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A new method for the numerical integration of the Vlasov equa-
tion is presented, which can be applied whenever its characteristics
possess an exact invariant. It consists in expressing the distribution
function in terms of the invariant itself. The dimensionality of the
phase space is thus reduced of one unity, since the invariant only
appears as a label of the Vlasov equation and can be coarsely
discretized. This technique is applied to the study of the Kelvin-
Helmoltz instability, with a very limited number of invariants. Subse-
quently an example of ion-temperature-gradient instability is ana-
lyzed. Although a larger number of invariants are required to
describe the temperature profile, qualitatively correct results can
be obtained with fewer invariants. Test particles are used to illustrate
stochastic diffusion in the phase space and to calculate the diffusion
coefficients. © 1995 Academic Press, Inc.

1. INTRODUCTION

The numerical integration of the Vlasov equation is one of
the key challenges of computational plasma physics. Since the
early days of this discipline, an intense work on this subject
has produced many different numerical schemes, which, how-
ever, can be bunched together in two main groups. On the one
hand, particle-in-cell (PIC) codes have proven to be useful in
studying plasma dynamics even for two- and three-dimensional
problems and complex geometries. However, it is generally
recognized that PIC codes present a high level of numerical
noise, especially in regions of phase space where the density
is low. On the other hand, eulerian Vlasov codes [1, 2] display
an extremely low level of numerical noise and prove to be able
to describe fine vortex structures in phase space. Unfortunately,
eulerian codes demand a stronger numerical effort than their
PIC counterparts, for they require the discretization of the whole
phase space. For this reason, most of the problems so far treated
with eulerian codes are one-dimensional in space. Recently, an
eulerian code has been developed which is three-dimensional
in phase space (two spatial and one velocity coordinates) [3].
This code solves the drift-kinetic or guiding center Vlasov
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equation, which couples E X B motion across a magnetic field
to the motion parallel to the magnetic field. Such a model is
relevant to the study of real plasmas in strong magnetic fields,
in which the E X B drift plays a determinant role, e.g., the
problem of plasma confinement and anomalous diffusion across
the magnetic field, or the study of instabilities at the edge
of a tokamak [4, 5]. Several interesting results, concerning
Kelvin—-Helmoltz (KH) and ion-temperature-gradient (ITG) in-
stabilities, have been obtained by means of this code.

The aim of the present paper is to propose a method that
drastically decreases the computational effort of eulerian codes
and to apply this method to the drift kinetic equation. The
method can be applied whenever the characteristics of the Vla-
sov equation possess an exact invariant and consists in express-
ing the distribution function in terms of this invariant. The key
point is that very good results (both qualitatively and quantita-
tively) can be obtained with a rough sampling of the invariant.

The paper is organized as follows. In Section 2 we present
the basics of the method. In Section 3 we apply it to the solution
of the drift-kinetic Vlasov equation, and give details of the
numerical algorithm. Numerical results are presented in Section
4, for the study of the KH instability, and in Section 5, for the
simulation of the ITG mode. In Section 6 we conclude and
discuss the application of our method to other physically rele-
vant situations.

2. THE INVARIANT METHOD

In order to clearly illustrate the essence of this technique,
we start from a very simple example. Let us consider the Vlasov
equation with a potential ¢(x):

o +v F_de9_ 0 ¢}
ot dx dx dv

The invariant is, of course, the energy: I(x, v) = v¥/2 +
#(x) and we have [ = al/at + (3l/ax)x + (3l/dv)o = O.
Note that, in this simple case, / is both an invariant of the
characteristics and a global invariant: the former property, as
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it will appear later, is the fundamental one. Now, we express
f as a function of x, /, and r:

fx,v, 1) = F(x, I, 1. (2)
Calculating the derivatives of F, for example,

o _9F  GFal
at ot ol ar

we obtain the equation for F, which reads

oF E+£<ﬂ+ i’_s’i’i’>=o 3)

- [ [ ~
ot ax al \ ot dx  dx dv

But the last term in parenthesis is just / = 0. Thus, further
expressing v as a function of x, /, and ¢,

v=V2 - ¢(x)=Gx, 1),

Eq. (3) finally becomes

% eunE-o (4)
ar ox

Now, we see that in Eq. (4), the invariant / is nothing but a
(continuous) label. Although the new phase space (x, /) is still
two-dimensional, no differential operation is carried out on the
variable /. For this reason, when discretizing Eq. (4), we can take
a small number of values of /, without affecting the accuracy of
the numerical integration. The sole source of error concerning
the / variable will come from the limited precision with which
one can describe the initial condition. If we keep N invariants,
we shall solve N decoupled equations, each one for a value of /,

EJrG(x)a—[:j:O i=1,N (5)
o e T ST
where Fi(x, t) = F(x, I, 1) and G;(x) = G(x, [;). What we
actually do, is to bunch together particles with the same /
(the same energy), and subsequently let each group evolve
independently. Note that this philosophy is somehow reminis-
cent of the multiple water-bag method [6], in which the choice
of a special initial condition (the sum of several plateau func-
tions) allows us to reduce the Vlasov equation to a set of
hydrodynamic-like equations.

Finally, we note that, for a fully self-consistent problem, the
N *‘species’” F;in Eq. (5) will, of course, be coupled through
the Poisson equation.

3. THE DRIFT-KINETIC VLASOV MODEL

In this section we present the basic equations that govern
the plasma dynamics in the case of a uniform magnetic field
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B = (B,, 0, B.) in the (x, z) plane making an angle 6 with the
x axis. For a strong magnetic field the E X B drift is the
dominant one across the magnetic field. Therefore. we write
the velocity as

v=v,+v, withv, = E X B/B%.

The drift-kinetic Vlasov equation reads

fie EXB
vy Vifi +
ar Vi Vifi B

-VLf,-xiiEn-(—)‘]l=O. (6)

m;, duy

We further suppose a homogeneous plasma in the ; direction,
thus reducing the electron and ion distribution functions to
functions of three variables: f,,(x, v, vy), x being the periodic
space variable, y the nonperiodic one, and v, the velocity parallel
to the magnetic field. The geometry of the computational box
is shown in Fig. 1: the spatial domain is rectangular with 0 <
x=L and —L, = y = L,. We shall also assume the ion mass
to be much larger than the electron mass. In this case, Eq. (6)
can be integrated over v, to give a hydrodynamic equation for
the ion density n,(x, y, ). We shall see later on that this assump-
tion just means that we only keep one invariant, namely / =
0, for the ions. Thus, the electron equation becomes, neglecting
the subscript e for the electrons,

a—f+ (v“cos(9+%sin 9)?—f—ésin Hﬂr

ot dx B dy
(7
gE, d
— I_ cos O_f = 0
m au
A
Z
B
8 A

X
FIG. 1. Geometry of the computational box.
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and the ion equation is given by

E, .

on, E on;
0 i =x - 0 i_
sin B sin

on; on; _
—+ 3y 0. 8)

o B

They are coupled by the Poisson equation

Ap= 4 [rn.(x, v, ) — nix, y, D]
E0
9
"IL,(.X, Y, t) = ff(xv Y, Uy, t) dUl

and the electric field is given by E = —V¢.
The characteristics of Eq. (7) are

X =uvycos §+ E, sin 6/B

y = —E,sin 6/B

(10a)
(10b)

0y = —qE,cos 6/m. (10c)

Dividing Eq. (10b) by Eq. (10c), we arrive at the desired in-
variant,

w,
tan

(1)

I=v, - 6)’,

where w, = gB/m. It is easy to recognize that /, multiplied by the
electron mass, is nothing but the z component of the canonical
momentum P = mv — gA, which is conserved since the Hamil-
tonian does not depend on z.

Now, we pass from the phase space (x, y, v)) to the new
phase space (x, y, I), by defining f(x, y, vy, 1) = F(x, y, I, D).
F obeys the equation

oF cos’ @ E, . oF
=+ (Icos 6+ + 2 &<
ot ( cos ©ng? " B 0) ax
(12)
E, . oF _
Esmﬁay =0,

where / is now but a continuous label. If we take only a finite
number of discrete values of /, we arrive at the set of equations
for Fi(x, y, 1) = F(x, y, I;, ) Al

(13)

for j = 1, N. Equation (13), together with Eq. (8) for the ions,
and the Poisson equation (9), constitute the mathematical model
that we shall solve numerically. Note that the Jacobian of the
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transformation from the old phase space to the new one is equal
to one and, therefore,

fjjf(x,y, Uy, 1) dx dy dv, ZIJJF(X,y,I,t)dxdydl.

Furthermore, the electron density is now defined as

nix, v, 1) = f Fooy ndli=S Feuy.n.  (14)
j

The advantage of solving Eq. (13), instead of Eq. (7), is
clear: we have replaced a three-dimensional phase space with
a countable set of two-dimensional phase spaces. Equation (13)
has the same structure as the hydrodynamic equation for the
ions, Eg. (8): in a sense, our model represents a N + | species
hydrodynamics. We could have considered kinetic effects for
the ions, too, thus arriving at an equation similar to Eq. (13);
as we had anticipated, Eq. (8) is recovered in the limit of the
ion cyclotron frequency w; — 0, keeping only the invariant
I=0.

We stress that the fact of taking a finite number of invariants
is not a numerical approximation in the usual sense, but only
a particular choice of the initial condition. For instance, let us
consider the total energy, which in the old variables reads as

%”Ezdxdy+”fﬁ(x,y,v|.,t)m;idxdydv.

and which is, of course, conserved. Now, the discrete system
constituted of Egs. (8), (9), (13), and (14) does not destroy the
energy conservation, which is now written

%—”fszdxdy+%éffl~"j(x,y,t)

,
tan

The constancy of this expression is explicitly shown in Appen-
dix A.

The numerical scheme is based on a splitting algorithm (see
Refs. [1, 2]), in which we separate the integration along the x
and y directions, according to the sequence of operators: X/
2-9/2-B.7/2-X/2- P, where X and ¥ denote shift operators
for half a time-step (hence the factor 3). P denotes symbolically
that at this point we solve the Poisson equation and calculate
the electric fields. This sequence of operators is valid for both
ions and electrons, since their evolution equations have the
same structure. For example, for the electrons, the solution of
Eq. (13) involves the following steps:

(15)

y ) dx dy = const.

(Al) Between ¢, and t,.,, the distribution function Fi(x, y,
1) is shifted in x-space for a time A#/2 to give Fi*(x, y, ts1n)
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= Fj(x — ox, y, 1,), where

2 E:l
6x=<ljcosﬁ+wycos 6 >At

+—sin ) —.
siney BsmH 2

In calculating the shift, the electric field is taken at time ¢,, which
makes the scheme exact only to first order in Ar. However,
comparison with a second-order scheme, implemented via a
predictor—corrector method, has not shown significant differ-
ences for the range of Ar we used.

(A2) We shift F; along the y-axis for a time At/2, and
we obtain

F‘j(xs yv trl+|/2) = F]*(xy y - 5}% tn+|/2)v

where 8y = —(E"/B) sin 8 (At/2).

(A3) We solve the Poisson equation and calculate the elec-
tric fields at time ¢, .

(A4) We shift again the distribution function F; in y-space
of At/2, yielding

Fj*(xv ,v’.tnﬂ) = F:j('\'vy - 5_\’a rn+]/2)

where 8y = — (E™"*/B) sin 8 (At/2).
(A5) We shift F; in x-space of At/2 and we get, finally,

Fj(-x9 )’, tn-H) = Fj*(x - 6X, _yw f,,)

with

cos’§ | EV At
ox <1, cos 6 + w, sing’ 5 sin 6 5

(A6) We again solve the Poisson equation and calculate
the electric fields at time 1,,,,.

This sequence of operations is carried out for each F;, j =
1, N, and for the ion density, according to Eq. (8). Of course,
the Poisson equation is solved once for all species. This se-
quence allows us to push the distribution function from ¢, to #,+.
An explicit computation of the shifts requires an interpolation
method; we have used a very powerful cubic spline technique,
already applied to previous simulations [1, 2, 7, 8]. Note that,
with respect to the scheme presented in Ref. [3], our scheme
requires four, instead of five, steps to push the distribution
function. )

The Poisson equation has been solved by taking Fourier
transforms in the periodic variable x and using cubic splines
for the nonperiodic direction y. Details of the method are given
in Refs. [3, 9].
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4. NUMERICAL RESULTS FOR THE KH INSTABILITY

When 6 = 90°, the dependence on J; in Eq. (13) disappears,
and the dynamical equation for the electrons becomes identical
to the one for the ions, Eq. (8). In this case, only the difference
of the densities p = n; — n, intervenes in the equations, which
now take the same form of the vorticity equations for an incom-
pressible, inviscid fluid,

ip_addp, 39dp_
at dy dx  dx dy
(16)
Ap= —p.

However, as soon as the magnetic field is tilted (6 < 90°),
the entire three-dimensional phase space must be considered.
Our expectation is that, for an angle close to 90°, a small number
of invariants should be sufficient to reproduce correct results.
Note that such ‘‘economy’’ could not have been envisaged for
the v, variable, since numerical differentiation demands a good
representation of the function; on the contrary, no numerical
differentiation is carried out on the / variable. We can anticipate
that the method gives remarkably good results up to 8 =~ 70°
and is, therefore, perfectly able to describe the stabilization of
the KH instability for decreasing 6. For smaller angles, although
the method is, of course, always correct in principle, it becomes
as costly as the ordinary eulerian code of Ref. [3]. This fact is
due to the choice of the initial condition, which we want to be
maxwellian in vy,

£y, v 1 = 0) = n(y)e VT, (17)
where n,(y) is the profile in the y direction (a sinusoidal pertur-
bation in x space will be added to start up the instability). In
the new phase space Eq. (17) becomes

(I + w,y/tan 6)

27 (18)

Flx,y,[,t =0)=n,y)exp —

Now the maxwellian is centered in the point / = —w,y/tan
6. For an angle close to 90°, the range of I is mostly determined
by the thermal velocity Vr; usually taking an I, of 3 to 4 V;
is sufficient (note also that the maxwellian can be cut off more
abruptly when using the invariant, since no diffusion can take
place in I-space). However, when w,y,./tan 6 = V7, the range
of I must be chosen accordingly, for example, [y = ©,Vma!
tan 6 + 3V;. For low 6, this results, of course, in the necessity
of keeping more and more labels for the invariant.

We now present the numerical results for the KH instability.
In the simulation we adopted the following normalization
space is normalized to the electron Debye length Ap, = (g,AT,/
ne?)"’?, time is normalized to the inverse electron plasma fre-
quency o' = (g,m./ne?)'?; velocity is normalized to the elec-
tron thermal velocity Vr = Ap.w,,. '
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We chose the initial condition for the two species,

1 2 .
v, o, £ = 0) = —[N(y) + Ny(»)]e V(1 + e sin k,x)
V2nr (19)

nix, y,t = 0) = N(y)(1 + & sin k,x),
where N(y) and N,(y) are given by

N(y) = K[tanh 8(y — y,) + tanh — B(y — )]
Ny(y) = - sech(y/a).

(20

The parameters appearing in Eqgs. (19) and (20) have the
following values: 8 = 1.5;y, = —y: = 6.5 Ap; € = 0.1;a =
0.9. Furthermore, K and « are chosen so that

Lf“’ NGy) dy = 1
2L, )P
Lf“ Ny(y) dy = 0.15
2L, )i W(y)dy = 0.15.

Computational parameters are: L, = 40Ap., L, = 10Ap,,
At w,, = 0.05, and w,/w,, = 1. The number of points N, = 64,
N, = 80 will be kept fixed, whilst we shall vary the number
of labels N,. Our main concern will be that of determining /,,
and N, for which the numerical solution has converged to some
limit, independently of both these quantities.

Figures 2a and 2b show the first and second mode of the
potential |¢,| as functions of time, in the case § = 89°: Fig.

a First mode
2.0 T T T
0.5+ B
-1.0 . R e .
0 10 20 30 40 50
time

Second mode

1.0 *

0 10 20 30 40 50
time
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2a has been obtained with N, = 7 and I,,, = 2.5; Fig. 2b with
N, = 31 and /,,,, = 5. We note that the two graphs are strictly
identical, proving that seven labels are perfectly able to describe
the KH instability correctly. Here and in the following the
evolution of the potential harmonics are plotted on a logarithmic
scale in base e. The plot shown in Fig. 2a (and the corresponding
plot for the case 8 = 80° to be shown in Fig. 5a) are to be
compared with the results in Fig. 10 of Ref. [3], which were
obtained with another Vlasov code (which does not use the
invariant method we present here). Apart from a numerical
factor due to the different normalization of the Fourier trans-
form, the curves are in very good agreement. In addition, the
code of Ref. [3] had been tested in the case of a sinusoidal
profile showing very good agreement with the results of linear
theory. This makes us confident that the present code behaves
correctly with respect to linear analysis predictions. Countour
plots of the electron density and of the electric potential are
shown respectively in Fig. 3 and Fig. 4, which were obtained
with N, = 7. The same contour plots, obtained with N, = 31
do not show any discrepancy even in the finest details of the
density. The typical vortex structures are very well reproduced.
Note that the noise visible in Fig. 3b is due to the finite grid
resolution and not to the limited number of invariants.

For 6 = 80° we present a more detailed comparison. Three
simulations were performed, respectively taking N, = 31 and
Inw = 6, N,=11and I, = 4, N, = 5 and I, = 4. Results
for the potential modes are shown in Fig. 5a (¥, = 31), Fig.
5b (N, = 11) and Fig. 5¢ (N, = 5). The first two plots are
identical, proving that convergence has been already reached

b First mode
2.0 7 v T
0.5+ ~
-1.0 . . o R
0 10 20 30 40 50
time

Second mode

1.0 T

-8.0 . . P

0 10 20 30 40 50
time

FIG. 2. First and second modes of the electric potential in logarithmic scale for the case § = 89% (a) N, = 7; (b) N, = 31.
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10 T
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(=]
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10

~10 L
0 20 40

FIG. 3. Contour plot of the electron density, § = 89° at (a) 1 = 20, (b) r = 40.

for N, = 11, whereas the discrepancies shown in the third one
reveals that five labels are not sufficient to describe correctly
the evolution. Contour levels of the electron density are shown
in Figs. 6, 7, and 8, for the three cases, respectively. Again,
the first two figures prove the convergence for N, = 11. Note
the formation of a two-vortex structure, which explains the
more rapid growth of the second mode of the potential. The
electric potential contours are shown in Figs. 9, 10, and 11 at
= 40. Again, Figs. 9 and 10 are almost identical.

A further physical insight can be achieved by looking at the
distribution function for different values of the invariant. We
have done this for the case # = 80° and present the results in
Figs. 12, 13, and 14. We had for that case /,,, = 4 and N, =
11, thus Al = 2, [/(N, — 1) =08, and [; = =1, + (j —
1) Al In Fig. 12 we show the countour plots of F(x, y, I) for
I = 0; in Fig. 13, for I = 1.6; and in Fig. 14, for I = 3.2. The
case of I = 0 still proves to be unstable, and a two-vortex is
clearly visible, whereas for / = 3.2 no instability appears.

The conclusion we can draw from the simulations presented

a

10 T

-10 1

in this section is that the KH instability can be reproduced by
using a relatively small number of labels. Even when parallel
kinetic effects become important, leading to the stabilization
of the KH model, only nine labels have proven to be sufficient
to describe it correctly. The surprising accuracy and rapid con-
vergence of the method is doubtless due to the fact that the
KH instability is essentially a hydrodynamic instability, on
which parallel kinetic phenomena act as a small disturbance.

5. SIMULATION OF THE ION-TEMPERATURE-
GRADIENT INSTABILITY

Recently, ITG instabilities have been the object of a consider-
able amount of work [4, 10]; they are believed to play a determi-
nant role in anomalous transport in tokamaks and edge turbu-
lence. These are electrostatic, low frequency waves, which
become unstable when the parameter 7 = d(In T;)/d(In n;)
exceeds a critical value, usually estimated to be around 2. Their
growth rate being very low, simulations with particle codes are

b

10 !

.

m
~

s

¢

-10

o

20
X

L

0

FIG. 4. Contour plot of the electric potential, 8 = 89° at (a) r = 20, (b) r = 40.
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a : First mode b First mode C First mode
2.0 N T y y 2.0 T T " T : 2.0 ¥ " "
0.5 1 0.5 1 0.5F 1
_1.0L/\./._\‘ -1.of -1.0 . . . ,
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time time time

Second mode

Second mode

Second mode
o 1.0 T T i )

1.0

1.0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time time time

FIG. 5. First and second modes of the potential in logarithmic scale, § = 80°; (a) N; = 31; (b) N, = 11; (c) N, = 5.

10 T 10 T
a b

>~
=10 L -10 —
0 20 40 0 20 40
X X

FIG. 6. Contour plot of the electron density for the case 8 = 80°, N, = 31 at (a) t+ = 30, (b) r = 40.

10 T 10 T

-10 I -10

FIG. 7. Same as Fig. 6 for N, = 11 at (a) ¢t = 30, (b) ¢t = 40.
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10 T

>

-10 )
0 20 40

305

10 LI

-10 L

FIG. 8. Same as Fig. 6 for N, = 5.

difficult and display a high noise level. A numerical simulation
was carried out with a Vlasov code in Ref. [3], and the linear
growth and subsequent non-linear saturation of the instability
was shown very clearly. The model used here is slightly differ-
ent from the previous one for the KH instability. The ions are

10 T

i

_10 1

20 40
X

(=]

FIG. 9. Contour plot of the potential for the case § = 80°, N, = 31.

10 . T

.

>
)

C
€

g

-10 I
20 40
x

(=]

FIG. 10. Same as Fig. 9 for N, = 11.

modeled by the drift-kinetic Vlasov equation (Eq. (6) with the
appropriate values of g and m), while the electrons are assumed
to follow an adiabatic law. The same bidimensional slab geome-
try is used. The invariant is now I = vy + w;y/tan 6, with
w; = gB/m,.

The simulation we present here was done with the initial
density and temperature profiles,

T,= T, (0.2 + 0.8¢™#"), withT, =1,
n, = Valre ™, with & = 0.025, 8 = Ta,

which corresponds to a maximum value 77 = 5.2. The initial
ion distribution function is then given by

n, ui
== 2o 2L)
flx.y.nn 2T, p 2T,

(1 + &sin k,x + £ sin 2k,x + € sin 3k,x)

10 T

m

g

D)

-10 L

o
n
o
'S
o

FIG. 11. Same as Fig. 9 for N, = 5.
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a

Y

/—\/

— ﬁ\

= A

'/_\_/

= 0 £

7

——— L2

T

—_— v

-10 I -10 1
0 20 40 0 20 40
x x x
FIG. 12. Contour plot of the distribution function F(x, y, I)) for [; = 0, 6 = 80°, N, = 11, I, = 4 at(a) 1 = 0, (b) r = 30, and (c) + = 50.

La}
-10 1 ~-10 I -10 L
0 20 40 0 20 40 0 20 40
x X x
FIG. 13. Same as Fig. 12 for [; = 1.6.
-

-10 1 -10 1 -10 L
0 20 40 0 20 . 40 0 20 40
X X X

FIG. 14. Same as Fig. 12 for [; = 3.2.
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in which & = 0.001. The velocity variable is normalized to the
ion sound speed C, = VT,/m,, the space variables are normal-

ized to C/w,;, and time is normalized to m,,i‘. In the Poisson
equation, electrons are taken to follow the adiabatic law,

nfx, y) = n(yX1 + ed/T,),

with T, = T, = 1. The simulation was performed with w,/
wy; =05, L, =32, and L, = 16, N, = 64, N, = 128, w,
Ar=1, 6 = 87"

We can expect a priori that the simulation of ITG modes
will require a larger number of invariants than we found in the
previous examples. In fact, the effect that starts up the ITG
instability is of a kinetic, rather than hydrodynamic, nature.
Therefore it cannot be viewed as a small perturbation of a
hydrodynamic instability; actually, for 8 = 90°, the instability
disappears. It is equally obvious that we need a sufficient num-
ber of points in order to correctly describe the temperature
gradient profile. However, an advantage of the present method
still comes from the fact of having to solve a partial differential
equation in two, rather than three, variables. In addition, as we
will show in the next section, a version of such codes for
parallel machines is easy to conceive and implement.

We now present the results of a simulation for which we
took I, = 3.6 and N, = 100. Note that the distribution function
can be cut off quite abruptly in the 7 variable, since it implies
no differentiation; we checked that this value of I, is indeed
sufficient by taking larger values at equal Al

In Fig. 15a we show the fundamental mode (k, = 2n/L,) of
the electric potential as a function of time. The growth rate and
the final saturation level are low, which is a good illustration
on how the present method can simulate low level instabilities.
As a comparison, we report the same plot obtained with N, =
50, and the same [, in Fig. 15b; note that the results are
qualitatively in quite good agreement.

Figure 16 shows the contour plot of the electric potential at
different times. Complicated structures are formed in the center
of the plasma, around y = 0. Also, we note a certain symmetry
with respect to the straight line y = 0. This symmetry is even

a

‘[M“',‘\

'H

-10

0 9.0x10%
time
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more evident in the plot of the potential averaged on the x
direction, which is shown in Fig. 17. Around ¢+ = 8000 a
structure formed of one ‘‘bump’’ in the center surrounded by
two ‘‘holes’’ starts appearing. Note, however, that the potential
remains at low levels (the condition ¢ € T, = T, = 1 is, in
fact, a necessary condition for the consistency of our adia-
batic assumption).

The ion and electron density, averaged along the x direction,
are plotted in Fig. 18 at r = 0 and r = 14000. The ion density
has undergone a small change, getting slightly higher in the
core of the plasma, while the electron density is virtually the
same at the beginning and at the end of the evolution. Figure
19 shows the evolution of the net charge density, averaged over
the x direction, which develops a profile similar to that of the
electric potential.

In order to study how the ITG instability can affect the
diffusion of the plasma both in space and velocity space, it is
useful to follow the trajectories of test particles. These particles
are driven by the electric fields calculated from the Vlasov
simulation, but do not contribute themselves to the creation of
such fields. So the trajectory and diffusion of these particles
can be calculated without any noise. Here we present results
for three groups of particles. Particles are initially located be-
tween v = —0.5 and v = 0.5, uniformly distributed in x space
and located at different positions in y space, according to each
group. Figure 20 shows the (x, y) space for 4096 particles
initially situated in the interval —2 < y < 2. The diffusion
eventually brings some particles quite far from their initial
locations. In Fig. 21 we show the evolution of particles initially
belonging to the intervals —4 <y < —2and2 <y <4.1Itis
interesting to note that these particles initially located on the
slope of the density profile, seem to diffuse more rapidly to-
wards the interior of the plasma than towards the exterior. This
is even more evident from the evolution of the third group of
2048 particles (Fig. 22), initially located further down the den-
sity profile, between y = 4 and y = 6. This behavior can be
explained by the strong potential gradient experienced by these
particles, as shown in Fig. 17.

Figures 23, 24, and 25 show the evolution of each group of
particles in the (y, v) space. The existence of an invariant is

0 9.0x103 1.8x10%

time

FIG. 15. First mode of the electric potential obtained with (a) N; = 100 or (b) N, = 50 invariants for an ITG instability.
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a
16
> 0
~16

FIG. 16. Contour plot of the electric potential at (a) + = 0, (b) 1 = 4000, (c) + = 6000, (d) : = 10,000, and (e) ¢+ = 14,000.

very clear from these figures; the particles move on the straight
line vy + w;y/tan § = I = const. Since the angle 8 is close to
90°, the diffusion in velocity space is much slower (of a factor
w;/tan 6) than the diffusion in the y direction.

Finally, we have calculated the quadratic displacements in

16 32

y and v spaces, Ay* and Av?, defined as

AyX(r) =

1 N
— ; — iO 2
Now '2:1: [y(®) = y(0)]

(2D



NUMERICAL INTEGRATION OF THE VLASOV EQUATION

0.002

T 0.002 0.002
a b c
0.000 L—’_"_\/\/_\ 0.000 R 0.000
-0.002 L -0.002 L -0.002
-16 0 16 -16 0 16 —-16
y y
FIG. 17. Profile of the potential, averaged along the x direction at (a) r = 8000, (b) r = 11.000, and (¢c) 1 = 14,000.
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FIG. 18. (a) Averaged ion density profile at + = 0 (solid line) and + = 14000 (broken line); (b) same as (a) for the electron density.
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FIG. 19. Profile of the averaged net charge density, averaged along the x direction at (a) 1 = 8000, (b) r = 11,000, and (c) + = 14,000.
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-8 o -8 L
0 16 32 0 16 32
X X

FIG. 20. Evolution in the (x, y) plane of 4096 test particles initially located at —0.5 < v < 0.5: =2 < y < 2 when (a) ¢+ = 0.0, and (b) + = 11,000.

0 16 32 0 16 32 0 16 32

FIG. 21. Same as Fig. 20 for 4096 particles located at —0.5 < v < 05,2 <y < 4,and -4 <y < —2 when (a) r = 0.0, (b) r = 11,000, and (c) ¢ =
14,000.

12 T 12 T 12 T
a b c ]

FIG. 22. Same as Fig. 20 for 2048 particles located at —0.5 < v < 0.5, 4 < y < 6 when (a) + = 0.0, (b) r = 11,000, and (c) r = 14,000.

1.5 T 1.5 T 1.5 T
a b c
> 0.0 b > 0.0 . 4 > 0.0 1
-1.5 —_ -1.5 L -1.5 L
-8 0 8 -8 0 8 -8 0 8
y y y

FIG. 23. The same test particles of Fig. 20 represented in the (y, v) space when (a) ¢+ = 0.0, (b) ¢+ = 10,000, and (c) + = 14,000.
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FIG. 24. The same test particles of Fig. 21 represented in the (¥, v) space at (a) t = 0, (b) r = 10,000, and (c) t = 14,000.

with an analogous definition for Av*(r). These displacements
are related to the diffusion coefficients by the relations

D ==L, D=2 (22)

Figure 26 shows the time evolution of the quantities Ay* and
Av’ for one group of particles. Note that Av? stays at a very
low level: this is due to the fact that the displacements must
obey the relation Av?/Ay* = (w;/tan )%, which is a consequence
of the existence of an invariant of the motion as previously
discussed. So, while the particles are diffusing in space, the
diffusion in velocity space is very small. All displacements
show a very neat exponential growth and subsequent saturation
around ¢t = 14000, which follow closely the growth and satura-
tion of the instability, shown in Fig. 15. The initial exponential
growth of Ay* and Av? is clearly related to the ongoing growth
of the instability. In order to eliminate this spurious effect, we
divide Ay* by the square of the potential amplitude |q§,k”|2 for
the dominant mode k,. The result is shown in Fig. 27; after a
slight increase at the very beginning of the simulation, the curve
remains approximately constant.

6. CONCLUSIONS

The aim of this paper was to propose a new technique for
the numerical integration of the Vlasov equation, which can

be applied whenever the characteristics of the equation possess
an exact invariant. By expressing the distribution function in
terms of the invariant itself, one can reduce of one unity (or
more, if there is more than one invariant) the dimensionality
of the pertinent phase space. The invariant enters only as a
label in the equations and can therefore be coarsely discretized.
We stress once again that the fact of taking a finite and discrete
number of invariants is an approximation only in the sense that
we choose a very special initial condition: otherwise, since no
differential operation is done on the invariant, there is in this
respect no other source of numerical errors.

For the drift-kinetic Vlasov equation in a two-dimensional
slab geometry, the invariant is nothing but the z component of
the canonical momentum. We have studied the KH instability
and shown very accurate results with a tilted magnetic field
with a small (=10) number of invariants. The ITG instability
was a more challenging problem, since kinetic effects are not
negligible even for angles close to 90°. This fact resulted in a
larger number of labels of the invariant to be necessary, al-
though qualitative results could be obtained with fewer labels
of the invariant.

As we anticipated in the previous section, a version of these
codes for parallel machines can be easily implemented. In fact,
each of the Egs. (13), labelled by the index j, evolves indepen-
dently of all the others. The coupling between the various F;
only intervenes in the Poisson equation. Solving the Eqgs. (13)

-15 " -1.5

12 -4 4 12

< |
«

FIG. 25. The same test particles of Fig. 22 represented in the (y, v) space at (a) t = 0, (b) ¢+ = 10,000, and (c) ¢ = 14,000.
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FIG. 26. Evolution of the quantities Ay? (higher plot) and Av* (lower plot)
for the initial locations —0.5 < v < 0.5and -2 <y < 2.

simultaneously on different processors would obviously dra-
matically decrease the numerical effort. This is a very promising
feature of this kind of codes (and, in general, of Vlasov codes)
which renders them more attractive on a parallel architecture.

We like to conclude by stating a number of problems that
can be attacked through our technique. For a cylindrical plasma
column, confined by a magnetic field in the direction of the
cylinder axis, an invariant exists if we suppose the plasma to
be independent of the azimuthal angle ¢. In that case the perti-
nent phase space is (r, v,, v,) and the invariant is the canonical
angular momentum P, = mrv, — qrA,, A, = —3Br. The v,
velocity, parallel to B, could be added without breaking the in-
variant.

1.8x10%

0 9.0x10°
time

FIG. 27. Evolution of Ay*/|d,|’ for the same group of particles shown in
Fig. 26.
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In a similar way, in spherical coordinates, a consistent phase
space can be spanned by the variables r, v,, and v,, the last one
being a tangential velocity. Now the invariant is the angular
momentum L = mrv,. This model is particularly interesting in
stellar dynamics.

Finally, let us consider a relativistic, electrostatic, one-dimen-
sional plasma. The relativistic -y factor depends not only on the
longitudinal velocity v,, but also on the transverse component
v, . In this case the invariant is the transverse canonical momen-
tum P, = mv, — gA,, since it enters the Vlasov equation
simply as a continuous label. We plan to address all these issues
in future works.

APPENDIX A

In this appendix we prove that the energy theorem for the
drift-kinetic Vlasov—Poisson system is valid also when we take
a finite and discrete number of invariants.

In the continuum case, given by Eqgs. (7), (8), and (9) the
total energy is simply:

€= %’f” V3 f(x. v, v dx dy dvy + %” E dx dv. (A1)

The discrete model is constituted of Egs. (8), (13) and the
Poisson equation, which reads

(A2)

Ad):sl(z[’j—n,).

We now prove that the expression (A1) becomes

e*="512” <l,+ D) >2F,-(x,y)dxdy+%ff52dxd)’
J

tan 6
(A3)
and that €* is a conserved quantity.
Let us first calculate
K=3”352dxd (A4)
arJJ 2 Y

By making use of the identity V-(au) = u-Va + aV:u
with @ = ¢ and u = E = —V¢ and taking suitable boundary
conditions, we have

K=& [[¢adardy=¢|[ (ﬁ;—EF,)¢dxdy,

where a dot indicates differentiation with respect to time. Now,
by using Eq. (8), it is easy to show that [[ ¢n; dx dy = 0.
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Therefore we obtain, through Eq. (13),

K= —q}_j” OF  dx dy

_ cos’ 6
—qu’jqﬁ[(chostqu sinO'\'>

()F
T +V. (vlF):I dx dy
ox

oF;
=qEJJd)<Ic056+w cos’ 0 >(—d\dv

sin @ -

since, again, [ [ ¢ V- (v,F)dxdy =0.v, = E X B/B. Finally,
an integration by parts yields

(A5)

K=qujcose<1 +———6>EF(1\dv
i

Now, multiplying Eq. (13) by (/; + w, y/tan 6)* and integrating
over dx and dv, we get
tan 0>

s =) (15
atjj ( 6) dx dy (1,
2 E,
(Ij cos 0+ w, CSO“S] :y + Esm 9) —dx dy
E,sin §0F;
«[[(s % gy dy
(’ tanf)) B ay
——2—cos€ff <

To obtain the last equality in (A6) we have integrated by
parts J E(0F;/0x) dx = — [ F,(dE,/dx) dx, etc.) and made use
of the relation V X E = 0 = 9E/dy — JE,/ox.

9) E. dxdy.
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By comparing (A6) with (A5) and remembering the definition
(A4d), we obtain

alls

which readily gives the energy theorem (A3).

(I\d\f——(—)ﬂEJJ ( +—> dx dy
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