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Expansion of a quantum electron gas
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The expansion of a quantum electron gas (non-relativistic, no spin} is
investigated via the one-particle Sehrodinger-Poisson model. Classically, the
nonlinear term enhances the formation of a very regular asymptotic state. By
means of rescaling methods, we conjecture that the quantum asymptotic
solution is identical to the classical one. Subsequent numerical simulations
confirm the above conjecture and define precisely the way in which the classical
limit is approached. The numerical results are supported by several analytical
calculations: in particular, it is proved that the rescaled equations can be
written in a way such that a vanishing Planck’s constant appears. This trick
allows us to evaluate the quantum correction terms. Finally, we show the
existence of an analytical solution, the Wigner transform of which exactly
corresponds to the classical solution.

1. Introduction

In recent years there has been increasing interest in models that account for
quantum effects in transport phenomena. From a practical point of view, much
work has aimed at modelling the features of small semiconductor devices, in
which the de Broglie wavelength of the charge carriers is of the same order of
magnitude as the size of the device. However, quantum transport equations
present some theoretical interest per se, which justifies the study of a few
idealized situations such as the expansion-into-vacuum problem.

Several approaches to- the modelling of quantum plasmas are already
available — the most widely used models are based on either the Wigner or the
Schrodinger equation to deseribe the dynamics of the electrons, whereas the
electrostatic interactions are treated self-consistently via the Poisson equation.
Because of the coupling with the Poisson equation, both models are highly
nonlinear, so that analytical investigations soon become a formidable task: we
believe that a combination of analytical and numerical tools can be an efficient
approach to this kind of problems. ‘

In the Wigner representation (for a review see Tatarskii 1983), quantum
mechanics is expressed in a phase-space formalism, in which the quasi-
probability density (called the Wigner function) is unambiguously derived from
the Schrédinger wavefunction. Such a density obeys an evolution equation that
bears some analogy with the classical Liouville equation. Unfortunately, the
Wigner function cannot be regarded as a true probability density, since it
exhibits a few ‘unpleasant’ features (including non-positivity), but can
nevertheless be used operationally, although with some caution, to calculate
the evolution of any dynamical quantity. A remarkable advantage of the
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Wigner formalism is that both pure and mixed states are treated on the same
basis, the only difference lying in the choice of the initial condition.

Several codes have recently been proposed for solving the Wigner—Poisson
system, both in the Eulerian formalism (using a distribution function — Suh,
Feix & Bertrand 1991) and in the Lagrangian formalism (following the
trajectories of pseudo-particles — Arnold & Markovich 1991; Arnold & Nier
1992). 1t should be noted, however, that the philosophy of particle codes is, in
principle, ill suited to treating a quantum-mechanical problem, since the very
concept of a classical trajectory loses its meaning. In fact, in such codes one is
obliged to reconstruct a distribution function in order to compute the
acceleration term, thus losing most of the advantages of classical Lagrangian
codes. For this reason, we believe that Eulerian codes are definitely more
appropriate for simulating quantum-mechanical evolutions in phase space.

On the other hand, the Schrédinger-Poisson system has long been used in its
stationary version, in order to study the energy spectrum of electrons in semi-
conductor devices (Cruz Serra & Aren Santos 1991; Kerkhoven ef al. 1990).
However, the existing literature on the time-dependent Schrédinger—Poisson
system is much narrower. In several papers (Bertrand et al. 1980; Nguyen ef ol.
1985) the authors have investigated the classical limit in order to recover the
evolution of a classical plasma. The main idea underlying this approach is that
the Schrodinger equation depends only on the co-ordinate variables, whereas a
correct treatment of a classical plasma involves the whole phase space, thus
requiring a considerably stronger numerical effort. As a matter of fact, it turns
out that, to obtain a significant reduction of the numerical effort, one has to
accept the presence of finite quantum effects, ' ‘ '

More recently, the time-dependent Schrédinger-Poisson system has been
used in the study of carrier transport in very small semiconductor devices
(Yalabik et al. 1989). Here, we revisit this model to investigate the expansion
of a quantum electron gas into vacuum, under the action of its own self-
.consistent field, in planar geometry.

Although the study of practical devices involves a more complex geometry,
such a situation is interesting in principle, since the corresponding classical
expansion possesses a simple well-known solution for t — oo (Burgan et al. 1983).
Comparison between the classical and quantum solutions will be the main
purpose of this paper. We shall see, in fact, that the classical solution acts as an
asymptotic attractor, so that for £-» co the system spontaneously approaches
its classical limit.

We shall restrict ourselves to one-dimensional problems, for which the
Schrodinger—Poisson system is '
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where # is Planck’s constant, ¢, the dielectric constant in vacuum, e and m the
electron charge and mass respectively, and N the total number of electrons per
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unit area. All the parameters in (1) can be eliminated by simple dimensional
analysis. The dimensionless variables (indicated by a tilde) are given by the
following relations:

&= = et = d e
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In the following we shall take % = m = ¢, = e =N = 1, and drop tildes for the
sake of simplicity.

In our approach a one-particle wave function is used to describe a system of
N particles. This is, of course, an approximation, whichis analogue to the Vlasov
approximation for classical plasmas, where a system of N particles is described
by & one-particle probability distribution. It implies neglecting individual
interactions between particles, while taking into account collective interactions,
via the Poisson law. In addition, no spin or relativistic phenomena are
considered.

Another, more mathematical, aim will be the generalization of the so-called
rescaling transformations (see e.g. Burgan ef al. 1978, 1983) to the Schrodinger
formalism: these techniques will suggest conjectures on the structure of the
solution, and, at the same time, facilitate the numerical integration. As a
general method, rescaling seems to be a powerful tool in the numerical and
analytical treatment of nonlinear equation, well beyond the particular case
treated here. Tt has been used to investigate very different problems, such as the
expansion of a two-species plasma (Manfredi, Mola & Feix 1993), nonlinear
diffusion (Zrineh et al. 1987), gravitational hydrodynamics (Bouquet & Feix
1982) and nonlinear ordinary differential equations (Besnard et al. 1983).

Finally, we remark that a popular model in nonlinear plasma physics is the
nonlinear Schridinger equation (NLS), which is (see Ablowitz & Segur 1981)

Oy 10% .
i 6t - 2 axg +OC|¢| 'lb“ (3)
Consider now the equation
By 1oqy [ s o "o
T T T U_m (2, )Gz, ) da ] Pz, ). (4)

We immediately recognize that our Schrédinger-Poisson model is obtained by
taking G(z,2') = Yx—2’|, while G(z,2"} = ad(z—2a’) provides the usual NLS.
Note the non-local character of the nonlinear interacting term in the
Schridinger—Poisson model, contrasted with the local character of this term in
the NLS.

The present paper is structured as follows. In §2 we introduce the rescaling
transformation in the classical domain, and recall the features of the classical
electron-gas expansion. In §3 we generalize the rescaling to the Schrédinger
equation, and prove the main results for the quantum expansion either
numerically or analytically. In §4 we introduce the Wigner formalism, which is
used throughout §5 to study the elassical-quantum correspondence for our

system. We give our conclusions in §6.
6-2
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2. The classical expansion and rescaling

The probiem of a freely expanding electron gas was investigated classically
by Burgan et al. (1983). The dynamics of the electrons was treated through the
Vlasov equation, coupled self-consistently to the Poisson equation. The system

is (in normalized units)
of , of  nof
E'f" vb—.’;-l_Ea?) = O,

o o
i J_wf(x, v, by dv

where E(x,t) = — 0V /0x is the electric field and f{x, v, {) the phase-space density.
Since no external confining potential is present, the electron gas tends to
expand to infinity under the action of its own repulsive self-consistent field. It
is therefore convenient, both analytically and numerically, to perform a
transformation (called rescaling) so that, in the new variables, the system is
confined.

We introduce new space, time and velocity variables, as well as a rescaled
distribution function, defined by

(5)

x = C)é, )
dt = A*(t)d?,
_de . dEd® A0 C | dC dE (6)
=a - CwattwE T "y
f(x:’v) t) = G(t)F(g 7]:"9): J

where A(t), C(¢} and G(¢) are three arbitrary functions, with the sole constraint
of being regular and non-zero over [0, co].

By substituting (6) into (5}, one can derive a rescaled Vlasov—Poisson system,
which, in the most general case, is rather complicated. However, upon assuming
for A(#), C(t) and G(t) a time dependence of the form (1+Q¢)?, (where feR, and
Q > (0 is an arbitrary frequency characterizing the transformation), the rescaled
system can be made considerably simpler and, above all, time-independent. In
order to do so, one has to choose

Aty = (1+Q88, O@) = (1+Q8, G) = (1+9n)°. (7)

The form of C(#) tells us that the electron gas expands as 2, that is, with
constant acceleration.
The rescaled Vlasov--Poisson then becomes

BF oF @

w1 S, [(e—2Q*E—3Qn) F] =0,
N (8)
e Fdy,

in which (&, &) = Bz, {).
The rescaling transformation has intreduced two new terms in the Vlasov
equation, namely a confining linear force (—2Q®) and a friction {—3Qy). Owing
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Frgure 1. Theoretical profile of the spatial density n{£) for the classical solution in the
rescaled space.

to the presence of such terms, it is easy to deduce the asymptotic state of the
system (8). Such a system will simply relax, in (§,%) space, to a motionless
stationary state (that is, 7 =0) for which the self-consistent field exactly
cancels the external field (that is, & = 2Q%¢). This is possible only for a spatially
uniform density, equal to n, = 202 in the interval [—1/4Q% 1/4Q%), and zero
outside, as plotted in figure 1.

The asymptotic solution of (8) is therefore given by the following relations
(for more details see Burgan et al. 1983):

Bz, £) .—,% as £— c0, ‘ (9)
Flz, v, ) =§6 v—z—x as t— o0, (10)
£ i

where & is the Dirac delta function. The important property of the solution (9),
(10) is that it is a universal attractor, in the sense that all initial conditions relax
asymptotically to give such a configuration.

The previous discussion indicates that the evolution of our system is not
symmetric in time. This fact is explicitly contained in the rescaled Vlasov—
Poisson equations: indeed, the presence of a friction term clearly reveals
the existence of a privileged direction in the flow of time, going from an
arbitrary initial condition towards the motionless asymptotic state. This
corresponds, in real space, to an arrow of time pointing in the direction in which
the system expands. Of course, one can always prepare some very special initial
condition so that the system initially contracts. Nevertheless, for large enough
times, the arrow of time dominates, and the system will expand.

3. The quantum expansion

We now investigate the quantum treatment of the electron-gas expansion,
for which we make use of the self-consistent Schrédinger—Poisson system (1},
the physical assumptions underlying which have already been stated in §1.
Since the rescaling technique has turned out to be very fruitful in the classical
domain, we should like to apply it also to the quantum-mechanical problem.
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However, this is not trivial, for the transformation (6) is not necessarily a
canonical one: in particular, the ‘good’ transformation that led to the time-
independent rescaled Vlasov-Poisson system (8) introduced a friction term,
which is of course not derivable from a Hamiltonian. On the other hand,
quantum mechanics requires a Hamiltonian formalism to be used. In fact, the
transformation (6) can be rendered canonical without any loss of generality,
upon using the following trick. We define a ‘time-dependent mass’ u(f) and a
‘rescaled momentum’ IT as follows:

Ct '
) =S5 T =p)n. (11)
Substitution of (11} into (6) yields
x=C()E,
I .
r= W-I-C(t) £ | (12)
dt = A%(t)dd,

where p = v, since m = 1; a dot stands for differentiation with respect to &.
The transformation (12) is a linear, point canonical transformation, as can
easily be verified by evaluating the Poisson brackets [£, TT] = [x,p] = 1. Tbis also
a kind of ‘generalized’ canonical transformation, since it is explicitly time-
dependent. The type-two generating function (Goldstein 1980) for the
transformation (12) is given by
Fy(x,11,4) = %gxz-’r%. (13)

Thus, if a system is described by thé Hamiltonian

H(z,p,t) = *+ V(z,1), (14)
the transformed Hamiltonian H will be
2 2
H(x,11,9) = 4* [H(x,p, t)+%] = %%4—51%’ [V(£,9) +%C"§2]. (15)

In {15) we have also rescaled the potential, with
Viz,t) = O(t) V(E, §), . (16)

so that the Poisson equation is left invariant in the new variables.

Quantization of the Hamiltonian (15) is straightforward. By means of the
usual correspondence rules between position and momentum and their
respective operators, one obtains the rescaled Schridinger equation

OF AP o

where (£, ) is the new wave function.

The preceding formula is a slight generalization of the rescaling given in
Burgan et al. (1978), where 4 = (' was always chosen.
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We still have to express the relation between the old and new wave functions.
In order to do this, we first present a formal derivation, which perhaps provides
deeper physical insight. Let us write ¥ and i as

Y@, t) = [n(a, ) exp [S(@, O, } (8)
F(E ) = [AE, ) exp [iSE 9],

n¥ and 7# being the amplitudes, and § and § the phases. The normalization
condition imposes

Wi d = [P dE. (19)
Uéing (12) and (19), one gets the relation between the amplitudes
g, By = Oty nlx, #). (20)

As to the phases § and S, we recall that the phase of the wave function is related
to the classical momentum through

o8 o8
_’p-——a';, H—-a—g'

Note that these relations are valid not only in the classical limit, since now we
regard p as a function of position.
Substituting the above relations into the second of (12) and integrating gives
<, 1C
=84=—z? 21
8 + 50%" (21)
up to an immaterial additive constant. From (20) and (21) we can write the
relation between the wave functions:

1 Oa?\ - :
o) = pexp 55 ) 6 91 02)
Note that (22) represents a unitary transformation of the wavefunction.

The suspicious reader may verify that, by defining the most general
transformation between the wave functions as

(@, t) = B(t) exp [iK() o)1 (£, 9, (23)

where B(t), K(t) and g(x) are arbitrary real functions, and substituting (23) into
the first of (1), one does obtain the rescaled Schrédinger equation (17) only if
B(t) = % and K(t) p(x) = Cx?/2C.

The new Schrédinger-Poisson system is

oy Az ® o
= s AT+,
" e
*V -
=

If we compare the rescaled Schridinger—Poisson system (24) with the rescaled
Vlasov--Poisson one (8), some analogies are apparent. The external, confining
field due to the transformation is again of harmonic-oscillator type (quadratic
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potential). As previously guessed, no friction appears: the friction term is now
replaced by a time-dependent mass u(t) = C?/4?, which, as we shall show later,
has the same effect of bringing the particles to rest. Now, the arrow of time is
revealed by the presence of some time-dependent coefficients in the equations:
it points in the direction of increasing mass.

A final remark on the quantum rescaling is in order here: if one divides the
first of (24} by A% and comes back to the old time ¢ through (12), the factor 4(f)
disappears from the rescaled Schrédinger equation (note also that the rescalings
of both = and 1 depend only on C(t)). Therefore the roles of C(t) and A(f) are
totally decoupled: the former determines the structure of the solution in £
space, while the latter only modifies the time scale. As will be seen later, the
choice of A(t) plays an important role in the numerical integration.

As a tentative choice for C(2), we shall take the same expansion law found in
the classical case, namely

C(ty = (1 +Q¢)2 , (25)
Numerical simulations will confirm that the conjectured law (25) is indeed also
correct for the quantum expansion.

Before turning to numerical simulations, let us verify whether the classical
solution can be consistent with the Schridinger—Poisson system. In ord~r to do
this, we rewrite the system (24), in which C{(f) is given by (25) and A(f) = 1 (as
we have seen, the choice of A(¢) does not affect the form of the solution}:

R o
?/-52' = —ma—€2+(1+gt)2(V+Q g )lﬂ,
¢ (26)
&r
a_gz =—|y|®

Since the squared modulus of the wavefunction is normalized to unity, the
classical solution corresponds to [¢]* = 2Q* inside the interval [ —1/4Q%, 1/40%]
and to zero outside. Integration of the Poisson equation gives V = —Q?? inside
the interval, which exactly cancels the transformation potential. Outside this
interval, the potential grows quadratically with &, with its slope increasing with
time. For large times the overall potential V+Q** should therefore assume the
form of an infinite square well (a subsequent simulation, shown in figure 2,
confirms this conjecture).

As is well known, the eigenfunctions of the one-dimensional infinite square
well are sinusoidal, with nodes at the boundaries of the well. In order to obtain
a rectangular density, as in figure 1, sinusoids of high wavenumber need to be
present, and consequently the wave function corresponding to the classical
agsymptotic solution should be strongly oscillating.

In summary, the classical asymptotic solution can, in principle, be consistent
with the Schrodinger—Poisson system: the corresponding quantum solution
would be a highly oscillating wave function, and its square modulus would have
the rectangular shape plotted in figure 1.

The preceding comsiderations do not of course prove that the classical
solution plays the role of an asymptotic attractor for the quantum problem as
well. In order to confirm {or to disprove) such a conjecture, one needs to resort
to numerical computations. Qur numerical scheme solves the rescaled
Schrodinger—Poisson system (24), in which C(f) is given by (25).
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Fiaure 2. Profile of the total potential U(£, £) = (1 + Q)% [T(£, §) + Q%% appearing in (26).
For large times it approaches the infinite well shape.

The choice of A(f), which determines the time scale, needs to be specified more
precisely. The characteristic time 7 of our system is given by the inverse of the
plasma frequency w,: .
T = w,l = 0%,

v (21

where n(z,f) is the spatial density, which decreases as the inverse of the

expansion factor »n oc (14t)72. Therefore the characteristic time increases as

1+Qt. In order to keep the ratio between the time-step d¢ and the characteristic
7 PLA 50
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Ficure 3. Spatial density in the rescaled space, n(f) =

hk(g #)[2. In this simulation we

have Q = 2-F; thus the classical profile is 2 constant in the interval [—2,2].

time 7 constant, one has to choose A2%(t) =+ = 1+Q¢, and the relation (6)

hetween ¢ and % becomes
140t = P, (28)

With this choice, the rescaled Schridinger equation becomes

R 1 8 -
i LT h e (29)
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Froure 4. Real part of the rescaled wave function {(£,®) in the same case as figure 3.

This equation has been solved numerically, together with the Poisson equation.
A typical result (obtained for Q = 275 so that 1/4Q? = 2, and for a Gaussian
initial condition) is given in figures 3 and 4. The spatial density at different times
is plotted in figure 3: its behaviour is exactly that predicted by the classical
solution. The real part of the wave function ¥ (figure 4) is much more
complicated, and reveals the presence of high wavenumbers, in accordance with
the qualitative explanation given above.

7-2
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Extensive numerical computation has shown that the rectangular density
profile is approached for any initial condition and value of the parameter €.

4. The Wigner function

The Wigner transform (Tatarskii 1983) is a useful tool in the study of the
classical limit of quantum mechanics. It associates with a wave function ¥(x)
a quasi-probability density Wz, p) in phase space, defined by

Wiz, p) = 'é}lﬁf'ﬁ* x—3A) Pr{x+3A) exp(—zm) dA. (30)

Although the Wigner function is real, it cannot be regarded as a true

probability density, since it almost always assumes negative values. In §5 we

shall make extensive use of the Wigner formalism to investigate the classical

limit of our expansion problem. It is therefore useful to prove an interesting

property connecting the Wigner function to the rescaling transformation.
From (22) we have (the time dependence is understood)

Yrle+3) = C“%exp[z%(x—{—l/\) ]¢(§+%): a1

YrH(x—1id) = O‘Eexp[-—a (z—3A)2 ]1/;( —%)

We substitute (31) into (30), to give

1 {1 AN A ApC—Ca
Wix,p) = 2?EJ iﬁ(§+%)§[r*( Zo)exp(—z-é 7 )d/\. {32)

Defining IT = pC'— C, which corresponds to the classical canonical rescaling
(12), and letting A" = A/C, we finally obtain

Wiz, jglf (E+I) (g~ exp(—zi\t’—n)dﬁl’ =W ), (33)

where we have quite naturally called W the Wigner transform of ¥, according
to the definition (30).

The relation (33) shows that the rescalmg transformation and the Wigner’
transform are two commuting operations. In other words, given yr(x), W(£, IT)
can be caleulated in two ways: either we first calculate z/—r(g) through (22)’ and
then W through (30), or we first look for W{z, p) and then apply the classical
rescaling (12) to obtain W.

The Wigner function obeys the following equation (called the Wigner
equation):

oW  pdW _ L
Bt Tmoz 27rﬁ2J'J[V A0 =Vt )

xs’mp(—ip ? A) Wiz, p', ) dp’ d), (34)
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which, in the limit as £— 0, becomes identical to the classical Vlasov equation.
The right-hand side of (34) can be expanded in powers of %:
| oW pOW VW BEVEW . .,

% Tmoe Gxdp 2w o OO -(35)
showing that the first correction term is at order #%. Equation (35) also proves
that when the potential ¥{x,¢) is & quadratic polynomial in  {possibly time-
dependent), the Wigner equation is identical to the Vlasov one, irrespective of
the value of Planck’s constant.

5. Classical limit

The simulations have produced a partial proof that the quantum electron gas
evolves towards a classical solution: although the proofis complete as far as the
density is concerned, the complicated structure of the phase of (£, #) renders
it difficult to pursue the numerical analysis.

Let us therefore come back to the original Schrodinger—Poisson system (1).
It can be shown that (1} possesses the following analytical solution (in
normalized units):

3 3
(e, ) = %exp (1: xT) ,
(36)
x? v 2z
Viz,t) = s E ST R
It should be noted that the first expression in (36) is a non-normalized wave
function. We now want to establish a relation between (36) and the classical
asymptotic solution given by (9) and (10). We immediately see that the field is
identical to the classical one for £— co. In order to compare with (10), let us
calculate the Wigner transform of the first expression in (36). The result is

Wiz, p,t) = ;8(10—2%)’ (37)
which is exactly the classical solution (10).

However, since the solution (36) is non-normalized, it cannot represent the
asymptotic evolution of a normalized initial condition. Although this might
seem in contradiction with the numerical results, which show that an arbitrary
initial condition relaxes towards the classical density profile, we believe that the
apparent ambiguity can be explained as follows. Both the classical asymptotic
solution {10) and the quantum one (36) extend in principle from & = -0 to
x = + o0, However, from a physical point of view, if we start from a normalized
initial condition, the solution must remain normalized for any value of ¢:
consequently the distribution function given by (10) needs to be cut off, and set
equal to zero outside a certain interval J = [—L(t), L(t)], where L{f) < £*, as we
have seen in the preceding sections. Formally, this statement implies that the
classical solution can be written as

Wiz, p,t) = %é‘( —2—:) Afx, b), (38)
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where A(z,f) is the characteristic function of the interval .J:

1 if =zed,

0 elsewhere. (39)

Alx, t) = {
One might be tempted to cut off the quantum solution in the same way, by
writing
2

Y(z,f) = %exp (@ ““’T) A, 1), (40)

with A(z,?) again given by (39). In fact, this is incorrect, and the reason why is
easily understood: in classical mechanics the distribution function may be cut
off in the x direction without affecting the momentum distribution; in quantum
mechanics cutting the wave function implies modifying both the & and p
distributions, so that (40) is no longer a solution of (1). As a matter of fact, the
normalization of the wave function only imposes that the modulus of A has the
form given by (39), whereas its phase is not fixed @ prioré. In order to determine
the equation that the function A must obey, we come back to the rescaling (22),
which we write again, with the choice (25) for the factor C(f):

2

i) = porexp i1 | HE ) @

As t—> 0, (41) becomes

e ~ Jexp 5 9) @

Comparison between (42) and (40} is illuminating: the convenient cutting
function for the quantum non-normalized solution (36) is nothing other than.
the rescaled wave function ¥r(£,#). Indeed, as the numerical simulations have
shown, the modulus of ¥ is actually given by (39). Thus the rescaling
automatically treats ‘what is classical’ in the quantum solution by splitting
the solution into two terms: the complex exponential in (40), which represents
the classical term, and the rescaled wavefunction ¢, which gives explicitly the
transition from the quantum to the classical regime.

In fact, the approach to the classical limit comes quite naturally from the
Schrédinger equation in £ space, (29), which we rewrite as

w00 B o e

zﬁ(&)aa— 5 agz+(V+Q§)z/r, } (43)
where A($) = ¢ Formally, (43) represents a system in which Planck’s
constant depends on time, and tends exponentially to zero.

We recall that (43) was obtained by a rescaling transformation that scales the
new time & and space £ according to the characteristic time and length of the
physical system. Although introducing a time-dependent: Planck’s constant
might seem a very formal trick, it is quite surprising that, once time and space
are being measured in ‘good’ units, the classical limit becomes apparent from
the very structure of the Schridinger equation. In a sense, this result indicates
that the de Broglie wavelength A = #/p becomes very small with respect to the
total length of the system. The interesting aspect of the rescaled equations lies
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in the fact that the system they describe keeps its total length approximately
constant: therefore in £ space it is easy to verify that A—0 with time, both
numerically (see figure 4) and analytically, by formally introducing a vanishing
Planck’s constant in the Schridinger equation.

In the Wigner formalism the time-dependent Planck’s constant trick is even
clearer, and will allow us to evaluate the quantum correction terms precisely.
From (29) (in which we reintroduce %), we can write the Wigner equation for W,
the Wigner transform of . Following (34), we have

ow 1 oW 2 OW
61(}+ ) OF - 2(9) Q% 7

gﬂﬁz ”[V —VE+3A, ﬁ}exp[——(ﬂ ) }W(g,n',a)dn'da,
(44)

where p(8#) = ¢**®. The quadratic term g($) Q?® in the potential is classical, and
has therefore been taken out of the integral.

We now want to use the same rescaling as in the classical treatment, which
led to the Vlasov—Poisson system (8). In order to do so, we come back to the
rescaled velocity 7, defined by '

I
g m—, 45
7T o)
and also rescale the distribution function
F(&,q,9) = p($)W(E T, 9). (46)
Introduction of {(45) and (46) into (44) yields
BF aF é .
+ ag 6 [(3Cy + 2Q2E) F

: 2
= 2 (4] [[re-1n.00- vieia onexs| —ir—m)| ree o oy anan
. (47)
In deriving (47), we have used the fact that
oW _ o (F\_10F_1du
0% 0%\m)
The time-dependent Planck’s constant #*(§) = #/u{?) clearly appears in the
rescaled Wigner equation (47).

We are now in a posmon to evaluate the quantum corrections. Expanding
the right-hand side of (47) in powers of # (see (35)), we obtain

6F oF 8 . B\ 0% 0°F | [(R)¢
35t I3E oy 302D F) = (;) 6_.’5'26_7f*+0|:(;):|’ (48)

where &(£,9) = —dF /£ is the rescaled field, which obeys the Poisson equation

de

R (49)
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¥Fravre 5. Time evolution of the quantity {I1>/(1+0Q1)? as a test for the Ehrenfest’s
theorem.

From (48) we see that the first quantum correction term goes to zero as
p% = e %% = (1 4+ Q)% This is further proof that in our expansion problem
quantum effects rapidly become negligible.

Another way to check numerically whether our system actually tends
towards a classical limit is to verify the validity of Ehrenfest’s theorem. As is
well known, this theorem states that

d<x> _

FRRRC 2
(50)
p> __JoV
dt <6x>’

where the angular brackets indicate mean values as usually caleulated in
quantum mechanics. From the viewpoint of the relations (50), a system shows
a classical behaviour whenever

<8V> 4
dx/  ox
When this relation is satisfied (50) becomes a closed system of differential
equations (identical to Newton’s laws of motion) for the mean values, which
therefore follow the classical trajectories, '

For the classical electron gas expansion it is known that {z) «* and

{p> oct. In order to see what happens quantum-mechanically, we come back
to the rescaling transformation (12}, which we rewrite for the mean values:

EAT )

(o = (1+Q1)2 (£, (51)
_ <
(pd _m+29(1+9t) <E.

From the density profile in £ space (figure 3), it is apparent that {£) is constant
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for large times: consequently the first equation in (51) directly gives the
classical relation (in fact, since our initial condition is even, the mean value of
£ calculated from £ = — oo to § = + o0 is trivially zero; therefore { ) indicates
mean values over positive £).

The second equation in (51) gives the classical equation if {II) does not
increase faster than 2. This conjecture has been verified numerically, and the
results are plotted in figure 5: the graph shows the evolution of (II}/(1+Qf)*
as a function of time: after a transitory period, this quantity approaches a
constant value for ¢-> 00. Thus the first term in the second equation in (51) is
negligible compared with the second one, and consequently » grows linearly in
t, as expected.

6. Conclusion

In this paper we have investigated the expansion of an electron gas into
vacuum, both in the classical and quantum domains. In the latter we have
assumed that spin and relativistic effects can be neglected.

The main result of the classical expansion is that all initial conditions evolve
asymptotically towards a very simple configuration, given by a uniform density
profile, which acts as a universal attractor. This result is obtained by making
use of rescaling transformations. In fact, the structure itself of the rescaled
equations allows us to guess the form of the asymptotic solution without any
further calculation: in order to do this, the presence of a friction term and an
external confining potential, both due to the transformation, is a crucial point.

In the quantum domain we first generalize the classical rescaling trans-
formation by imposing the Hamiltonian form of the equations to be conserved.
It turns out, in this case, that the classical friction term is replaced by a time-
varying mass, which plays the same role of bringing all the particles to rest.

Numerical solution of the rescaled equations proves that the uniform density
profile is approached for large times. Analytically, we have shown the existence
of a solution of the Schrodinger-Poisson system, the Wigner transform of which
gives exactly the classical asymptotic state. In addition, the Wigner formalism
has been used to evaluate the quantum correction term to the classical
expansion: we have shown that the correction goes to zero as {7°. In fact, since
we are dealing with an expanding system with increasing velocities (corre-
sponding to large quantum numbers), the semiclassical result was to be
expected. However, we feel that the numerical demonstration is not superfluous,
for two reasons.

(i) The quantur solution (36), which is the true counterpart of the classical
one (10}, is a non-normalized wave function. As shown in §5, the cutting off of
the solution is a trivial task for the classical solution, but certainly not for the
quantum one. The way in which the uniform density profile is approached is far
from obvious. '

(i) All reassuring theorems on the classical limit for large quantum numbers
are valid for the linear Schrodinger equation. Whether they hold for our
nonlinear system is an open question, for which numerical simulations suggest
a positive answer, at least for this specific model.

In drawing some general conclusions from the preceding discussion, we
should stress that quantum plasmas can be a source of very interesting
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nonlinear phenomena. It is also a largely unexplored realm. It is our feeling that
both numerical and theoretical plasma physwxsts could bring some fresh ideas
into this intriguing domain. —
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