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The presence of complex hierarchical gravitational structures is one of the main features of the observed
universe. Here, structure formation is studied both for the standard (ΛCDM) cosmological model and for
the Dirac-Milne universe, a matter-antimatter symmetric universe that was recently proposed as an
alternative “coasting” cosmological scenario. One-dimensional numerical simulations reveal the analogies
and differences between the two models. Although structure formation is faster in the Dirac-Milne
universe, both models predict that it ends shortly before the present epoch, at cosmological redshift z ≈ 3

for the Dirac-Milne cosmology, and at z ≈ 0.5 for the ΛCDM universe. The present results suggest that the
matter power spectrum observed by the Sloan Digital Sky Survey might be entirely due to the nonlinear
evolution of matter and antimatter domains of relatively small initial dimensions, of the order of a few tens
of parsecs comoving at cosmological redshift z ¼ 1080.
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I. INTRODUCTION

The standard cosmological model (ΛCDM), which has
emerged in its present form over the last two decades, is
capable of accurately reproducing most cosmological
observations—among others primordial nucleosynthesis,
the cosmic microwave background (CMB) radiation, bar-
yonic acoustic oscillations (BAOs), or type-1a supernovae
(SN1a) luminosity distance. Not all such measurements are
equally compelling, but their combination seems to require
a universe composed of much more than just ordinary
(baryonic) matter. Some tensions have appeared more
recently between the values of the Hubble constant H0

derived from the early or late universe observations [1].
These discrepancies are statistically significant (≈5σ). No
systematic errors have been found yet, although it is too
early to ascertain whether these discrepancies are a glimpse
of some “new physics” ahead [2,3].
Despite its descriptive success, the ΛCDM model is

clearly not a finished theory. Baryonic matter—ordinary

nuclear matter of the standard model of particle physics,
which is routinely observed in particle accelerators and
makes up the world around us—constitutes today less than
5% of the total mass-energy content in the ΛCDM model,
the rest being composed of cold dark matter (CDM, ≈25%)
and dark energy (in the form of a cosmological constant Λ,
≈70%). This is a rather unfortunate situation, which has
stimulated a lot of work, both experimental (searching
experimental evidence for dark matter) and theoretical
(e.g., introduction of new degrees of freedom, modification
of the gravitational force, and relaxing assumptions of the
standard model such as homogeneity at large scales).
Several authors have noted that our universe is very close

to a “coasting” universe, i.e., a universe that neither
decelerates nor accelerates, akin to the one originally
proposed by Edward Arthur Milne [4]. A review of
coasting cosmologies was published recently by Casado
[5]. For example, Sarkar and coworkers have recently
argued that the present SN1a data are still unable to
demonstrate convincingly the acceleration of the universe
expansion rate [6,7]. Further, Blanchard et al. [8] have
shown that cosmic acceleration by all “local” cosmological
probes (redshift z < 3) is not statistically compelling.
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Finally, when a mild evolution of the SN1a luminosity is
allowed, the SN1a data of the Pantheon supernovae sample
[9] show that the Milne universe constitutes a fairly decent
fit to the SN1a data (see for example Fig. 4 of [9]). Also, it
is well known that the age of the ΛCDM universe is nearly
identical to the age of a Milne universe, equal to 1=H0.
In 2012, Benoit-Levy and Chardin [10] proposed an

alternative universe where matter and antimatter are present
in equal amounts and their gravitational interaction is
repulsive, which they named the “Dirac-Milne” (D-M)
universe to highlight its two main features, namely the
presence of antimatter (hence, Dirac) and its coasting
expansion law (Milne). This universe, analogous in its
gravitational behavior to the Dirac electron-hole system,
avoids annihilation between matter and antimatter domains
after cosmological recombination. Although this scenario is
clearly unconventional, it should be noted that there is to
date no direct experimental evidence on the gravitational
behavior of antimatter, while several experiments are being
developed at CERN to measure the acceleration of anti-
hydrogen atoms “free-floating” in the gravity field of the
Earth. The first results of the Gbar [11], ALPHA-g [12],
and AEgIS [13] collaborations are expected within a couple
of years and deviations from perfect matter-antimatter
symmetry will have profound consequences on current
cosmological theories.
With its null total mass, the D-M universe is gravita-

tionally empty on large scales and thus displays a coasting
expansion, i.e., without acceleration nor deceleration. This
behavior leads to dramatically different timescales in the
early phases of the Universe. For example, the quark-
gluon-plasma transition lasts for about one day, instead of a
few microseconds as in the Standard Model, and nucleo-
synthesis lasts about 35 years, compared to the three
minutes in the StandardModel, while recombination occurs
at an age of about 14 million years, compared to the 380
000 years of the ΛCDM model.
Despite these tremendous differences in the initial time-

scales, the D-M universe is remarkably concordant with
only one adjustable parameter, namely H0 [10]. In par-
ticular, its age, equal to 1=H0, is almost identical to the age
of the ΛCDM universe for H0 ≈ 70 km=s, the SN1a
luminosity distance is very close to that of ΛCDM
[10,14], and so is its primordial nucleosynthesis [10,15].
Since the distance to its horizon diverges, it also does not
suffer from the horizon problem, nor does it need primor-
dial inflation to explain the current homogeneity at large
scales. A more complete description of the properties of the
D-M universe can be found in Refs. [10,16].
More recently [17], we developed a theoretical basis

for the D-M model, whereby the unconventional matter-
antimatter gravitational interaction can be accounted for, at
the Newtonian level, by two gravitational potentials that
obey two coupled Poisson’s equations (see Table I). This
model may be viewed as the Newtonian limit of some

bimetric extension of general relativity or, alternatively, as
mentioned above, as the description of the Dirac “electron-
hole” system in a gravitational field.
In the same work, we provided a detailed comparison of

gravitational structure formation in the D-M and Einstein-
de Sitter (EdS: ΩM ¼ 1;ΩΛ ¼ 0) universes, using a local
1D model embedded in a spherically expanding universe.
For both cases, we observed gravitational structure for-
mation, with clusters and subclusters developing from an
almost uniform initial condition. Both models display
power-law behavior in the wave number spectrum of the
matter density in both the linear and nonlinear regimes.
However, there is one crucial difference. Whereas for EdS
the formation of structures continues indefinitely, in the
following we will see that structure formation freezes out
for the Dirac-Milne universe a few billion years after the big
bang, a feature shared with the ΛCDM model.
In the present work, we compare the D-M universe to a

universe with finite positive cosmological constant
(“ΛCDM”), using the same 1D Newtonian approach. It
must be stressed, however, that our “ΛCDM” universe is
essentially nonlinear, in contrast to the standard cosmologi-
cal model, for which the evolution of the power spectrum is
almost entirely linear. This choice was dictated by our
intention to closely compare how the D-M and the nonlinear
“ΛCDM” models evolve from similar initial conditions at
recombination. Our numerical results reveal striking simi-
larities, but also significant differences between the two
cosmologies, with the D-M model predictions appearing to
be compatible with the hierarchical structures observed in
today’s universe.
A short outlineof thepresentwork is as follows: In the next

section, we briefly summarize the essential futures of the
D-M universe. In Sec. III, we define the comoving coor-
dinates used in the numerical code. Some features of the
comoving equations of motion reveal an interesting relation-
ship between the D-M and ΛCDM cosmologies. The results
of the computer simulations are presented in Sec. IV, which
also contains a direct comparison to data from the Sloan
Digital SkySurvey (SDSS).Conclusions are drawn inSec.V.

II. GRAVITATIONAL PROPERTIES OF THE
DIRAC-MILNE UNIVERSE

In the Dirac-Milne universe, whereas matter attracts
matter, all other gravitational interactions are repulsive,

TABLE I. Interactions between matter (þ) and antimatter (−)
particles in the Dirac-Milne universe, from [17].

Type of matter Type of matter Interaction

þ þ Attraction
− − Repulsion
− þ Repulsion
þ − Repulsion
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as is summarized in Table I, reproduced from Ref. [17].
Hence, matter can form gravitational structures, whereas
antimatter, being repelled by everything else, tends to spread
across the universe. Such spread is rather uniform, but not
completely: since matter repels antimatter, the latter is
expelled from matter-dominated regions (galaxies) and
forms a low-density almost homogeneous background dis-
tributed over the underdense regions in between matter’s
structures. As in the analog electron-hole system in a semi-
conductor, the matter and antimatter regions are separated
from each other by a depletion zone that precludes the
occurrence of annihilation events, in accordance with the
observations. A simple analytic model predicts that this
depletion zone occupies ≈50% of the volume of space,
as confirmed by 3D simulations that will be presented
elsewhere.
It must be stressed that the Dirac-Milne scenario, in the

Newtonian limit, cannot be simply described by a combi-
nation of the signs of the inertial and gravitational (active
and passive) masses. Instead, as shown in [17], the Dirac-
Milne model can only be accounted for by two gravitational
potentials that obey two distinct Poisson equations:

Δϕþ ¼ 4πGðρþ − ρ−Þ; ð1Þ

Δϕ− ¼ 4πGð−ρþ − ρ−Þ: ð2Þ

The above model may be seen as the Newtonian limit of a
bimetric gravity model.
In the forthcoming numerical simulations, we will make

the further simplifying hypothesis that antimatter consti-
tutes a low-density background uniformly distributed
everywhere in space. This approximation appears to be
justified for the study of gravitational structure formation,
as overdense regions are very much dominated by matter
anyway. Using this approximation, one can neglect the
evolution of antimatter and replace it with a homogeneous
background that decreases as the inverse of the cube of the
scale factor aðtÞ:

ρ−ðr; tÞ ¼ ρ0=a3;

where ρ0 denotes today’s matter density. In the following,
the subscript “0” will be used systematically to refer to
quantities evaluated at the present time. Then, the Poisson
equation for matter becomes

Δϕ ¼ 4πGðρ − ρ0a−3Þ; ð3Þ

where we have dropped for simplicity the subscript “+”
denoting matter. The dilute repulsive background could be
viewed as a cosmological constant that decreases with time,
the corresponding vacuum energy decreasing as a−3. This
similarity with ΛCDM underpins the observation, further

described in Sec. IV, that structure formation stops around
the same epoch in numerical simulations of both universes.
We further note that the standard cosmological Poisson

equation is

Δϕ ¼ 4πGðρ − ρ̄Þ ¼ 4πGðρ − ρ0a−3Þ; ð4Þ

where ρ̄ is the average matter density, so that the D-M and
ΛCDM models have a similar form for the Poisson
equation for matter. However, in the D-M case ρ̄ ¼ 0
and the negative mass density ρ− plays the role of ρ̄.

III. COMOVING COORDINATES

Let us now consider an expanding distribution of matter
with spherical symmetry. In this case, the gravitational field
has only one component Erðr; tÞ, which depends on time
and on a single spatial variable r. This type of system was
studied extensively in the past [18–26].
In the presence of a finite cosmological constant Λ, the

Newtonian equation of motion for matter particles reads as:

d2r
dt2

¼ Erðr; tÞ þ
c2Λ
3

r; ð5Þ

where Er ¼ −∂rϕ is the gravitational field and c is the
speed of light. The factor 3 comes from the 3 space
dimensions.
We consider an expanding universe with scale factor aðtÞ

and, following [27], we define the generalized “super-
comoving” coordinates (denoted by an overcaret) as:

r ¼ aðtÞr̂; ð6Þ

dt ¼ b2ðtÞdt̂: ð7Þ

Note that we also introduced a scaled time t̂, which defines
a new epoch-dependent “clock.” The velocity transforms as

dr
dt

¼ a
b2

dr̂
dt̂

þ _a r̂; ð8Þ

where a dot stands for differentiation with respect to t.
By defining v≡ dr=dt and v̂≡ dr̂=dt̂, Eq. (8) can be
rewritten as

a
b2

v̂ ¼ v −HðtÞr; ð9Þ

where HðtÞ ¼ _a=a is the Hubble parameter. Therefore,
vpec ≡ av̂=b2 represents the peculiar velocity, i.e., the
velocity fluctuations around the Hubble flow HðtÞr.
Using the transformations of Eqs. (6) and (7), the

comoving equation of motion becomes
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d2r̂
dt̂2

þ 2b2
�
_a
a
−

_b
b

�
dr̂
dt̂

þ b4
ä
a
r̂ ¼ b4

a3
Êr þ

c2Λ
3

b4r̂; ð10Þ

where Êrðr̂; t̂Þ is the scaled gravitational field. As the
density must scale as ρ̂ðr̂; t̂Þ ¼ a3ðtÞρðr; tÞ in order to
preserve the total mass, we scale the gravitational field
as Êrðr̂; t̂Þ ¼ a2ðtÞErðr; tÞ, so that the Poisson equation
remains invariant in the scaled variables.
We choose the same time scaling that was used for the

EdS universe [17], i.e., b4 ¼ a3, so that the coefficient in
front of the gravitational field is time-independent. This
yields:

d2r̂
dt̂2

þ 1

2
a1=2 _a

dr̂
dt̂

þ a2ä r̂ ¼ Êr þ
c2Λ
3

a3r̂: ð11Þ

The above comoving equation of motion can be used for
both the D-M and the ΛCDM cosmologies, by taking the
respective scale factors aðtÞ.

A. Dirac-Milne universe

In the Dirac-Milne cosmology, the cosmological con-
stant vanishes (Λ ¼ 0) and the scale factor aðtÞ is linear in
time (coasting universe):

aðtÞ ¼ t=t0; ð12Þ

where t0 denotes the present epoch. We note that, for the
D-M universe, the age of the universe is exactly equal to
t0 ¼ H−1

0 , where H0 is the Hubble constant at the present
time [10].
For positive-mass particles, the equation of motion (11)

then becomes:

d2r̂
dt̂2

þH0

2
a1=2

dr̂
dt̂

¼ Êr: ð13Þ

Next, we consider a locally planar perturbation embedded
in this expanding universe. In this locally planar system, the
comoving version of Poisson’s equation (3) can be approxi-
mated by its one-dimensional (1D) counterpart (we still use
the notation r̂ for the local comoving coordinate):

∂Êr

∂r̂ ¼ −4πG½ρ̂ðr̂; t̂Þ − ρ0�; ð14Þ

where we recall that ρ0 represents, in comoving coordi-
nates, a uniform background of negative-mass particles.
The numerical results of the D-M universe presented in the
next sections will be based on N-body simulations of the
scaled equation of motion (13) and Poisson’s equation (14).

B. ΛCDM universe

For the ΛCDM universe, the cosmological constant is
nonzero and the scale factor is a solution of the Friedmann
equations (neglecting radiation):

ä ¼ −H2
0

�
ΩM

2

1

a2
−ΩΛa

�
; ð15Þ

_a
a
¼ H0

�
ΩM

a3
þΩΛ

�
1=2

: ð16Þ

where H0 ¼ ð _a=aÞ0. The quantities ΩM and ΩΛ are,
respectively, the densities of matter (both baryonic and
dark) and vacuum normalized to the critical density, with
ΩΛ ¼ Λc2=ð3H2

0Þ. Approximate values [28] in the ΛCDM
model are ΩM ¼ 0.3 and ΩΛ ¼ 0.7, which will be used in
the forthcoming simulations. For a case without radiation,
an analytical solution of the Friedmann equation (16) can
also be obtained, see Appendix.
Inserting the Friedmann equations (15)–(16) into the

equation of motion (11), we obtain

d2r̂
dt̂2

þH0

2
ðΩM þ ΩΛa3Þ1=2

dr̂
dt̂

¼ ω2
J0

3
r̂þ Êr; ð17Þ

where ωJ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

p
is the Jeans’ frequency and we used

the following relation:

H2
0ΩM ¼ 2

3
ω2
J0: ð18Þ

For a homogeneous density, the gravitational field is
Êr ¼ −ðω2

J0=3Þr̂, and the two terms on the right-hand side
of Eq. (17) exactly cancel each other. As in the D-M case,
we assume a locally planar perturbation embedded in this
expanding universe. In this locally planar system, the factor
1=3 can be dropped from the first term on the right-hand
side of Eq. (17) and this term can be incorporated into an
approximate 1D Poisson’s equation

∂Êr

∂r̂ ¼ −4πG½ρ̂ðr̂; t̂Þ − ρ0�: ð19Þ

The 1D equation of motion then becomes

d2r̂
dt̂2

þH0

2
ðΩM þ ΩΛa3Þ1=2

dr̂
dt̂

¼ Êr: ð20Þ

For ΩΛ ¼ 0 and ΩM ¼ 1, we recover the EdS universe
[17]. The ΛCDM simulations presented in the forthcoming
section will be performed in this planar reference frame,
using Eqs. (19) and (20).
Interestingly, the equations ofmotion for theD-Muniverse

[Eq. (13)] and for the ΛCDM universe [Eq. (20)] only differ
in the coefficient of the fictitious friction terms (the respective
Poisson equations are also identical). This friction coefficient
can be written as a function of the scale factor (leaving aside
the prefactor H0=2):
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fD−MðaÞ ¼ a1=2;

fΛCDMðaÞ ¼ ðΩM þ ΩΛa3Þ1=2;
fEdSðaÞ ¼ 1; ð21Þ

wherewe also added the EdS case for comparison. Note that,
for theD-MandΛCDMcosmologies, the friction coefficient
grows with a, which will lead to the freezing of the
gravitational structures before or around the present epoch
(roughly, z ≈ 3 for D-M and z ≈ 0.5 for ΛCDM).
The three cases are represented in Fig. 1. The friction

term is weaker at early times (a ≲ 0.3) for the D-M model
compared to ΛCDM leading to a faster formation of larger
structures in the D-M universe, as will be shown in the
forthcoming simulations. For 0.3≲ a < 1, the situation is
reversed. Interestingly, the integrated coefficient between
the big bang and the present time

f̄ ¼
Z

1

0

fðaÞda;

is almost identical for the D-M universe (f̄ ¼ 0.666) and
the ΛCDM universe (f̄ ¼ 0.676). This is an interesting
indication that, although the two models have very different
past histories, they should lead to a similar universe at the
present time. In particular, they should both stop forming
structures at similar epochs, as will be confirmed by the
forthcoming numerical simulations.

IV. SIMULATION RESULTS

In this section we present the results of numerical
simulations obtained with the Dirac-Milne and ΛCDM
models described in the preceding sections. The simula-
tions were performed with an N-body code [17] that solves
the relevant equations of motion (13) or (20) for N

interacting particles, using a velocity Verlet scheme.
Typical simulations employed N ≈ 2.5 × 105 particles.
To reduce the level of fluctuations, for each case we
performed ensemble averaging over 5 statistically equiv-
alent initial conditions.
As mentioned in the preceding sections, we consider a

3D expanding spherically symmetric universe and then
study planar perturbations in the comoving coordinates.
This reduces the problem to one spatial dimension in the
local comoving coordinate r̂, which will be represented in
the numerical results. In this 1D approximation, the
particles are in fact infinite sheets with uniform surface
mass density. Boundary conditions are taken to be spatially
periodic. More details on the model can be found in
Refs. [17,20–23]. As already stated (see Sec. II), only
matter (positive mass) is evolved in the numerical simu-
lations. Antimatter (negative mass) is approximated by a
uniform background with constant density ρ0 in the
comoving frame. In the present set of simulations, no
attempt is made to simulate the depletion zone between
matter and antimatter.
For both models, the initial condition is set at recombi-

nation, corresponding to redshift z ¼ 1080; note that this
redshift does not correspond to the same cosmological
time in the D-M (≈14 million years) and ΛCDM
(≈380 000 years) universes, see [17]. The initial matter
density is the sum of a spatially uniform term ρ0 and a small
perturbation ρ̃ with the 1D power spectrum P1DðkÞ ¼
jρ̃kj2 ∼ kp, where k is thewave number. Initial power spectra
of this form, withp ∈ ½0; 4�, were used in a number of earlier
works on structure formation [21,25]. In the presentwork,we
takep ¼ 3, which produces a spectrum that is largest at small
wavelengths, and then study the clustering of matter at
increasingly larger scales. The standard 3D power spectrum
PðkÞ can be obtained by setting: P1DðkÞdk ¼ PðkÞ2πk2dk,
yieldingPðkÞ ¼ P1D=ð2πk2Þ. Hence, the initial 3D spectrum
behaves as the standard Harrison-Zeldovich spectrum:
PðkÞ ∼ k. The decrease of PðkÞ at z ¼ 0 for large wave
numbers originates from the fact that the initial 1D spectrum
becomes flat due to statistical noise when 2π=k reaches the
average initial interparticle distance.
For the sake of comparison, the initial spectra are taken

to be statistically identical (same slope) for the D-M and
ΛCDM models. The ensuing evolution is fully nonlinear in
both cases. This is the expected behavior in the D-M
universe, where the density fluctuations are already large at
z ¼ 1080 [10], so that collapse and nonlinear evolution
occur almost immediately. In contrast, in the standard
cosmological model, the evolution of the power spectrum
is almost entirely linear, the nonlinearity bringing only a
relatively minor correction [29]. Here, however, the idea is
to closely compare the two universes starting from the same
initial configuration. Therefore, we choose to focus only on
the nonlinear development of structures even for the
ΛCDM case.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

f(
a)

a

DM
CDM

EdS

FIG. 1. Coefficient fðaÞ of the friction term in the various
equations of motion, see Eq. (21).
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The initial velocities are set using the Zeldovitch
approximation, so that only the growing mode is excited
[21]. The influence of the initial condition for the particle
velocities has been studied by varying the amplitude of the
velocity distributions. For the Dirac-Milne model, the
uncertainty and influence of these initial velocities should
be relatively small, as the initial structures are initiating

their nonlinear evolution almost immediately after the
CMB transition, which results in rapid virialization of
the velocities of the initial structures, effectively decoupled
from the cosmological expansion. The initial velocity
spread for the simulations presented here can be read from
the corresponding figure at the end of this section (Fig. 7).
The evolution is labeled by either the scale factor a or the

cosmological redshift z ¼ ð1 − aÞ=a. In the numerical
code, densities are measured in units of ρ0 and time in
units of ω−1

J0 . Lengths are measured in units of an arbitrary
length scale λ and the gravitational field (an acceleration) is
expressed in units of λω2

J0. In practice, λ is an adjustable
parameter which is chosen here so that the power spectrum
at z ¼ 0 issued from the simulations has a peak at the same
wavelength as the spectrum obtained from observations,
such as the Sloan Digital Sky Survey (SDSS) [30]. Then,
once λ has been fixed, all other normalizations (e.g., for the
particle velocities or the amplitude of the power spectrum)
follow uniquely without any additional assumptions.

1

10

102

103

104

105

110-2 10-1

Dirac-Milne
CDM

FIG. 2. Power spectra at z ¼ 0 for the D-M and ΛCDM
universes.
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10-2
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1 1010-3 10-2 10-1

z=1080.
z=116.
z=24.
z=4.4
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FIG. 3. Evolution of the power spectra for the cases D-M (top
panel) and ΛCDM (bottom panel), for different cosmological
redshifts z. The thick lines correspond to the present epoch
(z ¼ 0). A negative value of z ¼ −0.9 for D-M corresponds to
a ¼ 10 (t ≈ 140 Gy), while a negative value of z ¼ −0.95 for
ΛCDM corresponds to a ¼ 20 (t ≈ 65 Gy).

1
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10-1
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1

10-1

101
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110-3 10-2 10-1 101

a

Dirac-Milne
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FIG. 4. Top panel: wave number kpeak corresponding to the
peak of the power spectra for the Dirac-Milne and ΛCDM
universes as a function of the scale factor aðtÞ. Bottom panel:
corresponding value of the peak power at kpeak. A striking feature
of these simulations is that kpeak evolves in time, describing the
nonlinear evolution in both the D-M and ΛCDMmodels, whereas
in the standard ΛCDM analysis the usual assumption is that the
nonlinear evolution represents only a small correction, while the
peak position is fixed at kpeak ∼ 0.018 hMpc−1 corresponding to
the mode entering the horizon at matter-radiation equality.
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We show the results of two typical simulations, one each
for the D-M and ΛCDM models.
The power spectra at z ¼ 0 for the two cosmologies are

shown synoptically in Fig. 2. As mentioned above, the
horizontal axis has been scaled so that the spectra peak at
0.018 h Mpc−1, where h ¼ H0=ð100 km=s=MpcÞ, as in
the observed SDSS spectrum [30]. The shape of the
contemporary D-M and ΛCDM spectra are virtually
identical, supporting the idea that, although the details of
the evolutions are very different (coasting expansion for
D-M as opposed to a sequence of accelerations and
decelerations for ΛCDM ), the end result at z ¼ 0 is rather
similar. This conclusion is in line with our earlier obser-
vation (see Fig. 1) that, while the respective comoving
equations of motions are different, “averaging” (in a loose
way) between a ¼ 0 and a ¼ 1 produces effectively the
same results. Further, the expected slopes for long (P ∼ k)
and short (P ∼ k−3) wavelengths are correctly recovered by
the Dirac-Milne simulations. This power law behavior in
the nonlinear regime suggests a self-similar matter distri-
bution in each model, pointing to the existence of a robust
fractal dimension [21,31].
The evolution of the power spectra from z ¼ 1080 to

z ≈ −0.9 (corresponding to a ≈ 10) is displayed in Fig. 3.

For both cosmologies, it is clear that structure formation
has stopped at, or slightly earlier than, the present epoch.
For the D-M case (Fig. 3, top panel), the initial spectrum at
z ¼ 1080 peaks around 100 h−1 kpc, when structure for-
mation begins. Then, the evolution proceeds by collecting
larger and larger clusters in a bottom-up fashion. At the
present epoch, the spectrum displays a nonlinear power-law
behavior extending over four decades in wave number
space, with a peak around 50 h−1 Mpc, the formation of the
largest structures being frozen since z ≈ 3 in the D-M
universe. We stress again that the transition between the
P ∼ k and the P ∼ k−3 regimes comes about because of
strong nonlinear effects—whereby clusters of matter coa-
lesce into bigger clusters, then into even bigger clusters,
and so on and so forth—until this process stops shortly
before the present epoch. For D-M, this freezing of
structures is due to the presence of a homogeneous back-
ground of negative mass, which acts as a cosmological
constant that decreases with time, as was mentioned
in Sec. II.
A similar nonlinear build-up of gravitational structures is

also seen in our ΛCDM simulations (Fig. 3, bottom panel),
in contrast with the standard ΛCDM model which is
essentially linear [29]. This is due to our choice of initial
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condition, dictated by our wish to highlight the differences
between D-M and ΛCDM starting from a similar
configuration.
As was already noticed in our earlier work [17], structure

formation is initially faster for the D-M universe. This fact
is even more apparent from the evolution of the peak wave
number of the power spectrum, as shown in Fig. 4, where
we clearly see that structure formation has stopped at a
similar epoch for both universes. The peak power also
grows faster in the D-M universe, and is larger than the
corresponding ΛCDM power during the epochs between
z ≈ 100 and z ¼ 0. This discrepancy might yield a differ-
ence in the predicted abundance of clusters or quasars at
high redshift, which could be tested against observation.
Again, it is important to note that the evolution in time of
the position of the peak for our ΛCDM simulation reflects
the development of structures in the nonlinear regime,
while in the standard ΛCDM analysis, the peak position is
time-independent and fixed by the mode entering the
horizon at matter-radiation equality [29].
Structure formation in comoving space is shown in

Figs. 5 and 6 for the D-M and ΛCDM universes, respec-
tively. Again, in both cases the gravitational structures
freeze, around z ≈ 0.5 (a ≈ 0.67) for ΛCDM and z ≈ 3
(a ≈ 0.25) for D-M. The typical size of the contemporary

structures is around 50 Mpc, in accordance with the power
spectra of Fig. 2. At the same epoch, the peculiar velocities
start decreasing, signalling a local cooling.
Figure 7 shows the “thermal” dispersion of the peculiar

velocities, see Eq. (9), defined as vp;th ≡ hðv −HrÞ2i1=2,
where the average is taken over all the particles. At the
present epoch (a ¼ 1), D-M predicts peculiar velocities of
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the order of 400 km=s, which is comparable with the values
usually reported in the literature [32,33]. In future epochs,
significant cooling can be observed.
Finally, in Fig. 8, we compare the power spectrum

obtained from our own Dirac-Milne simulation (solid
and dashed black curves) with data points from the
SDSS survey (black squares), as well as a best-fit linear
ΛCDM model to these data (red line), both taken from
Ref. [30]. Although the D-M simulated spectrum agrees
relatively well with the data points around the main peak, at
shorter wavelengths it displays significantly less power
(about one order of magnitude) than the SDSS data (note
that, as is apparent from Fig. 2, our nonlinear ΛCDM
spectrum at z ¼ 0 is very similar to the corresponding D-M
one). This is an important issue that will have to be
addressed in future, more sophisticated, simulations. The
most obvious limitations of the present approach are the 1D
nature of the modeling and the absence of baryonic physics
and related feedback, which are fundamental at smaller
scales but probably less important for the position of the
main peak at smaller k (large scales).

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we compared nonlinear structure formation
in the ΛCDM and the Dirac-Milne cosmologies. This is a
follow-up to our previous study comparing the Dirac-Milne
and Einstein-de Sitter universes, where it was shown that
the structure formation in the Einstein-de Sitter universe
never fully stops, this universe being critical and right at the
border of recollapse. The present study highlights the
similarities in the recent (z≲ 5) and contemporary stages
of the D-M and ΛCDM universes: both universes stop their

construction of larger structures at about the same time—a
few billion years after the big bang—and in the case of
ΛCDM approximately at the epoch where the dark energy
component is supposed to become predominant. The
gravitational structures observed around the present epoch
in our simulations are surprisingly similar for the two
models. This is all the more remarkable, as the two
universes have undergone a very different earlier history—
coasting expansion for D-M vs. a sequence of accelerations
and decelerations in ΛCDM.
Further, we have compared the D-M power spectrum

with observational data from the SDSS survey [30].
Although the D-M spectrum agrees relatively well with
the data points around the main peak, it displays signifi-
cantly less power at shorter wavelengths. This discrepancy
may be attributed to the 1D geometry and lack of baryons
physics and feedback effects in our approach. More
complete 3D simulations, currently underway, should be
able to settle this important issue.
It is important to note that the mechanisms of con-

struction of large-scale structures, although similar in their
contemporary stages, are remarkably different in their early
stages. The Dirac-Milne cosmology begins its structure
formation very early (a few tens of millions of years after
the CMB transition) and from relatively small matter pools
(typically 105 solar masses, with domain size ≈10 pc
comoving at z ¼ 1080) [10], directly in a nonlinear regime
with a matter-antimatter density contrast of order unity.
Then, structure formation proceeds as a bottom-up non-
linear construction, with small clusters coalescing into
larger and larger ones, until this process stops near the
present epoch.
In contrast, ΛCDM starts its structure formation from a

nearly homogeneous universe with a linear growing mode
that requires an elusive dark matter component to trigger
the onset of nonlinear collapse and reionization at a much
later stage. In this respect, Dirac-Milne appears to provide a
much more unified approach, starting from a single scale
and building up in a nearly pure bottom-up construction,
with three orders of magnitude of comoving scale growth,
the entire matter power spectrum.
Further, the Dirac-Milne cosmology may provide an

explanation for what appears in ΛCDM as a remarkable
coincidence, since the small oscillation of the BAOs (a few
percent) occurs at a scale where strong clustering and
inhomogeneity is clearly visible at the same 100–150 Mpc
scale. In Dirac-Milne, there is a single scale, resulting from
the inhomogeneities of the matter-antimatter emulsion at
z ≈ 1080, followed by roughly three orders of magnitude of
bottom-up nonlinear growth of this initial scale.
Encouraged by the present study, we will present in a

forthcoming publication the results of a set of 3D simu-
lations using a modified version of the RAMSES simulation
code [34]. There, we shall investigate the impact of the
asymmetry between the geometrical distributions of the

0.01 0.1

1000

10000

100000

SDSS data
CDM linear

Dirac-Milne
Dirac-Milne smooth

P
(k

)
(h

-3
M

pc
3 )

k (h Mpc-1)

FIG. 8. Comparison of power spectra at z ¼ 0. Black squares:
SDSS data points; red line: best fit linear ΛCDM model (from
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triangular window over 10 points.
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matter component, collapsed in planes, filaments and
cluster node structures, and the antimatter clouds, unable
to collapse due to their internal repulsion, and separated
from matter by a depletion zone. These further 3D
simulations may allow us to investigate the origin of the
baryonic acoustic oscillations (BAOs), an issue not
addressed here, which in the Dirac-Milne model have a
much larger value (≈20 Gpc) and play a completely
negligible role in the formation of structures. Indeed, in
the Dirac-Milne universe, all the structures develop from a
single, nonlinear, self-similar process.
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APPENDIX: INTEGRATION OF THE
FRIEDMANN EQUATION

For the D-M universe, the behavior of the scale factor
aðtÞ is known analytically, see Eq. (12). For the ΛCDM
case, one has to solve the Friedmann equation (neglecting
radiation, as was done throughout this work) in order to
obtain aðtÞ. As our equation of motion (20) is written in
comoving coordinates, it is convenient to rewrite the
Friedmann equation (16) using comoving variables. With
the help of Eq. (7), we get:

da
dt̂

¼ H0a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩM þ ΩΛa3

q
: ðA1Þ

Integrating Eq. (A1) yields

Z
a

ai

1

a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛ

ΩM
a03

q da0 ¼
ffiffiffi
2

3

r
ωJ0

Z
t̂

0

dt̂0; ðA2Þ

where ai ¼ 1=ðzi þ 1Þ, with zi ¼ 1080, is the initial value
of the scale factor and we have introduced the Jeans
frequency ωJ0 using Eq. (18). We obtain:

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛaðt̂Þ3=ΩM

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þΩΛaðt̂Þ3=ΩM

p
þ 1

− log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΩΛa3i =ΩM

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þΩΛa3i =ΩM

p
þ 1

¼
ffiffiffi
6

p
ωJ0 t̂; ðA3Þ

which gives

aðt̂Þ ¼
�
4ΩM

ΩΛ

gi expð
ffiffiffi
6

p
ωJ0t̂Þ

ð1 − gi expð
ffiffiffi
6

p
ωJ0 t̂ÞÞ2

�1=3
; ðA4Þ

with

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩΛa3i =ΩM

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þΩΛa3i =ΩM

p
þ 1

: ðA5Þ

Note that Eq. (A3) has a vertical asymptote: when a → ∞,
then t → t∞, where

ωJ0t̂∞ ¼ −
1ffiffiffi
6

p logðgiÞ

With the parameters of the present work, ωJ0t̂∞ ≈ 8.775.
Once the expression of aðt̂Þ is known, it is possible to

integrate Eq. (7) to obtain the relation between the real time
t and the scaled time t̂:

H0t ¼
2

3
ffiffiffiffiffiffiffi
ΩΛ

p log

�
1þ ffiffiffiffi

gi
p

expð ffiffiffiffiffiffiffiffi
3=2

p
ωJ0t̂Þ

1 − ffiffiffiffi
gi

p
expð ffiffiffiffiffiffiffiffi

3=2
p

ωJ0t̂Þ

�
: ðA6Þ

For t̂ ¼ 0, Eq. (A6) gives the initial time ti, corresponding
to the recombination epoch.
If one includes radiation in the model (i.e., ΩR > 0), no

analytical solution can be found, and the Friedmann
equation should be integrated numerically. However, the
difference is minimal, as is shown in Fig. 9, which displays
the evolution of the scale factor for ΩR ¼ 0 and
ΩR ¼ 5 × 10−5, together with the expression for an EdS
universe (a ∼ t2=3).
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