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Abstract The scope of this paper is twofold. First, we derive rigorously a low-velocity
and Galilei-covariant limit of the gravitoelectromagnetic (GEM) equations. Subse-
quently, these reduced GEM equations are coupled to the Schrodinger equation with
gravitoelectric and gravitomagnetic potentials. The resulting extended Schrodinger—
Newton equations constitute a minimal model where the three fundamental constants
of nature (G, i, and c¢) appear naturally. We show that the relativistic correction com-
ing from the gravitomagnetic potential scales as the ratio of the mass of the system to
the Planck mass, and that it reinforces the standard Newtonian (gravitoelectric) attrac-
tion. The theory is further generalized to many particles through a Wigner function
approach.

Keywords Schrodinger—Newton equations - Gravitational effects on quantum
mesoscopic objects - Gravitoelectromagnetism

1 Introduction

Recent years have witnessed a surge of interest in the so-called Schrodinger—Newton
equations (SNEs)
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where ¥ (r, t) is the wave function and V (r, t) is the gravitational potential in the New-
tonian approximation, m is the mass of the system, G is the gravitational constant, and
i is Planck’s constant. Arguably, the above set of equations constitute the simplest
model where nonrelativistic quantum mechanics [Schrodinger’s equation (1)] is cou-
pled to Newtonian gravity [Poisson’s Eq. (2)]. In contrast to the standard Schrodinger
equation, the system (1)—(2) is nonlinear, because the matter density p(r, 1) = m|¥|?
is computed in terms of the wave function ¥.

The SNESs have been proposed in various (more or less speculative) contexts. Orig-
inally, they were put forward independently by Diosi [1] and Penrose [2,3] as a fun-
damental modification of quantum mechanics for massy objects. The underlying idea
was that a linear superposition of two quantum states would give rise to two space-time
geometries, which poses serious conceptual problems from the viewpoint of general
relativity [2]. Penrose and Diosi thus suggested that the collapse of the wave func-
tion might be related to gravitational effects, and proposed the (stationary) SNEs as a
possible candidate for such gravitationally-induced collapse.

It has also been suggested that if gravity—unlike other forces—is not quantized
[4], then the stress—energy tensor 7}, in Einstein’s equations should be replaced by its
quantum-mechanical average (7},,,). Such modified Einstein’s equations reduce to the
SNEs in the Newtonian and low-velocity limit. Alternatively, the SNEs can be derived
from an expansion in 1/c (where c is the speed of light) of the Einstein—Klein—Gordon
and Einstein—Dirac system [5]. Finally, in the astrophysical literature the SNEs have
been used to study self-gravitating objects (boson stars) [6] or to describe dark matter
by means of a scalar field [7,8].

The properties of the stationary SNEs were investigated in quite some detail dur-
ing the past two decades [9—11]. More recently, numerical simulations of the non-
linear time-dependent SNEs [12-14] revealed that gravitational effects start affect-
ing the Schrodinger dynamics for masses larger than a certain critical value m, ~
123 R?3G !, where R is the size of the object.

There has been a recent debate on the derivation and the validity of the SNEs [15—
17]. It is clear that they do not provide a full theory of how gravity might influence, or
indeed modify, standard quantum physics. Nevertheless, as a minimal model where
nonrelativistic quantum mechanics meets Newtonian gravity, the SNEs may be a useful
guide to future theoretical and experimental developments.

The SNEs involve two of the fundamental constants of nature, namely the gravi-
tational constant G and Planck’s action 7. Often, their results are expressed in terms
of Planck’s units (i.e., units derived from G, 7, and c), but this is not an appropriate
system, as the speed of light appears nowhere in the SNEs. Indeed, the SNEs do not
include any special-relativistic effect, and are Galilei (not Lorentz) covariant.

Is it possible to extend te SNEs to include relativistic effects, at least to some lower
order? The present work attempts to answer this question. More precisely, we would
like to incorporate relativistic effects without breaking the Galilei covariance of the
equations. The strategy adopted here is to first replace Poisson’s equation (2) with the
equations of gravitoelectromagnetism (GEM). These are a linearized approximation of
the Einstein equations (up to fourth order in ¢ ~!), which is formally almost identical to
the Maxwell equations of ordinary electromagnetism (EM). The Maxwell equations
possess two distinct nonrelativistic (Galilei covariant) limits, the so-called electric
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and magnetic limits [18], of which only the former is relevant to GEM. Here, we will
provide a rigorous derivation of the electric limit of the GEM equations using the
methods developed in [19]. The resulting equations can be coupled to the Schrodinger
equation to obtain a new set of SNEs augmented by a gravitomagnetic field. These
modified SNEs, though still Galilei covariant, now incorporate all three fundamental
constants (G, fi, and ¢) and can be conveniently expressed in Planck’s units. The
properties of such a set of equations will be investigated in some detail.

2 Galilean gravitoelectromagnetism

When the space-time metric is almost Minkowskian and terms of order O(c™) or
higher are neglected, it is possible to write the (linearized) equations of general rel-
ativity (GR) in a form that is almost identical to that of the Maxwell equations of
ordinary electromagnetism. The equations of such “gravitoelectromagnetism” have
been discussed in many good reviews [20,21]. Their notation is not standard and here
we will adopt the same convention as in [20], except that the sign of both the gravito-
electric and gravitomagnetic fields are reversed (in order to preserve the form of the
Newtonian Poisson’s equation). With this convention, the GEM equations read as:

V.-E = —4nGp, 3)
V-B=0, 4
Y 5 E 1 0B )
XE=———,
2c¢ 0t
871G 20E
VxB=—--J+-——. (6)
c c ot

The EM Maxwell equations (in CGS units) are recovered by taking G = 1 and

changing the sign in front of the source terms (because gravity is attractive). In addition

to these obvious differences, there is an nontrivial factor of 2 appearing in the two curl

equations, which has the same mathematical reasons as the spin 2 of the graviton.
The corresponding Lorentz force per unit volume is

2
SF=pE+-J xB (7
C

(note another factor of 2 in front of the magnetic term). The scalar and vector potentials
(V, A) are defined as:

E=-VV L 0A ®)
B 2¢ dt’
B =V xA, ©)
and the Lorentz gauge condition is
vV ¢
— +=-V-A=0. 10
ot + 2 (19)
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Now, we want to rewrite Egs. (3)—-(6) in dimensionless form. Following the pro-
cedure developed in [19] for the EM Maxwell equations, we normalize space to a
reference length L and time to a reference time 7', which define a typical velocity
u = L/T.In GEM, both fields have the dimensions of an acceleration, so we normal-
ize Etoa = LT 2 and B to 2a (in order to eliminate the extra factor 2 in the GEM
equations). We further rescale the mass density to a reference value p and the current
to up. Concrete physical values for L, T, and p will be specified in the next section.

In these units, the GEM equations become:

v.E=_" (11)
o
V.B=0 (12)
vxE=-p® (13)
xE=-p dt

B oE
VxB=—-—=J+8—,
o ot

(14)
which are completely identical to the corresponding normalized Maxwell equations
[19], except for the sign in front of sources. The following dimensionless parameters
have appeared naturally in the equations:

W 47 GPL
Loa = TP 4 GpT? = AT (15)
C a

:32

where we have defined the Jean’s frequency w; = /47 Gp. The parameter 8 repre-
sents the reference velocity normalized to the speed of light and controls the magnitude
of relativistic effects.

It is well known [18] that the EM Maxwell equations possess two nonrelativistic,
Galilei-covariant limits, corresponding either to |E| >> |B| (electric limit) or |[E| < |B|
(magnetic limit). The electric limit is recovered when 8 < 1 and « = O(1), and the
magnetic limit when 8 < 1 and ¢ < 1, but ¢/ = O(1). The magnetic limit is
irrelevant to GEM, because it implies the existence of at least two species of particles
with opposite charge, whereas gravity is always attractive. Therefore we shall focus
on the electric limit.

Electric limit We shall follow the method detailed in Ref. [19], which consists
in expanding the GEM fields in a power series of the small parameter 8 (i.e.,
E = Eg + BE; + ..., etc.). To lowest (zeroth) order in 8 one simply obtains the
Newtonian Poisson’s equation for the gravitoelectric potential V, i.e. AV = p/a.
The first correction depending on the gravitomagnetic field appears at first order in S.
Putting together the results at zeroth and first order, the GEM equations in the electric
limit can be written in terms of the fields

V-E=—p/a, (16)

V.- B=VxE=0, (17)
B oE

VxB=—-—=J+8—, (18)
o ot
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or in terms of the potentials

AV = p/a, (19)
AA = (B/a)], (20)

with the Lorentz gauge condition: 89;V 4+ V - A = 0. Note that, in the above equa-
tions, the gravitoelectric field and potential are quantities of order zero, whereas the
gravitomagnetic field (and its vector potential) are first order quantities.
For the Lorentz force, using our units and defining a reference force SF = pa, we
obtain
0F = pE +48) xB 2D

Lorentz transformations Let us consider two reference frames traveling at relative
velocity v. Here, we shall give the Lorentz transformation to first order in 8 without
proof, which can be found in [19]. For the space-time, we find the standard Galilean
transformations:

x =x — vt, (22)
t=t, (23)
and
vV =V (24)
9 =0, 4+v-V (25)

In the electric limit, the fields transform as

E =E (26)
B =B - pBvxE, 27
and the sources
J=J-vp, (28)
o =p. (29)

It can be easily verified that the GEM equations in the electric limit, Eqs. (16)-(18),
are left invariant by the above transformations of space-time, fields, and sources.

Summary In this Section, we have derived a set of reduced nonrelativistic GEM equa-
tions, valid to first order in 8. They can be expressed either in terms of the potentials,
as in Egs. (19)—(20), or in terms of the fields, as in Egs. (16)—(18). These reduced equa-
tions go beyond the Poisson equation (2) of Newtonian gravity, since they also include
gravitomagnetic effects. Nevertheless, they are still Gallilei covariant, as can readily
be checked by applying the above Lorentz transformations to Egs. (16)—(18). Such set
of equations can be conveniently coupled to the (also Galilei covariant) Schrodinger
equation to construct a suitable generalization of the SNEs.
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3 Extended Schrodinger-Newton equations

The nonrelativistic Hamiltonian for a scalar particle evolving in a GEM field reads as
follows s
—2mA/c
P A
2m

H= mv, (30)

which is compatible with the Lorentz force given in Eq. (7). The corresponding
Schrddinger equation is

w1 2 2
i = — (=inv—"A) v +mvw. 31)
ot 2m c

If we normalize Eq. (31) following the prescription employed in Sect. 2, we obtain:

1
iho—— = 5 (=ihoV — 4BA) W + VY, (32)

where ho = hT/(mL?). However, the standard SNEs are usually normalized using
the analog of atomic units for the gravitational interaction, i.e., space is measured
in units of the gravitational “Bohr radius” ag = 2 / (Gm?3) and time in units of
tG = h3/(m>G?). Let us apply these units to the normalization that we employed in
the preceding section for the GEM equations, i.e., let us take L = ag and T = 1.
In addition, we take for the mass density p = m/L>. Our purpose now is to see what
happens to the three dimensionless constants that we have encountered so far: «, S,
and hg. A simple calculations shows that 7y = 1. The constant & becomes

o ! =47 GpT? = 4nGmT* L3 = 47, (33)

Finally, for 8 we obtain

2 2
ﬂ:iszz(m), (34)

Tc hic m_p

where mp = +/hic/G is the Planck mass. As could be expected, the Planck mass
appears naturally as soon as we go beyond the Newtonian approximation for the
gravitational interaction.

Finally, the normalized SNEs can be written as:

w1
i—- = (=iV - 4BA W + VU, (35)
AV =dmp, (36)
AA = 47B]. (37)

Quite naturally, for 8 = 0 we recover the standard SNEs. In the above equations, the
(dimensionless) mass density is given by p = |¥|?. The current, in our normalized
units, is defined as:
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J:—éOPVW*—¢”VW)—4mWFA. (38)

However, the last term in Eq. (38) would yield a higher-order correction to the vector
potential, and can therefore be neglected.

In summary, we have derived a system of equations that generalises the standard
SNEs to include corrections due to the gravitomagnetic field. Equations (35)-(37)
constitute a minimal model where nonrelativistic (Galilean) quantum mechanics is
coupled self-consistently to Galilean (but post-Newtonian) gravity. It is also a minimal
model where the three universal constant G, %, and ¢ appear naturally.!

Galilean covariance The question of the Galilean covariance of the Eqs. (35)-(37)
should be analysed more thoroughly. As we have seen in Sect. 2, the GEM equations
in the electric limit are Galilei covariant with respect to the transformation of the fields
given by Eqs. (26)—(27). The Schrodinger equation (31) is also Galilei covariant, but
not for the same transformations. Indeed, it was shown by Brown and Holland [22]
that the Schrodinger equation with scalar and vector potentials is Galilei covariant
only when the fields and sources transform according to the Lorentz transformations
in the magnetic limit:

B =B (39)

E' =E+ v xB. (40)
and

J =1, 41

p'=p—pv-I. (42)

which differ from the transformations in the electric limit, Egs. (26)—(29). Thus the
Schrodinger equation and the fields equations are both Galilei covariant, but not under
the same transformations of the fields and sources. This is a somewhat unfortunate
situation, but is not different from the analogous case for the coupled Schrodinger—
Maxwell system in ordinary EM [22].

Extension to spin-1/2 particles The above results were derived for a scalar quantum
particle. For a spin-1/2 particle, the spin should couple to the gravitomagnetic field
in the same way as it couples to the ordinary magnetic field (albeit with a different
coupling constant), as was shown by Adler et al. [23] in a context other than the SNEs.
In that case, the SNEs should be replaced by a spinorial “Pauli-Newton equation”,
which contains an additional Zeeman term (proportional to o - B) in the Hamiltonian.
Along the same lines, further relativistic effects (at second order in 1/c¢) could be
added using the procedure detailed in [24] for the Dirac—-Maxwell equations.

I Even though the equations contain the constant ¢, they do not incorporate propagation at the speed of
light. Indeed, since the reduced GEM Egs. (36)—(37) are elliptic (rather than hyperbolic, like the wave
equation) transmission of information occurs at infinite speed.
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4 Generalization to many particles

The Schrodinger equation can be conveniently generalized to a mixture of N states
by using the Wigner representation of quantum mechanics (see, for instance, [25]).
This is based on a phase-space function defined as [we use the same notation and
normalized units as in Eq. (35)]:

f(r,p,t) ! i/mw* r+k N (r=2 1) e an (43)
P l) = — ) - = e
PUT &) H 2 ')k 2

Such Wigner function possesses most of the properties of a true probability distribution
in the phase space (r, p), except that it can take negative values.

The evolution equation for the Wigner function in the presence of a scalar and a
vector potential is rather complicated [26] and not particularly illuminating. However,
since we know that gravitomagnetic effects are small compared to gravitoelectric ones,
it seems reasonable to neglect quantum corrections on the former and retain them only
for the latter. If we further define the velocity as v = p — 4B8A (again using the
normalized units of Sect. 3), the Wigner evolution equation becomes

of
Sy TV Vef H4B(V < B).- va+—

//dkdv’ I(VV“[ (r+§,t) -V (r— %t)] f@, v, 1) =0, (44)

and must be coupled to the equations for the GEM fields:

AV = 471/de, 45)
AA = 47B / Fydv. (46)

The Wigner function (43) evolves in a six-dimensional phase space, which is a
daunting challenge for any numerical simulation of Eq. (44). A simplified model may
be obtained by assuming that the Wigner function depends only on three phase-space
variables, namely one spatial co-ordinate x and two velocity co-ordinates (vy, vy).
This situation corresponds to matter “sheets” that are infinite in the (y, z) plane and
can flow along the y direction. Such flow generates a self-consistent gravitomagnetic
field directed along z and a corresponding vector potential along y. In this simplified
geometry, Eqgs. (44)—(46) become

af af af af i
L 4 B.—L —v,B,— )+ —
or T T ﬁ(vy e a0, ) Tox
/ t(vx—v )3 A A /
didve x—i—z,t -V x—z,t fx, v, vy,1) =0,

(47)
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A2V =dnp = 471//f(x, Uy, Uy, 1)dvyduy, (48)

A, = dnply, = 471,3//f(x, Uy, Oy, 1 vyduyduy, (49)

where B, = 0y A,. The above system of equations may be amenable to numerical
simulations using known methods [27,28].

A further simplification is achieved by assuming that the Wigner function takes the
following form:

flx,vp, vy, 8) = glx, vy, 1) x8(vy—uy(x,t)), (50)

where § denotes the Dirac delta. The above Ansatz is equivalent to assuming a fluid-
like behavior for the flow in the y direction, with all particles possessing the same
velocity uy (x) at a certain point x. Multiplying Eq. (47) by vy and integrating over v,
yields the evolution equation for Jy, = puy:

aJy

” +—(u])+4/3J B. =0, (D

where Jy = [ gucduvy.
The equation for g is obtained simply by integrating Eq. (47) over vy:

A A
//dkdv’el(”* VA [ (x + X t) -V (x ~ 5 t)] g(x, v, 1) =0, (52)

which must be coupled to Eq. (51) and the equations for the potentials:
3V = 4n/gdvx, 0ZA, = 4npJ,. (53)

Thus, we have reduced the original six-dimensional problem to a much simpler two-
dimensional problem in the phase space (x, v,), which can definitely be tackled with
present computational power.

Some more physical insight can be gained by further analysing Eq. (52). The
Lorentz-force term in Eq. (52) can be written, using Eq. (49):

4Bu, B 1 94, 3%A, 19 [ B? 54
u = = — — _— s
YT ap 9x 9x2 T pox \ 2w

where one can recognize the gravitomagnetic energy density B? /2.
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It is instructive to write explicitly the first two velocity moments of Eq. (52). The
zeroth-order moment is simply the continuity equation:

dp | d(uxp)
4 27—, 55

ot ox (53)
where u, = Jy/p. The first-order moment (equation of motion for the mean velocity
u,) is obtained by multiplying Eq. (52) by v, and integrating in velocity space. After
some algebra, one obtains the standard hydrodynamic equation:

d a 1oP 10P av
ux—i—uxﬂ:————i———B——, (56)
ot ox pox p 0x ox

where P = f(vx — ux)zgdvx is the kinetic pressure, Pp = 322/271 is the “gravito-
magnetic pressure”, and the last term is the gravitoelectric field.

We stress that Eq. (56) originates from the fully quantum Wigner evolution Eq.
(52), although it does not seem to contain any excplicitly quantum terms. These are
hidden in the kinetic pressure term [29], which is a second-order velocity moment that
depends on the full Wigner function g.

From a physical point of view, Eq. (56) is illuminating. It shows that our system
evolves under the action of three terms: (1) the kinetic pressure P, which describes
the usual dispersion of the wave packet; (2) the gravitoelectric potential V, which, as
in the standard SNEs, counteracts the dispersion and can even induce a contraction of
the wave packet [12—14]; and finally (3) the gravitomagnetic pressure Pg, which is in
fact a negative pressure that reinforces the (attractive) gravitoelectric term.

In summary, it appears from the above example that the gravitomagnetic correction
contributes to the standard Newtonian attraction (gravitoelectric term) in counteract-
ing the wave packet dispersion, although of course the gravitomagnetic term is much
smaller.

5 Discussion

Experiments aimed at detecting the role of gravity on quantum decoherence are likely
to involve the study of the interference fringes of small (micrometer) solid-state
objects. These objects should be light enough to display some degree of quantum
coherence, but also heavy enough to induce some measurable gravitational effects.
Interferometry experiments on gold clusters [30,31] are possible candidates for such
studies.

For the standard SNEs, it was proven several times [ 12—14] that gravitational effects
start affecting the Schrodinger dynamics for masses larger than the critical mass m, ~
K23 R23G 1, where R is the size of the object in question. For metal clusters, the
number density is fixed by their cristalline structure (for gold, ngold ~ 5 x 1028m—3)
and this determines their mass m for a given size R. Combining this with the above
relationship between m and R, it turns out that one can expect gravitational effects (if
any) to show up for metal clusters with a size of a few microns and a mass of about
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5 x 10° atomic masses [14]. This is not within reach of present quantum interference
experiments, but it is not too far either.

Here, we have shown that semi-relativistic post-Newtonian corrections to this limit,
originating from the gravitomagnetic field, are proportional to the ratio of the mass
of the object to the Planck mass. In atomic mass units, this is mp = 1.31 x 1019
a.m.u., still ten order of magnitudes higher than the above critical mass computed for
Newtonian gravity. Even for very small post-Newtonian effects (say, 1 %), the required
value of the mass is far larger than what can reasonably be expected for current (and
near future) interferometry experiments.

But the scope of the present work was more general. We constructed a model where
nonrelativistic quantum mechanics is coupled to semi-relativistic post-Newtonian
gravity. We did so by expanding the GEM equations to the lowest order in 1/c, but
still retaining the effect of the gravitomagnetic field. These reduced GEM equations
preserve Galilei covariance. The Schrodinger equation with gravitoelectric and grav-
itomagnetic potentials is also Galilei covariant, but unfortunately not for the same
transformations of the fields and potentials.

In spite of this drawback, such extended SNEs represent a minimal model where
the three fundamental constants of nature (G, 7, and c¢) occur in a natural way. In
the search for gravitational effects in mesoscopic quantum systems, this model can
constitute a useful guide for future experiments and theoretical investigations.

References

. Diosi, L.: Phys. Lett. A 105, 199 (1984)

. Penrose, R.: Gen. Relativ. Gravit. 28, 581 (1996)

. Penrose, R.: Philos. Trans. R. Soc. 356, 1927 (1998)

. Carlip, S.: Class. Quantum Gravit. 25, 154010 (2008)

. Giulini, D., GroBardt, A.: Class. Quantum Gravit. 29, 215010 (2012)

. Schunck, EE., Mielke, E.W.: Class. Quantum Gravit. 20, R301 (2003)

. Guzman, ES., Urena-Lopez, L.A.: Phys. Rev. D 68, 024023 (2003)

. Guzman, ES., Urena-Lopez, L.A.: Phys. Rev. D 69, 124033 (2004)

. Moroz, .M., Penrose, R., Tod, P.: Class. Quantum Gravit. 15, 2733 (1998)

. Harrison, R., Moroz, .M., Tod, P.: Nonlinearity 16, 101-122 (2003)

. Tod, K.P.: Phys. Lett. A 280, 173 (2001)

. Giulini, D., GroBardt, A.: Class. Quantum Gravit. 28, 195026 (2011)

. Van Meter, J.R.: Class. Quantum Gravit. 28, 215013 (2011)

. Manfredi, G., Hervieux, P.-A., Haas, F.: Class. Quantum Gravit. 30, 075006 (2013)

. Anastopoulos, C., Hu, B.L.: New J. Phys. 16, 085007 (2014)

. Giulini, D., GroBardt, A.: New J. Phys. 16, 075005 (2014)

. Bahrami, M., GroBardt, A., Donadi, S., Bassi, A.: New J. Phys. 16, 115007 (2014)

. Le Bellac, M., Lévy-Leblond, J.M.: Nuovo Cim. B 14, 217 (1973)

. Manfredi, G.: Eur. J. Phys. 34, 859 (2013)

. Mashhoon, B.: gr-qc/0311030 (2003)

. Ruggiero, M.L., Tartaglia, A.: Nuovo Cim. B 117, 743 (2002)

. Brown, H.R., Holland, PR.: Am. J. Phys. 67, 204 (1999)

. Adler, R.J., Chen, P., Varani, E.: Phys. Rev. D 85, 025016 (2012)

. Dixit, A., Hinschberger, Y., Zamanian, J., Manfredi, G., Hervieux, P.-A.: Phys. Rev. A 88, 032117
(2013)

. Hillery, M., O’Connell, R.F,, Scully, M.O., Wigner, E.P.: Phys. Rep. 106, 121 (1984)

. Arnold, A., Steinriick, H.: Z. Angew. Math. Phys. 40, 793 (1989)

. Suh, N, Feix, M.R., Bertrand, P.: J. Comput. Phys. 94, 403 (1991)

—_
[ RN I e Y N N S

[ YO NI N T NG T N0 Y g Uy G SRS G gy
B WD = OV W —

[ASIN\S NS
~N O\ W

@ Springer


http://arxiv.org/abs/gr-qc/0311030

1 Page 12 of 12 G. Manfredi

28. Jasiak, R., Manfredi, G., Hervieux, P.-A., Haefele, M.: New J. Phys. 9411, 063042 (2009)
29. Manfredi, G., Haas, F.: Phys. Rev. B 64, 075316 (2001)

30. Nimmrichter, S., et al.: Phys. Rev. A 83, 043621 (2011)

31. Hornberger, K., et al.: Rev. Mod. Phys. 84, 157 (2012)

@ Springer



	The Schrödinger--Newton equations beyond Newton
	Abstract
	1 Introduction
	2 Galilean gravitoelectromagnetism 
	3 Extended Schrödinger--Newton equations
	4 Generalization to many particles
	5 Discussion
	References


