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Shortcuts to adiabaticity in harmonic traps: A quantum-classical analog
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We present a technique for efficiently transitioning a quantum system from an initial to a final stationary
state in less time than is required by an adiabatic (quasistatic) process. Our approach makes use of Nelson’s
stochastic quantization, which represents the quantum system as a classical Brownian process. Thanks to

this mathematical analogy, known protocols for classical overdamped systems can be translated into quantum
protocols. In particular, one can use classical methods to find optimal quantum protocols that minimize both
the time duration and some other cost function to be freely specified. We have applied this method to the
time-dependent harmonic oscillator and tested it on two different cost functions: (i) the cumulative energy of

the system over time and (ii) the dynamical phase of the wave function. In the latter case, it is possible to
construct protocols that are “adiabatically optimal,” i.e., they minimize their distance from an adiabatic process

for a given duration.
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I. INTRODUCTION

Optimization problems play an important role in both clas-
sical and quantum physics, providing an elegant framework
for describing natural phenomena. Concepts such as Fermat’s
principle and the stationary-action principle, which serve as
foundational pillars of physics, are deeply rooted in opti-
mization principles. Optimization techniques are also crucial
for efficient resource utilization, improving theoretical mod-
els, and controlling and manipulating the state of a physical
system.

The central question in optimization research revolves
around bringing a system from an initial state to a desired
final state while minimizing a certain quantity, known as the
cost function. A very diverse array of systems can be explored
through the lens of optimization, ranging from Kramers-like
problems with double well potentials [1] to trapped ions [2],
cavity quantum electrodynamics [3], superconducting circuits
[4], spin-orbit coupling [5], nitrogen-vacancy centers [6],
many-body and spin-chain models [7], and even metrology
applications [8]. Various methods can be employed depending
on the specific circumstances. Optimization techniques based
on variational principles are often utilized, such as in the
quantum brachistochrone problem [9,10] or in the context
of Bose-Einstein condensates trapped in harmonic poten-
tials [11-14]. Optimization methods based on optimal control
theory have gained prominence in recent years [15-19], in-
cluding more mathematical approaches such as Lyapunov and
Krotov methods [20,21].
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In the present work, we focus on the case of the time-
dependent quantum harmonic oscillator, a system of
paramount importance across multiple fields of physics.
Specifically, we will examine protocols for manipulating the
stiffness of the potential in order to efficiently transition the
system from one steady state to another in a time shorter
than that required by an adiabatic (i.e., quasistatic) process.
This concept is known as shortcut to adiabaticity (STA) (for
recent reviews, see [22,23]). While many of the basic ideas
were put forward about two decades ago, with various ap-
proaches such as counteradiabatic driving [14,24-28], inverse
engineering [29,30], scaling laws [31], and others [32-39] be-
ing introduced, the development of STA methods has gained
much momentum in recent years [40—-43]. Further, it should
be mentioned that there exist lower bounds for the required
time to transition from one quantum state to another, known
as quantum speed limits (QSL) [44—46]. Our optimal protocols
allow the transition in a duration that is situated in between the
QSL and the adiabatic time, while, in addition, minimizing
some other quantities of interest.

Here, we will employ an approach recently proposed for
the classical overdamped dynamics of a Brownian particle
confined in a harmonic trap and in contact with a heat bath
at given temperature [47]. This method, based on a variational
principle, allowed us to optimize the transfer from one thermal
equilibrium to another by minimizing both the duration of
the transfer and the expended work. The tradeoff between
duration and work could be modulated at will by tuning a
single Lagrange multiplier.

The main purpose of the present work is to develop
a quantum-classical analogy that allows us to exploit the
aforementioned method in order to control and optimize the
dynamics of a guantum harmonic oscillator. Indeed, analogies
may serve as powerful tools in physics. For instance, the
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experiments conducted by Couder ef al. in 2005 [48] estab-
lished a hydrodynamic analogy to the behavior of quantum
particles, as described by the pilot wave theory introduced by
de Broglie [49] and later developed by Bohm [50]. With this
approach it was possible to demonstrate the existence of quan-
tumlike diffraction using a fully classical experimental setup
[51]. Some methods to obtain shortcuts to adiabaticity for both
classical and quantum systems were developed in the past,
particularly in the framework of counteradiabatic approaches
[52,53]. Our approach is different, inasmuch as it employs
a strict mathematical analogy between a classical dissipative
system and a quantum unitary evolution to translate classical
protocols into quantum ones.

The analogy to be presented here is based on an alternative
formulation of quantum mechanics originally due to Nelson
[54-56]. In Nelson’s representation, the quantum evolution is
governed by a first-order stochastic equation, supplemented
by Schrodinger’s equation for the wave guiding the trajectory
in a manner similar to the Bohm—de Broglie theory. Nelson’s
stochastic equation bears a close resemblance to the Langevin
equation that governs the overdamped motion of a classical
Brownian particle, thus suggesting the potential for a fruitful
quantum-classical analogy. Such an analogy has already been
considered in recent years for an open quantum system [57].
In the present work, we demonstrate that this approach is
particularly well suited for solving optimization problems for
closed quantum systems.

The objective of this paper is to devise a protocol that
transitions the system from a given stationary state to another
in the shortest possible time while minimizing a specified
cost function throughout the temporal evolution. In classical
stochastic thermodynamics, it is common to minimize the
work done on the system, which also corresponds to mini-
mizing the dissipated heat [29,47,58,59]. However, for closed
Hamiltonian systems, such work is simply equal to the differ-
ence between the final and the initial energies, and therefore it
is not a pertinent quantity to minimize [40].

In the ensuing sections, we outline a method—based on Nel-
son’s dynamics and the quantum-classical analogy mentioned
above—which allows us to minimize a generic cost function,
usually written as the sum of the duration of the protocol
plus a functional F of the control parameters. As relevant
examples, we will choose for F' either the cumulative energy
of the system over time or the dynamical phase of the wave
function. The latter case allows us to construct protocols that
are “adiabatically optimal,” i.e. protocols that, for a given
duration, minimize their distance (in a precise mathematical
sense) from an adiabatic process.

In Sec. IT we will detail the basic features of the classical
analog of the time-dependent quantum harmonic oscillator
using Nelson’s stochastic formulation, illustrating the analogy
with a simple numerical example. In Sec. III we will show
how this analogy can be applied to the quantum harmonic
oscillator. We will also describe a general method to obtain
a protocol that is optimal in regards of both its duration and
another cost functional to be specified at will. In Sec. IV we
will present numerical results for optimal protocols obtained
using two different cost functions as illustrative examples.
Conclusions and perspectives for future work will be detailed
in Sec. V.

II. QUANTUM-CLASSICAL ANALOGY
A. Fundamentals of the analogy

A one-dimensional particle of mass m trapped in a
time-dependent harmonic potential obeys the Schrédinger
equation,

0 . a2 o1,
i (x,0) =HOY = | =50 + skOx” Y (. 1),

2m 0x2
(1

where /i is Planck’s constant, «(¢) is the time-dependent stiff-
ness of the potential, and v (x, ¢) is the wave function of the
system at time ¢ and position x. The optimization procedure
developed in this work consists in designing a protocol k()
which brings the system from an initial stationary state v;(x)
at time #; to a final (also stationary) state v (x) at time #¢, in the
shortest possible time Ar = f; — #;, while minimizing a given
cost function [40,60,61].

The derivation of these optimal protocols will be based on
Nelson’s formulation of quantum mechanics. In this approach,
similarly to the Bohm—de Broglie formalism, quantum parti-
cles are supposed to have a well-defined position x(¢) evolving
in time. Unlike the deterministic trajectories followed by
quantum objects in the Bohm—de Broglie theory, Nelson’s
theory postulates that each trajectory obeys the stochastic
differential equation,

dx(t) = b[x(t), t]dt + /2D dW (1), )

where b(x, t) is the deterministic drift velocity, D = 7i/2m is
the diffusion coefficient, and dW (¢) is the Wiener increment
for a Markov process: (dW (t)) = 0, (AW ()dW (")) =t —¢'.
The origin of the stochastic nature of the dynamic of quantum
particles is postulated but not explained by Nelson’s theory.
The key point in Nelson’s approach is to define the drift
coefficient as

_ hoS(x,t) n h 0lnp(x,t)

b(x,t) = 3
1) m 0x 2m 0x )

where S(x,7) and p(x,t) are respectively the phase and
squared modulus of the wave function v (x, t), expressed in
polar form as = ,/p exp(iS). This definition of b(x, ¢) en-
sures that the probability distribution of a large ensemble of
trajectories x(¢) obeying Nelson’s equation (2) converges to
the square modulus of the wave function, following Born’s
rule [62]. If the initial probabilistic distribution of the tra-
jectories follows Born’s rule at + = 0, it will do so for all
successive times ¢ > (. Hence, Nelson’s theory reproduces the
same results as the standard quantum mechanics based on the
Schrodinger equation.

For the ground state of the harmonic oscillator, the
Gaussian form of the wave function yields a simple form for
the drift term of Eq. (3), as we now show. Due to the quadratic
nature of the Hamiltonian in Eq. (1), if the initial wave func-
tion ¥;(x, t = 0) is Gaussian, then it remains Gaussian for all
times ¢ > 0 and can be written as

2
o= [

o . 2 .
NeZT0) 4s(t)+loz(t)x ~|—1/3(t)1|, )
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where s(t) = (x(t)?) is the time-dependent variance of the
density, while «(t) and S(¢) are the dynamical and geomet-
rical phases of the wave function, respectively. For the wave
function to be a solution of Eq. (1), the time-dependent coef-
ficients () and B(¢) must satisfy the following relations:

ay =" ms(t) . h

s POT T amsay ©)

where the dot denotes differentiation with respect to the time 7.
The variance s(¢) is related to the standard deviation o = +/2s,
which must obey the following Ermakov equation [63]:

, k(1) 4D?
o)+ —a( ) = s

The coupled equations (5) and (6) provide a full, exact solu-
tion of the Schrodinger equation in the Gaussian form (4).

From Egs. (3) and (4), one immediately obtains Nelson’s
drift velocity:

(6)

b(x,t) = h 20(t) — L 7
2s(t)

which, importantly, is linear in x. Therefore, we can rewrite
Nelson’s stochastic equation (2) as

dx(t) = }%(Mt) - zslt)>x(t)dt +V2DdW (). (8)

The above Nelson equation (8) bears a striking resem-
blance with the Langevin equation for a classical overdamped
Brownian particle in a harmonic potential of stiffness < (¢) and
same diffusion coefficient D, which we write here as

dx(t) = —%x(r)dr + 2D AW (1), )

where y is the usual Stokes drag coefficient, which we keep
for dimensional reasons in the classical equation but will
disappear in the quantum results. The equations (8) and (9)
are identical if we define the classical stiffness as

(1) =y 200 ! 10
k) =y m( ()‘2_@) (10)

Hence, our physical analogy is based on the mathematical
equivalence between Nelson’s equation (8) for a quantum
particle in a harmonic oscillator and the Langevin equation (9)
for a classical Brownian particle. In addition, for the classi-
cal Langevin equation, the variance s(¢) obeys the following
closed evolution equation [64,65]:

dst) 2 _
q = —[Dy — k(t)s(t)]. (11)
1 14

To complete the analogy, we need to specify the relation-
ship between the stiffness «(¢) of the quantum oscillator and
the stiffness i (#) appearing in the classical stochastic process.
Taking the time derivative of Eq. (10) and using Egs. (5) and
(11), we arrive, after some algebra, at the following expression

for the quantum stiffness:

2

2m sz(t)

k(1) = '(r) - —#(r) (12)
written in terms of the classical stiffness ©(z) and its time
derivative. Equation (12) serves as a crucial link in establish-
ing the quantum-classical analogy, acting as a bridge between
the quantum system and its classical analog.

Finally, from Eq. (11) it results that, at equilibrium, keq =
Dy [seq for the classical case. For the quantum case, from
Eq. (12) we obtain

22 D’m
Keq = )/2 eq = s (13)

p
Seq

which does not depend on the classical parameter y, as
expected.

Our strategy will be to suggest a classical protocol & (¢) and
use Eq. (12) to obtain the corresponding quantum protocol.
By construction, the evolution of the variance s(¢) will be
identical for both cases and given by Eq. (11). Therefore, if we
can devise a classical protocol that brings the variance from an
initial equilibrium state with s(#) = s; to a final equilibrium
state with s(t;) = s, then the corresponding quantum protocol
will do the same.

We further note that this method, being based on the over-
damped equation (11), will bring the variance s(¢) smoothly
to the desired target value s¢, for which $; = 0, after which it
will remain there for all subsequent times. This is possible pre-
cisely thanks to the Nelson approach which, being governed
by an overdamped stochastic equation, relaxes the system to
the final equilibrium and guarantees that it does not depart
from it. In other words, we have transformed our original
quantum unitary evolution (which would display spurious
oscillations when perturbed) into an equivalent dissipative
classical evolution, which, in contrast, decays naturally to the
desired target state. This can be done through the nontrivial
transformation (12) from the physical quantum stiffness « (¢)
to an effective classical stiffness i ().

B. Example: STEP protocol

To illustrate the quantum-classical analogy, we examine
a sudden protocol (frequently referred to as STEP) which
consists in an abrupt change of the classical stiffness from k;
to ir. However, because of the presence of a first derivative in
Eq. (12), it is necessary to smooth out such STEP protocol.
The smoothed STEP is then defined as follows [66]:

Kr + K Kf — K;j t—1
tanh | —— |. 14
; T ( c > (14)

The classical stiffness is centered at t = v and becomes
steeper and steeper as € — (. For simplicity, we have used
units for whichk; = 2,7 =y = 1, m = 1/2, so that the quan-
tum diffusion coefficient is D = i/2m = 1. In these units,
time is measured in units of 2/w; and the variance in units of
h/mw;, where w; = /ki/m is the initial angular frequency of
the harmonic potential. In the examples below, we have used
ki = 2 and Ky = 4, which in virtue of Eq. (13) yields «; = 2
and x; = 8, and variances s; = 0.5 and sy = 0.25.
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FIG. 1. Top panel: Evolution of the variance s(t) as a function of
time (measured in units of 2w, 1, for € = 1 (black dashed lines) and
€ = 0.1 (orange solid lines). The variance decreases from s; = 0.5
to s = 0.25, in units of 7i/mw;, as detailed in the main text. The
larger value of € correspond to the smoother protocol. Bottom panel:
Time evolution of the quantum stiffness « (¢) (main plot) associated
to the classical STEP protocol #(¢) (inset), for the same values of
€. When the classical STEP is smooth (¢ = 1, black dashed lines),
the quantum protocol is also smooth and follows the same behavior
as the classical one. In contrast, when the classical STEP protocol
varies abruptly (¢ = 0.1, orange solid lines), an oscillation appears
at mid-time in the quantum protocol.

In Fig. 1 (bottom panel), we show the classical and quan-
tum protocols for two values of the width € = 0.1 and € =
1. For the smoother classical protocol (¢ = 1, dashed black
curve), the quantum protocol (shown in the inset) has a similar
shape as its classical counterpart, although its initial and final
values are different, in accordance with Eq. (13). In contrast,
the steeper classical protocol (¢ = 0.1, solid orange curve)
yields an oscillating quantum protocol (inset). These oscilla-
tions become stronger as € — 0. The time evolution of the
variance s(t) (top panel of Fig. 1)—which, as stated above,
is by construction the same for the classical and quantum
cases—shows that the variance of the system is smoothly
brought from its initial value to its final value, even for the
case (¢ = 0.1) where the quantum protocol is strongly oscil-
lating.

It is clear from Fig. 1 that the steeper protocol achieves
the transition more quickly, but let us try to quantify this
speedup more accurately. Classically, the relaxation time for
a STEP protocol is given by the final stiffness iy and reads as

Trel = ¥ /K¢ Rewriting this in terms of the quantum quantities,
we get Trel = /M/kf = Wy !, where y, being a purely classical
parameter, has naturally disappeared. Hence, the relaxation
time is the inverse of the final oscillator frequency. In the
present case, we have, in our units, T = w; 1'—=0.25 Qo 1 ).

Now, it is important to understand that, for the quantum
oscillator (which is conservative), this is not really a relaxation
time. If we apply a STEP protocol directly on the quantum
stiffness «, the quantum system will oscillate indefinitely, with
no damping. The standard way to implement the transition
without oscillations would be to proceed adiabatically, which
takes an infinite time. Hence, any quantum protocols, like
those of Fig. 1, that take a finite time to complete already do
much better than the adiabatic one. In the figure the slower
protocol takes about ~6 (2w;” Y to achieve the transition,
while the faster protocol takes ~0.75 Qw;” 1). This speeding
up is achieved through the special temporal profile of the
quantum protocol «(z), which was obtained thanks to the
quantum-classical analogy.

But the classical STEP protocol will never be able to go
faster than the relaxation time Ty = @; ! which therefore
constitutes a fundamental limit also for the quantum protocol,
as the evolution of the variance is by construction the same
for both. In the next section, we will develop a method to
construct optimal protocols that break this limit and allow
relaxation on a timescale shorter than w; !, Therefore, these
optimal protocols not only outperform the adiabatic process
(Trel = 00) but also do better than “naive” protocols such as
STEP, for which 7] = w; ! In addition, they also minimize
some other quantity of physical interest, such as the cumula-
tive energy over time.

III. OPTIMAL QUANTUM PROTOCOLS

As mentioned in the preceding sections, our objective is to
transition a quantum system from an initial state, v, to a final
state, ¢, in the shortest possible time, At, while minimizing
a certain cost function. For the time being, we keep this cost
function as general as possible. The initial and final states are
supposed to be the ground states in the respective harmonic
potentials at # and #. For a classical Brownian particle in a
thermal bath, several methods already exist for finding the
optimal protocol, especially when the cost function is the
work done on the system [29,47,67]. In the following we
explore various cost functions and, for each of them, find
the optimal protocol using the method based on the classical
analogy developed in Sec. II. Our approach is similar to that
used in our earlier work [47], based on a variational principle.

In order to find the optimal protocol, we first need to define
the functional to be minimized, J[«, k], which is a function
of the control parameter (stiffness of the oscillator) and its
time derivative. This functional will be written as the sum
of the total duration of the protocol, denoted Af[x], plus
another functional to be minimized, denoted F [k, x] (our cost
function), the latter associated with a Lagrange multiplier A.
Then, the optimal protocol «,, is found as the solution of
the Euler-Lagrange equation derived from the total functional
J. In practice, it will be necessary to add a third functional
Glk] and its Lagrange multiplier x, in order to ensure that the
boundary conditions on « (¢) are satisfied.
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One has the choice to express the above functionals, either
in terms of the classical stiffness « or the quantum stiff-
ness &, and then derive the corresponding Euler-Lagrange
equations accordingly. In practice, as we shall see, it will be
easier to express all functionals as a function of ¥ (and its
time derivative) using Eq. (12). For simplicity of notation, we
will use the same symbols (J, F, and G) for the functionals,
irrespective of their arguments.

Let us first express the time duration as a functional. We
adopt the method developed in Ref. [47], which consists in
using the variance s as an independent variable, instead of
the time ¢ [68]. Each protocol can then be characterized by
a trajectory in the stiffness-variance space («, s). This allows
us to express the protocols as a function of s instead of #, so
that we write x(s) = k[t(s)] and k(s) = k[t(s)]. (Note that,
for simplicity of notation, we use the same variable name for
a function of ¢ and the corresponding function of s.) Using
Eq. (11), one obtains, for the time duration functional,

L Y
AI[K]——/S‘ dSm (15)

Note that the above functional depends on the classical proto-
col i (s) and not the quantum one « (s).

Since we are interested in the dynamics of the quantum
system, the yet-unspecified cost functional F is usually ex-
pressed in terms of «, the stiffness of the quantum harmonic
oscillator. However, it is easy to express it in terms of i, by
using Eq. (12) rewritten in the s domain:

2

)= 2ms?

2m _ _, m_,
+ W[Dy — sk ($)]ic’(s) — ﬁ/c (s), (16)

where the prime denotes the derivative with respect to
s. Then we can write F in integral form as F[k, k'] =
A S‘ ds f[s, k(s), ©’'(s)], where f is a function obtained by
transforming the quantum stiffness to the classical stiffness
using Eq. (16).

The need for another functional G[k'] results from the
requirement to avoid strong gradients in x(s). As was noted
in Ref. [47], without this term the resulting optimal protocol
displays jumps, i.e., infinite gradients, at the initial and final
times. Mathematically, this is because, in the absence of this
term, the Euler-Lagrange equation is an algebraic one so that
one cannot fix the boundary conditions on the solution and
instead has to “stitch” them artificially as jumps. That was not
an issue for the overdamped dynamics studied in Ref. [47],
because a system with vanishing inertia remains at equilib-
rium when the stiffness is suddenly changed. But here the
situation is different, as the underlying problem is the standard
Schrodinger equation, which does include inertia. Hence, if
the boundary conditions are not satisfied at t = #¢, then the
system will continue to evolve and deviate from the target
stationary state. A way to ensure that boundary conditions
are indeed satisfied is to render the Euler-Lagrange equation a
second-order differential equation [69]. This can be achieved
by adding the following functional:

quszmmmw, (17)

with the corresponding Lagrange multiplier . Note that we
expressed G[k'] in terms of the classical stiffness to be con-
sistent with the other functionals A¢ and F. But limiting the
gradient of i (s) also limits the gradient of «(s), in virtue of
Eq. (16). We also recall that the boundary conditions are those
for which the variance is stationary at the boundaries, i.e.,
sif = 0. From Eq. (11), this is equivalent to imposing that
kifsif = Dy.

In summary, the total functional to be minimized is J =
At + LF + uG, or explicitly,

P _l o 14 i — —/
Jk, k'] = Z/Si ds —DJ/ — o) +)»/Si ds fs, k(s), k' (s)]

+u/‘mmmw. (18)

It is important to understand that A and p play very different
roles. While A corresponds to the weight given to the cost
functional we want to minimize on physical grounds, w is
present only to ensure that the equilibrium conditions are sat-
isfied. Nevertheless, both Lagrange multipliers have an impact
on the resulting optimal solution. The Lagrangian associated
to Eq. (18) is

14

Lls, R, R'] = ———
Dy — sic

+Af + e, (19)
where we removed the factor 1/2 from the first term, because
it can be included in the Lagrange multipliers A and u. The
optimal protocol is obtained by solving the Euler-Lagrange
equation associated with L, which reads as
0 d o
2k’ = V—S_Jr?»—]_c—k——f. (20)
[Dy — si(s)]? ok ds 0k’

This equation is, as expected, a second-order differential equa-
tion for i (s), and the two boundary conditions &; ¢ = Dy /s ¢
can thus be imposed.

IV. OPTIMIZATION RESULTS

Some protocols have already been studied in the past for
the case where the cost function is the work done on the
system [58],ie,F =W = ftff(l/fla,l-?(t)h/f)dt. It was shown
that the optimal protocol is highly degenerate [29], with the
minimal work simply corresponding to the difference be-
tween the final and initial energies of the system [40]: Wy =
E¢ — E;. In particular, for any protocol that satisfies the right
boundary conditions—so that the initial and final states are
both stationary—the work done on the system will be the
optimal one, irrespective of the duration of the protocol [40].
This is not too surprising, as the quantum oscillator system is
conservative, and therefore the energy expended to go from
one stationary state to another should only depend on these
states and not on the path connecting them. For these reasons,
the work W does not appear to be the pertinent cost functional
to be minimized. The advantage of the method described in
the preceding section is that it allows us to select any cost
functional and find the corresponding protocol that minimizes
it for a given duration At. Here, we will consider two different
functional forms of F' and find the optimal protocol for each
of them.
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In all the forthcoming simulations, we employ units in
which =y =1, m = 0.5, and then D = 1. The variance
increases in time from s; = 1 to s = 2, so that the classical
equilibria correspond to k; = Dy /si = 1 and ik = Dy /sy =
0.5. The quantum equilibrium conditions are such that «; =
mD?/s? = 0.5 and ky = mD?/s7 = 0.125. The classical re-
laxation time is then T, = v/m/kt = w; ' = 2. All optimal
protocols considered in the next two subsections are such that
At < 1 (except for one case where At = 2.1), confirming
that they can outperform the STEP protocols, as discussed in
Sec. II B.

Finally, in Appendix A we will also treat the case of the
classical optimal protocol developed in Ref. [47] and discuss
how it can be translated into an analog quantum protocol.

A. Cumulative energy as cost function

First, we take the integral of the energy as the cost function,
which, when divided by the total duration, corresponds to the
time-averaged energy furnished to the system, a quantity of
clear physical interest, both theoretically and for experimental
applications. As the wave function is supposed to be Gaussian
at all times, see Eq. (4), it is straightforward to write the
energy as

_ : _om (1, 252(1)k (1) )
E() = WIHO) = 4s(t)<2s 0+ 250 1 op )

(21)
where A (1) is defined in Eq. (1). We define the functional F' =

Fg as the integral of the energy. After changing variable from
t to s and writing «(s) in terms of i (s) using Eq. (16), we

obtain
St D o
Felk, k'] ZK/ ds |:y—s1<(s)
4y J, s

3D2)/2 — 2k %(s)
s[Dy — sik(s)]

The corresponding Lagrangian is then

+ 2s12’(s):|. (22)

A Dy — sk
Lis, &, &) = — _+—[ i
Dy —sik y N
3022 — 2k
y PV T o [+l 23)
s(Dy — sk)

where the factor m/4 was absorbed in the Lagrange multiplier
A. The resulting Euler-Lagrange equation is a second-order
nonlinear differential equation for i (s), and the initial and
final values of the classical protocol can be imposed according
to Eq. (13). The Euler-Lagrange equation is

_ y2s +3D%*y2h — s%k2A 28k A
N (Dy — sic)? Dy — sk
and it can be solved numerically using an iterative method
such as Thomas’s algorithm [70]. Note that had we not added
the Lagrange multiplier x, Eq. (24) would be an algebraic
equation and it would be possible to fix the correct boundary
conditions.

The solutions of Eq. (24) are represented in Fig. 2 for
two distinct situations: a case where wu is kept fixed (left

=/

2uy ik — 31, (24)
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FIG. 2. Energy-optimal protocols in the s domain, where the
variance increases from s; = 1 to sy = 2. Left panels: Classical pro-
tocols k(s) (a) and quantum protocols k(s) (c), for a fixed value
of u =0.10, and A = 0.01 (solid orange lines), 0.10 (dashed gray
lines), and 1.00 (dot-dashed black lines). Right panels: Classical
protocols &(s) (b) and quantum protocols «(s) (d) for a fixed value
of A =1, and u = 0.1 (solid orange lines), 0.50 (dashed gray lines),
and 1.00 (dot-dashed black lines). Note that the quantum protocol
can become negative for sufficiently large values of A or sufficiently
small values of .

panels) and a case where A is kept fixed (right panels). For
the first case (u = 0.1 fixed), three solutions, corresponding
to A = 0.01, 0.10, and 1.00, are represented, thus showing
the impact of varying the Lagrange multiplier associated with
the cost function Fg. The classical protocols are depicted in
the upper panels of the figure and the associated quantum
protocols in the lower panels. The equilibrium conditions at
the initial and final times are fulfilled, as expected, and all
protocols are continuous functions of the variance s. More-
over, as i is constant, the derivatives of each protocol at the
boundaries of the s domain are the same. Each classical pro-
tocol exhibits a minimal value, which decreases as A increases
while its quantum associated protocol has both minimum and
maximum values, whose amplitude increases as A increases.
Hence, both protocols can become negative, corresponding to
a repulsive harmonic potential, when A is large enough. This
feature, while notable, is not necessarily problematic and has
been previously reported in the literature [29,40,71].

The right panels of Fig. 2 show the solutions when A = 1
is kept constant while p varies, taking the values 0.1, 0.5, and
1.00. The shapes of the curves are similar to the preceding
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case, but it is notable that the larger u, the smaller the gradient
of the protocol around s; and s¢, as expected because the
functional G limits the derivative of i (s). Moreover, the range
of values taken by the protocols increases as u decreases,
and they can become negative for small values of . Caution
should be taken for even smaller values of x, which lead
to large values of the quantum protocol, both positive and
negative. The same remark can also be made for very large
values of A.

All the above results were given in the s domain, i.e., as
a function of the variance. In order to go back to the time
representation, one needs to solve Eq. (11) for #:

PR
1) =1t + 2[ Dy — 520’ (25)

which can also be used to obtain the total duration At =ty —
t;. The time-dependent solutions & (t) = k[s(¢)] and «(¢t) =
Kk [s(t)] are depicted in Fig. 3, together with the time evolution
of the energy of the system, whose integral is the cost func-
tional Fg associated to A. The curves corresponds to the same
values of A and p as in Fig. 2, with total durations At = 0.95,
0.87, and 0.82 (left panels, u fixed), and At = 0.82, 1.27,
and 1.58 (right panels, A fixed). We recall that here the classi-
cal relaxation time is equal to 7] = &/m/k; = wf 1'—=2 and
therefore At < 1, everywhere.

When the Lagrange multiplier A, corresponding to the
functional Fr = ftff dr E(t), is increased, and then the energy
integral decreases, as seen in the inset of Fig. 3(e). This is
natural, as the role of the A term is precisely to limit the value
of the cumulative energy over time. However, we also observe
that the time duration Ar decreases for increasing A, while
the opposite occurred for classical systems [47]. This may
seem surprising, as increasing A should reduce the value of the
functional Fr while increasing At (energy-time tradeoff). But,
in contrast to the classical overdamped case, here there are two
Lagrange multipliers, so the tradeoff is actually among three
functionals, Fg, At, and G, which makes the whole situation
more complex.

Conversely, the time duration increases as p increases,
which is more in line with a tradeoff between G and Ar. At
the same time, the cumulative energy over time increases with
increasing u, as seen in the inset of Fig. 3(f).

For all cases, the behavior of the variance appears very
similar when plotted against time normalized to the dura-
tion At. As expected, s(¢) is strictly increasing in time and
has vanishing derivatives close to the initial and final times.
The energy E(¢) follows closely the evolution of (), which
indicates that the potential energy is the preponderant con-
tribution to the total energy of the system. It is important to
note that when u becomes small enough, the energy might
become negative, as seen in Fig. 3(f), although its time integral
remains strictly positive, ensuring that the functional Fg is
positive.

It is interesting to compare our results with other protocols,
such as those that minimize the work done on the system,
proposed by Chen et al. [40]. This protocol is obtained from
the Ermakov equation (6) rewritten in terms of the scale fac-
tor q(t) = +/s(¢)/si, which reads as ¢ + %q = «;/q>. This
equation can be inverted to obtain the stiffness as a function
of the scale factor: k = kj/q* — md/q. The protocol is then

200 (@) =010 Ve ) A=10 ,~
/. /
S5 /./ = //
4 /
Rz 4
10— [
2t (c) A (d)
7\
— / - -
T o o B S I
Wy
\.7
) (e) /‘\ )
E 0.6 /.I \‘ E()G |:| I
/: 1 i()?} s ‘ /: i()i}
?ﬂ/ 0.0 ,/ i \LT? 0.0 o
~, y; \ Gl 27
0 \./ ................................................................
\'7
0.0 0.5 L0 0.0 0.5 1.0
t/At t/At

FIG. 3. Energy-optimal protocols in the time domain, where the
variance increases from s; = 1 to s; = 2. The time is normalized to
the total duration of the protocol At, which is different for each
pair of Lagrange multipliers (X, u). Left panels: variance s(z) (a),
quantum protocols «(¢) (c), and instantaneous energy E(¢) (e), for
a fixed value of u = 0.10, and A = 0.01 (solid orange lines), 0.50
(dashed gray lines), and 1.00 (dot-dashed black lines). These val-
ues correspond to time durations: At = 0.95, 0.87, and 0.82. Right
panels: variance s(t) (b), quantum protocols «(¢) (d), and instan-
taneous energy E(¢) (f), for a fixed value of A =1, and u = 0.1
(solid orange lines), 0.50 (dashed gray lines), and 1.00 (dot-dashed
black lines). These values correspond to time durations: At = 0.82,
1.27, and 1.58. Note that although the various protocols are quite
different, the behavior of the variance is almost identical when time is
scaled to the total duration A¢. The boundary values of the quantum
protocols correspond to the conditions sﬁflq,f = mD?. The energy
E(t) is quite similar to the quantum stiffness « (), indicating that
the potential energy is the predominant contribution to the total
energy of the system. The insets in (e) and (f) show the cumulative
energy over time for the three protocols represented in the same
panels.

obtained by imposing a suitable temporal profile for g(¢). The
authors of [40] chose a polynomial of fifth degree: ¢(¢) =
(@ —1)(6T°> —15T* + 1073 + 1), where T =1t/t; and a =
(Ki/Kf)1/4, so that g(#) = 1, q(t;) = a, and its first and second
derivatives are zero at the initial and final times. We recall that
imposing such boundary conditions is sufficient to minimize
the external work, which becomes equal to the difference
between the final and initial energies.

To compare Chen’s polynomial protocol to our optimal
protocol, we can fix a value of A, for instance, A = 10, and
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FIG. 4. Cumulative energy of the system over time le” dt E(t)
as a function of the total time duration Ar of the protocol. The
black squares correspond to the optimal protocol, solution of the
Euler-Lagrange equation (24), while the orange triangles correspond
to the polynomial protocol of Ref. [40]. In the gray shaded region,
the optimal protocols display lower cumulative energy than the poly-
nomial ones. The different time durations are obtained by varying
the Lagrange multiplier x, while keeping A = 10 fixed. The dashed
lines are empirical fits to the numerical data. The inset shows the
same plots for the time-averaged energy, given by the integral of the
energy divided by the time duration.

vary the value of u. For each protocol we compute the energy
integral Fp = f E(t)dt, as in Eq. (22), and the time duration
At, Eq. (15). The results are shown in Fig. 4 for both our
protocol (black squares) and Chen’s (triangles). It appears that
our protocol performs better, in terms of the integral of the
energy, than the polynomial protocol for small values of At
(gray area in Fig. 4). For larger At the opposite is true, which
can be explained by noticing that the long-duration regime
corresponds to large values of . Indeed, the total functional
J = At + AF + G, see Eq. (18), can be minimized by mini-
mizing either F' or G. If the Lagrange multiplier p is large,
then G dominates, and the variational procedure will end
up minimizing J by essentially minimizing G instead of F.
However, this is not a significant constraint for our purposes,
since our aim is to minimize the energy integral for short
durations, which correspond to small values of . And in the
inset of Fig. 4, we also plot the cumulative energy over time
divided by Af, which represents the average energy of the
system. Again, our optimal protocol is the one that minimizes
the averaged energy for short durations.

B. Dynamical phase as cost function

As a second example, we consider the following func-
tional to be optimized: F, = f " dr a?(t), where a(z) is the
dynamical phase given in Eq. (4). Before carrying out the
optimization procedure, we provide some justification about
the importance and meaning of such a functional. Accord-
ing to Eq. (5), a(t) is proportional to the time derivative of
the variance. During an adiabatic process, s(¢) =~ 0, because
the process is infinitely slow, and therefore «(¢) ~ 0. Hence,
the integral F, = ftltf dt o®(t) represents the departure from
adiabaticity, and by minimizing such quantity we therefore
minimize the “distance” of the optimal protocol from an adi-
abatic one.

A visual way to represent the dynamical phase is to con-
sider the Wigner function W (x, p,t) [72] corresponding to
the Gaussian wave packet of Eq. (4). The Wigner function
is a quantum pseudoprobability density in the phase space
(x, p). As the wave function is the exponential of a quadratic
polynomial, its Wigner function is non-negative and can be
written as [73]

x2 _ 2s(t)
2s(t)

W(x, p,t) = Aexp (— p— 2a(t)hx]2>,

(26)

where A is a normalization constant ensuring that
Jg:Wdxdp=1. Note that W(x, p,1) peaks around the
straight line in phase space po(x,t) = 20(t)hx = ho,S(x, t),
where S(x, t) is the total phase of the Gaussian wave function
(4). When o =0, the Wigner function is symmetric with
respect to both the position and momentum axes; when
o # 0, it is tilted of an angle 6 such that tan 6 = 2ah/(mw;)
(obtained by expressing p and x in our normalized units).
During an adiabatic protocol, W (x, p, ) remains symmetric
and only changes its aspect ratio. For instance, during an
expansion (s¢ > sj), it becomes wider in x and narrower in p.
Instead, during a faster-than-adiabatic process, W first gets
tilted at an angle 6 and then expands by increasing its spatial
variance, finally recovering a symmetric shape with o = 0.
This is illustrated in Fig. 5, where we show the phase-space
portraits for the optimal and adiabatic protocols at several
instants in time. It is clear that the acceleration in the optimal
protocol is achieved by tilting the Wigner function at a certain
angle before coming back to a symmetric configuration at the
end of the protocol.

Turning back to the minimization procedure, the F, func-
tional is given by, after changing variable from ¢ to s and
expressing the integrand in terms of & (s),

2 S Dv — sic
m i f ds y — sic(s) @
8)/h Si sz

Fyls, k] = frdt o (1) =

where we have used Eq. (11). The total Lagrangian is

y m> Dy — sx(s) 5

L 1_»_/ = )\' 9
[s, ic, k'] + 8yh2 2 + uic

(28)
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FIG. 5. Wigner functions W (x, p, t) at several instants indicated
on the vertical time axis. The left panels refer to the phase-optimal
protocol (with A = u = 1), while the right panels correspond to an
adiabatic protocol. The variance grows from s; = 1 to sy = 2. The
Wigner function of the adiabatic protocol remains symmetric with
respect to both the x and p axes, and slowly reduces its width in p
while increasing its width in x. In contrast, the phase-optimal Wigner
function first becomes elongated along the straight line p = 2a/ix
before reaching the same final state in a time much shorter than the
adiabatic protocol.

leading to the following Euler-Lagrange equation:

. Vs m>X
2uik’ = — — 5
(Dy — sk) 8yh’s

(29)

Again, this is a second-order nonlinear ordinary differential
equation, whose initial and final conditions k;f can be im-
posed to ensure the equilibrium conditions.

We use the same parameters as in Sec. [V A, notably, s; = 1
and sy = 2. In Fig. 6 we represent the classical and quantum
protocols for two cases: (i) a fixed value of © = 0.10 and A
varying in the range A € [0.01, 0.10, 1.00] (left panels), and
(i1) a fixed value of A = 1.00 and p varying in the range
n € [0.10, 0.50, 1.00] (right panels). These correspond to the
following time durations: At = 0.95, 0.97, and 1.00 (fixed
wu, left) and Ar = 1.00, 1.67, and 2.10 (fixed A, right). We
recall that the classical relaxation time is equal to 7, =

1.0
L =0.10 (1) A=1.00
ogl T
| \
0.6 \ \‘
— o4\ | . \\\ /
o ¢ w
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0.2 \ /
A\ /.
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1 |
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FIG. 6. Phase-optimal protocols in the s domain, where the vari-
ance increases from s; = 1 to sy = 2. Left panels: Classical protocols
& (s) (a) and quantum protocols « (s) (c), for a fixed value of . = 0.10
and A = 0.01 (solid orange lines), 0.50 (dashed gray lines), and
1.00 (dot-dashed black lines). Right panels: Classical protocols & (s)
(b) and quantum protocols «(s) (d) for a fixed value of A =1 and
for u = 0.1 (solid orange lines), 0.50 (dashed gray lines), and 1.00
(dot-dashed black lines). Note that the quantum protocol can become
negative for sufficiently large values of A or sufficiently small values
of .

Jmfip = wf ' = 2. The general behaviors of the protocols
look similar to those obtained in Sec. IV A for the energy
cost function, probably because the solutions are somewhat
dominated by the w term. A notable difference is that the
time duration is less sensitive to the values of the Lagrange
multipliers. Also, the duration increases as A increases, in con-
trast to what was observed for the energy-optimal protocols of
Sec. IV A.

The temporal evolution of the variance, the quantum stiff-
ness, and the dynamical phase are depicted in Fig. 7, where
the time has been normalized to the total duration of each
protocol. In accordance with the above discussion on the
Wigner functions, the dynamical phase vanishes at the initial
and final times and is maximal around Af/2. We also note
that the maximum of o%(¢) and its time integral are smaller for
the longer time durations of the protocols, i.e., those protocols
that are closer to adiabaticity, in agreement with our earlier
interpretation of the functional F,, as quantifying the departure
from adiabaticity.
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FIG. 7. Phase-optimal protocols in the time domain, where the
variance increases from s; = 1 to s; = 2. The time is normalized
to the total duration of the protocol At, which is different for each
pair of Lagrange multipliers (A, u). Left panels: variance s(z) (a),
quantum protocols « () (c), and instantaneous energy E(t) (e), for
a fixed value of u = 0.10 and A = 0.01 (solid orange lines), 0.50
(dashed gray lines), and 1.00 (dot-dashed black lines). These values
correspond to time durations: Ar = 0.95, 0.97, and 1.00. Right pan-
els: variance s(t) (b), quantum protocols « () (d), and instantaneous
energy E(t) (f), for a fixed value of A = 1 and = 0.1 (solid orange
lines), 0.50 (dashed gray lines), and 1.00 (dot-dashed black lines).
These values correspond to time durations At = 1.00, 1.67, and
2.10. The boundary values of the quantum protocols correspond
to the conditions s7;k; ¢ = mD?. The insets in (e) and (f) show the
integral of a?(t) over time for the three protocols represented in
the same panels. Note that the shortest durations correspond to the
largest values of the phase a(t).

In Fig. 8 we compare our results to the same polynomial
protocol described in Sec. IV A by representing the values
of the functional F, for different time durations At for both
protocols. Here, we fix A = 10 and vary p from 0.001 to
2.50 in order to obtain different time durations for the optimal
protocol. The optimal protocol displays significantly lower
values of the cost function F, for short durations, which is
the regime of interest. For longer durations, the two protocols
behave very similarly in this respect.

The above result is important, inasmuch as it shows that,
for the same time duration At, our optimal protocol is closer
to adiabaticity than the polynomial protocol of Ref. [40]. Both
protocols constitute shortcuts to adiabaticity, but the one we
propose here is, in a precise sense, “adiabatically optimal.”
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FIG. 8. Integral of the square of the dynamical phase fzfr dr o(t)
as a function of the total time duration Ar of the protocol. The
black squares corresponds to the optimal protocol, solution of the
Euler-Lagrange equation (29), while the orange triangles correspond
to the polynomial protocol of Ref. [40]. In the gray shaded region
the optimal protocols perform better than the polynomial ones. The
different times durations are obtained by varying the Lagrange mul-
tiplier u (from 0.001 to 2.5) while keeping A = 10 fixed. The dashed
lines are empirical fits to the numerical data.

V. CONCLUSION

To bring a classical or quantum system from a stationary
state to another, the simplest strategy is to vary an external
parameter very slowly, i.e., adiabatically. By doing so, the
system will be at steady state at each instant of the evolution,
but the transition will take an infinite time. The growing field
of research known as “shortcuts to adiabaticity” tries to ac-
complish the same transition within a finite duration.

In the present work, we proposed a strategy to achieve
faster-than-adiabatic transitions. The main idea is based on
Nelson’s representation of quantum mechanics as a clas-
sical stochastic process. In the case of a time-dependent
harmonic oscillator, this quantum-classical analogy is par-
ticularly simple and fruitful. Using Nelson’s procedure, the
Schrodinger equation is rewritten as an overdamped Langevin
equation with a linear harmonic force of stiffness & (¢), which
is related to the stiffness of the quantum oscillator « ()
through Eq. (12). Thanks to this mathematical analogy, it is
possible to translate the classical protocols developed for an
overdamped oscillator into quantum protocols for a system
with finite inertia.
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In particular, we utilized our experience on optimal classi-
cal protocols to devise quantum protocols that minimize both
the time duration and some other arbitrary cost function. For
instance, the cost function can be the cumulative energy over
time. Even more interestingly, we showed that minimizing
the dynamical phase of the wave function (again, together
with the time duration) amounts to minimizing the distance
of the protocol from an adiabatic one. Hence, we could devise
a family of protocols that are “adiabatically optimal”—for a
given finite duration At, they are as close as possible to an
adiabatic (i.e., infinitely slow) process.

The proposed method is rather versatile, inasmuch as
the cost functional to be minimized can be chosen at will.
Nevertheless, some functionals may lead to complicated
Euler-Lagrange equations, which are difficult to solve numer-
ically. This occurs because the cost functional F that has a
physical relevance is expressed in terms of the quantum stiff-
ness k and its time derivative but must be rewritten in terms of
the classical stiffness i before performing the minimization
procedure. This can transform relatively a simple functional
Flk, k] into a rather complicated functional of ¥ and i.

The original method proposed in this work, although lim-
ited here to the ground state of the harmonic potential, opens
up many possible avenues for future research. For instance,
as shown in [40], the same procedure also works for tran-
sitioning an excited state of the harmonic oscillator ¥, (x),
which transforms according to the scale factor defined ear-
lier as g(t) = +/s(t)/s;. In contrast, for anharmonic systems,
the Gaussian wave function is no longer an exact solution.
However, a Gaussian ansatz can be used as an approximate
solution, leading to a modified Ermakov equation, similar
to Eq. (6), which can be used as the basis for a general-
ization of the present theory. Similarly, one may consider
many-body problems in the mean field approximation, ei-
ther with contact interactions (Gross-Pitaevskii equation for
Bose-Einstein condensates) [13,14,74] or Coulomb interac-
tions (Schrodinger-Poisson equations for a quantum electron
gas) [75]. These are nonlinear Schrodinger equations that
are amenable to the Nelson representation utilized in the
present work. For weak coupling, the exact solution can be
approximated by a Gaussian wave function, leading again to a
modified Ermakov equation. For the Gross-Pitaevskii case, an
interesting goal would be to control the system by modulating
the scattering length, which can be done experimentally by
varying an external magnetic field. A further avenue for future
research is to extend the present method to the case of an open
quantum system in contact with a bath at finite temperature.
To do this, it would be necessary to extend Nelson’s formal-
ism, for instance, by adding a thermal noise to Eq. (2), for
which several attempts have already been proposed [76,77].
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APPENDIX: CLASSICAL WORK-OPTIMAL PROTOCOL

In order to illustrate the quantum-classical analogy and
to show the importance of adding the functional G[k’] to
the total functional to be minimized, we propose to study a
simple and well-documented case: the classical work-optimal
protocol developed in [47]. A Brownian particle is trapped
in a harmonic potential whose stiffness i (¢) can vary in
time. The particle is immersed in a fluid of damping co-
efficient y and thermal diffusion coefficient D = kgT' /v,
where T is the temperature of the fluid. In Ref. [47] the
objective was to find the optimal manner to vary k(¢) so
that both the duration of the transition and the work done
on the system are minimal. The position of the Brownian
particle follows a Gaussian probability distribution of variance
s(t), which obeys Eq. (11). Changing the independent variable
from the time 7 to the variance s, we can write the time
duration At as in Eq. (15) and the work done on the sys-
tem as [47,78,79] W =3 [ dr (1)(x?) = —5 [ dsk(s) +

%(sfi?f — siki). Hence, the functional to be minimized is

I 4 Y
J[K]—/; ds—Dy—sE(s) )»/y dsi(s),

i i

(AD)

with A a Lagrange multiplier. It is straightforward to find the
solution of the associated Euler-Lagrange equation [47]:

_ Vs
sik(s) =Dy F o

where the upper and lower signs correspond to the cases of
the compression or expansion, respectively. Note that as the
Euler-Lagrange equation is purely algebraic, the boundary
conditions cannot be fixed at will. Hence, in the classical case,
the solution (A2) must be supplemented by “jumps” at the
initial and final times [47].

The associated quantum protocol is obtained using
Eq. (16), yielding

(A2)

Kk(s) = mD?/s?, (A3)

which is independent of A. Surprisingly, this solution coin-
cides with the equilibrium solution (13), which means that
it represents an adiabatic process for the quantum oscillator,
albeit with a finite duration that can be obtained from Eq. (15):
At = /Yy A(/si £ /7). The variance can be computed solv-
ing Eq. (11), yielding

s(t) = (s £1/y )2,

and the classical and quantum protocols are, respectively,

(A4)

7() = Dy + JJysi/»£t/A k@) = mD?
O WsEYRR IRVCEI 250

(A5)

Note that if the time is expressed in units of total time dura-
tion At, then «(¢/At) is indeed independent of the Lagrange
multiplier A.

As mentioned above, the quantum solution is at equilib-
rium at each instant. However, since the classical equilibrium
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conditions do not hold, s; ¢kis # Dy, the time derivative of
the variance at the initial and final times is not zero. From the
point of view of the classical system this is not a problem,
because the overdamped dynamics displays no inertia, so that
one can change the stiffness abruptly to bring it to the equi-
librium value compatible with s¢ [47]. But for the (inertial)
Schrodinger equation, if § # 0 at t = #;, then the system will
continue to evolve in time after #.

It is therefore necessary to ensure that Dy — sk = 0, both
att =t; and ¢t = t;. In order to do that, the Euler-Lagrangian
equation should be a second-order differential equation in-
stead of an algebraic one, as was the case for the functional
of Eq. (A1). This is the reason why one needs to add a second
functional of the form G[k'] = fs Y‘ ds |&’(s)|?, associated with
the Lagrange multiplier ©, which leads to the following Euler-
Lagrange equations:

ys

MW= Dy —wwr

A (A6)

This being a second-order differential equation, the boundary
conditions at #; and # can be imposed consistently with the
requirement that s; ¢ f = Dy .

The various results, both for the analytical solution (A2)—
(A5) (with jumps) and the smooth numerical solution of
Eq. (A6), are presented in Fig. 9 for the variance s(¢) (top
panels), the classical protocols i (¢) (middle panels), and the
quantum protocols «(¢) (bottom panels). In the left panels,
we take u = 0 (no smoothing) and vary A from 0.1 to 10,
while the right panels keep A = 1 fixed, while u varies from
0.01 to 0.1. It is clear (top left and bottom left panels) that
the variance s(¢) and the quantum protocol «(z) do not de-
pend on A, as suggested by Eqgs. (A3) and (AS). Instead, the
classical protocol depends on A, in accordance with Eq. (A2).
It is also evident that the classical protocol displays dis-
continuities at the initial and final times (which disappear
in the adiabatic limit A — 00), while the quantum protocol
does not.

In the protocols with u > 0 (right panels of Fig. 9), the
variance varies smoothly at the initial and final times, as
expected, and the classical protocols display no discontinu-
ities at the boundaries. Hence, the equilibrium conditions are
fulfilled and the system’s variance will remain at its final value
at the end of the transition. Finally, we note that the quantum
protocol develops large spikes near # and ¢ for small values

200 @) =000/ 200 (b) x = 1.00
/
/
=15 / =15
: / :
/
/
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(c) (d)
ap: 2
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0 1
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FIG. 9. Classical work-optimal protocols. The left panels rep-
resent, from top to bottom, the time evolution of the variance (a),
the classical protocol (c), and the quantum protocol (e), for the case
= 0, which displays jumps at the initial and final times (the initial
and final conditions are represented by red dots). The different curves
are obtained with A = 0.1 (orange solid lines), 1.00 (gray dashed
lines), and 10.00 (black dash-dotted lines). Note that the variance
(a) and the quantum protocol (e) do not depend on A. The right panels
represent, from top to bottom, the time evolution of the variance
(b), the classical protocol (d), and the quantum protocol (f), for
fixed A = 1, and finite values of u: u = 0.10 (orange solid lines),
0.05 (gray solid lines), and 0.01 (black solid lines). Note that these
finite-u protocols are continuous and smooth at the initial and final
times. For comparison, the dashed gray line represents the classical
(discontinuous) protocol with u = 0.

of . Hence, although it must converge to the nonsmoothed
one for © — 0, it appears to do so in a singular way, display-
ing large positive and negative spikes at the boundaries.
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