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Abstract. Several analogies between simple physical systems 
are presented. A quantum mechanical argument is used to 
give direct proof of the equivalence between the one- 
dimensional N body problem (with hard particles) and 
the problem of a single particle bouncing in a billiard 
delimited by an N-dimensional simplex. Then, for a system 
made of two soft particles, we prove the equivalence with 
an optical reflection/refraction problem. 

1. Introduction 

The problem of N hard particles of different masses, 
moving on a line and interacting through elastic col- 
lisions has received much attention during the last 20 
years. In fact, this simple system seems very promis- 
ing to provide new insights into the foundation of 
statistical mechanics. 

Furthermore, computer experiments can be carried 
out in a straightfoward and very precise way, since 
the equation of motion can be integrated exactly, 
obviously up to the machine precision for floating 
real numbers. Many works have focused on the ergo- 
dic properties of such a system: some of the most 
recent numerical results (Rouet et a1 1993) indicate 
that the system is always ergodic for N > 2 (except 
for the trivial case of all equal masses). When 
N = 2, the system is probably also ergodic, except 
for a countable set of mass ratios; also, i t  has been 
shown, for N > 2, that some particular initial condi- 
tions give rise to periodic orbits for any mass ratio 
(Rabouw and Ruijgrok 1981). 

On the other hand, the literature on classical bil- 
liards is extremely large, and we shall not try the 
impossible task of making an even partial hiblio- 
graphy on this subject. By definition, a billiard is 
a system composed of one point particle moving 
inside an N-dimensional volume, and bouncing 

RiSumi. On prCsente ici quelques analogies reliant des 
systhes physiques simples. A I'aG d'un argument 
quantique, on montre 1"equivalence entre le probleme de N 
masses impCn6trables i une dimension, et celui d'une seule 
particule dans un billiard B N dimensions en forme de 
simplex. Pour le problime de deux corps pi-nitrables, an 
montre I'Cquivalence avec un probl&mme d'optique de 
rkflection et rifraction. 

elastically against its boundary. Depending on the 
shape of the boundary, the orbits can bz periodic 
or chaotic. 

The fundamental point, which is common to both 
the one-dimensional N-body and the billiard system, 
is that velocity space and configuration space are 
totally decoupled and can each be handled sepa- 
rately. In fact, the velocities of two particles after 
they have collided depend only on their velocities 
before the collision, and not on their positions. This 
remarkable property is due to the fact that, in both 
systems, there is no potential, but only kinetic 
energy. The interactions between the particles (or 
between one particle and the boundary) are 
expressed through a geometric law (perfect reflec- 
tion) rather than a physical one (which would imply 
the existence of a potential, and thus of a potential 
energy). 

In fact, the analogy between these two systems can 
be brought further, as it has been shown in a number 
of papers. The aim of the article is to present such a 
parallel in a far simpler way, as well as  to add a few 
original contributions. In section 2 we state the fun- 
damental property that links the N-body and the bil- 
liard systems, and prove it by means of quantum 
mechanical arguments. Incidentally, this will extend 
the demonstration to the quantum domain. In sec- 
tion 3, we present another analogy, now involving 
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particles with soft cores (i.e., penetrable particles). In 
section 4 we conclude. 

2. Billiards and N-body problems 

Hohson (1975) proved the following very remarkable 
theorem: the problem of two hard particles of masses 
m, and m2 bouncing elastically in a one-dimensional 
box delimited by two hard walls is strictly equivalent 
to that of a particle moving inside a right triangle 
having an interior angle of tan-’(m2/mi)’12 (‘trian- 
gular hilliard). This result was generalized by Foidl 
and Kasperkovitz (1988) to the N-body problem, 
which was proved to be equivalent to a billiard in a 
N-dimensional simplex, defined as follows: 

{ ( X l , X 2 , .  . . X N )  E WN: 0 < X I / &  < x2/& < ...  
< x N / f i <  1). 

However, the demonstration given in Foidl and Kas- 
perkovitz (1988), is based on quite complicated alge- 
braic arguments. In this paper, we shall show that, by 
considering the same problem from the viewpoint of 
quantum mechanics, the above proof turns out to be 
straightforward, and easily generalized to any num- 
ber of particles. Then, nothing prevents us from 
applying Bohr’s correspondence principle to argue 
that the demonstration must also he valid in the clas- 
sical limit (i.e. when h - 0). 

In order to fix the ideas, let us consider N = 2 par- 
ticles of masses ml and m2 in a one-dimensional box 
of unit length. The walls are situated at  q = 0 and 
q = 1.  The particles interact elastically between them- 
selves and with the walls. Let us call q1 and q2 respec- 
tively the position of the first and second particle. 
Since the particles cannot cross each other, the only 
accessible zone of the configuration space is the sur- 
face (in fact, a right isosceles triangle) such that: 
0 5 qi 5 q2 < 1 (see figure 1). 

In quantum mechanics such a system is described 
by a wavefunction $ ( q i , q 2 , 1 ) ,  which obeys the 

Flgure 1. The configuration space for t h e  two-body 
problem is the shaded right isosceles triangle: 
0 5 4, 5 42 5 1. 

Schrodinger equation: 

,>42)$ 
a$ ti2 a% h2 8% ih-= ---__- + v(q 
at 2ml ad 2m2aq: 

where U q l , q 2 ) =  W ( q ,  - q 2 ) + O ( q l ) + 6 ( q 2 -  ] ) I .  
V, - m. In this case, the potential being infinite, if 
the wavefunction is initially zero in the region out- 
side the isosceles triangle of figure 1, it will remain 
equal to zero for any time, and the problem reduces 
to the free-particle Schrodinger equation: 

,h- = -__--- (1) 
. w h2 a% h2 @$ 

ar 2mi as: 2m2aq: 

endowed with the following boundary conditions: 

$(91 = 0% 42.1) = $(41.42 = 1% 1)  = *(91 = 421 1 )  = 0 
meaning that the wavefunction is zero outside the tri- 
angle. 

We now perform the following rescaling: 

x =  Jiii;41 Y = 6 9 2  (2) 
which transforms the Schrodinger equation ( I )  into 
the following one: 

a$ h’ 6% a2$ h2 
at 2 (ax2 aY2) 

2 2 1 ~  (3) iJj-=-- -+- z - - A  

A, being the Laplacian in two dimensions. 
In the new variables, $ ( x , y ,  f) must be zero on the 

boundary of the right triangle defined by the relation 
0 5 x / &  5 y / f i  5 I (figure 2). Now, the Schro- 
dinger equation (3). with the above boundary condi- 
tion, describes the motion of a particle of unit mass in 
the triangular billiard shown in figure 2. As is proven 
in Hohson (1975) the internal angle is given by 
a = tan- l (m2/mi)y.  

The demonstration can be trivially generalized to 
the N-body case by defining 

X I  = fiq,  . . . XN = f i q N  
and obtaining the N-dimensional Laplacian in the 
Schrddinger equation. The equivalent billiard will 

Flgura 2. The  equivalent bitliard is the shaded right 
triangle, the sides of which are propodional to the  
square root of t h e  masses. 
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therefore be given by the simplex 
XI x2 

ditions for the Schrodinger equation. Then, the proof 
follows as an immediate consequence. 

xN < 1. (4) \liiii - Jiiii - " '  - f i  - os-<-< <- 

This is the result found classically by Foidl and 
Kasperkowitz (1988) through much longer calcula- 
tions. Our approach proves that it keeps its validity 

3. Another analogy: 
diffraction 

and 

in the quantum mechanical domain. Furthermore, 
the demonstration only implying simple geometrical 
arguments, i t  must remain valid when the classical 
limit is taken. 

As a matter of fact, once the result has been estab- 
lished, one can go hack to classical physics and try to 
recover a similar proof. 

The Hamiltonian of the two-body problem is 

with V, -, w. 
Let us oerform the followine (canonical) transfor- - ,  

mation: 

+ 6 ( ~  - 6 1 1  (7) 
where we have used the property ofthe delta function 
6(x /a)  = a6(x), and then absorbed the constant a in 
the factor V,, which tends to infinity. 

The Hamiltonian (7) can be regarded as describing 
the motion of a unit mass particle in the triangle 
delimited by the straight lines; 

x=o;  y=xJmlTrs;;;  y = &  
which is plotted in figure 2. Since Vo 3 M, a particle 
with initial coordinates (xo ,yo)  inside the triangle will 
remain inside for all times, and bounce elastically 
against the walls. 

As to the N-body problem, we follow the same 
procedure to get the equations of the N + 1 straight 
lines that delimit the simplex (4). 
In summary, it becomes now clearer why the proof 

is more dire& in the frame of quantum mechanics. 
The correct rescaling for the momentum is the one 
that eliminates the masses from the kinetic part of 
the Hamiltonian; then, the rescaling of the position 
variable is obtained by requiring the transformation 
to be canonical. 

In quantum mechanics the canonical relation 
between position and momentum is automatically 
satisfied by the formalism; also, the potential part 
of the Hamiltonian can be intuitively treated (as is 
usually done) by imposing the correct boundary con- 

So far, we have considered the case of hard-core par- 
ticles, for which V, - co, and thus the particles can- 
not cross each other, Indeed, this property was 
fundamental to prove our result: it is the relation of 
order among the particles that defines the boundary 
of the N-dimensional simplex. 

The next step, which we undertake in this section, 
would naturally consist in considering a system of 
soft-core particles, for which Vo < CO, so that the par- 
ticles can cross each other if their relative kinetic 
energy is sufficiently high. 

Let us be more precise, and analyse what happens 
when two particles collide. First of all, we remark 
that two particles can interact only when they are 
at the same point, since the interaction potential is 
still of the form V(ql, 92) = V06(9l - 92) (zero-range 
interaction). Now, the kinetic energy of the couple 
can be decomposed into the energy of its centre of 
mass (hereafter called KO) plus the energy of the par- 
ticles in the reference of their centre of mass (referred 
to as KR), with of course 

ET = KG + KR. 
Thus, when two particles fmd themselves at the 

same point: 
(a) if KR < Vo, they do not cross each other, and 
modify their velocities just as in the hard-core case: 
(b) if KR > 6, they cross each other without any 
change in velocity. 

Remember that, for the hard-core particles, the 
accessible region of the configuration space was the 
simplex {0 < x I  < x2 < . . . < xN < I}. Now, the 
relation of order is no more satisfied, and therefore 
all the N-dimensional cube of unit side is accessible. 
In fact, when two particles cross each other, the 
representative point of the system in configuration 
space jumps from one simplex to another. There 
are N! ways of rearranging our particles, so that 
there must exist N !  different simplexes in the accessi- 
ble configuration space. It is indeed a known result 
that the N-dimensional unit cube can be covered 
with N! simplexes. 

We now come at the main result of this section, 
which may be stated as follows: the above system of 
N = 2 soft particles in one dimension is equivalent to 
the propagation of a beam of light in a rectangle with 
perfectly reflecting sides, and in which one diagonal is 
constituted of a thin slide of some refracting material 
(with rtfracfive index n < l ) ,  whiie the rest is vacuum 
(n = I). Just as in the hard-core case, the sides of the 
rectangle are in the same ratio as the square root of 
the masses of the particles; in addition, the refractive 
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index n is a function of the potential barrier Vo, which 
we will determine later on. 

Unfortunately, such an amusing result is no more 
valid for N 2 3, and the reason why will become 
apparent from the forthcoming discussion. 

Now, in order to prove the previous property, we 
need to establish the following theorem, which 
extends the analogy between the billiard and the 
two-body problem, and is perhaps interesting in 
itself. 

We decompose the total momentum of the two- 
body system in the sum of the momentum of the 
centre of mass, pG. and the relative momentum 
plR = -p2R = p R ,  with: 

mzpi - T P 2  (q 
P G = P I f P Z  P R =  M 

M = m l  +m2.  

The total energy too can he split into two terms: 

P& MP2R Er = KG + KR = - +- 
2M 2mlm2 (9 )  

with, in terms of p I  and pz: 

Using the rescaling (6),  we can express the two last 
quantities terms of the components of the momen- 
tum of the equivalent billiard system, p x  and p,: 

KR = M(F& - f i ~ , ) ’  
1 

(11) 
1 Kc = W ( f i P X  f 6 z p J Z .  

direction is defined as follows 

There will exist a critical angle pc that discriminates 
whether the particles do or do not moss each other. 
Such a critical angle is thus determined by the rela- 
tion KR = Vo, which can be written as: 

or 

tanPC= (2 - - I  >I” . 
For p >  0, the particles are reflected, while for 
P < p, they cross each other. We also see that all 
the physics of the collision is contained in the param- 
eter p,. 

Now, let us define another physical system: a light 
beam travels in a rectangular domain, with perfectly 
reflecting sides; one diagoual of the rectangle is con- 
stituted of a thin slide of refracting material index 
n < 1; the rest of the rectangle is vacuum (n = 1). 
What happens when the beam of light approaches 
the refracting slide? Figure 3 shows a mom of such 
an event: if the angle of incidence p is larger than 
p, we have total reflection; if p < pc we have a 
double refraction after which the beam continues its 
propagation on a line parallel to the line of inci- 
dence. If the thickness h of the slide is small. the 

Do these quantities have particular for deflection will also be small porn and Wolf 1980). 
the billiard system? They do: in fact they represent 
the components of the total energy respectively nor- 
mal and parallel to the hypotenuse of the triangle 
in figure 2. 

In order to prove this, we rotate axes by an angle 
a. Then: 

As a matter of fact, the optical problem is more 
always Partly 

reflected and Partly transmitted. It is at this point 
that the analogy ceases to be rigorous, and in the fol- 
lowing we 
either reflected or transmitted, according to its angle 
of incidence. This just means that the physics of wave 

PIi = coso sino px  propagation is more complex than the simple 
mechanical model, and that some phenomena have 
to be neglectd. anyway, the analogy still keeps some 

To conclude this section. we calculate the refractive 

inasmuch as the beam 

that the beam is 

( p , )  (-sin0 coso) ( p ? ) ’  (I2) 

Recalling that tano  = m, and thus heuristic value, 
coso = w, we get: 

P: 1 
K i  - = - ( F z p x  - v‘KP,)’ 2 2M (13) Figure 3. The beam is either reflected or transmitted 

I*-’ depending on its angle of incidence, We have reflection 
for 0 > 0, and transmission far 0 < 0,. Kll = ~ - ~ ( f i ~ r + $ % ~ y ) ~ .  P i -  1 

B > B .  

.I<, 

n=, 

Comparison between equations (11) and (13), shows 
that: 

KL = KR Kll = KG. (14) 
We are now getting closer to the previously 
announced optical analogy. 

The angle of incidence p with respect to the normal 
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index associated to the two-body problem. From the 
refraction law, it follows that the relative refractive 
index is linked to the critical angle by the following 
relation: 

n = sinp,. (17) 
Taking into account equation (16), a little algebra 
yields: 

For V, = 0, p, = nJ2 and the particles always cross 
each other (no interaction); for V, = ET, pc = 0 and 
we recover the hard-core case. 

Unluckily, as we bad anticipated, this analogy does 
not work for the three-body problem. The corre- 
sponding optical system would be a cube, made of 
six simplexes, which makes a total number of six 
interfaces inside the cube. The problem is that we 
cannot properly define a refractive index for each 
interface. In fact, from equation ( I @ ,  the refractive 
index depends on the total energy of a couple ofpar- 
ticles, which, when N z 2, is no longer conserved. 
Thus, the refractive index of an interface would 
depend on the past history of the whole system, a 
situation which is hardly found in common optical 
materials. 

value in showing that the difficulty of a problem 
closely depends on the mathematical apparatus that 
one displays in order to solve it. On the other 
hand, different physical pictures .of the same math- 
ematical problem can provide new insights and often 
help intuition. Since the number of physical systems 
about which we have an immediate intuition is very 
limited (and most are macroxopic, simple systems), 
the importance of such analogies becomes evident 
as soon as we want to investigate more exotic pbysi- 
cal situations. Furthermore, it seems to us that the 
present day physics education (at least in Europe) is 
based in an exaggerated way on the manipulation 
of formulas, and much less on their interpretation. 
Developing such analogies can be, in our view, a 
way of acquiring familiarity 'with the concepts, 
together with a certain detachment from the math- 
ematical tools. . .  

A second point that may inter& the physics teacher 
is that such systems as the N-body, one-dimensional 
system are both conceptually simple and easy to simu- 
late numerically. Such very delicate concepts as ergo- 
dicity, reversibility, invariants, can be visualized in 
an extremely explicit way ,through a five-minutes 
numerical simulation. Finally, we point out that both 
the hard and soft-core two-body problems can in prin- 
ciple be realized experimentally, by means of a laser 
beam travelling in a reflecting/refracting box. 
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