 5 ps: the non-equilibrium hole spin polarization is
efficiently dissipated via the spin–orbit coupling, which leads to a net decrease of the total spin
magnetization (see also figure 3). During this ultrafast demagnetization (UD) regime the kinetic
temperature of the excited holes is still high; (iii) 5 ps < t < 350 ps: the hole distribution loses
its energy via carrier-phonon scattering and the hole temperature decreases over the timescale
τL. When the Curie temperature is reached, the holes and ions spins begin to align, which allows
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line) and T L

= 70 K (blue line).

the system to recover a ferromagnetic order. Since the total number of holes relaxes to its initial
value N h

0 over a slower timescale τRR � τL, a ferromagnetic state with an excess of holes can
be reached, thus justifying a transient enhancement of the total magnetization (TE regime); (iv)
350 ps < t < 1.2 ns: finally, the radiative recombination of the electron–hole pairs brings the
system back to its initial configuration (RR regime).

The time evolution of the total magnetization for different lattice temperatures is depicted
in figure 3. We see that the minimum of the total magnetization shifts to shorter times
with increasing lattice temperature, in agreement with experimental findings. In figure 4,
we plot the excursion of the total magnetization for different lattice temperatures: only for
45 K < T L < 78 K an enhancement of the total magnetization may be observed [4].

New Journal of Physics 11 (2009) 073010 (http://www.njp.org/)

http://www.njp.org/


10

10 20 30 40 50 60 70 80

−0.1

−0.05

0

T L (K)

T
ot

al
 M

ag
ne

tiz
at

io
n

(N
or

m
al

iz
ed

 u
ni

ts
)

Figure 4. Minimum (solid line) and maximum (dashed line) of the total
magnetization for different lattice temperatures.
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Figure 5. Time evolution of the total magnetization at T L
= 10 K. Solid line:

exact formula, equation (13); dashed line: approximate formula, equation (14).

Finally, in order to validate the approximation of equation (13), we compare in figure 5 the
time evolution of the total magnetization obtained by using either the approximate formula (14)
or by evaluating numerically the integral of equation (13). As can be clearly seen, good
agreement is obtained, justifying the use of the simplified expressions (15) and (16).

5. Conclusion

In order to describe the strong spin–spin scattering regime observed in diluted magnetic
semiconductors, we have derived a dynamical model that goes beyond the usual mean-field
approximation. This model is based on the pseudo-fermion formalism and on a second-order
many-particle expansion of the p–d exchange interaction, which is performed in terms of the
single-particle density functions. At this level of description, this approach is similar to that
of [12], which was derived following a different perspective. Numerical simulations showed that
our model is able to reproduce qualitatively—and to some extent quantitatively—the long-time
evolution of the total magnetization after laser irradiation, as was seen in recent experiments [9].
The early demagnetization observed in the experiments is explained as the result of a net flow
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of polarization from the ions to the holes, which is subsequently dissipated via spin–orbit
coupling. Thus, the typical demagnetization timescale is mainly determined by the nonlinear
coupling between the ions and holes spins, with a lower bound given by the spin–orbit timescale,
τSO ≈ 100 fs. The demagnetization process cannot be faster than τSO, but can be significantly
slower, depending on the lattice temperature. In addition—and in contrast to [12]—other slower
processes (namely, holes thermalization and radiative recombination) were also included in
the description, so that the global model encompasses timescales going from a few tens of
femtoseconds to hundreds of picoseconds.

Let us stress that our dynamical model is based on the RKKY exchange mechanism, which
may not be sufficient for understanding the ferromagnetism in DMS [20]. Moreover, other
higher-order processes such as double exchange may play a role in the dynamics of DMS [21],
and even in dilute magnetic dielectrics in the absence of free carriers [22].

The methodology developed in this work can be naturally extended to higher orders by
using perturbative field-theoretic techniques. In particular, we plan to investigate third-order
dynamical processes, which have been neglected here but may play an important role in the
regime of higher photoexcitation energy.

Finally, in the present model, only the heavy-hole band contribution to the exchange
interaction was taken into account. The inclusion of a realistic band structure is currently under
study.
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