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Echo phenomena occurring in various physical systems are investigated, and analytical results are checked
against computer experiments. It is found that Coulomb self-consistent interactions reduce the amplitude of the
echo. Proof is given of the possibility of refocusing an initially localized packet by periodically kicking the
particles, and the relation between this behavior and chaotic diffusion is discussed. Quantum echoes are
investigated via simulations of the Wigner equation in the case of an anharmonic oscillator. It is shown that
quantum effects allow for the appearance of linear echoes. The reversibility properties of classical and quantum
many-particle systems are discussed. [S1063-651X(96)09206-9]
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I. INTRODUCTION

Although microscopic physical laws are symmetric in
time, and therefore reversible in principle, macroscopic sys-
tems generally display an irreversible behavior (see, for ex-
ample, Lebowitz [1] and references therein). As pointed out
by Lebowitz, two ingredients are necessary to observe irre-
versibility. The first one is the fantastically large number of
degrees of freedom contained in a macroscopic system com-
pared to a microscopic one. The second ingredient is related
to the observer who, for practical reasons, can only measure
macroscopic, averaged quantities, such as density, tempera-
ture or pressure. In this work, we make use of several micro-
scopical physical models, all of which are time reversal in-
variant (except for one case), and show how ‘‘apparent’
irreversibility can rise when the two conditions mentioned
above are fulfilled. We call this irreversibility ‘‘apparent’’
because the detailed, microscopic description is still revers-
ible in principle, and there is no loss of information during
the evolution. However, this microscopic information is not
easily accessible: for example, it may be contained in the
highly intricate structure of the phase space distribution
function. Thus, in practice, for an observer measuring mac-
roscopic quantities, the system displays an effectively irre-
versible behavior.

If one reverses the velocities of all the particles contained
in the physical system, the initial condition will be recovered
exactly. This is of course due to the fact that the underlying
dynamical laws are time reversal invariant. However, veloc-
ity reversal is a microscopic operation, very sensitive to any
perturbation, which can be performed with utmost difficulty
in laboratory experiments (and even in computer simula-
tions, given the finite number of digits available). This kind
of microscopic reversibility has indeed been observed in
very refined spin echo experiments [2]. A more interesting
situation arises when one can induce reversible behavior by
means of a macroscopic operation, although such a revers-
ibility will generally be imperfect. Since most practical op-
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erations carried out in laboratory experiments involve a large
number of particles, macroscopic reversibility should be, in
principle, more easily testable than microscopic velocity re-
versal. This is the case, for example, of plasma wave echoes,
first discovered theoretically by O’Neil and Gould [3], and
subsequently observed in the laboratory [4].

O’Neil and Gould work out a perturbative theory of
plasma wave echoes, which, like most perturbative ap-
proaches, soon becomes complicated, and of difficult physi-
cal interpretation: one of the aims of our paper is to provide
some explicit numerical solutions, which may help our intu-
ition and give more insight into the analytical treatment. In
particular, O’Neil and Gould show that the echo still appears
when there is no electrostatic interaction between the par-
ticles of the plasma. However, the effect of the self-
consistent field on the echo is not evident from their work:
we investigate this point in detail by means of numerical
simulations. These computer experiments are carried out
with a Vlasov Eulerian code [5,6], which has proven to dis-
play a very low level of noise compared to particle-in-cell
codes.

In a second group of simulations we neglect the self-
consistent interaction between the particles, which therefore
can travel freely and are only subjected to external fields. In
this case, a different initial condition is used, in which all
particles are spatially concentrated in a region of very small
size compared to the total box. Some interesting phenomena
then arise, and we show that it is possible to prevent phase
space filamentation by periodically applying a sinusoidal
pulse. For these simulations, the integration of particle tra-
jectories is exact (apart from round-off errors), therefore we
adopt a Lagrangian (particle) code instead of an Eulerian
one.

The last part of the paper is devoted to the investigation of
quantum echoes. The Wigner picture of quantum mechanics
[7,8] constitutes a valuable model, since it is based on a
phase space representation, similar to the classical one. A
kinetic, Eulerian code, recently developed by Suh and co-
workers [9,10] has proven to be an excellent numerical tool.
Here, we investigate the effect of a nonzero Planck constant
on the formation of a linear echo for noninteracting particles
confined by a prescribed anharmonic potential.
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[I. SMULATION OF PLASMA WAVE ECHOES

The physical system under consideration is a one-
dimensional, collisionless, electrostatic plasma, formed of
mobile electrons and a homogeneous, motionless, neutraliz-
ing background. This system is described by the Vlasov-
Poisson equations, which, in dimensionless variables, read as

of of

of JE
Yty —+E—=
at Y ox

au_o’ &x_ffdv 1. 1)
Note that Egs. (1) do not contain any manifestly irreversible
term (such as, for example, the collision integral in the Bolt-
zmann equation for gas dynamics). In Egs. (1) space is mea-
sured in units of the Debye length Ap= (&, T/ne?)¥?, and a
time in units of the inverse of the plasma frequency
w,=(ne?/egm)Y2 Here n is the plasma density, e and m
are, respectively, the electron charge and mass, and the tem-
perature T is measured in energy units. The Debye length
and the inverse plasma frequency represent the typical space
and time scales in a collisionless plasma. In particular, col-
lective oscillations have a frequency close to w,, and, for
small temperatures or large wavelengths, obey the following
dispersion relation: w?=wj+3Vgk?, where Vy,=(T/m)¥2
is the thermal velocity. One of the most interesting features
of Egs. (1), first realized by Landau, is that density modula-
tions are exponentially damped, with a damping rate
y.(K), even if the system does not contain any form of
“truly’’ irreversible, collisional dissipation [11]. This colli-
sionless damping is essentially a phase mixing phenomenon.
In our case, the initial state is spatially homogeneous, and
Maxwellian in velocity space, with thermal velocity Vy,= 1.
At time t=0, we excite an external field in the plasma, of the
form

E]_: alcOS(klx) 5(1:) (2)

This field induces a velocity modulation, and right after, a
density modulation, which eventually decays by Landau
damping. Note, however, that the distribution function
f(x,v,t) never loses memory of the initial pulse, athough
the spatial density does, and so does, of course, the electric
field. Thisis reminiscent of the two ingredients for irrevers-
ibility: in fact (a) the number of degrees of freedom in the
Vlasov representation is virtually infinite, and, (b) the den-
sity and the electric field are macroscopic, averaged quanti-
ties (unlike the distribution function). After the first wave has
damped away, we launch a second wave, at timet=7:

E2: aZCOS(kzx) 5(t_ T). (3)

The density modulation induced by this second pulse aso
decays away: however, after a time much longer than the
inverse Landau damping rate of the first two pulses, a third
wave appears (the echo) as a modulation of the density at the
wave number Kqpo=K,—K;. The echo is due to a nonlinear
interaction between the two pulses, and is essentially a phe-
nomenon of beating between two waves.

Before turning to the numerical simulations, we show that
the echo time can be obtained by a very simple argument.
The first pulse (2) launches a wave with a phase
¢1=kx+Kkyvt; the second pulse (3) does the same with
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FIG. 1. Evolution of the electrostatic energy with time (ex-
pressed respectively in units of mu§, and @, *). The echo appears at
t=60w, .

p

o=k x+kou(t—7). Taking the phase difference ¢,
— ¢, and requiring it to be stationary with respect to v, one
finds

0
%(¢2_ $1) = (ky—ky)t—k,7=0,

which gives the echo time

ko
techoz k2— kl 7. (4)

The numerical simulation of plasma echoes is a difficult
problem, and examples of it do not abound in the literature
[12,13]. In fact, the numerical method must be able to keep
the information contained in the highly filamented distribu-
tion function until the time of the echo. In our simulations
we make use of a kinetic, Eulerian code [5,6], which solves
the Vlasov equation by direct discretization of the phase
space. Such a code displays a very low noise level, even in
zones of low density, and is thus to be preferred to usual
particle-in-cell codes. As an example, we report the results of
a simulation with the following physical parameters:
kl)\D:O.483, kz)\D:0966, pr: 30, a1= a2=0.1Vth.
Note that, in our units, the «’s represent the velocity modu-
lation due to the pulses expressed in units of thermal veloc-
ity. Figure 1 shows the electrostatic energy as a function of
time: the damping of the two pulses and the subsequent echo
are accurately reproduced. The echo wave number is indeed
k,—k, as predicted by the theory. The Landau damping rate
for the first pulse is y, =0.4w, [11], and even larger for the
second pulse. The two pulses and the subsequent echo are
thus well separated in time.

The plasma echo is chiefly a ballistic phenomenon and it
is important to understand the effect of collective plasma
oscillations on its appearance. In order to address this point,
we perform a set of numerical simulations in which we let
the Debye length vary. For noninteracting particles Ap=o0
and, by decreasing the value of A\, we switch on collective
effects. However, both the thermal velocity and the total
length of the plasma L are kept fixed, and since
wp=N\p Wy, the plasma frequency also changes. Therefore,
we no more measure time and space in unit of w, and A\p,
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FIG. 2. Fourier component of the spatial density at wave num-
ber Keno=ko—ky (arbitrary units for both axes). The normalized
Debye length isLA5 =0 (a); LA5*=0.1 (b); LAp*=0.15 (c); and
LApt=0.2 (d).

but rather in “‘ballistic’’ units related to L for space, and
L/Vy, for time. Finadly, the amplitude of the two pulses is
rescaled in order to have the same velocity modulation; i.e.,
the «’s are kept constant.

Although the previous description might seem compli-
cated, we are just performing an experiment in which we
progressively increase the particle charge g, while keeping
al other parameters constant. Thus, the Debye length and the
plasma frequency scale as )\Docqfl,wp:xq. We present a
group of typica simulations for which we take
CYl:Ct’Z:0.0SVth, k0:27T/L:27T, k1:2k0, k2:3k0, and
LApt equals, respectively, 0, 0.1, 0.15, and 0.2 in Figs.
2(a)—2(d). These figures show the rea part of the Fourier
component of the electron density at the wave number
Kecho= K2 =Ky .

The echo amplitude is found to be maximum for nonin-
teracting particles. When A p<<cc an oscillatory behavior ap-
pears, due of course to the plasma collective effects. At the
same time, the amplitude decreases, and for LA5'=0.2
(kiAp=0.628) the echo has virtually disappeared. Our nu-
merical results thus prove that collective interactions can ef-
fectively destroy the echo. This phenomenon was partly rec-
ognized by Coste and Peyraud [14], although their
complicated analytical treatment could not give a qualitative
picture of this phenomenon. Of course, collisiona effects or
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FIG. 3. Phase space representation of 2000 particles (a) at
t=0; (b) after filamentation has occurred and before the application
of the pulse at t=T"; (c) at the time of the echo t=2T. Space,
time, and velocity are expressed, respectively, in unitsof L, T, and
L/T.

any other truly irreversible phenomena are a so very efficient
in preventing the formation of the echo, inasmuch as they
erase the small scale correlations of the distribution function.
This point has been addressed in the origina paper by
O'Neil and Gould [3] for the case of Coulomb collisions:
their estimate is that Coulomb collisions are important when
v90w,2)r3> 1, where vy, is the collision frequency at 90 de-
grees. Some numerical simulations illustrating the effect of a
truly irreversible term will be presented in the next section.

1. PARTICLE FOCUSING

Having proven that the echo is mainly due to ballistic
motion, we now completely disregard the self-consistent
fields. In this case, the particle tragjectories can be integrated
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exactly, and a Lagrangian code is more convenient. Further-
more, we want to investigate the evolution of an initial con-
dition where all particles are concentrated in a small region
compared to the total length L of the domain. More precisely
the particles are randomly distributed over a rectangle
X1 <X<Xp, =V, ,<V<V,,, with x;=L/4, x,—x,=0.04L,
V,=5LT ! (the unit of time T is defined below). The
boundary conditions in x are again periodic. Contrary to our
previous experiments, we do not apply a pulse at t=0. In
fact, the purpose of this first pulse was to initially create an
inhomogeneity in the density, which is now aready built in
the S-like initial condition. After atime T, we apply a sinu-
soidal pulse of the form & sin(27mx/L), where ¢ is the
velocity modulation. The evolution of N,=2000 particles is
illustrated in Fig. 3: it isseen that at t=2T theinitial stateis
partially reconstructed. By counting the number of particles
that fall again in the region x;<x<x,, we find it to be
roughly 35% of the total number of particles, while a uni-
form distribution (which would be expected when filamenta-
tion in phase space has occurred) would give of course
(X5—x41)/L=4%. Note that, in this group of simulations, we
normalize time to T and length to L, and al figure axes are
expressed in normalized units. In this particular case the am-
plitude and wave number of the perturbation are
e=0.175LT ! and m=2.

If the particles are initially located around x; (with a small
dispersion Ax;<<L), we have found ‘‘empirically’’ that the
final position x; is given by the formula (for m=2)

X=—x+L/2. (5)

This expression isinvariant when x; and x; are interchanged.
We have found that the echo amplitude is maximum when
Xj=X;=Xq, which gives xo=L/4. Thiswas the choice of the
previous example.

In order to give a theoretical basis to the ‘*empirical’’
formula (5), we adopt the same Lagrangian approach of
O’'Neil and Gould [3]. The trgjectory of asingle particle with
initial conditions (Xq,v) is given by the following expres-
sion, valid for t>T:

X(t,XO,Uo):X0+tl)0+S(t_T)Sin[km(X+UoT)], (6)

where k,=27m/L. Liouwville's theorem states that the dis-
tribution function f and the volume element dxdv are both
conserved along a trajectory. Consequently

f(X,U,t)dX dl): f(Xo,Uo,O)dXOdvo.

Now, assuming the initial distribution to be f(xg,v¢,0)
=g(vo) (Xp—X;), we can calculate the nth component of
the Fourier transform of the spatial density at time t:

1
pnztf f f(x,v,t)exp(—ik,x)dx dv.

With the help of Liouville's theorem, we obtain
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In deriving Eq. (7) we have made use of the identity
exp(—iozsjms?)zsz,oo (—1)83(a)exp(ish),

where the J; are Bessal functions of the first kind.

If the support of the function g(v) in velocity space is
much larger than LT 2, the last integral in Eq. (7) can be
well approximated by a & function §(nt—msT). Since s
must be an integer number, the time t must satisfy

=integer. (8)

3|>

t
=7

By performing the sum in Eq. (7), and remembering that
(—1)°=exp(xims), we obtain the following result:

1 _ t t L
pn=EJq[kns(t—T)]exp —Ikn (1—? Xii?% .
©)

If we replaced the Bessel function J, with a constant, Ed. (9)
would be the Fourier transform of a é function centered at
the point

t t L
Xf:<1_—)xii—_. (10)

Substituting the parameters of our previous simulations, i.e.,
t=2T and m=2, Eq. (10) turns out to be identical to Eq. (5)
[in this case, the second term on the right-hand side of Eq.
(10) becomes =L /2, and, because of periodicity, both signs
give the same contribution]. Of course, with different values
of t and m, it is possible to recover a greater variety of
echoes, but, for the sake of simplicity, we focus our study on
the case t=2T and m=2.

It is clear that, for the relation (10) to be approximately
true, the Bessel function Jg[K,e(t—T)] must be a sowly
decreasing function of n, since in this case the Fourier trans-
form of p,, is highly peaked around X; . In order to investi-
gate this point, we need to study the behavior of the function
Jn(Cn) for n>1 [15]. It turns out that three asymptotic ex-
pressions hold, respectively, for 0<C<1, C>1, and
C=1:

B exp[n(tanha— «a)]

\V2mntanha

Jn(nsecha) (a>0), (11a)
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FIG. 4. Phase space representation at t=2T for the case
£=0.75LT L. The echo appears at x;=0.75L, as predicted by the
theory. Space, time, and velocity are expressed, respectively, in
unitsof L, T, and L/T.

Jn(nsecB) = \/2/(7rntan,8)cos( ntanB—nB— g)

(0<3<g), (11b)

Jn(n)ocn™ ¥, (11c)

Restricting ourselves to the case of our previous simulation,
the Bessdl function we have to consider is J,(k,eT), and
therefore C=2meTL 1. When 0<C<1, Eq. (11a) applies
and a>1: the Fourier coefficient p,, therefore falls rapidly
(exponentially) with n, and the particle density p(x) will
cover amost uniformly the interval [O,L]. This is natural,
since the echo must disappear for e —0. For « approaching
zero, the exponential in Eq. (11a) becomes amost constant
and the n~ Y2 dependence dominates: this resultsin more and
more particles accumulating at x; a the time t=2T. The
value =0 (corresponding to C=1) is singular, and in this
case Eqg. (11c) applies. The maximum echo amplitude is to
be expected nearby the value C=1, since the n~ Y depen-
dence is the slowest one compatible with the expressions
(12). In our variables this means e=L/2#T, and, with the
units adopted in the simulation (L=T=1), &=127w
~0.16, very close to the value £ =0.175, which was found
“‘empirically’’ by computer experiments.

When C>1, Eq. (11b) applies, and the Fourier coefficient
pn behaves like n~2, its dispersion in n decreasing with
increasing C=secB, so that for C—oo the density p(x)
again becomes uniform. Furthermore, the cosinein Eq. (11b)
should split the echo in two, and shift its position of a quan-
tity Ax;= * (tanB— B)L/21r, where secB=2meTL L. This
point has been verified by numerical ssimulations taking a
value of £=0.75 such as Ax;==*L/2. In this case, the two
parts of the echo will recombine at x;=x;+L/2=0.75L
(Fig. 4). This last point could not be guessed on simple
grounds, and reassures us of the correctness of our theory.

The amplitude A of the echo can be estimated more pre-
cisely. We integrate the density, Eq. (9), in the vicinity of
X; over an interval of width equal to 2A:
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Amplitude

2me

FIG. 5. Amplitude of the echo as a function of the velocity
modulation 27re. The solid curve is computed from the theoretical
result Eq. (12) in the case m=2,t=2T. The dots are results from
computer experiments. Space, time, and velocity are expressed, re-
spectively, in unitsof L, T, and L/T.

Xg+A 20 o 4
AEJ p(x)dx:T+Z Jolkne(t=T) T sin(kyA),
Xf—A n=1 n
(12)

where q is given by Eq. (8). In deriving Eg. (12), use has
been made of Egs. (8)—(10), and of the relation
J_(—x)=J,(x), and the mode n=0 has been treated sepa-
rately. Note that the first term of this series gives the fraction
of particles to be expected in the interval [x;—A,X;+A] in
the case of a uniform density, i.e., 2A/L. The series of Eq.
(12) is convergent and its sum can be computed numerically.
In order to compare with a computer experiment, we have
performed a simulation with m=2,t=2T,27re=1.25LT" 1,
with zero spatial dispersion in the initial condition (al par-
ticles areinitially located at x; =0.25L =x;) and a larger dis-
persion in velocity space (V,=19LT !). We obtain
A=0.436 for the computer experiment, and A=0.431 by
summing the series of Eq. (12). The small error comes from
the finite number of particles used and from the finite disper-
sion of the initial condition in velocity space. The function
A(2me) isplotted in Fig. 5 and displays a number of relative
maxima. The first one is located at 2we=1. The other
maxima are located at points for which tanB— B8=2mwp, for
p=123, ..., and secB=2mwe, according to Eq. (11b). At
these values of &, the cosine in Eq. (11b) shifts the echo
position of a multiple of the box length L. The theoretical
curve of Fig. 5 has been checked against various computer
experiments, with good agreement between the two.

When most of the particles have focused around x; = x; at
the time t=2T, the system is in a state similar to its initial
condition. Thus, if we let it evolve, and then apply another
pulse at t=3T, a new focusing will take place at t=4T.
Generally spesking, if we apply apulse at t=(21—-1)T, for
1=1,23, ..., the particles will focus around x; for all times
t=2IT. Computer experiments confirm this behavior: the
number of particles faling in the initial region around
X;=0.25L [shown in Fig. 6(a)] strongly peaks at t=2IT.
More interestingly, there is no sign of decaying and, after a
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FIG. 6. (a) Fraction of the particles with position in the initial
interval x,;<<x<X, as a function of time. A pulse is applied at
t=T,3T,5T, .... The density pesks at times t=2T,4T,6T, ....
(b) Phase space representation at t=20T. The periodic pulses sup-
press filamentation and the echo is dtill clearly visible after ten
pulses. Space, time, and velocity are expressed respectively in units
of L, T, and L/T.

large number of pulses, peaks of 30% are still observed. At
t=20T (after ten pulses) the echo is still clearly visible [Fig.
6(b)]. This result is surprising, since one would expect a
smaller and smaller fraction of the particles participating in
the echo. It proves that the background particles, although
spread over the entire box in an apparently random way, still
keep memory of their initial condition.

Now, we note that our previous prescription defines a
well-known Hamiltonian dynamical system, the ‘‘periodi-
caly kicked rotor’’ [16] with a period 7=2T. The equations
of motion for the kicked rotor are

o]

dx dv )
Fid a=82 S(t—17)sin(27mx/L).
=1

It is aso known that such a system becomes chaotic when
ermL~1>c, where ¢ is the velocity modulation due to the
pulse, and c is a number of order unity. When this inequality
is satisfied, the particles diffuse in velocity space with a dif-
fusion coefficient D=m?e?7" 1. Our simulations have
proven that the echo amplitudes reaches its maximum value
when e rmL~!=c, i.e, at the borderline with the chaotic
regime. Therefore, we have shown the existence, for a very
simple dynamical system, of an intermediate regime between
the integrable and the chaotic ones. In the integrable regime

(b)
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FIG. 7. Phase space representation of 2000 particles for the
same case of Fig. 3. Now the particle velocity has been modified of
a random quantity de at t=T. () Se;x=0.3¢;(b) & =3¢
Space, time, and velocity are expressed, respectively, in units of
L, T, and L/T.

(e TmL ~1< 1) the trajectories are periodic and each particle
keeps an approximately invariant velocity: al spatia inho-
mogeneities in the initial condition are damped away by
phase mixing. In the chaotic regime (e rmL~*>1), the par-
ticles experience a ‘‘random’’ sequence of kicks, each one
either increasing or reducing its velocity, which resultsin a
random walk in velocity space. The intermediate regime
(eTmL~1=1) corresponds to a resonance condition, when
the velocity pulse e approximately equals the distance be-
tween two filaments in velocity space after at time 7 (which
is of the order L/m7). When this condition is satisfied, the
system responds to the external excitation by resonantly os-
cillating at the same frequency 7~ 1, but with a dephasing of
half a cycle. This response is seen as an ‘‘echo’” bringing
back a large number of particles to their initial positions at
t=7,27,37, ... .

Finaly, we briefly investigate the effect of introducing a
truly irreversible term in our origina equations (we remind
the reader that all dynamics treated so far are time reversal
invariant). In order to do so, we slightly perturb the particle
velocities right after the sinusoidal pulse at t=T. The per-
turbation Se is arandom number uniformly distributed in the
interval [ — 8 max, e max]- We expect the echo to disappear
when e =€, since this would destroy the correlations
hidden in velocity space. The numerical results confirm this
conjecture (Fig. 7): the echo is still quite visible for
6emax=0.3e, but has virtually disappeared when &g
=3e¢.
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FIG. 8. Dynamics of noninteracting particles in an anharmonic
potential: time evolution of the kinetic energy in the classical case
(H=0). Arbitrary units.

IV. LINEAR QUANTUM ECHO

In order to evaluate the quantum corrections to classical
dynamics, it is useful to adopt the Wigner representation
[7-10], according to which quantum mechanics can be ex-
pressed in a phase space formalism. The quantum distribu-
tion function W(x, p,t) hasall the good properties of its clas-
sical counterpart, except positivity. The evolution of W is
given by the Wigner equation, which replaces the classical

Liouville equation
Z )
— | X+ E t

W p oW jf
ot St m X wﬁz
i
xexp(—%(p—p’)z)W(x,p’,t)dzdp’,
(13)
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FIG. 9. Same as Fig. 8 in the quantum case. (a) H=0.16; (b)
H=0.12; (c) H=0.08. Arbitrary units.
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FIG. 10. Same as Fig. 8 with (a) H=0.06; (b) H=0.04; (c)
H=0.02. Arbitrary units.

where ¢(x,t) is the potential.

We make use of the Wigner equation to show that quan-
tum mechanics alows for the appearance of linear echoes.
Evidence of this phenomenon has aready been pointed out
in the literature [17-21]; our work attempts, however, to
solve the Wigner equation directly, while many previous
studies focused on the numerical solution of the Schrodinger
equation. Thisis an important point for a number of reasons.
(1) The Wigner representation enables us to work with the
most general class of quantum mechanical mixed states,
whereas only pure states can be represented by a Schrodinger
wave function. (2) Phase mixing and echoes are statistical
concepts (involving a large number of particles), and there-
fore classica mechanics should be compared to statistical
guantum mechanics, rather than to single particle quantum
mechanics. (3) The approach to the classical limit is a very
delicate operation in the Schrodinger formalism (a semiclas-
sical state is represented by a strongly oscillating wave func-
tion), whereas it is very natural in the Wigner formalism (one
just lets 7 go to zero): it is thus possible to compare the
evolution of exactly the same initial condition for different
values of Planck’s constant. (4) Finally, the phase space pic-
ture alows for a direct visual comparison between classical
and quantum results. In particular, it will be clear from our
simulations that quantum effects prevent complete phase
mixing, which is the ultimate reason for the appearance of
the echo.

We now turn to the numerical simulation of the dynamics
of noninteracting particles in a confining potential. The sim-
plest choice would be the harmonic oscillator, but it can be
shown easily that the dynamics of the harmonic oscillator
has no quantum corrections in the Wigner representation
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FIG. 11. Classica phase space for the anhar-
monic oscillator. For negative x, the figures are
symmetric with respect to the origin of axes. Ar-
bitrary units.

3.0

[22]. Therefore, we introduce an anharmonic term [23,24],
and consider the following quartic potential:

d(X)= 3 mw?x®+ : mpx*. (14)

By injecting this potential in Eq. (13), one can easily verify
that the Wigner equation takes the following form:

aw+paw 20 LW RPmB W
T T moax M@= X

(15

Note that only the first quantum correction (in #2) has sur-
vived, and this correction disappears for 8=0 (purely har-
monic potential). The relative importance of quantum effects
is conveniently measured by the dimensionless parameter
H=#B/mw3. We have solved the Wigner equation with a
Gaussian initial condition centered at x=p=0, with disper-
sions o,=1, o,=1.5 such as o,0,>%/2 to ensure Heisen-
berg’s uncertainly principle. Other parameters in the defini-
tion of the potential are o=m=1,8=0.2. In Fig. 8 we have

plotted the evolution of kinetic energy against time. In the
classical case (H=0), the kinetic energy relaxes to a station-
ary vaue: this is due to the phase mixing induced by the
quartic term in the potential.

When H is small, but not zero, the kinetic energy also
relaxes to the same value, but, at a subsequent time, an os-
cillation (the echo) appears. The evolution of the kinetic en-
ergy is represented in Figs. 9 and 10 for different values of
H. When H decreases, the echo amplitude goes to zero,
while the time of its appearance is rejected to infinity. From
these and other simulations, we have tried to estimate how
the echo time varies as a function of H. If one takes for
t echo the time of maximum echo amplitude, a rough estimate
gives Tepo=H* with 1/2<u<2/3. This result rules out
such lavsas H ! or logH 2, the former being too fast and
the latter too slow. The log dependence has bee proposed as
atypical time of validity of the semiclassical approximation
for chaotic dynamical systems[25]: since our Hamiltonian is
integrable, it is not surprising that the classical behavior lasts
for a longer time.
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FIG. 12. Quantum phase space for the same
case of Fig. 11, with H=1.2. Positive part of the
Wigner function. Arbitrary units.

Figure 11 shows, in the classical case, the phase portrait
for the evolution of a Gaussian initial state (o,=0.6,
0,=2) in the quartic potential described by Eq. (15), with
w=m=1,5=0.8. The distribution function soon develops a
spiral structure, displaying a very fine filamentation, which is
the ultimate cause of the kinetic energy relaxation. The same
simulation is repeated in the quantum case (H=1.2). Figure
12 shows the positive part of the Wigner function, and Fig.
13 its negative part (the respective maxima are in a ratio of
about 20). We see that complete phase mixing is stopped by
a nonzero Planck constant, via the formation of negative is-
lands in the distribution function. The correlations among
these structures are responsible for the appearance of the
echo.

According to Fig. 8, the classical kinetic energy relaxes to
aconstant value, and no echo is ever observed. Physically, as
we have seen, this is due to phase space filamentation. This
behavior might seem in contrast with the results of Sec. Ill,
in which a classical dynamical system displayed a variety of
echo phenomena. There is, however, an important differ-
ence: in the case of the quartic oscillator, the initia state is

left to evolve without any other external intervention. On the
contrary, for the case of Sec. |11, asinusoidal pulseis applied
at t=T: it is precisely this intervention that allows for the
appearance of the echo. Otherwise, in the absence of such a
pulse, the corresponding distribution function would fila-
ment, just as in the case of the oscillator. It is, however,
remarkable that a simple macroscopic operation, such as ap-
plying a sinusoidal pulse, can induce a partial reconstruction
of the initial condition.

It is also interesting to note the different properties of the
classical and quantum phase space as far as reversibility is
concerned. According to Lebowitz [1], the main signature of
irreversible dynamics is the possibility of ordering a se-
quence of snap-shots of the physical system with increasing
time. Thus, in the case of two miscible liquids of different
colors (say, ink and water), a picture showing a localized
drop of ink in otherwise colorless water must precede (and
indeed does in the real world) another picture representing a
liquid of roughly uniform color. In the same way, the se-
quence of Fig. 11 for the classical phase space can easily be
ordered with time: the more filaments are present, the
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‘‘older’’ the picture. This is therefore a case of irreversible
dynamics, as illustrated by the relaxation of the total, mac-
roscopic kinetic energy (Fig. 8) (incidentally, thisis so even
if our dynamical system is integrable: irreversibility is a
separate issue from integrability and chaos, as pointed out by
Lebowitz [1]). The reader might be surprised that a simple,
anharmonic oscillator turns out to be an irreversible system if
we accept the above definition of irreversibility (which is a
very plausible and easily testable one). To dissipate any pos-
sible confusion, we stress that the macroscopic physical sys-
tem that we are considering is not a single oscillator, but
rather a collection of an infinite number of independent os-
cillators. Each individual oscillator represents one of the mi-
croscopic constituents forming our macroscopic system,
which is described by Eq. (15) with# =0, i.e., by Liouville's
equation. Note that we are just rephasing the textbook defi-
nition of a statistical ensemble, only from amore *‘realistic’’
point of view: for us, each element of the ensemble is not a
convenient fiction, but a real constituent of some macro-
scopic physical object. For an observer who can only mea-
sure macroscopic quantities (such as the total kinetic energy

plotted in Fig. 8), the system will effectively behave in an
irreversible way: the kinetic energy oscillates and then de-
cays to a constant value, but the opposite (oscillations arising
spontaneously) never occurs. Of course, the fact that this
system is integrable has an impact on the dynamics. Since
the oscillators are independent and each of them preservesits
energy, the accessible region of phase space is greatly re-
duced. For example, if the initia distribution occupies an
annulus of energy E;<E<E,, points outside this region are
not of course accessible. However filamentation still occurs,
and the total kinetic energy will still relax as in Fig. 8.

On the other hand, for the quantum phase space (Figs. 12
and 13), there is no self-evident way of arranging the pic-
tures with increasing time, and therefore no irreversible be-
havior. Heuristically, this can be understood by the following
argument. If we define a microscopic constituent as a region
in phase space of volume %, the classical, macroscopic sys-
tem contains an infinite number of microscopic constituents
(the individua oscillators referred to in the previous para
graph). On the contrary, the number of microscopic constitu-
ents contained in the quantum system is finite, and propor-
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tiona to o,o,/fh. When this ratio is not large, some
reversible behavior is to be expected. In this casg, in fact, the
first of the conditions for irreversibility mentioned in Sec. |
has been violated. The onset of irreversibility is thus, at least
in this case, closely related to the relative importance of
guantum effects.

V. CONCLUSION

In this paper we have investigated the properties of a few
dynamical systems that are invariant with respect to time
reversal, and nevertheless display an effective irreversible
behavior for suitable macroscopic quantities. Plasma wave
echoes are particularly interesting in this respect, since they
represent a nice example of partia reversibility, which is
triggered by a simple macroscopic operation (an instanta-
neous sinusoidal velocity modulation). This kind of macro-
scopic reversibility is, in our opinion, more interesting than
the microscopic reversibility due to velocity reversal. We
have shown that not only collisional damping, but aso col-
lisionless self-consistent interactions can effectively reduce
the amplitude of the echo. The echo is therefore a typically
ballistic effect: to prove this, we have performed a series of
computer experiments in which we progressively switch on
collective effects by increasing the particle charge.

When the initial condition is highly inhomogeneous
(‘* &like'"), only one pulse is needed to obtain a variety of
echo phenomena. By periodically repeating the pulse, one
can focus a considerable fraction of the particles in a small
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spatial region, without any appreciable losses for very long
times. This is an effective way of suppressing phase mixing
by means of a macroscopic operation. Thisregime is situated
in between the integrable and the chaotic regimes of the pe-
riodically kicked rotor.

Quantum echoes have been investigated in the case of an
anharmonic potential by making use of the Wigner formal-
ism, which expresses quantum mechanics in the familiar
phase space representation. It was found that quantum me-
chanical effects prevent complete phase mixing, and conse-
quently allow for the appearance of alinear echo. The results
obtained have been interpreted in terms of the reversibility
properties of our physical system. In particular, we have
stressed that irreversibility arises (1) because the number of
microscopic constituents (i.e., degrees of freedom) contained
in a macroscopic object is extremely large, and (2) because
an observer can only measure macroscopic quantities. Our
physical object (an infinite collection of anharmonic oscilla-
tors) has an integrable dynamics, nevertheless it behaves ir-
reversibly as far as macroscopic observables are concerned.
When quantum effects are taken into account, the first of
these conditions may not be satisfied, and a reversible behav-
ior is observed.

We have performed a more extensive investigation of the
reversibility properties of classical and quantum systemsin a
previous publication [10], to which we refer the interested
reader. It is our feeling that this point deserves further inves-
tigations, and could shed new light on the subtle problem of
the semiclassical limit.
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