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Bursting events in zonal flow-drift wave turbulence
G. Manfredi
Laboratoire de Physique des Milieux Ionise´s et Applications, CNRS-Universite´ H. Poincaré, BP 239, 54506
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The generation of zonal flows and their interplay with drift wave turbulence is studied numerically
using a model based on the Hasegawa–Mima equation, with an electron response depending only
on the fluctuating part of the electrostatic potential. In regimes dominated by the diamagnetic
velocity, large-amplitude nonlinear oscillations are observed in the time history of the zonal flow
and drift wave spectra. Such oscillations have also recently been detected in toroidal gyrokinetic
simulations, and could be important in determining the transport behavior in experimental devices.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1581284#
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I. INTRODUCTION

Drift waves~DWs! play an important role in the physic
of strongly magnetized plasmas. When unstable, such a
the presence of sufficiently steep temperature gradients,
can give rise to fully developed ‘‘drift’’ turbulence, which i
considered a likely candidate to explain the anomalous tra
port rates observed in present tokamaks. It is widely belie
that ‘‘zonal flows’’ ~ZFs! ~i.e., modes that only depend on th
radial coordinate! are a crucial factor in regulating the non
linear evolution of drift-wave instabilities, such as the io
temperature gradient~ITG! instability, and consequently th
level of turbulent transport. Zonal flows can also have
impact on radially elongated, poloidally localized structur
~‘‘streamers’’!, which are thought to generate large-sca
events ~bursts! in tokamak plasmas1–3 thereby leading to
long-range correlations and possibly nondiffusi
transport.4,5

Several theoretical models, based on the Hasega
Mima equation,6 have been proposed in order to explain t
emergence of ZFs in tokamak plasmas.7–12 The simplest
model involves the modulational instability of a monochr
matic drift wave~the pump!, generating two sidebands and
ZF that finally saturate by depletion of the pump wave.9–12

However, models involving only a small number of wav
cannot describe correctly the broad-band turbulence oc
ring in tokamak experiments and simulations. In particula
distinct feature recently observed in several large-scale
merical simulations is the appearance of ‘‘bursts,’’ i.e., pu
tuated events during which radial transport is considera
enhanced. In ITG turbulence and in resistive balloon
turbulence,2,3,13it has been observed that such bursts occu
times of low zonal flow activity, whereas, conversely, hi
zonal flow activity corresponds to periods of significan
lower transport. This mechanism yields a characteristic
cillatory pattern in the DW-ZF dynamics.

In order to explain this complex behavior, Malkov an
co-workers14 have derived a simplified ‘‘predator–prey’’ sys
tem that mimics the nonlinear interplay of DWs and ZF
2821070-664X/2003/10(7)/2824/7/$20.00
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Although more realistic than previous four-wave models
is, however, still based on a number of crucial assumptio
namely~a! it relies on a Vlasov-type equation for the wav
actions ~weak turbulence! rather than on a first-principle
based turbulence model;~b! rapidly varying and short wave
length scales are averaged over in order to obtain a o
dimensional~radial! equation in wave number space. On t
other hand, the numerical results of Linet al.13 are obtained
from three-dimensional full-torus gyrokinetic simulation
Given the complexity of large codes, such simulations c
follow the dynamics only over a few oscillation periods a
for a small set of relevant parameters. In addition, the nu
ber of physical effects potentially at play is very large, ma
ing it difficult to sort out which of them is the essenti
ingredient. Bursty transport has also been discovered
studied in fluid models of particular instabilities~resistive
ballooning modes and ITG drift waves!,2,3 where it is linked
to the appearance of radially elongated structures known
streamers.

It is useful to attempt to fill the gap between th
predator–prey model and the global gyrokinetic simulatio
using direct drift turbulence simulations based on a simp
and more tractable two-dimensional slab model. The res
from such simulations can be used to verify and strengt
our confidence in the intuitive~but simplified! picture of
Malkov,14 and help to isolate the key model ingredien
which are responsible for these effects in the more reali
~but complex! simulations of Linet al.13

II. MODEL

The model used here is the one adopted by Smolya
et al.7,8 to describe the dynamics of drift waves in the polo
dal plane. It is essentially a Hasegawa–Mima~HM!
equation,15 with an adiabatic electron response modified
that the electron density fluctuation is independent of
flux-surface-averaged part of the electrostatic potential.16 In
the two-dimensional slab geometry used in this paper,x is
the poloidal coordinate andy is the radial coordinate~note
4 © 2003 American Institute of Physics
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2825Phys. Plasmas, Vol. 10, No. 7, July 2003 Bursting events in zonal flow-drift wave turbulence
that this convention is not the one commonly used in fus
theory!. The electrostatic potential can be represented as
sum of a flux-surface averaged valuef̄(y,t) ~the zonal
flows! and a contribution which varies on a flux surfa
f̃(x,y,t) ~the drift waves!, where

f̄~y,t !5E
0

a

f~x,y,t !dx

and wherea is the poloidal slab size. ZFs are defined
modes for whichkx50, and DWs as modes withkxÞ0.

We use dimensionless ‘‘large-scale’’ units, by normal
ing space to the box sizea, time to 1/(vcir*

2 ), and the elec-
tric potential toTe /e. We have definedr* 5rs /a, where
rs5ATemi /eB is the ion thermal Larmor radius evaluated
the electron temperature, andvci5eB/mi is the ion cyclo-
tron frequency. In these units, the modified Hasegawa–M
equation of Ref. 11 can be written as

]w

]t
1$f,w%1b

]f

]x
5F2D, ~1!

wherew5f2f̄2r
*
2 ¹'

2 f is the potential vorticity, and the
Poisson bracket$•,•% represents the convection due to t
E3B flow. F andD are the normalized forcing and dissip
tion terms that will be described shortly. Boundary con
tions are taken to be periodic in both directions, with spa
period equal toa ~which represents a macroscopic leng
scale, such as the minor radius, in the tokamak config
tion!. We have also definedb5a/Ln , whereLn is the char-
acteristic length scale of the plasma density gradient.

The standard HM model15 is formally identical to Eq.
~1!, but with the potential vorticity field defined asw5f
2r

*
2 ¹'

2 f. This reflects the fact that, in the standard H
model, electrons are allowed to thermalizeacrossmagnetic
surfaces; such unphysical behavior is forbidden in the mo
fied HM model.

In order to achieve steady-state turbulence, forcing
dissipation terms should also be implemented. The diss
tion consists of two terms:D5D11D2 . The first affects
both the DW and the ZF components of the potential and
the form D15m1r

*
2 u¹'u2pf: it represents a hyperdiffusio

term as frequently adopted in fluid simulations in order
restrict dissipation to the smallest scales; it reduces to s
dard diffusion forp52. The second term acts only on th
ZFs ~Ref. 17! and can be written asD252m2r

*
2 ¹'

2 f̄. The
constantsm1,2 are dimensionless dissipation coefficients. T
D2 term ensures that large scale ZFs are ultimately dam
Indeed, in toroidal geometry, ZFs are damped by collisi
less transit time magnetic pumping effects.13,18In our case, it
is easy to show, using the above dissipative terms, that
total damping rate for the ZF isGk

ZF5m21m1k2p22 ~plotted
in Fig. 1!, which does not vanish ask→0.

We have adopted a forcing term which is isotropic
wave number space for the DW modes, and has the form
an instability which can be expressed in wave number sp
asFk5g(k)wk . The growth rateg(k) depends only on the
magnitude of the wave number, and is peaked around a g
wave numberk0 ,
Downloaded 19 Jun 2003 to 193.50.41.42. Redistribution subject to AIP
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g~k!5g0expS 2
~k2k0!2

2s2 D , ~2!

whereg0 is the maximum growth rate~corresponding tok0),
ands is the band width. This term mimics an instability suc
as ITG, which normally peaks at wave numbersk0rs of or-
der unity or lower.19 For ZFs, the forcing term is set to zero
as these modes are generally linearly stable. The total lin
rate~growth minus damping! is plotted in Fig. 1 for both ZFs
and DWs, for the case studied in Sec. III A. Note that only
small band of wave numbers are linearly unstable, and
ZFs are more strongly damped than DWs for all values ok.

We also point out that the forcing rateg0 can always be
eliminated by a suitable rescaling transformation. Therefo
our model contains four independent dimensionless par
eters: the thermal Larmor radiusr* , the ratioa/Ln ~related
to the density gradient!, and the normalized viscous coeffi
cients m1 /g0 , m2 /g0 . In addition, one must consider th
shape of the forcing function, which in Eq.~2! is parameter-
ized by a peak wave numberk0 and a bandwidths.

Finally, we note that instability growth rates are assum
to be constant in our model, although in principle they a
sensitive to several parameters, such as the local density
dient Ln

21 . The normalized damping coefficientsm1,2/g0

~which govern the appearance of large oscillations! may
therefore depend on the instability model, and this f
should be borne in mind when interpreting the results p
sented in the next section.

III. RESULTS

Equation~1! is solved numerically using a pseudospe
tral method11 with full dealiasing. The time-stepping is pe
formed with an explicit leapfrog technique, with a predicto
corrector scheme applied at regular intervals~every ;50
time steps!. The overall scheme is second order accurate
time. In all calculations the grid dimensions in thex and y
directions are given byNx5Ny5256 ~after dealiasing!, and
the time step typically varies in the range 0.0025– 0.01.

A. Effect of poloidal flow damping

The parameters of all the runs reported in this paper
summarized in Table I. Here we present results obtained
the following set of dimensionless parameters:r* 50.02, b

FIG. 1. Total linear rate~growth minus dissipation! for the DWs~solid line!
and the ZFs~dashed line!, as a function of the radial wave number. Th
parameters are those specified in Sec. III A, with, in addition,m250.05.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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5a/Ln51, m15231024, p52, g050.15, r* k050.7, and
s51. The ZF damping rate has been varied fromm250 to
m251.0 in order to allow comparison with the results of R
14. At t50, the electrostatic potential is initialized as a ba
of waves with random phases and very low amplitude. In
initial stages of the evolution, DW modes with a positi
growth rate start growing exponentially. When the DW sp
trum has reached a certain amplitude, the ZF modes are
cited and also grow exponentially, with a larger growth ra
with respect to the DWs@Fig. 2~a!#. The observed growth
rate for the DWs isgDW.0.065, which corresponds to th
net rate ~growth minus dissipation! of modes with r* k
50.7 ~see Fig. 1!. For ZFs, we obtain a growth rategZF

.0.13, which is approximately twice the observed D
growth rate. In these runs, the faster-than-exponential gro
reported in Ref. 1 was not observed.

We have found that the observed ZF growth rate is
sensitive to the value of the ZF damping,m2 @Fig. 2~b!#. The

FIG. 2. Early time evolution of the ZF~solid line! and DW ~dashed line!
spectrum~a! for m250, and ~b! for m250.1, 0.25, and 1.0. The straigh
lines correspond to growth ratesg50.13 and 0.065.

TABLE I. Summary of the parameters used in the runs of Secs. III A–III

III A III B III C

r* 0.02 0.02 0.007
b 1.0 0.–0.3–0.8–2. 0.–1.–5.
p 2 2 4
m1 231024 231024 2310212

m2 0.–0.1–0.25–1. 0.05 0.05
g0 0.15 0.15 1.25
r* k0 0.7 0.7 0.7
s 1.0 1.0 1.0
Downloaded 19 Jun 2003 to 193.50.41.42. Redistribution subject to AIP
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fact that gZF.2gDW ~independent of the ZF damping! is
entirely due to the quadratic nature of the nonlinearity. Ea
ZF mode evolves under the action of at least one pair of D
modes, with each coupling forming a triad in wave vec
space and schematically obeying an equation of the type11

dfZF

dt
5K f1f22hfZF , ~3!

wheref1,2(t)5A1,2 exp(gDWt) are two DW modes,h is a
dissipation rate~related to ourm2 coefficient!, and K is a
coupling coefficient. This equation has the general soluti

fZF~ t !5
KA1A2

2gDW1h
exp~2gDWt !1c exp~2ht !, ~4!

wherec is an integration constant. The first term in Eq.~4!
grows to dominate the solution, and determines that the
growth rate is twice that of the DWs independent ofh, en-
tirely consistent with the simulation results.

After saturation of the instability, an oscillating regim
takes place~Fig. 3!. The evolution of the ZF and DW ampli
tudes is plotted in Figs. 3~a!–3~c! for three values of the ZF

FIG. 3. Time evolution of the ZF~solid line! and DW~dashed line! spectra,
for ~a! m250.0, ~b! m250.10, and~c! m250.25. For clarity, the DW spec-
trum in ~a! is magnified by a factor 20.

.
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damping ratem2 . For m250 @Fig. 3~a!# the DW spectrum
displays a narrow peak followed by a sharp decay; the
spectrum peaks with a time lag with respect to the DW, a
then decays much more slowly. Note that the ZFgrowth rate
is maximum when the DW spectrum peaks, whereas the
decay rateis maximum when the ZF spectrum peaks. Th
behavior is close to Malkovet al.’s type ~3! behavior,14

which corresponds to a case of zero ZF damping. In a bro
band simulation such as ours, some dissipation must ne
sarily be present~the total ZF damping rate here isGk

ZF

5m1k2), so that the ZF spectrum still decays, albeit slow
In this regime, even though some DW modes are linea
unstable, they give rise to an extremely low level of stea
state turbulence, as the latter is completely suppressed b
ZFs. This effect is known as the Dimits upshift of the turb
lence threshold.20

Increasing the ZF damping rate tom250.1 yields the
oscillatory behavior shown in Fig. 3~b!, again with a time lag
between the ZF and DW peaks. This behavior is similar
the type ~2! behavior described by Malkovet al.14 ~quasi-
periodic bursting!. No significant decay of the oscillation
was observed by extending the run up to times as longt
51000. When the ZF damping is even stronger@m250.25,
Fig. 3~c!#, both the ZF and DW modes saturate at a roug
constant level, with small fluctuations. By performing oth
simulations, we found that the large amplitude oscillatio
are virtually suppressed form2.0.15. Notice that the switch
between the two behaviors~with and without oscillations! is
very sudden.

The oscillatory behavior was explained by Malko
et al.14 in terms of a ‘‘predator–prey’’ model, where the DW
correspond to the ‘‘prey’’ and the ZFs to the ‘‘predator.’’ I
our system the DWs grow due to the imposed growth ra
and when they attain a sufficient amplitude the ZFs also s
to grow, feeding off the DWs through the nonlinear coupli
term. Then, when the ZFs reach a sufficiently large am
tude, the DWs start to be diminished by the shearing effec
the poloidal rotation associated with the ZFs. The source
ZFs is thus reduced as the DWs diminish~i.e., the predators
‘‘starve’’ !. When the ZFs reach a sufficiently low amplitud
the DWs can begin to grow again, and so the whole cy
repeats. This simple model explains thep/2 phase shift ob-
served in the DW and ZF oscillations.

The ZF saturation amplitude can qualitatively be es
mated by equating the two terms on the right-hand s
~RHS! of Eq. ~3!,

fZF;Kf1f2 /h. ~5!

Naturally, this predicts that the ZF saturation amplitude
duces with increasing dissipation~although their growth rate
stays the same!, and this is clearly observed in the long-tim
results presented in Fig. 3.

Figure 4 shows the DW isotropic potential spectrum
the run withm250.1 at two different times, correspondin
respectively to a peak and a depression in the DW evolu
of Fig. 3~b!. We notice that the spectrum is relatively broa
and rather flat for low wave numbers. A significant numb
of DW modes are therefore excited.
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In the standard HM model, cross-field electron flow
arising from the adiabatic electron response suppress
growth of ZF modes. Such electron flows are unphysical,
are not present in the modified HM model. However, if t
ZF damping rate is very large, the ZFs should be suppres
very efficiently even in the modified HM model. In that cas
we should expect the dynamics to approach that of the s
dard HM equation. In order to verify this fact, we have pe
formed a simulation withm251 and compared it with a
standard HM case~Fig. 5!. As expected, the level of satura
tion of the DW is very similar in the two runs@Fig. 5~a!#, and
much larger than that of the ZF. The evolution of the ZFs
shown in Fig. 5~b! on a logarithmic scale; for the standa
HM run, the zonal flows also grow exponentially with th

FIG. 4. DW spectrum at two different times corresponding to a peakt
5384) and a depression (t5360) in the DW evolution of Fig. 3~b!.

FIG. 5. Time evolution~a! of the DWs and~b! of the ZFs. The standard HM
results are presented as dashed lines and the modified HM results witm2

51 as solid lines. The straight line in~b! corresponds to a growth rateg
50.13.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 6. Time evolution of the ZF~solid line! and DW~dashed line! spectra~Sec. III B!, ~a! for b50, ~b! for b50.6, ~c! for b50.8, and~d! for b52.0.

FIG. 7. Isotropic DW spectrum of the linear diamagnetic term~solid line! and the nonlinear term~dashed line!, for ~a! b50.1, ~b! b50.6, ~c! b50.8, and
~d! b52.0.
Downloaded 19 Jun 2003 to 193.50.41.42. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2829Phys. Plasmas, Vol. 10, No. 7, July 2003 Bursting events in zonal flow-drift wave turbulence
same rate (gZF.0.13) as for the modified HM equation
which is consistent with the previous discussion show
that gZF52gDW independently of all other parameters. O
the other hand, the ZF saturation level does depend on
constantK @see Eq.~5!#, which couples nonlinearly wave
vectorsk1 andk2 to generate wavevectorkZF . This coupling
constant can be written as11

K5
r
*
2 ~k1

22k2
2!

a1r
*
2 kZF

2
k13k2•ez , ~6!

wherea51 for the standard HM equation anda50 for the
modified HM equation. Asr

*
2 kZF

2 is generally small for ZFs,
the coupling constant turns out to be substantially larger
the modified HM model, and this is indeed the reason w
ZFs can reach such a large amplitude in that case.

B. Effect of the linear diamagnetic term

In order to assess whether the observed bursts pers
a regime of turbulence dominated by nonlinear effects,
have varied the ratiob[a/Ln , which determines the relativ
strength of the linear diamagnetic term compared to the n
linearity. The results forb50 ~flat density profile!, 0.3, 0.8,
and 2.0 are presented in Fig. 6. For this set of runs, the
damping has been set tom250.05, whereas all other param
eters are the same as in Sec. III A~see also Table I for a
summary of all parameters!.

It appears that a smallb is very effective in suppressin
the large-amplitude oscillations, which are observed only
b50.8 or higher. The period of the oscillations increas
slightly with b @Figs. 6~c!–6~d!#. We also notice that the
overall level of turbulence increases withb. This is due to
the fact that a large diamagnetic term reduces the impac
the nonlinear term by decorrelating the phases of nonline
interacting modes. Therefore, the energy injected by the f
ing term can pile up for a longer time before being tran
ferred to other modes.21

The isotropic spectra of the linear diamagnetic term a
the nonlinear term of Eq.~1! ~i.e., ibkxfk and the Poisson
bracket, respectively! are plotted in Fig. 7. For all cases e
cept b50.1, the linear term dominates for wave numbe
kr* ,1. We can conclude that the large-amplitude osci
tions only appear when the linear term is dominant, althou
the actual threshold may not be easy to determine. For
stance, the caseb50.6 still gives rise to no oscillations de
spite being predominantly linear. Finally, we also point o
that ZF production is always intrinsically nonlinear in th
model, as the only ZF source term arises through nonlin
coupling of DWs, and the linear ZF term involving the di
magnetic frequency is always zero.

C. Effect of diamagnetic term at lower r*
Finally, we consider a case where the normalized Larm

radius is smaller:r* 50.007, while keeping the same forcin
wave numberr* k050.7. The grid size remainsNx5Ny

5256, so that the forcing wave number is now closer to
maximum wave number allowed (r* kmax50.89). Therefore,
in order to limit the dissipation to scales smaller than
Downloaded 19 Jun 2003 to 193.50.41.42. Redistribution subject to AIP
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forcing wavelength, we use hyperdiffusion withp54 and
m152310212. Other parameters are given in Table I.

Three runs with different values of the density gradie
b5a/Ln were performed. Figure 8 shows that the larg
amplitude oscillations only appear whenb is sufficiently
large (b>5), i.e., when the linear diamagnetic term is dom
nant. The pattern observed in the previous sets of simulat
is thus recovered at lower values of the normalized Larm
radius.

IV. CONCLUSION

We have demonstrated that large oscillations in the Z
can be generated in the simplest nontrivial model of d
wave turbulence, namely a modified Hasegawa–Mima eq
tion. These oscillations appear when the linear diamagn
term ~proportional to the density gradient! dominates over

FIG. 8. Time evolution of the ZF~solid line! and DW~dashed line! spectra
~Sec. III C!, for r* 50.007 and~a! b50, ~b! b51.0, and~c! b55.0. For
clarity, the DW spectrum in~c! is magnified by a factor 2.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the nonlinearity. In the opposite case, both ZFs and D
saturate at a roughly constant level, with no oscillatio
Since they are observed in our 2D slab model, such osc
tions cannot be due to toroidal, three-dimensional, or kin
effects. The key ingredient appears to lie in the modifi
adiabatic electron response, which triggers a significant
excitation, as was previously suggested by the analysis
four-wave model.11 Indeed, the oscillations were not ob
served in the standard HM model.

The analysis of the early stages of the simulations
vealed that the ZFs grow exponentially with a rate that
twice that of the DWs, independently of other paramete
This fact can be justified by means of a simple model eq
tion, and is due to the quadratic nature of the nonlinear
We have also found that, in the standard HM model, Z
saturate at a much lower level compared to the modified H
This can also be explained in part with a simple argume
showing that the ZF saturation level depends directly on
nonlinear coupling coefficient~which is much larger for the
modified HM!, and inversely on the dissipation rate.

In summary, we have shown that generation of lar
scale structures such as ZFs can be expected even fo
simplest model of drift turbulence. As the shearing due
ZFs is known to control the evolution of large-scale rad
events,1,2 the observed oscillatory behavior may be importa
in generating bursty, nondiffusive transport in experimen
devices.
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