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Plasma-wall transition and sheath formation

G. Manfredi - F. Valsaque

Un examen des aspects théoriques et numériques de la transition plasma—paroi est
présenté. Les conditions d’existence de gaines devant une surface solide sont établies.
Différents régimes sont analysés : avec et sans collisions ou ionisation, fluide et cinétique.
La répartition de la transition plasma—paroi en plusieurs régions (gaine de Debye,
prégaine quasineutre, prégaine magnétique, etc...) est aussi discutée. Les applications
a la théorie des sondes électrostatiques sont illustrées a [’aide d’un modeéle cinétique
récemment développé. L’influence de la sonde sur les mesures de température ionique est
étudiée en détail.

Mots-clé : Transition plasma—paroi - Gaines - Théorie des sondes - Fusion nucléaire.

Introduction

The interaction of a plasma with a surface is one of the oldest problems in plasma
physics. This is hardly surprising, as any plasma created in the laboratory needs to be
confined by a material vessel. Besides, a large number of diagnostics are obtained with
probes inserted into the plasma, thus exposing some solid surface to the charged particles.
The fact that plasma—surface interaction is still a lively subject of research seventy years
after the publication of Tonks and Langmuir’s seminal paper [1], is a clear sign that the
problem is not an easy one. Indeed, the first (solid) and fourth (plasma) states of matter do
not co-exist peacefully. Energetic plasma particles strike the solid surface (“sputtering”),
in a process that can end up in significant erosion of the surface. Meanwhile, sputtered
atoms can leave the surface and enter the plasma, leading to its contamination.

Perhaps the most distinctive character of plasma—wall interaction is that solid surfaces
act as sinks and sources for the plasma. When an ion hits the surface, it is usually retained
on it for a time sufficiently long to recombine with the electrons on the surface. The atoms
thus formed are usually weakly bound to the surface, and are re-emitted as neutrals into
the plasma. Subsequently, these neutrals can be re-ionized, generally by electron impact.
Depending on the plasma parameters, re-ionization can occur close to the surface or
further into the bulk plasma. Besides, electrons can also be emitted by the surface by
impact of other particles (including other electrons). This process of recombination/
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emission/ionization can lead to a steady-state regime named recycling. The most common
example of recycling is provided by the familiar “neon” light (indeed, a low-pressure gas
discharge tube), in which ions are produced by electron impact in the cylindrical volume
then travel to the wall where they are recycled. Energy is lost to the wall as heat (except
a small part ending up in visible light — the intended effect !), and must be provided conti-
nuously via an electric current that causes ohmic heating of the electrons [2].

A second, and most important, effect caused by the presence of a solid surface is the
formation of plasma sheaths. Indeed, ions and electrons hit the surface at very different
rates, roughly proportional to their thermal speeds, which scale as the square root of the
ion-to-electron mass ratio (for equal temperatures, the electron thermal speed is about
forty times that of hydrogen ions). If the surface is an insulator, or kept electrically
isolated, a net charge develops on it and perturbs the ambient electric field, temperature
and plasma flow, as well as other crucial parameters. This perturbation of the plasma,
characterized by the presence of a distinct space charge, is called the Debye sheath. The
Debye sheath (DS in the following) is crucial in mediating the transition from the unper-
turbed plasma to the wall. However, the DS cannot be directly connected to the unper-
turbed plasma. It must be preceded by a quasineutral region, the presheath, which is domi-
nated by collisions and/or ionization, whereas the DS is essentially collisionless (in more
complex cases, the presheath may also be determined by geometrical or magnetic effects).
The role of the presheath is to accelerate the ions to a critical velocity (typically, the
acoustic velocity) at the entrance of the DS. Such a condition, named Bohm's criterion, is
a cornerstone of plasma—wall interaction research, and has been the source of innumerable
debates over the years [3].

Potential applications of plasma—wall interaction are ubiquitous, but a significant
number of them are related to magnetically confined plasmas for nuclear fusion research.
The plasma is confined by strong magnetic fields in a toroidal chamber (tokamak) ;
however, radial transport towards the walls cannot be completely suppressed, and some
charged particles reach the edge of the chamber. In order to optimize the interactions of
the plasma with the external walls, some special configurations have been implemented,
known as limiters and divertors. The physics of these devices is rather complex and
beyond the scope of the present paper — a recent and comprehensive review is given in [2].
However, simple one-dimensional models, such as those investigated here, can be surpri-
singly accurate in reproducing the main features of the sheaths.

Another domain of applications of plasma—wall interactions in magnetic fusion
plasmas comes from probe theory. Probes are routinely used for tokamak edge measure-
ments, though their results are notoriously difficult to interpret, because the very presence
of the probe can perturb the ambient plasma by creating a sheath. It is therefore of para-
mount importance to assess the properties of the sheath in order to relate the quantities
measured by the probe to those of the unperturbed plasma.
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The present paper is concerned with the properties of plasma—wall interaction from the
viewpoint of plasma dynamics, and particularly sheath formation. The complex atomic
processes involved at the plasma—surface boundary, although important in practice, will
not be considered here, and only simple models of ionization and collisions will be
adopted. The basic properties of plasma sheaths, and a review of some of the pertinent
models, are presented in section “Plasma sheaths”. Section “Influence of the sheath on
probe measurements” illustrates the rich physics of plasma—wall transition by using nume-
rical simulations of a relatively simple one-dimensional (1D) kinetic model, which has
been recently applied to model measurements obtained from retarding-field analyzer
probes. Conclusions are reported in the final section.

Plasma sheaths

Bohm's criterion and the Debye sheath

In order to fix the ideas, let us consider the simplest possible model of a sheath [4] :
the ions obey a system of fluid equations with zero pressure, whereas the electrons are at
thermal equilibrium with temperature T,. For a one-dimensional system, the continuity
and momentum equations for ions of mass m, and charge e read as :

@_I_a(niui):

Jt dx

AN du; e 0P
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where n, and u, are the ion density and average velocity, and @ is the electrostatic poten-
tial, satisfying Poisson’s equation :

:—a(ni—ne) (3)

The system is closed by specifying that the electrons follow the Boltzmann relation :

n (X t) =n exp( J “4)
e\ 0 kaT
B-'e

where n, is the equilibrium density and k;; is Boltzmann’s constant.
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By considering stationary states, Eqs. (1)—(2) can be easily integrated between x = 0
(position of the wall, see figure 1) and X = -oo (unperturbed plasma). In the unperturbed

plasma, we take the equilibrium values : n =n,, u =u, and @ = 0. Solving Egs. (1)~(2)

o
for the ion density yields :

-1/2

LT 2ed
1o m;uj
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Substitution of Eqgs. (4)—(5) into Poisson's equation (3) yields a nonlinear differential
equation for the electrostatic potential, which cannot be completely integrated analytically.
However, one can linearize the expressions for the electron and ion densities by making
the additional assumption that the potential energy is small. In this case, the linearized
Poisson equation becomes :

2
d o 1 kgT,

5= 1-—2% @ 6)
dx }"D m;ug

| 2
where Ap =v€okpTe/€ng s the Debye length. In order for the potential to be a
monotonic function, one needs to satisfy :

ug > KpTe =cq 7)
m;

The previous relation is known under the name of Bohm's criterion [5], and specifies
that the ion mean velocity at the entrance of the sheath must be larger than the acoustic
velocity ¢_ (here computed with zero ion temperature, because of the simplified model

adopted at this stage). Further considering the linearized Eq. (6), we see that the solution
is an exponential function with characteristic decaying length close to the Debye length
(as long as the electron temperature is not too high). Therefore, the potential will be appre-
ciably different from zero in a region of thickness A, in front of the wall (fig. 1) : this
region is named the Debye sheath.

The typical structure of the Debye sheath is shown in figure 1, and confirms the results
of the linear analysis. Note that the potential is everywhere negative, and that the ion den-
sity always exceeds the electron density. The latter statement is actually another form of
Bohm’s criterion, as can be proven by plotting both densities, given by Eqgs. (4)—(5), as a
function of the potential.
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Fig. 1

Typical structure of the Debye sheath.

a) Electrostatic potential (normalized to kyT /e) ;

b) electron and ion densities (normalized to the plasma density n,,).

Physically, the existence of the Debye sheath can be understood as follows. In a
plasma, the electrons are generally more mobile than the ions, as their thermal speed
v =+/kgT/m is much larger. Therefore, they are lost more quickly to the wall, and
leave a net positive charge in the plasma, which must then be at a higher potential with
respect to the wall. As we have chosen (arbitrarily) the plasma potential to be equal to
zero, it follows that the sheath potential must be negative. This negative wall potential
tends to reduce the electron flux and to increase the ion flux to the wall. At equilibrium,
the two fluxes exactly balance one another, so that the net charge current is zero. In other
words, the wall potential adjusts itself self-consistently to a negative value, such that
exactly as many ions and electrons hit the wall per unit time. Naturally, because of the
screening effect, the potential cannot extend indefinitely into the plasma, but is confined
to a thin layer of the order of the Debye length (note that A is a few micrometers for a
fusion reactor and few millimeters for a typical glow discharge).

The value of the potential at the wall can be estimated by noticing that the electron
velocity distribution will be approximately half-Maxwellian (because the electrons are at
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thermal equilibrium and the wall is absorbing). Therefore the electron current is mainly
determined by the thermal velocity :

szall =NgVTe =NoVTe eXp(e@yq / kpTe) ()

The ion current is constant within the DS and equal to J ;;vall =nNglug = nCq, where
we have assumed (following Bohm’s criterion) that the ion speed is of the order of the
acoustic velocity at the DS entrance. At the wall, the currents must be equal, which allows
us to obtain the potential :

ecI)wall — l me

In
kBTe 2 mi

€))
The previous expression shows that the value of the wall potential is a few times the
electron thermal energy (3.76 for hydrogen ions and 4.10 for deuterium). This is in good
agreement with more sophisticated estimations.
Finally, we stress that the qualitative structure of the Debye sheath discussed above is
rather general and does not depend on the particular (and very simplified) model adopted
here.

The presheath

We have established so far that an electrically charged layer (Debye sheath) is formed
when a plasma is in contact with a solid surface and that, within the DS, the ions must
travel at a speed at least equal to the acoustic velocity. However, at some distance from
the surface, the core plasma must be at rest. There must therefore exist an intermediate
region, between the core and the DS, where the plasma is accelerated up to the acoustic
velocity : this region is termed the presheath. It will appear in the forthcoming analysis
that the
presheath is quasineutral (i.e. n, = n,), although an electric field is present, whose role is
precisely to accelerate the plasma to c.. Collisions (ion-ion or ion-neutral) and/or ioni-
zation play a crucial role in the presheath (whereas they can be neglected in the DS), so
that the typical extension of the presheath is given by the collision or ionization length L ,
rather than the Debye length . Quasineutrality arises naturally in the limit Ay << L,
which is generally true for fusion plasmas. By rewriting Poisson’s equation (3) in dimen-
sionless units (the potential is normalized to kT /e, densities to n, and space to L), we
obtain :

2 32
Ap &0
12 dx?

i (10)
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Clearly, in the limit of vanishing Debye length, one obtains that n, = n_. The entrance
of the DS can be defined as the point at which quasineutrality breaks down and a space
charge appears. Such a point can be defined rigorously only in the limit A, — 0 and
corresponds to a mathematical singularity in the equations (see end of this section). For
small, but finite, values of the Debye length, the transition between the presheath and the
DS is smooth, and the DS entrance cannot be defined without some ambiguity. Also
notice that for Ay — 0 the DS reduces to a single point, which coincides with the DS
entrance.

We shall now make the previous arguments more quantitative. Let us express the ion
density through the definition of the ion current: n, = J /u,. Taking the logarithmic deriva-
tive and rearranging some terms, we obtain [3] :

1dl;, 1 d{mu?) d ed
R + & (1)
Jl dX mlul dX 2 dX kBTe

In the presheath, where Bohm’s criterion is not satisfied, we have that u < cg.

Therefore we can write :

2
i%z 1 dfmu +i @ |_d|_E (12)
J; dx  kgT, dx| 2 dx\ kgT, ) dx{kgT,

where we have defined the total energy E. Notice that, inside the DS, both energy and current

are conserved, so that both sides of Eq. (11) are equal to zero. In order to satisfy Eq. (12),
some conditions must be verified, which correspond to different physical situations :

a) Energy is lost (dE / dx < 0), but current is conserved (dJ /dx = 0). This corresponds to
a case with friction (collisions), but no ionization.

b) Energy is conserved (dE / dx = 0), but current increases towards the wall (dJ./dx > 0).
This corresponds to a case with ionization, but no ion collisions.

¢) Energy is lost (dE/dx < 0) and current increases towards the wall (dJ./dx > 0). Both
ionization and collisions are present.

Notice that the current increase, apart from ionization, can also arise from curved (e.g.
cylindrical or spherical) geometry. Indeed, the ion continuity equation at steady state reads :
1 d
vl =——xPrH=0 (13)
XB dx
where B =0, 1, 2 respectively for plane, cylindrical and spherical 1D geometry. Therefore,
for B > 1, the current increases towards the wall because the elemental area is not constant
in curved geometry.
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In order to study the properties of the presheath in some detail, we slightly generalize
the model previously used, Egs. (1)—(2), to include the effect of ionization, collisions and
geometry. At steady state, the ion continuity and momentum equations read :

d
——(nju3) = S(x) (14)
dx

du; e d® S

idx T Tm, dx WU T Ui (15)

where S(X) is a source, representing ionization and/or geometrical effects, and W is the
collision frequency, which we take to be constant for simplicity. In equation (15) we have
assumed that the ions are genrated by ionization of cold neutrals : the last term thus
represents the loss of momentum due to ionization. These equations are completed by the
quasineutrality condition (obtained by equating the ion and electron densities, and using
Boltzmann’s relation for the latter) :

e _ .0 (16)
kBTe ng

Some algebra on Eqs. (14)—(16) enables us to rewrite them as :

(u’ —c )dxi =-Wu’-c¢ g—u— (17)

Equation (17) presents a singularity for u, = c.. This singularity corresponds to the
entrance of the DS, and reveals that the above model is no more appropriate when the ion
speed reaches the acoustic velocity. Indeed, within the Debye sheath, we should have
employed the complete Poisson’s equation instead of assuming quasineutrality ; by doing
so the singularity would have been removed, and the complete model would describe a
smooth transition between the presheath and the DS.

Let us first consider the case S = 0 and W # 0. Equation (17) can be integrated with
boundary condition u(x = 0) = ¢, where x = 0 represents the entrance of the DS, yielding :

2
U+ 55+ Wx—2¢, =0 (18)

1
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This is a quadratic equation for u,, whose solution (using the rescaled variable y = Wx /2)
is: uy=Ccg—y— \y2 —2ycq . In the core plasma (x — -eo ), the ion mean velocity u,
tends to zero, in agreement with the reasonable assumption that the plasma is at rest far
from the wall. At the wall (x = 0), u, is equal to the acoustic velocity, as required by the
boundary condition, but its derivative becomes infinite, signaling the presence of a singu-
larity. Further, the presheath described by Eq. (18) extends over an infinite distance. This
is because we have neglected the source term (i.e. ionization or geometrical effects) in our
treatment. Including these effects shows that the presheath can have a finite thickness.

Turning to the case W =0 and S # 0, an interesting form of the source function is the

one investigated in [6] :

Y
S(®) = Qng exp(y e®/ kT, ) = Qno(n—e) (19)
g

where € is a typical ionization frequency. The relevant cases are those with y = 0, 1
and 2, corresponding respectively to ion generation that is spatially uniform, proportional
to the electron density, or proportional to the square of the electron density. Physically,
such three cases represent ionization by a uniform electron beam, ionization by electron-
neutral collisions, and ionization by a two-stage process involving excited atoms. Kino
and Shaw [6] produced analytical solutions for all the above values of y in planar geometry,
and for Y= 0 in cylindrical geometry. Other cases were solved numerically. Further, Kino
and Shaw [6] extended the above model to include the effect of ion pressure, and consi-
dered a two-dimensional case, both rectangular and cylindrical. All these results were
obtained in the collisionless case, i.e. W = 0. More recently, Franklin and Snell [7] have
analyzed the presheath—Debye sheath structure with fluid equations for both species of
charged particles (i.e. without the assumption of Boltzmann distributed electrons). They
discussed the conditions under which the Bohm criterion remains valid in the presence of
collisions and ionization.

The typical structure of the presheath is plotted in figure 2, for a case with zero Debye
length (thus, the DS entrance and the wall collapse to a single point). The ion velocity is
accelerated from zero in the unperturbed plasmas to ¢ at the wall, while the ion and
electron densities decrease. Note that the DS entrance is a singular point in the quasi-
neutral case, where both the potential and the ion mean velocity have an infinite derivati-
ve. Figure 3 shows the overall sheath (presheath plus DS) for a case of small, but finite,
Debye length, which removes the singularity. The DS is the region where quasineutrality
breaks down. Notice the sharp increase in the potential gradient at the entrance of the DS.
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Fig. 2
Schematic behavior of the mean ion velocity u, and electric potential @ on the presheath
scale ( ),D/LC — 0). Notice the singularity (infinite derivative) at the DS entrance.
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Fig. 3
Schematic description of the presheath and the DS when A,/L . is small but finite.
a) Mean ion velocity and electric potential ; b) ion and electron densities.
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The magnetic presheath

In this section, we shall briefly describe the effect of a magnetic field on the sheath,
which has been neglected so far. First, we notice that if the magnetic field is normal to the
wall, then it has no effect on the structure of the sheath, at least for collisionless plasmas.
Therefore, some of the results presented in the previous sections also apply to the case of
a normal magnetic field.

In the simplest situation, the magnetic field is uniform and time-independent, and
makes an angle o with the wall. This case was studied by Chodura [8] using a colli-
sionless kinetic model with no ionization, for both ions and electrons, i.e., without using
the Boltzmann approximation for the latter (see next section for some details on kinetic
modeling). The full Poisson equation was included, thus permitting the formation of a
Debye sheath. Chodura performed numerical computations with a particle-in-cell (PIC)
code for different values of the angle of incidence and other crucial parameters (e.g., mass
and temperature ratios). The pertinent phase space for this physical situation is at least
four-dimensional, including one spatial coordinate (the distance from the wall) and three
velocity components.

The numerical results showed that, even in the absence of collisions and ionization, the
plasma—wall transition presents a double structure: the usual DS in the immediate vicinity
of the wall, and the magnetic presheath (MPS). The latter is a quasineutral region that
extends over several Larmor radii, defined as p, = VTi/Qi’ where Qi =eB/rni is the ion
cyclotron frequency (frequency of gyration of a charged particle around the magnetic field
lines). Notice that, for magnetically confined fusion plasmas, the Larmor radius is much
larger than the Debye length, so that the MPS extends over a larger region compared to
the DS. The numerical results also showed that the potential at the wall is roughly inde-
pendent of the angle of incidence. Chodura’s results were recently confirmed and extended
by simulations performed with a more accurate Eulerian Vlasov code (although
Boltzmann electrons were assumed) [9]. Chodura also proposed a condition for the
magnetic presheath, namely that the average speed parallel to B at the entrance of the
MPS must exceed the acoustic velocity : v, 2 c_. This must be compared with Bohm’s cri-
terion, which states that the average speed normal to the wall must exceed c at the entran-
ce of the DS.

Some further analytical results on the plasma—wall transition in an oblique magnetic
field can be found in references [10-14].

Kinetic modeling

The plasma models presented in sections “Bohm’s criterion and the Debye sheath” and
“The presheath” are all of the fluid type. However, weakly collisional plasmas should in
principle be described by a kinetic equation of the Boltzmann type. Kinetic equations des-
cribe the evolution of a particle distribution function, which is a function of the phase
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space variables, f(x,v). The quantity fdxdv represents the number of particles contained in
the elementary phase space volume. The 1D Boltzmann equation for the ions can be
written as :

—tV——— =S(f) (20)

where S(f) is a term that models collisions and/or ionization. When S =0, the above
equation is called Viasov equation. The fluid models discussed in the previous paragraphs
can be viewed as approximations to the Vlasov (or Boltzmann) equation obtained by
taking moments in velocity space ; i.e. by multiplying Eq. (20) by v", withn =0, 1, 2...
and integrating over all velocities. The ion density, average velocity and kinetic tempera-
ture are defined respectively as the zeroth, first and second moment of the distribution

function :
n, =J.f dv,
_ ! fvd
ui—?ij vay, (21)
_m; N2
kT, = [£(v=u;)dv

In the DS, Eq. (20) must be coupled to the Poisson equation (3) for the electrostatic
potential. Using this system, a kinetic version of Bohm’s criterion can be obtained, which
reads [3, 15] :

(v (22)
kBTe

where the average is computed using the ion distribution f, as in Egs. (21). When the ions
have zero temperature, Eq. (22) reduces to the usual Bohm criterion (7). Notice that the
left-hand side Eq. (22) gives a particularly large weight to slow particles. Therefore, the
ion distribution must decrease fast enough for v — 0, so as to avoid the possible singula-
rity. In practice, however, the features of the kinetic DS do not differ qualitatively from
those obtained by means of the fluid analysis presented in the previous sections.

In order to model the presheath, the source term S must be specified, and
Boltzmann’s equation must be supplemented by the quasineutrality relation (for the pre-

sheath alone) or the full Poisson equation (to describe both the DS and the presheath).
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Notice that, for a purely collisional model (no ionization), the source term must satisfy
jS dv=0, so that the continuity equation (1) is unaffected. On the other hand, a

collisionless model with ionization must satisfy jg vdv=0,.

Let us now consider the Boltzmann equation (20) at steady state. The purely ionizing,
collisionless case was first studied by Tonks and Langmuir [1] in a paper that set the
beginnings of all further works on plasma—wall interactions. They selected a source of
cold ions, S= S(X)5(V), where § is the Dirac function and S(x) represents the number of
ions created per unit volume per second, which is usually taken as in Eq. (19). As there
are no collisions, ions generated at a rate S(z)dz in the volume element dz attain the point

x at a velocity :

2o 2@ =00

my

(23)

At steady state, the elementary flux dI” at position x is equal the number of ions

created in the volume dz. Therefore :
dI' =f(x, v) v dv = S(z)dz (24)
Dividing by v, integrating over velocity space and using Eq. (23), yields the ion density.

When this is substituted into Poisson’s equation (3) together with Boltzmann’s relation for

the electrons, one obtains :

2 \1/2
d (3 __e (&) jx S(z)dz g exp ed(x) 25)
dx gg [\ 2e - [ ®(z) — D(x) kpT,

This is the so-called plasma—sheath equation (in one-dimensional planar geometry),

and it describes both the presheath and the DS. In the limit of zero Debye length, the left-
hand side of Eq. (25) can be neglected and we obtain :

1/2
( m; ) [ - Sdz___ exp( e<I>(X)J @6)
2¢) - [ D(z)-D(x) kpT,

which describes the quasineutral presheath.
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In their original paper, Tonks and Langmuir [1] solved Eq. (26) for the source function
given in Eq. (19), with y= 0 and 1, for planar, cylindrical and spherical geometry. Their
treatment relies on a series expansion for the potential, the coefficients of which are
computed numerically.

Harrison and Thompson [15] obtained an analytical solution to Eq. (26) in closed form
(for planar geometry), expressed in terms of special functions. Their solution shows that
the electric field becomes infinite at a certain point, which is independent of the parti-
cular source function employed. The appearance of a singularity is an indication that,
beyond this point, the model is no longer valid. Indeed, such a point can be identified with
the entrance of the DS : as within the DS the plasma is nonneutral, obviously the quasi-
neutral Eq. (26) fails to be correct there.

Notice that the two studies described above address the same physical issues as the
paper by Kino and Shaw [6] described in section “The presheath” (i.e. cold source,
collisionless regime, and quasineutrality), but Kino and Shaw used a fluid model. Fluid
equations are an approximation of a more exact kinetic model, and therefore some physics
is lost : however, they are usually more easily amenable to analytical studies.Qualitatively,
however, results obtained with fluid and kinetic models reproduce in a similar way the
main features of the presheath. In particular, the singular point at the entrance of the DS
is a physical characteristic revealed by both types of models [see Eq. (17) and related
discussion in section “The presheath].

The complete plasma—sheath equation was first solved numerically by Self [16] for
several values of yand different geometries. The results (obtained for 0.001 <A,/L <0.1)
show a smooth transition between the quasineutral presheath and the nonneutral DS.

The above treatment was generalized to the case of a warm source by Emmert et al.
[17], who took :

2
S H 1| | Ve 27
(x,v)=H(xX) ——- 2T, p( kg (27)

where H(x) is the spatial variation of the source strength and T the source “temperature”.
Equation (27) represents a constant flux of particles produced with a Maxwellian distri-
bution, and is the necessary choice to maintain a Maxwellian distribution far from the
source. In another work, Bissell and Johnson [18] used a similar model, with source
function :

2
- m. m.v
S(x,v)=H(x) W exp(— ZleT) (28)

which represents, for example, the source arising from the velocity-independent ionization
of a Maxwellian distribution of neutrals, and H(x) is proportional to the electron density.

LE VIDE N° 306 - 4/4 - 2002
823



Science

Both models actually yield similar ion distribution functions (both not Maxwellian) at the
DS edge and at the wall. Experiments performed by Pitts [19] using a retarding-field
analyzer (RFA, see also next section) were not able to discriminate between the two
models. The model of Emmert et al. was also used to interpret measurements of the ion
distribution function obtained by laser induced fluorescence in an argon plasma [20].
The kinetic theory of a collision-dominated plasma—wall transition (no ionization) was
studied by Riemann [21, 22]. In this case, the plasma is dominated by charge exchange
collisions, which result simply in an interchange of the ion and neutral velocities. By assu-
ming that the neutrals are cold, we obtain the following source term [see Eq. (20)] :

w
f d 29
W) (x, w)dw (29)

Sx,v)= —ﬁf(x,v) +8v)[~

where A(V) represents the (possibly velocity-dependent) mean free path. Notice that the
integral of this term in velocity space gives no contribution, so that it indeed represents a
purely collisional situation. Results obtained in the quasineutral limit indicate that the ion
distribution function is approximately half-Maxwellian in the plasma core, but is strongly
deformed when approaching the sheath. At the sheath edge, the kinetic Bohm criterion,
Eq. (22), is satisfied marginally, whereas the original Bohm criterion is oversatisfied
(i.e.u;>c).

In summary, the plasma—wall transition is characterized by at least three different length
scales, namely the Debye length A, the collisional/ionizing length L , and the ion Larmor
radius p,. These correspond respectively to the typical extension of the Debye sheath (non-
neutral), the collisional/ionizing presheath and the magnetic presheath (both quasi-
neutral). The Debye length is generally much smaller than the other two lengths, whereas
L. and p, can be of the same order of magnitude. For weakly collisional plasmas, it is
reasonable to assume the ordering Ay << p, <L_.

Influence of the sheath on probe measurements

Like every solid surface in contact with a plasma, probes are subject to the formation
of a sheath and a presheath in their vicinity. These transition layers modify the plasma
characteristics, so that the quantities measured by the probe do not actually correspond to
the ones in the plasma. This is a general fact, not restricted to the case of plasmas and
encountered for various kinds of experiments : probes influence the medium they measure.
A good understanding of this interaction is therefore required to deduce correctly the
values that would be measured without the probe perturbation.
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The study of plasma—probe interaction is illustrated here for measurements of the ion
temperature. Its determination is a difficult task, especially for fusion plasmas, since
hydrogen isotopes are fully ionized and do not emit photons [23]. Thus, a spectroscopy
diagnostic cannot provide directly the ion temperature, which can only be estimated from
that of the neutrals [24-26]. As the coupling between ions and neutrals is not clearly
understood, this technique is not very accurate. Moreover, it necessarily needs to average
the temperature over some volume of plasma. An alternative technique, using a RFA device
(retarding field analyzer) [27-30] that measures directly the integral of the ion energy
distribution, is investigated here by means of a kinetic model. The equations are solved
numerically and the results are interpreted in light of simplified analytical solutions.

The experimental device RFA has already been employed in various domains of plas-
ma physics [31-34]. However, due to the high heat fluxes and the smallness of the Debye
length of fusion plasmas, it has had a limited use in tokamaks (toroidal fusion devices
confining the plasma by means of a strong magnetic field) [19, 27-29]. Nowadays, even
if those problems can be overcome by an appropriate design of the analyzer [30, 35], there
are still some difficulties. In particular, the area probed by the RFA corresponds to the
boundary plasma, called the scrape-off layer or SOL (located in the vicinity of the mate-
rial components of the tokamak chamber), where large flows exist [36-39]. These flows
can affect significantly the ion current collected by the RFA, and consequently the ion
temperature estimation.

Modeling of a RFA in a strong magnetic field

A schematic description of the analyzer is represented in figure 4a. It consists of a
small entrance slit in the probe surface, two grids and a collector. The probe is aligned
along the magnetic field lines so as to measure the parallel component of the ion flux. The
entrance slit is sufficiently biased to a negative (and constant) potential, so that most of
the electrons coming from the plasma are repelled. The retarding potential @ applied to
the first grid ranges from zero to large positive values in order to scan the ion distribution
function. Only the ions with a kinetic energy larger than e®g are collected. The second
grid is biased to a negative (constant) voltage to repel energetic electrons from the plasma
(which pass the potential barrier of the entrance slit) and cancel out secondary electron
emission created by ion impact on the collector. The entrance slit width is of the order of
a Debye length or less [30], so that it is shielded by the sheath. In this case, the ion distri-
bution function entering the analyzer is reasonably close to the one reaching its external
surface, and most incident electrons are repelled back into the plasma.

In order to model the plasma—probe interaction in the SOL, following the approach
of Chung and Hutchinson [40], we consider a fixed wall in contact with a collisionless,
strongly magnetized, flowing plasma. The probe surface is perpendicular to the uniform
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magnetic field, so that no magnetic presheath is present. Therefore, the density pertur-
bation caused by the probe is characterized by two regions : a Debye sheath and a quasi-
neutral presheath. In typical tokamak edge plasmas, the Debye sheath thickness is of the
order of 0.1 mm, whereas the diameter of the probe tends to be a few centimeters. On a
macroscopic scale the Debye sheath is therefore negligible. The quasineutral presheath
region extends along the field lines inside the flux tube connected to the probe. The pre-
sheath length is determined by the balance between the parallel flow normal to the probe
surface and the cross-field transport that feeds the presheath from the unperturbed plasma
outside the flux tube (fig. 4b).

a)
Collector Electron  Ion Probe
repelller seleictor surface
| :(l)s entrance
_‘“"5 ! ! : slit B
! I i+
I ] e- e
i : : Q
T
0 X
Yl &
- -
e boe- Debye
W secondary! ! presheath iplasma
electron ! sheath
b) unperturbed plasma (f) flowing at the speed U,
“ “ “ “ o o “
magnetic ,"‘ A RFA E\ <+ < presheath (f}) € |,
field lines \ | _
1€ 11'169_ \\; ~ $-%:/_ ‘\‘v o i_?_ o W_f%_ﬁ_ _____
</ <\ L N< < Wh o
\ 5 particle
downstream  sheaths  upstream exchange
slit slit

Fig. 4

a) Experimental device : schematic view of the Retarding Field Analyzer, on the
upstream side.

b) Double RFA in a flowing plasma, in the presence of a strong magnetic field.
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The probe considered here is a double-mounted RFA, which can provide simultaneous
measurements from both sides. In most tokamak SOLs, with magnetic field strengths of a
few Teslas and ion temperatures some tens of electron volts, the Larmor radius is typically
a few tenths of a millimeter and is consequently much smaller than the size of the probe.
In this case, the cross-field transport can be considered as being diffusive [40] and is
modeled as a random migration of ions across magnetic field lines. The migration rate is
governed by the magnetic field strength, so that, for typical SOL regimes, parallel convec-
tion dominates over perpendicular transport. The parallel length of the presheath L, is then
very long compared to the cross-field dimension of the probe L [41]. The study can
therefore be reduced to a one-dimensional model in the parallel direction on condition
that the cross-field transport is included. As introduced in section “Kinetic modeling”, the
relevant equation for weakly collisional plasmas is the Vlasov equation (20). In this case,
S does not model collisions nor ionization, but the migration of ions across magnetic
field lines. We assume that this migration occurs, in both directions, at a constant
frequency W = D l/L f, where D N is the cross-field diffusion coefficient [40]. Then, S
takes the form :

S =W (t,~f (30)

where f and f, are respectively the ion distribution function in the presheath and in the
unperturbed plasma. The first term on the right hand side of Eq. (30) models ions entering
the presheath from the unperturbed plasma and the second ions exchanged in the other
direction. Assuming electrons at thermal equilibrium, their density in the presheath is
given by the Boltzmann relation (4). The set of equations (4), (20), and (30) is closed self-
consistently by using the quasineutrality condition (n; = n,) [Eq. (16)]. In order to express
positions and velocities with appropriate units, we use the following transformations :

\Y% Wx ed
t—>Wt, u>—, x—>——, and P —
Cg C kgT,

€29}

where c_ is the acoustic speed given by Eq. (7). Equations (16), (20), (21), and (30) can
thus be written in the compact form :

AR S (32)
o ox oxou
CI)(X,t)zanf du (33)
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Outside the presheath, the ion distribution function fO is assumed to be a shifted
Maxwellian with temperature T, and mean velocity U,. The expression of f; is thus

IRTIRY
o ! p[ﬂ] G

- 21T 27

where T = TiO/Te'

We assume that the probe surface (located at x = 0) is perfectly absorbing, and that
far from the probe the ion distribution is equal to f,. Therefore, using Eqs. (33)-(34), the
boundary conditions become :

fx=0,u>0=0, f(xX—>o0)=1f, DPX-—>e)=0 (35)

on the upstream side and

f(x=0,u<0)=0, f(x—>-0)=f, OX—>-c)=0 (36)

on the downstream side (see fig. 4b). The upstream (downstream) side is defined as the
side of the probe where the mean velocity U is directed towards (opposite to) the probe
surface.

Therefore, considering this set of equations, the presheath behavior is governed by
only two dimensionless parameters of the unperturbed plasma, namely the ion-to-electron
temperature ratio T and the mean velocity U, (normalized to ¢ ), also called the plasma
drift velocity. As we are dealing with a quasineutral regime, the DS is outside the scope of
the present analysis.

Presheath structure

A complete resolution of Eqs. (32)-(33) requires a numerical treatment : to obtain
the present results, we used a Vlasov-Eulerian code [42-44], which computes self-
consistently the ion distribution function f and the electric potential @ until a stationary
equilibrium is reached.

Nevertheless, by neglecting the electric field (0 ®/d x = 0) and at equilibrium
(d./0 t = 0), it is possible to solve analytically Egs. (32)-(33). With the boundary
conditions specified in Egs. (35)-(36), a solution for f is :

£(x,u) = fo () (1 - H(J_ru)exp(—i)) 37)
u

where positive and negative signs stand respectively for upstream and downstream cases,
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and H is the Heaviside function. It will be useful to contrast this analytical solution with
the numerical results in order to distinguish the importance of simple geometrical effects
with respect to distortion of the distribution function by the electric field.

For the purpose of illustration, the two parameters controlling the presheath behavior
are set to T=2 and U, = 1. This is in agreement with expectations in the SOL plasmas [36-
39], where ions are generally warmer than electrons and where large flows are present.
Figure 5a-b presents the ion distribution function f(x,v) computed numerically, on both
sides of the analyzer, at different positions. It shows the progressive depletion of the
distribution from the plasma boundary to the probe surface, where particles are absorbed
[cf. Egs. (35)-(36)]. Furthermore, in the vicinity of the probe, the distributions are clearly
not Maxwellian, particularly on the downstream side, which points out that a Kinetic
model is indeed necessary.

a) downstream b) upstream

fw) -

0.2 +

0.1 1

0.07 T T T T T T T T T

Fig. 5
Numerical ion distributions (T = 2 and U, = 1), for different positions from the plasma
to the probe surface (dashed curve). a) Downstream side ; b) upstream side.

Figure 6 shows the electrostatic potential and ion kinetic temperature, the latter being
defined in Eq. (21). Profiles are characterized by steep gradients near x = 0, showing that
an isothermal assumption for the ions would not be appropriate.

Since the plasma is flowing at the drift velocity U, figure 6 is asymmetric, so that on
each side of the probe the plasma perturbations are not the same. The probe shadows the
ions coming from the upstream direction (with positive velocities) on the downstream
side, and vice versa on the upstream side. This shadowing effect yields a density decrease
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and thus a potential drop, which are both larger on the downstream side. Figures 5-6 show
quantitatively these differences and indicate that the presheath structure depends strongly
on U,. Considering the drastic assumption made on the electric field, the analytical pro-
files are rather close to those obtained by solving numerically the full Vlasov equation.
This shows that the electric field is not predominant : the presheath behavior is mainly
governed by the probe shadowing.

0.0

-0.5

downstream 1 upstream

'
1 1 ] ] Il
T y T

2.0

v b by v by
LI L L

0.0 T T

Fig. 6

Electric potential and ion kinetic temperature, respectively normalized to kgT /e and T,
versus position normalized to ¢/W (numerical results : solid line ; analytical model :
dashed line), on each side of the RFA (for t=2and U, = 1).

Ion temperature estimation

The retarding potential @ applied to the ion selector of the RFA (see figure 4a) affects
only the ions whose kinetic energy is too small to reach the collector. Therefore, the dif-
ferential fluxes uf (x = 0, u) at the wall can be scanned by varying @ on each side.
Provided that the potential on the collector is lower than the one at the entrance slit, all the
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ions passing through the ion selector reach the collector. The downstream and upstream
collected currents are then :

- ~ 20,
Jepown= Juf(x=0uwdu, Jey,= [uf(x=0,u)du (38)
20, e

Collected currents vary from their maximum values (obtained for ®¢ = 0) to zero
(for large positive values of @). RFA characteristics, which are the semi-logarithm plots
presented in figure 7, are the kind of results obtained experimentally. According to Pitts
[30], an estimated ion temperature Ty, = — 1/0 can be deduced from the slope o of the
linear part of the characteristics. However, this estimation would give the correct ion tem-
perature only if the ion distribution on the wall were a half-Maxwellian with no shift,
which is clearly not the case, as shown in figure 5a-b. The kinetic modifications can be
significant, so it is not surprising that the measured value is not equal to the equilibrium
plasma temperature T,, (T in normalized unit). On the downstream side, the analytical
curve in figure 7 does not fit well the numerical data. However, the temperature estima-
tion remains close to the numerical one, as only the slope of its linear part matters.
Therefore, both numerical and analytical approaches can be used to investigate the rela-
tionship between the measured temperature Ty, and the plasma temperature 7.

Fig. 7
Numerical (solid line) and analytical (dotted line) RFA characteristics, for T = 2 and
U, = 1. (Current and potential respectively normalized to n, c_and k,T /e.)
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Figure 8 shows the dependence of the measurements on U, Ty, is always overestima-
ted on the upstream side, and underestimated on the downstream side ; Tera coincides
with T only for U0 = 0. Indeed, measurements on both sides counterbalance each other

[45], so that the average RFA temperature defined as :

TrEA,up + TRFA,down
2

TRFA = (39)

gives a value close to 7. It can be shown analytically that TRF A 1s equal to T to second
order in a power expansion with respect to U, whereas Ty, is equal to T only to zeroth
order.

1j5 1’ 05 0 05 1’ 1'5
downstream U, upstream
Fig. 8
Numerical (solid line) and analytical (dotted line) RFA temperatures (normalized to T ),
fort=1 2, 3.5 and 5.

Table 1 shows the temperatures measured on each side of the probe and the averaged
values, for a plasma drifting at the acoustic speed (U, = 1). Single measurements on either
side of the probe lead to an estimation of T with an error up to 40 %, whereas the relative
difference between Tgpa and T is only about 5 %.

LE VIDE N° 306 - 4/4 - 2002
832



Science

Therefore, even if the RFA temperature on each side of the analyzer is not equal to the
one in the plasma, an accurate estimation can be obtained from Eq. (39). Furthermore, as
Trpa does not depend on U, it is not necessary to know its exact value. This is an impor-
tant point for tokamak physics, as the drift velocity U is often difficult to assess by direct

measurement.
UO =1 TRFA,down TRFA,up TRF A
7= 0.66 (0.66) 1.44 (1.46) 1.05 (1.06)
=2 1.51 (1.50) 2.58 (2.62) 2.05 (2.06)
T=3.5 2.84 (2.81) 4.22 (4.30) 3.53 (3.56)
=5 4.20 (4.16) 5.88 (5.94) 5.04 (5.05)
Table 1

Numerically-computed downstream, upstream and average RFA temperatures
(normalized to T, ) for U, = 1. Analytical results are in parentheses.

In summary, this section clearly shows that great care should be used when inter-
preting experimental data obtained from probes. Indeed, due to the presence of the
sheath and the presheath in the vicinity of the probe, the measured value of a quantity may
differ significantly from the “real” one in the plasma core. Only a careful analysis of the
plasma-wall transition can enable us to relate the former to the latter.

Conclusion

In this paper, we have reviewed some basic concepts of plasma—wall interaction,
focussing in particular on the physics of sheath formation. This is an important topic in
many areas of plasma and nuclear fusion research. Naturally, the geometric configurations
pertinent to magnetic fusion devices are almost invariably more complex than the
one-dimensional models adopted here. However, such simplified pictures are often
surprisingly accurate in reproducing the main features of the plasma—wall transition.
As in many areas of plasma physics, models of two types are available : fluid and kinetic.
The former are more easily solved numerically, and sometimes amenable to analytical
treatment ; however, as it was seen in section “Influence of the sheath on probe
measurements”, the distribution functions in the (pre)sheaths are generally far from being
Maxwellian, so that a full kinetic model is often indispensable.

All models indicate that the plasma—wall transition is composed of several regions :
the electrically charged Debye sheath just in front of the wall, followed by several
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presheaths, where collisions, ionization or magnetic effects dominate and the plasma is
quasineutral. The global structure of the plasma—wall transition is determined by the rela-
tive importance of such effects. In most applications, the DS is much thinner than the other
regions, whereas the various presheaths can be of comparable thickness, depending on the
physical regime of interest.

The structure of the sheaths is of great importance for magnetic fusion devices, because
it determines the way particles (and energy) are collected at the internal walls of the device
and eventually recycled. Power deposition on the walls is indeed a crucial parameter to
ensure a self-sustaining, steady-state operation of a fusion reactor. Besides, sheath forma-
tion affects (sometimes in a dramatic way) measurements obtained with probes, because
the sheath can alter the value of the quantity that is being measured. A recent application
to retarding field analyzers was presented in section “Influence of the sheath on probe
measurements’ - the results indeed showed that, due to the sheath influence, the ion tem-
perature measured on one side of the analyzer can differ significantly from that of the
unperturbed plasma. However, by measuring the temperature on both sides of the RFA and
averaging the results, one can obtain a much more accurate estimation. This is a nice
example of how a detailed theoretical analysis of the sheath structure can lead to very
practical implications for probe measurements.
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