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The stability of Bernstein—Greene—Krusk&GK) modes is investigated in the limit of small
electric potentialweak inhomogeneily It is proven that one-hole BGK modes can be unstable,
contrarily to what was observed in previous numerical simulations. A simple stability criterion is
derived. In particular, it is proven that the velocity distribution must have at least three maxima for
instability to occur. Numerical simulations confirm the analytical results, and extend them to the
nonlinear and strongly inhomogeneous regimes. In particular, it is shown that a strong
inhomogeneity has a stabilizing effect. 2000 American Institute of Physics.
[S1070-664X00/04806-0

I. INTRODUCTION weakly inhomogeneous BGK modes, the stability properties
are given by the corresponding homogeneous solution, ob-

In a seminal paper published in 1957, Bernstein, Greengained by letting the electrostatic potential go to zero. This
and Kruskal showed the existence of an infinite family of means that the growth rate varies continuougty some
exact stationary solutions for electrostatic, collisionless plassensg with the amplitude of the potential. This assumption,
mas described by the Vlasov—Poisson model. Such solutionghich is physically rather plausible, has been proven rigor-
(now called BGK modesare spatially inhomogeneous, and ously in a recent mathematical papérwe will therefore
therefore exhibit a finite self-consistent electric potential.investigate the stability properties of homogeneous distribu-
They have continued to attract interéstince they may rep-  tion functions which are the limit of BGK modes for small
resent the final saturated state of instabilities which are Staalectric fields, particu|ar|y in the more controversial case of
bilized by particle trapping in the potential well formed by one-hole structures. The conclusion is that both stable and
the growing wave. Numerical results also suggest that trav- ynstable one-hole BGK modes can exist, depending on the
eling BGK waves may arise as the result of nonlinear Landaghape of the velocity distribution.
damping, a subject which is presently at the center of a The main result on the stability of weakly inhomoge-
stimulating debaté:” Traveling BGK waves have been in- neous BGK modes is presented in the next Section. In Sec.
vestigated theoretically in a series of pagéparticularly in  |i|, an analytical example is worked out in detail. This makes
the small amplitude limit. Other recent works include exten-yse of a special type of distribution function, composed of
sions to the two-dimensiortaind the magnetized casésas  two cold beams and a “water-bag” distribution. In this case,
well as applications to geophysical plasmas. the dispersion relation becomes an algebtai opposed to

In order to establish whether BGK modes can exist in ar]ntegrab equ,::;lti()n7 and rigorous results can be eas"y ob-
actual plasma, it is crucial to understand the stability propertained. Section IV contains several results from numerical
ties of such solutions against various kinds of perturbationssimulations that confirm théinean analytical calculations.
Several methods have been used in the past, ranging fromhe simulations also enable us to investigate the nonlinear
mode coupling analysis to thermodynamical arguménés;  saturation of unstable equilibria, as well as the case of

genvalue method?, or by direct computation of the growth strongly inhomogeneous BGK modes. Conclusions are pre-

rates** All the above techniques predict that BGK structuressented in Sec. V.

formed by at least two phase space vorti¢dwles”) are

unstable, while no rigorous result exists on the stability of

one-hole structures. Numerical experiments confirm that

multiple-hole BGK modes are indeed unstable, and strongl)'/'- GENERAL STABILITY PROPERTIES

suggest that one-hole structures are stabié. The model considered in this paper is the one-
Itis the scope of this paper to prove that some one-holgjimensional Viasov—Poisson system

BGK modes can actually be unstable. In particular, it will be

shown that unstable modes exist when the underlying veloc- ﬁJr ﬁ+ Ea_f:o

ity distribution has at least three maxima. Indeed, previous dt Y X v '

simulations had all considered two-stream velocity distribu- JE . 1)
tions, which turn out to be stable for one-hole structdres. _:f fdo—1,
The basic idea put forward in this article is that, for X —o

where f(x,v,t) is the electron distribution function and
3Electronic mail: Giovanni.Manfredi@lpmi.uhp-nancy.fr E(x,t) the electric field. In Eq(1), and in the rest of the
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article, time is normalized to the inverse electron plasma 1.21 ]
frequencyw,;el, space is normalized to the Debye length 10k 9
Ap, and velocity is normalized to the electron thermal speed 08L N, ]
V1e=Apwpe. lONs are taken to be motionless, and their only T s _ 1
role is to provide a uniform, neutralizing background. Peri- T L >
odic boundary conditions are assumedkin 0.4F B

It is easy to show that any functidh(H) of the energy 0.2F Tl E
H=02/2+ ¢o(x) (Where ¢ is the equilibrium electrostatic 0.0F . . ‘ oo

0.0 0.2 0.4 0.6 0.8 1.0

potentia) is an exact stationary solution of E@d.). By plug-
ging F(H) into Poisson’s equation, one obtains a nonlinear

differ.e.ntial equation for _the potgntjal, Whi.Ch! under SOMEE|G. 1. Plot of the dispersion functioB(¢) for an unstable three-stream
condition, can have spatially periodic solutions. Such a conplasma(solid line), and a stable two-stream plasitushed ling in a case
dition can be derived easily in the weakly inhomogneougor which G’(0)#0. Only the positive¢ axis is shown. The plots corre-
case. By taking/f/gt=0 in Vlasov's equation, then dividin spond to the velocity distribution of ER4) with 8=0.045,T=0.05 for the

. y .99 . q . . 9 unstable casésolid line), and 3=0.0,T=0.05 for the stable onéashed
by v, integrating over velocity space, and finally making use

line).
of Poisson’s equation, one arrives at the following equation
for the equilibrium electric fieldeg= — d g/ IX
2 , (= dF/dv
’Ey k?= dv=G(2), )
+KA(X)Eq(x) =0, 2) —wV—Z

dx?
wherez=w/k, and G(z) is defined by the last equality in
Eq. (6). Forz=0, we obtaink?, the wave number of weakly
inhomogeneous BGK modes, given by E8). Indeed, it is
not surprising that, in the limit of zero field, BGK modes
tend to a homogeneous state for which the dispersion relation
has at least the solutice@=0, i.e., a marginally stable solu-
tion. However, other solutions with lm>0 might exist,
corresponding to an instability.

We first notice that BGK modes, being steady-state so-
lutions, must tend to linear waves with ke=0. Therefore,

In the limit of small potentialsk?(x) becomes independent
on the spatial variable and equal to

k2_f“ldFd _fwdFd 3
o ] v d v _»dH v ®)

Therefore, for periodic BGK modes to exist, one nekgls
> 0.1 Notice that this condition rules out distribution func-
tions that are monotonically decreasing with the endtgy

=v2/2, such as the Maxwellian distribution. A velocity dis- ; ) . :
tribution with at least two maximéwo-stream distribution in order to investigate stability, we shall consider the branch
of the dispersion relation, Eq6), corresponding to Re

is thus required for the existence of periodic BGK modes. . . . .
The wavelength zZ/k, represents the typical spatial period =0, and writez=i¢, with £ real. One obtains
of a one-hole BGK mode. © p dF
In order to study the stability properties, one performs  G(£)= fﬁwvagz Edv’ )
the usual expansion around the inhomogeneous equilibrium
where we have used the fact thatv) is an even function.
f(X,U vt) = F(H)+ fl(X,U vt)v ¢(X!t) = ¢O(X) + ¢1(X1t)' (4)

The origin é=0 is a solution of the dispersion relatid
Inserting this expansion into E@l), the linearized Vlasov ? Cciég)sggrf;erssrﬁgﬁmg;?oé Tgle Ssal?tﬁgén;:omg?sfl(?on
equation becomes ! positive values§ uti

with £>0 will necessarily exist for the same wave number

af, af, JF(H) af, ko (Figs. 1 and 2 This is true only ifG(¢&) goes to zero for
—+v—+E;,———+E;—=0. (5)
at dx Jv dv
Now, if the equilibrium electric fieldgy is small (weakly 1.2
inhomogeneous BGK then the last term on the left-hand RN
side of Eq.(5) is of higher order and can be neglected. More- 08k X . J
over, in the third term, one can make the approximation —_ N
F(H=v2%/2+ ¢o) =F(v?/2) (and thus neglect the inhomoge- =
neity), since inhomogeneous corrections are of higher order. 04l |
The important result is that we are left with the usual linear- '
ized Vlasov equation, in which the inhomogeneous equilib-
rium has disappeared. This shows that the stability properties 0.0 ,
of a weakly inhomogeneous BGK mode are entirely deter- 0.0 0.4 0.8 1.2
mined by its homogeneous limit. A mathematically rigorous ¢
proof of this theorem has been recently obtained by Guo and ) ) ] )
Straus<’ FIG. 2. Plot of the dispersion functioB(¢) for a “beam-water-bag” dis-

. . . . tribution, as given by Eq.19). In this caseG’(0)=0. The parameters used
By virtue of the previous result, the stability properties gre y=1, a=0.25, 3=0.05 (solid line, unstablg andu=1, a=0.25, 8

are therefore governed by Landau’s dispersion relation =0 (dashed line, stable
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some larger value of, which will also be proven in the
following.

Since we are interested in the behavior néar0, we
expandG(¢) in a power series
§2
G(£)=G(0)+£G'(0)+ - G"(0) + - - €S)
where the apex stands for derivative with respec§.t@b-
viously G(O)zkg. Let us evaluate the first derivative of

G(§)

o 1
G'(§)=—§f_mvagz

where we have integrated by parts.

d°F

d—vzdv, (9)

In order to evaluat

G’'(£=0), we add and subtract to the right-hand side of Eq.

(9) terms proportional to

= do _ ™ 10
02+ E g
One obtains
. e oo F!I(U)_FH(O)
G (0)—;[71()—6( fﬁngz v
+F(0) qu 7
=—F"(0)msgn(§). (13)

The symbol sgnf) on the right hand-side of E411) means
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IG. 3. Velocity distribution for an unstable three-stream plasma, as given
y Eq.(24) with 5=0.045T=0.05.
G'(§)—-G'(0)

£ - f .
where we have used Eq®)—(11). The dispersion relation
becomes in this case

=G(§)=ky+3£°G"(0)+ (14)

In order for G(§¢) to be an increasing function for small
positive ¢, one must havez”(0)>0. This is our second
result on the instability of one-hole BGK modes. The quali-
tative behavior of5(¢) is shown on Figs. 1 and 2, both for a
stable two-stream and an unstable three-stream velocity dis-
tribution. Fig. 1 refers to a case for whic'(0)+#0,

F"(0)—F"(v)

U2

G"(0)=i
-0

dv, (13

that G'(0) has a different sign depending on whether thewhereas Fig. 2 to a case for whi&(0)=0. An example of
limit {—0 is approached for positive or negative values ofan unstable distribution is shown on Fig. 3.

&. Note that we have writteR”(v) for d2F/dv2. If G’(0)

The criteria derived in the previous paragraphs<ari-

#0 the expansion needs not be carried out at higher ordergient conditions for the instability of one-hole BGK modes.

and the dispersion relation becomes
k*=G(é)=

Therefore, wher”(0)<0, G(£) is an increasing function of
its argument for small positive values &f Furthermore, we
shall prove later on that there exists a vadde>0, for which
G(£*)=0. We can conclude that a growing solutiog (
>0) must necessarily exist for the wave numkgi(Fig. 1).

It was established earlidiEq. (3)] that, for periodic BGK

—|&[mF"(0)+ (12

modes to exist, the velocity distribution must possess at least

two maxima. Now, the instability condition requires that a
further maximum be present at=0 [because, sincE(v) is
an even functionF’(0)=0]. Therefore, a three-stream dis-

Notice that they cover all possibilities, sin@&(0) is never
zero whenF"(0)=0. Therefore, the first two terms of the
expansion given by Eq(8) completely determine the rel-
evant stability properties.

To complete the proof, we need to show that there exists
a valueé* >0, for whichG(£*)=0. We do this by proving
that, for large enough values ¢f G(¢) becomes negative.
Let us change variable ta=1/¢ in Eq. (7), and define
I'(u)=G(1/¢). One obtains

v

F(U) u f_mm do dv (15)

We want to expand'(u) nearu=0. One obtains immedi-

tribution is needed to guarantee the existence and instabilitsitely that’(0)=0. Evaluating the derivatives df(u), it is

of a one-hole BGK mode.

In the opposite casé=('(0)>0), nothing definite can be
said for the wave numbé¢,. However, it is obvious that a
growing solution always exists fok=ky/N, with N=2
(Fig. 2). This is the standard result that multiple-hole BGK

modes are unstable. Two-stream distribution functions, usu-

ally considered in the past, belong to this class.
Finally, when the distribution function is flat at=0

found thatdI'/du|,—o=0,d?T'/du?|,— o= — 2. Therefore, the
expansion around=0 is I'(u) = —u?+O(u%. Going back
to the functionG(¢), one finally obtains the following ex-
pansion, valid foré>1

G(&)=—¢2+0(£79. (16)

Since G(0)>0, G(¢) must change sign at some finigg
>0. This completes the instability proof. Notice that the last

(F"(0)=0), the expansion must be carried out to secondesult simply means that, for small wave numbers, the

order. The second derivative &f(¢&) at £=0 is

growth ratey=Im w is proportional to the wave number,
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i.e., y=£&*k. This is the expected result for fluid models, and ment with the general theory presented in Sec. Il. Note that,

it is well-known that the limitk<1 corresponds to the fluid since the velocity distribution is flat at=0, the first order

limit. term is absent in the expansion f@&(£). Combining the
So far, we have proven that the homogeneous limit of acondition for existence of periodic BGK modelé(>0) and

one-hole BGK mode can be unstable if some criteria arghe condition for instabilityf G”(0)>0], one obtains the

satisfied. In virtue of the previous discussidty. (5)], these  system

stability properties can be extended to weakly inhomoge-

neous BGK modes, a result that has been proven rigorously 1-8 _ £>0

by Guo and Strauss,both for linear and nonlinear instabil- uz  a? o’

ity. This completes the proof that some one-hole BGK (22
modes(namely those with a three-stream velocity distribu- 8 _1-8

. X —=3 >0.

tion) are indeed unstable. at u

Therefore,8 must satisfy the following inequalities
I1l. AN ANALYTICAL EXAMPLE
. . L 3a* a?
In order to illustrate the previous results, it is useful to < (23)

B ’
consider a special equilibrium velocity distribution, for u*+3a* u*+a’

which most calculations can be performed analytically. Letynich imply a< \3u and 8<0.25. This means that, in order
us take to have instability, the “temperature” of the central water-

Flo)= "o [8(u—u)+ o+ U]+ BW(0), (17

where §(v) is the Dirac delta, andV,(v) is the so-called
“water-bag” function, which is constant and equal to
(2a) ! for v<la| and zero elsewhere. The distribution of
Eqg. (17) is made of two cold streams at velocitiesu, plus
a third “warm” stream centered at=0, which is modeled
by the water-bag function. The two-stream case is recovered
for B=0.

The dispersion relation is obtained by inserting Eky)
into EqQ. (6). One finds

_1-5
2

1 N 1
(z—uw)? (z+u)?

B

2_a2

k?=G(z)

(18

z

where z=w/k. If we now consider the case of a purely
imaginaryz, and definegé=Imz= y/k, we obtain

S A
-2 (£2+u?)2 §2+a2'

k>=G(¢) (19

The plot of G(£) is shown on Fig. 2 for two sets of values of
the parameters, u, and 8. These correspond to either a
stable or an unstable plasma.

The characteristic wave number of a one-hole BGK
mode is(in the homogeneous limit

1_
k-c0)-—L-£ (20 .
u a _of p = 0.980 ]
and one must havb§>0. The stability properties are deter- o
mined by the behavior of the dispersion relation, ELp), g —4
for small values ofé. ExpandingG(¢) for é<a<u, one -6F (d) 1
obtains -8
& 28 1-p| & 0 60 12t0 180 240
G(§):G(O)+G”(O)?:k§+(—4—6 . ) - (@
a u FIG. 4. Time evolution of the fundamental mode of the electric field for

. . . " B=0.045T=0.05. The inhomogeneity parameter jis=1 (a) (homoge-
It is easy to verify that the expressions 8(0) andG"(0) neous case 1~ 0.998(b): 11=0.99(c): u—0.98(d). The straight line ir(a)

could have been obtained by inserting the velocity distributorresponds to the exact linear result for the homogeneous oase,
tion of Eq.(17) respectively into Eq93) and(13), in agree-  =0.169.
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bag (which is proportional t@?) must not exceed a certain 2732 T

value; at the same time, the fractigh of particles in the 15T~ P17 (25)

water-bag distribution must be relatively small. Figure 2

shows the functiorG(¢) for u=1 anda=0.25. From Eq. |t is easy to prove that the above inequalities imfly

(23), instability occurs when 0.01%63<0.0588. The <0.25, and3<0.2. The parametes represents the fraction

curves plotted on Fig. 2 correspond g=0.05 (unstablg¢  of particles situated in the central streg@aroundv=0).

and g=0 (stable. Therefore, an unstable distribution appears to possess two
dominant streams at finite opposite velocities, plus a small
central “bump” situated in the hole in between the two
streamgFig. 3).

IV. A NUMERICAL EXAMPLE Using Eq.(24), Poisson’s equation for the equilibrium

electrostatic potentiap, becomes

As a further example of a distribution function satisfying
the criteria for instability, let us take the three-stream distri- 42
bution 0

2 =1- ul(1- B)(1+2o)exp — o)
dx

1
F(H)=E 2(1-pB)H eXp(—H)+%eXp(—H/T) , + B exp(— ¢o/T)], (26)

@4 \where p is a parameter quantifying the deviation from the
whereH=0v2/2+ ¢o(x), and 0<B<1. The two-stream dis- homogeneous equilibriumz=1 for the homogeneous limit
tribution is recovered fog=0. From Eq.(3), one obtains the of a BGK mode, and & u<1 for a truly inhomogeneous
wave number of one-hole structures in the zero field limit,BGK equilibrium.
kSz(l—ﬁ)—ﬂ/T. The condition for the existence of peri- Several numerical simulations have been performed with
odic BGK modes ik3>0. This becomes, for the above dis- a Vlasov Eulerian code based on a flux balance techrifjue.
tribution, B<T/(1+T). The relevant criterion for instability Here we present the results from a set of simulations using
is d?F/dv?|,_o<0. This requires that 3>2T%%(1 the distribution function of Eq(24), with T=0.05 andg
+2T%2 . Finally, we have unstable solutions # and T  =0.045. According to the theory presented in the previous
satisfy the following condition Sections, weakly inhomogeneous one-hole BGK modes cor-

0.00 2.56 5.11 7.67 10.23 -0_00 2.56 5.11 7.67 10.23

0.00 2.56 5.11 7.67 10.23 .0,00 2.56 5.11 7.67 10.23

0.00 2.56 5.11 7.67 10.23 0.00 2.56 5.11 7.67 10.23

FIG. 5. Phase space portrait of the distribution function at various times betwethandt =60, for the casg8=0.045,T=0.05, andu=0.99[Eq. (24)].
Regions for whichf <0.062 are whe, whereas regions for which>0.080 are black.
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t = 45.
0.05
M 000k T
-
-0.05
0 2 4 6 8 10
0.00 2.56 5.11 7.67 10.23 X
X
. . . t = 50.
FIG. 6. Same as Fig. 5, at the end of the simulatiba 120). 0.05
= 0.00p0—— T
responding to such parameters should be unstage Eq.
(25)]. The simulations were performed on a phase space grid —~0.05

Ny X Ny=300x 1000, and time stejt=0.1. The equilib-
rium distribution was perturbed on the fundamental wave
number, with a small amplitude=10""°. Note that the fun-

damental wave numbeé¢- of a one-hole BGK mode varies 0.05 L= 95
with the inhomogeneity, and is therefore, a function of the

parametey. For the homogeneous case< 1), this can be @ 0.00

computed analytically from Ed3), and yieldskg=ky=(1

—B—pBIT)Y2=0.2345. For the inhomogeneous case, 0.05

must be computed numerically. One obtains, for instance,
kg=0.4558 foru=0.998, andkg=0.6101 foru=0.990.

In Fig. 4, we present the time evolution of the fundamen-
tal mode of the electric field, for various values of the inho-
mogeneity parameter. In the homogeneous case X) the
growth ratey can be computed analytically from the disper-
sion relation, Eq.7). One obtainsy=0.169, a value that
closely matches the result of the simulatidfig. 4(a)]. For
truly inhomogeneous BGK modeg K1), it is not possible
to compute the growth rate analytically. However, it is clear
that the instability persists fqu=0.998 and 0.99Figs. 4b)
and 4c)]. More surprisingly, we have found that, when
=0.98 or smaller, the system becomes stdblg. 4(d)]. In
other words, a one-hole BGK mode which is unstable for a
weak inhomogeneity, becomes stable when the inhomogene-
ity is strong enough. Note that this result cannot be deduced
from the theory presented in Sec. Il, which is only valid for
guasi-homogeneous equilibria.

Figure 5 shows the phase space portrait of the distribu-
tion function for the caseu=0.99. Betweent=0 andt
=45 there is little visible evolution. Subsequently, the two
halves composing the single hole of this BGK mode start
attracting each other and merge. Over longer times (
=120, Fig. 6, a new equilibrium appears, which is still an
(approximat¢ one-hole BGK mode. Note, however, that the
“center-of-mass” of the distribution function has undergone
a shift of half the fundamental wavelengthrkz. This is
also visible in the plot of the electric fieltFig. 7): At t
=55 the electric field goes to zero, and then grows again, but
with a different sign, corresponding to a phase shift of 180
degrees. For longer times, the electric field is actually larger

(a)

0.05

M 0.00

-0.05

0.05

= 0.00

-0.05

0.05

= 0.00

-0.05

0 2 4 6 8 10

(b)

FIG. 7. Plot of the electric field at different times, for the cage
0.045,T=0.05 andu=0.99. Same run as Fig. 5.

than for the initial equilibrium. This phase shift correspondsdistribution is very small and hardly visible. Indeed, as was
to the sudden drop of the amplitude of the first mode of theproven earlier on, the relative weight of the central stream,
electric field, visible in Fig. &). compared to the two streams at nonzero velocity, is propor-

The (spatially averagedvelocity distribution is shown tional to the parametep, and 8<0.2. Furthermore, the
on Fig. 8 for the cas@ =0.998. We show this case because,small central bump tends to be smoothed out by the density
for smaller values ofu, the central bump in the velocity modulation(inhomogeneity.
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0.3 neous limit. In order to address this point, we have per-

formed several numerical simulations with a Vlasov code.

0.2 The main result is rather surprising: One-hole modes that are

= unstable in the homogeneous limit, become stable when the
0.1 inhomogeneity is stronger than a certain threshold. Another
question that we were able to address via computer experi-

0.0 : - ] ments is the nonlinear saturation of unstable BGK modes. It
—-3.0  -1.5 0.0 1.5 3.0 was shown that an unstable one-hole BGK structure evolves

\%

towards anothefstablg one-hole structure by modifying the
FIG. 8. Plot of the spatially averaged velocity distribution for the case shape of the velocity distribution.
=0.045,T=0.05, andx=0.998, at timest=0 (solid ling) and t=80 In conclusion, we have presented detailed analytical and
(dashed ling numerical results proving that some one-hole BGK modes,
which were previously thought to be stable, can actually be
We observe from Fig. 8 that the final equilibriuny ( Unstable. A consequence of this result is that it restricts the
=80) presents no bump in the central part of the velocityclass of BGK modes which may represent the final saturated
distribution. From this and previous results, we can conclud§taté of linear instabilities. Furthermore, given the math-
that the system evolves from an unstable one-hole equiliceMatical analogy between the one-dimensional Viasov—

rium towards another one-hole equilibrium, which appears td”0iSson system and the two-dimensional Euler equétion,
be stable. these results may also be relevant to fluid problems, such as

the Kelvin—Helmoltz instability.
V. CONCLUSION

In this paper, we have shown that some one-hole BGKA‘CKNOWLEDGMENTS
modes can be unstable under certain conditions. A rigorous It is a pleasure to thank Marc Feix for many years of
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