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Abstract
We propose to reinterpret Einstein’s field equations as a nonlinear eigenvalue problem,
where the cosmological constant � plays the role of the (smallest) eigenvalue. This
interpretation is fully worked out for a simple model of scalar gravity. The essential
ingredient for the feasibility of this approach is that the classical field equations be
nonlinear, i.e., that the gravitational field is itself a source of gravity. The cosmological
consequences and implications of this approach are developed and discussed.
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1 Introduction

The Standard Cosmological Model (�CDM) is capable of accurately reproducing
most cosmological observations, including primordial nucleosynthesis, the cosmic
microwave background radiation, and baryonic acoustic oscillations [1]. However,
despite its success, the�CDMmodel displays some odd properties. Observable bary-
onic matter constitutes a tiny 5% of the total mass-energy content, while the dominant
components—cold dark matter (CDM, ≈ 25%) and dark energy (cosmological con-
stant �, ≈ 70%)—are yet unobserved. This peculiar situation has triggered a lot of
work, both experimental and theoretical, in the search of such elusive components.
Theoretical investigations include, amongst others, Milgrom’s modified Newtonian
dynamics (MOND) and its relativistic extension (TeVeS), which are modifications
of General Relativity (GR) and its Newtonian limit that are supposed to render dark
matter superfluous [2,3]. Concerning dark energy, the simplest hypothesis is that it
constitutes a homogeneous fluid with negative pressure and constant density, which is
equivalent to Einstein’s original cosmological constant � [4]. However, various stud-
ies explore more exotic possibilities where, for instance, dark energy can vary both in
space and in time (quintessence) [5].

A peculiarity of the Standard Cosmological Model is that the evolution of the uni-
verse goes through different phases of acceleration and deceleration, depending on
which component is dominant at a certain epoch. The very early instants of the uni-
verse were characterized by a primordial exponential expansion (inflation), followed
by radiation-dominated and a matter-dominated epochs where the rate of expansion
was decreasing (deceleration), and finally an epoch dominated by the cosmologi-
cal constant during which the expansion again accelerates exponentially. The latter
acceleration appears to begin around the present epoch, which is perceived as an odd
coincidence by some authors.

If one changes the composition of the universe, this sequence of accelerations and
decelerations obviously changes too. Several authors have noticed that a universe that
neither accelerates nor decelerates (‘coasting’) fares rather well in explaining many
observational data, in particular supernovae luminosity distance. A recent review [6]
lists at least half a dozen such coasting cosmologies, the prototype of which is the
Milne universe, a universe empty of matter and expanding at a constant rate [7].
More recent examples of coasting cosmologies include Melia’s Rh = ct universe [8],
Villata’s lattice universe [9], and Chardin’s Dirac-Milne universe [10–13]. The latter
is a special scenario where antimatter has a negative gravitational mass and is present
in equal amounts as ordinary matter, leading to a gravitationally empty universe at
large scales (> 200Mpc). For coasting cosmologies, the nondimensional scale factor
grows linearly in time

a(t) = t

t0
, (1)

where the current age of the universe is simply written as: t0 = 1/H0. Incidentally,
taking a linear scale factor, as in Eq. (1), resolves most of the coincidences or oddities
of the�CDMmodel, such aswhy the cosmological constant starts becoming dominant
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precisely at the present epoch. It also solves the horizon problem, because the particle
horizon

∫ t

0

c dt ′

a(t ′)

diverges as t → 0, implying that any twogiven places in spacewere causally connected
in the past, which removes the need for primordial inflation.

It is noteworthy that, for a coasting universe, most cosmological quantities can be
simply written as a function of one single parameter, namely the Hubble constant H0:

t0 = 1/H0 ≈ 14Gy,

� = H2
0 /c2 ≈ 5 × 10−53 m−2,

ρ0 = H2
0 /(8πG) ≈ 1.8 protons/m3,

a0 = cH0 ≈ 6.8 × 10−10 ms−2,

where ρ0 is the average mass density of the universe and a0 is Milgrom’s acceleration
parameter, used inMOND to obtain a good fit to galaxy rotation curves without resort-
ing to dark matter. G and c are Newton’s constant and the speed of light in vacuum,
respectively. The numerical values are those obtained for H0 = 70 km s−1/Mpc and
fit relatively well the accepted values, without needing anything else other than the
current Hubble constant.

Most existing coasting cosmologies assume, in one manner or another, some fun-
damental yet still unobserved ‘new physics’. For instance, Melia’s model postulates
the existence of a dark energy fluid with a peculiar equation of state (different
from that of the �CDM model), while Villata’s lattice universe and Chardin’s
Dirac-Milne universe—although fundamentally different—both imply gravitational
repulsion between matter and antimatter.

Here, we will present an alternative coasting cosmology that, unlike previously
proposed ones, has the advantage of not requiring any additional unobserved com-
ponents nor modifications of the underlying theory of gravity (e.g., antigravity). It
merely stems from a new mathematical interpretation of the standard equations of
gravity, namely Einstein’s field equations of General Relativity (GR). It will become
clear in the next sections that the crucial property needed for this new interpretation
is that the equations be nonlinear, i.e., that the gravitational field is itself a source of
gravity, as is the case for GR. Because of the formidable complexity of Einstein’s
field equations, we illustrate this model using a simpler—but still nonlinear—scalar
theory of gravity, one that was proposed by Einstein himself in 1912 [14], en route to
discovering the full GR.

2 Eigengravity

In the usual notation, Einstein’s field equations can be written as:
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Gμν + �gμν = 8πG

c4
Tμν, (2)

where Gμν ≡ Rμν − 1
2 R gμν is the Einstein tensor, Rμν is the Ricci tensor, R is the

curvature scalar, gμν is the metric tensor, and Tμν is the energy-momentum tensor,
i.e., the source of the gravitational field.

The cosmological constant � has a long history in GR [4]. A positive � was first
introduced by Einstein to counterbalance the attractive effect of gravity, with the aim
of constructing a stationary model of the universe. However, when it became clear that
such a model is by nature unstable, and especially after accumulating observational
evidence pointed to a non-stationary expanding universe, Einstein abandoned the idea
of a cosmological constant, which fell into virtual oblivion formore than half a century.
Since 1998, the data of SN1a supernovae luminosity distance [15,16] suggest that the
expansion of the universe is actually accelerating (or, at least, not decelerating), which
may be ascribed to a finite and positive cosmological constant, although some recent
works have questioned the accuracy of the data and their interpretation [17].

From a theoretical point of view, the introduction of a cosmological constant in
Einstein’s equations is perfectly legitimate. Indeed, the left-hand side of Eq. (2) is
the most general local, divergence-free, symmetric, rank-two tensor that can be con-
structed solely from themetric and its first and second derivatives [18].Without�, GR
would be in a way ‘incomplete’. So what is �? Here, opinions diverge. Some authors
[19] have argued that � is just another constant of nature, on a par with Newton’s
constant G. Within this view, gravity simply depends on these two fundamental con-
stants, and there is nothing to be explained here. All we can do is measure to the best
accuracy these two constants. Just as we do not worry (at least from a non-quantum
point of view) about why G takes on a particular value, we should not be concerned
why � has its own, very small, numerical value.

We do not quite agree with this viewpoint, for a simple reason. � is not essential
to the theory; it can be taken equal to zero and one still gets a perfectly viable theory
of gravity. In contrast, by positing G = 0, we would not even have a proper theory
of matter and gravity: just a given spacetime geometry uncoupled to the distribution
of masses in the universe. In other words, setting � = 0 changes the solutions to
Einstein’s field equations, whereas setting G = 0 changes the nature of the theory
itself.

Another debate concerns where the cosmological constant term should be written
in Einstein’s equations—on the left-hand or the right-hand side. If it is written on the
left-hand side (lhs), as in Eq. (2), it should be interpreted as a geometrical term, a
term that makes spacetime curve even in the absence of matter. In contrast, if � is
placed on the right-hand side (rhs), it should be interpreted as a source term, part of
the energy-momentum tensor, and thus correspond to some substance with peculiar
properties (dark energy). This is analogue, in a Newtonian context, to interpreting the
inertial forces observed in a rotating reference frame as either real dynamical forces
or apparent forces due to the transformation to a non-inertial frame.

All in all, this appears to be a question of interpretation, void of any physical content,
except if dark energy varies in space and/or time, which cannot be reformulated as
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a cosmological constant. Nevertheless, given that we do not know much about dark
energy, this debate can have some heuristic interest.

What is proposed here is simply another interpretation of Einstein’s field equations
as a nonlinear eigenvalue problem, by rewriting Eq. (2) as:

Gμν − 8πG

c4
Tμν = −�gμν, (3)

or, after defining the nonlinear operator G(gμν) ≡ −Gμν + 8πG
c4

Tμν , as

G(gμν) = �gμν,

where � is the eigenvalue. Formally, nothing is changed in the underlying equations.
However, the proposed interpretation entails that, like in all eigenvalue problems, the
value of � is not arbitrary, but is rather determined by the boundary conditions of the
system under consideration.

In the next sections, we will illustrate the consequences of this approach using a
simple toy model of scalar gravity.

3 Scalar gravity model

The equations of GR are very complex to solve except in some idealized and highly
symmetric cases. Very few solutions are known analytically and numerical simula-
tions have become feasible only in recent times [20]. In order to illustrate the idea
of an eigenvalue interpretation of gravity, we will use a scalar model that was origi-
nally proposed by Einstein in 1912 [14,21–23]. We start from Poisson’s equation for
Newtonian gravity:

�� = 4πGρ, (4)

where�(r, t) is the gravitational potential and ρ(r, t) is thematter density.Wewant to
incorporate in the above equation the idea that the gravitational energy itself gravitates,
and should therefore appear on the rhs of Eq. (4). The Newtonian gravitational energy
density reads as: −|∇�|2/8πG, but just adding this term (divided by c2) to the rhs
would not suffice, because the new equation would imply a different energy density.
When the procedure is done self-consistently [21–23], it yields the following equation

�� = 4πG

c2
ρ� + |∇�|2

2�
, (5)

which is indeed nonlinear, as expected.1 Although the velocity of light c appears in
Eq. (5), the speed of propagation is infinite in this model, as it is described by an

1 An equation almost identical to Eq. (5) (apart from a factor of 2) can be derived directly from Einstein’s
field equations by considering a metric where only the time-time component differs from its Minkowski
value and requiring it to approach the Minkowski metric for large spatial distances [21,22].
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elliptic partial differential equation (PDE). In this sense, the above scalar model is still
Newtonian. We also note that Eq. (5) can be derived from the following Lagrangian:

L = c2

8πG

∇� · ∇�

�
+ ρ�. (6)

A cosmological constant can be added by considering that the density is composed
of a matter part ρm and a vacuum part −ρ� (with a minus sign, so that a positive �

entails repulsion), with:

ρ� ≡ c2

8πG
�. (7)

This yields

− �� + 4πG

c2
ρm� + |∇�|2

2�
= ��, (8)

already written in eigenvalue format. Here, we would like to stress that the eigenvalue
formulation of the equation is possible onlywhen the nonlinearity is taken into account.
In the Newtonian limit, Eq. (8) becomes [24,25]:

�� = 4πGρm − c2�, (9)

which cannot be cast in an eigenvalue format.2 Nonlinear eigenvalue problems of the
type of Eq. (8) are frequently found in the mathematical literature, see [26] for a recent
review. More details are provided in the “Appendix A”.

A noteworthy feature of this nonlinear scalar model is that it can be linearized
exactly by setting � = √

�, which yields:

− �� + 2πG

c2
ρm� = �

2
�. (10)

� has the dimensions of a velocity. The similarity of Eq. (10) with the standard
Schrödinger equation, with �/2 playing the role of eigenvalue, is striking. Even more
so as, just like in elementary quantummechanics, the quantity that is physically mean-
ingful is not �, but rather |�|2 = � (see the “Appendix A” for some mathematical
clarifications). However, we stress that this property (exact linearization) is by no
means necessary for the present theory. All that is needed is that the field equations
can be cast in a nonlinear eigenvalue format, as in Eq. (8).

From Eq. (10), one can derive the following first integral:

2πG

c2

∫
V

ρm�2dr +
∫
V

|∇�|2dr −
∮
S
�∇� · n dS = �

2

∫
V

�2dr, (11)

2 Equation (9) implies a modification of Newton’s acceleration in the gravitational field generated by a
pointlike mass m, which becomes: g(r) = −Gm/r2 + c2� r . Such modification becomes sizeable only
on cosmological scales. See [27] for further details.
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where V is the integration volume and S its boundary, with normal vector denoted
n. When n · ∇� vanishes on the boundary (see next paragraph), then Eq. (11) can
be written as Em + Efield = E�, where Em , Efield, and E� are respectively the total
energies due to matter, the gravitational field, and the vacuum. In this case, it is clear
that � must be non-negative.

An eigenvalue is determined by the relevant boundary conditions. In an infinite
medium, the natural boundary condition for Eq. (10) is: �(|r| → ∞) = c [21–
23]. In the Newtonian limit, this corresponds to the usual inverse square law for the
gravitational force. In a finite volume (e.g., a sphere of radius R), the above expression
should be replaced by

� (|r| = R) = c, (12)

∇ � (|r| = R) = 0. (13)

The latter condition on the gradient implies that the gravitational force vanishes on
the boundary, which is automatically satisfied in an infinite medium, but has to be
imposed explicitly in a finite volume.

Equations (10), (12), and (13) constitute a Cauchy problem for an elliptic PDE.
This problem is notoriously ill-posed [28], meaning that it does not generally pos-
sess a solution for arbitrary values of the parameters and boundary conditions. Then,
the eigenvalues � are determined precisely as those values for which the Cauchy
problem does have a solution that satisfies the required boundary conditions. Further
clarifications are found in the “Appendix A”.

We further claim that, on a cosmological scale, the above boundary conditions
should be applied on the Hubble sphere, R0 = cH0, where the recession velocity is
equal to the speed of light. Indeed, in a series of papers [8,29,30],Melia has shown that
no photon emitted since the Big Bang singularity and observed now can have traveled
a distance larger than R0. Thus, the Hubble radius constitutes an apparent gravitational
horizon, where the escape velocity is equal to c (in contrast to its Schwarzschild coun-
terpart, however, this horizon is not static but expanding). The boundary conditions
(12)–(13) are compatible with a particle with velocity equal to c emitted in the past
traveling outwards up to R0, where it reverses its path and starts traveling towards us.

To illustrate the above ideas, we performed numerical simulations of Eq. (10) in
spherical symmetry (i.e., all quantities depend on r = |r| only), for some matter
distributions ρm(r). For given boundary conditions, the eigenvalue problem usually
yields a whole spectrum of solutions, just like for the ordinary Schrödinger equation.
Here, we shall only consider the smallest eigenvalue, i.e., the equivalent of the ‘ground
state’ of the system.

Two typical examples are shown in Fig. 1. The results are expressed in units in
which 2πG/c2 = 1 and space is normalized to an arbitrary length R. The left and
right panels differ only in the total volume considered. For the case on the left panel,
the various energy terms are: Em = 2.28, Efield = 0.36, and E� = 2.65. For the case
on the right panel: Em = 1.39, Efield = 0.73, and E� = 2.13. Both sets of values
satisfy Eq. (11) with good accuracy. The vacuum density (in units of c2/2πGR2)

123



   31 Page 8 of 19 G. Manfredi

Fig. 1 Potential function�(r) normalized to c (solid lines), matter density ρm (r) (dashed line) and vacuum
density ρ� (dotted line), as a function of the radius r normalized to a reference value R. Both ρm (r) and
ρ� have been divided by the peak value ρm (0). The left and right panels differ only in the total volume
considered

is respectively ρ� = 0.367 and ρ� = 0.0348, corresponding to � = 1.47 and
� = 0.139 (in these units, ρ� = �/4).

We note that the vacuum term exactly compensates the sum of the matter term
(which is generally dominant) and the self-field term, resulting in a globally empty
‘universe’. Increasing the total volume of the simulation (as in the right panel of Fig. 1),
while keeping the matter content identical, thus leads to a smaller vacuum density and
a smaller cosmological constant. It can be shown that, in the limit of large volumes,
both � and ρ� go like 1/V .

4 Cosmological considerations

4.1 Homogeneous universe

Considering a universe that is homogeneous at large scales, with matter density ρm =
const., an immediate solution of Eq. (10) is:

� = c, � = 4πG

c2
ρm, ρ� = ρm

2
. (14)

In this case, the vacuum density perfectly cancels the mass density, yielding a grav-
itationally empty universe. Taking ρm ≈ 1proton/m3 yields the correct order of
magnitude for the cosmological constant, as we saw in Sect. 1. For an almost homo-
geneous distribution with fluctuations (Fig. 2), the result is similar: the vacuum term
cancels on average the matter distribution (as long as gradients of the gravitational
potential can be neglected). The above reasoning is very simple, almost trivial, but
nevertheless powerful. We have not modified the field equations of gravity nor have
we introduced any extra components. We have only reinterpreted the equations as an
eigenvalue problem, posited the correct boundary conditions, and hence deduced the
eigenvalue.
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Fig. 2 Matter density ρm (r) (solid line) and vacuum density ρ� (dotted line), as a function of radius. The
potential � (not shown) is basically flat in this case

Therefore, if we adopt Eq. (8) or (10) as the basis for a cosmological model, then it
follows that the total density (matter + vacuum) of the universe is zero at each epoch.
A gravitationally empty universe was first proposed by Milne [7], but presented the
obvious drawback of ignoring the effect of observedmatter.More recently, Benoit-Léy
and Chardin [10] proposed the so-called ‘Dirac-Milne’ cosmology, where antimatter
has negative active gravitational mass and is present in an equal amount as matter,
so that the universe is gravitationally empty. This is an appealing proposal, but rests
on a yet unverified fundamental hypothesis about antimatter, although this may soon
change, with forthcoming laboratory measurements of the gravitational acceleration
of antihydrogen atoms being expected in the next few years [31–33].

The present model also implies a gravitationally empty universe, with the negative
part coming from a negative vacuum energy that automatically cancels out the posi-
tive matter density. However, this is achieved without introducing any new physical
hypotheses, only by reformulating the field equations as an eigenvalue problem.

For an empty universe, the scale factor a(t) is linear in time, as in Eq. (1), so
that the expansion is neither accelerating nor decelerating (coasting). As the matter
density ρm gets diluted during the expansion and decreases as a−3(t), the vacuum
density ρ� also decreases following the same law, so that they cancel each other at
each instant. Importantly, for a coasting universe, the age of the universe is always
t = 1/H(t), where H(t) = ȧ/a is the Hubble parameter. In contrast, in �CDM,
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this relationship is only valid at the present epoch, which is often seen as a peculiar
coincidence demanding an explication.

4.2 Structure formation

Usually, gravitational structure formation in a homogenous universe is studied with
Newtonian gravity, although some results that use the full Einstein’s equations were
obtained recently [20]. The Newtonian limit of the present scalar model is given by
Eq. (9), which can be rewritten as:

�� = 4πG (ρm − 2ρ�). (15)

As we have seen, the vacuum densities decrease as the cube of the nondimensional
scale factor a(t), so that: ρ�(t) = ρ�0/a3(t), where ρ�0 is a constant representing
the present vacuum density.

For a spherically symmetric universe, where all quantities depend only on the radius
r , the Newtonian equation of motion is

d2r

dt2
= −∂�

∂r
. (16)

Using comoving co-ordinates

r = a(t)r̂ , (17)

dt = a(t)dt̂, (18)

the scaled equation of motion is then

d2r̂

dt̂2
+ ȧ

dr̂

dt̂
= −1

a

∂�̂

∂ r̂
, (19)

where �̂(r̂ , t̂) is the scaled gravitational potential. As the density must scale as
ρ̂m(r̂ , t̂) = a3(t)ρm(r , t) in order to preserve the total mass, we scale the gravita-
tional field as �̂(r̂ , t̂) = a(t)�(r , t), so that Poisson’s equation remains invariant in
the comoving variables:

�r̂ �̂ = 4πG (ρ̂m − 2ρ�0). (20)

The systemofEqs. (19)–(20)was solved numerically using anN-body code in a pre-
vious work [12], as an approximation to the Dirac-Milne cosmology.We recall that the
Dirac-Milne universe is constituted of matter and antimatter in equal amounts. Anti-
matter is supposed to possess a negative active gravitational mass and to be repelled
by both matter and antimatter itself, so that it spreads almost uniformly across the uni-
verse (albeit being expelled from regions of large matter overdensities, i.e., galaxies).
As a first approximation, one can assume that the negative-mass antimatter is spread
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uniformly everywhere with constant density, which leads exactly to the scaled Pois-
son’s equation (20), where, in that case, ρ�0 would represent the density of antimatter
in comoving co-ordinates.

In the context of the present work, Eq. (20) is exact (apart from being a Newtonian
limit). Therefore, the simulations reported in Refs. [12,13] also apply to the present
case. The main result of those simulations was that gravitational structures form rather
quickly and closely resemble those observed for the �CDM universe. In addition,
structure formation slows down and stops around the present epoch, also in agreement
with the standard cosmological model.

Thus, the present ‘eigengravity’ model appears to be consistent with the formation
and evolution of gravitational structures in our universe.

4.3 Darkmatter

Dark energy, or the cosmological constant, was devised to understand the behavior
of the universe on a very large scale, but, due to its extremely small values, it has
basically no effect locally. Galactic dynamics should be understood entirely in terms of
standard attractive gravity. In addition, given the low velocities and weak gravitational
fields that are involved, Newtonian gravity should constitute a perfectly acceptable
approximation.

Nevertheless, it has been known for a long time that the rotation velocities of stars
in the outer region of most galaxies are far too large compared to the visible mass
of the galaxy [34]. If Newtonian gravity holds, those stars could not be trapped in
the gravitational well of the galaxy and should instead fly off tangentially under the
action of the centrifugal force. Darkmatter (usually in the form of large spherical halos
surrounding the galaxy) is thus postulated in order to compensate for themissingmass.
However, although many possible candidates have been evoked in the past, it is still
unclear what particles could make up such invisible dark matter.

A second important reason for suspecting that the total mass in the universe is far
larger than the visible one is related to structures formation. With only the baryonic
mass present, there would not be enough time for the universe to develop the intricate
cosmological structures (galaxies, clusters of galaxies, superclusters) that we observe
today. In the context of the model proposed here, we have seen in the preceding
Sect. 4.2 that structure formation does occur on the expected time scale, even in the
absence of any extra ‘dark’ mass.

The elusiveness of dark matter has led some researchers to speculate that the reason
for the inaccuracy of the predictions for the rotation velocities results not from the
presence of some unknown substance, but rather from a modification of Newton’s
inverse-square law at low accelerations. The most established of these theories is
Milgrom’s MOND, which performs quite well at predicting such rotation curves [3].
The only adjustable parameter inMOND is the acceleration a0 belowwhich Newton’s
theory fails. By fitting MOND’s law to rotation curve data, one finds a0 ≈ 1.2 ×
10−10 m/s2. As was already noticed by Milgrom [2], the order of magnitude of this
acceleration is very close to cH0 = c/t0 = c2/R0, where t0 = 1/H0 is the age of a
coasting universe and R0 = c/H0 is the radius of Hubble’s sphere or cosmological
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Fig. 3 Top panel: Gravitational potential as a function of the galaxy radius r normalized to Rg = 200 kpc.
Bottom panel: Baryonic mass density (dashed line) and rotation velocity (solid line) as a function of the
galaxy radius. The thin doted line represents the equivalent ρ�. Here,� is normalized to v2g and the velocity
to vg = 500 km/s. Densities are represented in arbitrary units in order to show their profiles

horizon. In other words, a0 is approximately the acceleration necessary to bring a body
from zero velocity at the Big Bang up to the speed of light at the present time.

The above value of a0 hints at the interesting possibility that dark matter may in fact
be the local manifestation of a global (cosmological) effect. Here, we will use this idea
to show that the effect usually attributed to dark matter can be seen as a consequence
of imposing certain boundary conditions on the universe.
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We solve Eq. (8) in the vicinity of a galaxy and set the boundary conditions at
the border of a spherical region of radius Rg containing such galaxy. As usual, the
field ψ , which has the dimension of a velocity, must approach c on the Hubble radius
R0, where it has zero gradient. Therefore, on the radius Rg 	 R0 that we consider,
we can estimate the gradient of ψ as: ∇ψ(Rg) ≈ c/R0, which is of the order of
Milgrom’s acceleration a0 divided by c. This simple consideration supports the idea
that the existence of a critical acceleration a0 is the local result of a distant boundary
condition.

We rewrite Eq. (10) in nondimensional units, by normalizing velocities (i.e., �) to
vg , distances to Rg , and densities to ρg (the matter density within the galaxy). This
yields:

− �� + K ρ̂m� = �R2
g

2
�, (21)

where K = 2πGR2
gρg/c2 is a dimensionless number and ρ̂m = ρm/ρg . In these units,

the boundary conditions are: �(Rg) = 1 and ∇�(Rg) = (c/vg)(Rg/R0).
A solution of Eq. (21) is presented in Fig. 3. We have taken as parameters: Rg =

200 kpc, vg = 500 km s−1, and R0 = 4.3Gpc (Hubble radius), which yields K =
0.56 and ∇�(Rg) = 0.027 in normalized units. The chosen mass density profile is
displayed in Fig. 3, bottom panel: it starts at ρg(r = 0) = 100M
/pc3 at the center
of the galaxy and then falls off rapidly.

The rotation velocity, defined as v(r) = √
r ∇�, grows inside the galaxy core,

where the density is approximately constant, then reaches a plateau up to a distance
Rg = 200 kpc from the galaxy center. Despite the crudeness of the model and the
many approximations that were made, the numerical values are rather reasonable: the
potential well (top panel of Fig. 3) has a depth �� ≈ 0.07v2g = 1.75 × 104 km2s−2

and the rotation velocity plateaus at v ≈ 0.2vg = 100 km s−1.
Interestingly, if we compute the matter and vacuum energies [see Eq. (11)]:

Em = 2πG

c2

∫
V

ρm�2dr,

E� = �

2

∫
V

�2dr,

we find Em = 0.032 and E� = 0.136, thus constituting respectively about 20% and
80% of the total mass content. This is not far from the accepted ratio between baryonic
and dark matter in standard cosmology. Note that Eq. (11) must now take into account
the gradient of � on the boundary of the integration volume.

A purely Newtonian rotation curve would instead fall off as r−1/2. The different
behavior observed inour case originates from theboundary conditionon∇ψ , reflecting
the fact that the gravitational potential� = �2 must approach c2 on theHubble sphere.
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This boundary condition imposes a negative eigenvalue �, which translates into an
attractive vacuum density ρ�, depicted in Fig. 3 (bottom panel) as a thin dotted line.
This additional density, extending to and beyond 100 kpc, plays a similar role as the
dark matter halo in the standard theory. This is in line with the above interpretation
that ‘dark matter’ is in fact the local manifestation of a global (cosmological) effect,
which appears through the imposition of a suitable boundary condition.

5 Conclusions

In this work, we proposed a new interpretation of the gravitational field equations as
a nonlinear eigenvalue problem. This interpretation relies on a threefold conjecture:

1. Any gravitational field equation that incorporates a self-field term (i.e., where the
gravitational field is itself a source of gravity) can be cast mathematically in the
form of a nonlinear eigenvalue problem.

2. The cosmological constant � can be interpreted as the smallest (‘ground state’)
eigenvalue for this problem.

3. The value of � is determined by the boundary conditions imposed on the field
equation.

In order to illustrate the features of this interpretation, we applied it to a scalar toy
model of gravity, which is still Newtonian but where the gravitational field sources
itself. Interestingly, this model can be linearized exactly and, when this is done, takes
the form of a standard Schrödinger equation, with the cosmological constant as the
eigenvalue. Just like the Schrödinger equation, the eigenvalue is determined by the
choice of the boundary conditions.Nevertheless,we emphasize that this property of the
scalar toymodel (i.e., exact linearization), although appealing and possibly suggestive,
is not required for the present theory. In other words, even if the field equations were
intrinsically nonlinear and not reducible to a set of linear equations (excepts as an
approximation), our approach would still retain its validity.

This approach was then tested against some of the most topical issues in current
cosmology. We could conclude that our approach: (i) provides the correct order of
magnitude for �, (ii) is compatible with structure formation on a cosmological scale,
and (iii) is compatible with the effects of Dark Matter on a local scale, particularly the
shape of the galaxy rotation curves.

Of course, the above results were obtained with a simple semi-Newtonian scalar
model (although this is true also for standard approaches) and no attempt was made
to quantitatively compare these results with observational data. Hence, they have to
be taken as a first heuristic step to check the validity of our model.

We also emphasize that the model put forward here is purely classical and the refer-
ence to eigenvalues and Schrödinger equations is only a mathematical analogy, albeit
a precise one. Nevertheless, the present approach may turn out to be useful in making
contact with issues in quantum gravity. In particular, an eigenvalue interpretation of
the cosmological constant has been proposed by some authors in the framework of
the Wheeler–DeWitt equation [35–39]. The link to the present work remains to be
established.
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The present ‘eigengravity’ approach could be extended in several directions. First,
the relevant field Eq. (10) should bemade Lorentz invariant, possibly by simply replac-
ing the Laplacian operator with the Dalambertian:

1

c2
∂2�

∂t2
− �� + 2πG

c2
ρm� = �

2
�, (22)

which has the structure of a Klein–Gordon equation. A connection between GR and
Klein–Gordon and Schrödinger-like equations was made in a recent work [40].

Secondly, the present ideas should be tested against the full GR, or at least a better
approximation than the toy model used here. More generally, one could explore the
highly nontrivial question of whether Einstein’s field equations could be linearized
exactly in a similar fashion (of course, they can be linearized as an approximation,
which is often used in many contexts, not least gravitational wave propagation). How-
ever, we stress again that the property of exact linearization is not crucial for the present
theory.

Finally, a lot more work is needed to firmly establish whether the present approach
is quantitatively compatible with observations, particularly on cosmological structure
formation and galactic rotation curves.
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Appendix A: mathematical digressions

Appendix A.1: nonlinear eigenvalue problems

Nonlinear eigenvalue problems occur frequently in the mathematical literature. A
very readable review was published recently [26]. More extensive discussions can be
found in the two monographs [41,42]. A nonlinear eigenvalue problem can be written
generally as: F(λ, u) = 0, where λ is the eigenvalue, F is a nonlinear function, and
u usually belongs to a Banach space. In our case, the problem takes the special form:
F(u) = λu. A typical example is the p-Laplacian eigenvalue problem with Dirichlet
boundary conditions:

div(|∇u|p−2∇u) + λ|u|p−2u = 0, in �, (A1)

u = 0, on ∂� (A2)

where � ⊂ R
3, and p > 1 is an integer [43]. Note that the above equation is homo-

geneous in u, just as Eq. (8) is homogeneous in �. This means that if u is a solution,
thenCu is also a solution, for any real or complex numberC . This is a property shared
with linear equations.

123



   31 Page 16 of 19 G. Manfredi

Appendix A.2: relevant functional spaces

Let us consider the following linear eigenvalue problem, which corresponds to Eq.
(10) in 1D, with 2πG/c2 = 1 and λ = �/2:

− uxx + ρu = λu, x ∈ I ≡ [0, 2π ], (A3)

u(0) = u(2π) = 1, (A4)

ux (0) = ux (2π) = 0, (A5)

with ρ ≥ 0 and
∫
I ρ(x)dx < ∞, and the subscript stands for differentiation. Elliptic

PDEs are usually defined in Sobolev spaces [44], because such spaces guarantee
the existence of the derivatives, at least in a weak sense. Here, the appropriate space
seems to be H1, which is also a Hilbert space equipped with the inner product (u, v) =∫
I uvdx + ∫

I uxvxdx and the related norm ‖u‖ = √
(u, u).

We first consider the simple case where ρ = 0 (no matter density). Then, the
eigenfunctions of Eq. (A3) are cosines: ϕn = cos(nx), with eigenvalues λn = n2.
Then, if a solution u(x) exists for the full Eq. (A3) with non-vanishing ρ, it can be
represented as:

u(x) =
∑

n anϕn(x)∑
n an

, (A6)

which satisfies the required boundary conditions (an are real numbers). Of course, we
have not proven that such a solution actually exists, which is a nontrivial mathematical
problem.

In an infinite space (I = R
3), the norm generally diverges, because of the boundary

condition on the first derivative (A5). However, this point should not be considered
crucial: for instance, non-integrable wave functions are routinely used as solutions of
the standard Schrödinger equation to describe propagating plane waves. In addition,
as we have seen in the main text, these boundary conditions are to be applied on the
Hubble sphere, i.e. in a finite volume, so this problem should not actually arise.

Appendix A.3: elliptic equations with Cauchy boundary conditions

An elliptic PDE, such as Eq. (A1), with Dirichlet boundary conditions, constitutes a
well-posed problem. In contrast, if one takes Cauchy boundary conditions, the related
problem is ill-posed [28]. Cauchy boundary conditions correspond to specifying both
the function and its normal derivative on the boundary, e.g. u = ∂u/∂n = 0 on ∂�. In
that case, the problem does not always have a solution. Our Eqs. (10), (12), and (13)
fall in this category.

However, as an eigenvalue problem, the problem makes perfect sense. The eigen-
value λ is determined precisely by the requirement that the problem does possess a
solution for Cauchy boundary conditions. We can illustrate this on a simple problem
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in 1D. Let us consider the following first-order nonlinear differential equation:

u2ux + u = λu, x ∈ [0, 1], (A7)

u(0) = 0, ux (1) = √
2/2. (A8)

The problem is obviously overdetermined, as a 1D differential equation admits only
one boundary condition. Hence, for fixed λ, Eq. (A7) does not generally admit a
solution respecting both boundary conditions (A8). This is easily verified by checking
that a solution of Eq. (A7) is u(x) = u0

√
x , with u0 = ±√

2(λ − 1), which satisfies
the boundary condition in x = 0 but not (for arbitrary λ) in x = 1. But if one
treats Eq. (A7) as an eigenvalue problem, the second boundary condition becomes a
constraint that fixes the eigenvalue, in this case λ = 2. This is precisely what happens
for our problem: adding the extra boundary condition on the gradient of � on the
boundary of the domain determines the value of �.

As a further ‘physical’ example, let us consider the 1D heat equation with Cauchy
boundary conditions:

Tt = Txx − S(x)T + λT , x ∈ [0, L], (A9)

T (x, 0) = T0, (A10)

T (0, t) = T (L, t) = T0, (A11)

Tx (0, t) = Tx (L, t) = 0, (A12)

where T (x, t) is the local temperature at an instant t , −S(x)T is a heat sink, and λT
is a heat source. The above problem corresponds to a system initially at temperature
T0 everywhere, which evolves under the action of the sinks and sources of heat. The
boundary conditions prescribe that the temperature must remain equal to T0 at x = 0
and x = L [Eq. (A11)] and that the heat fluxmust vanish at the boundaries [Eq. (A12)].
This is not physically realizable, of course: if no heat can escape the system, then the
temperature at the boundaries cannot be fixed arbitrarily, but will be determined by the
interplay of the sinks and sources. However, if λ is not fixed but rather considered as an
eigenvalue, then the Cauchy boundary conditions can indeed be satisfied. Physically,
this means that the source term λT is tuned precisely so as to keep the temperature
equal to T0 at the two boundaries. This determines the value of λ.

We also note that a steady-state solution of Eq. (A9) corresponds to a solution of our
model Eq. (10), in a 1D planar geometry. Indeed, the numerical results shown in this
work were obtained by propagating the field�(r , t) according to a heat-type equation
like Eq. (A9), so that the solution relaxes naturally to the lowest-order eigenfunction.
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