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Abstract 
A numerical simulation is performed to study the effect of a viscous dissi- 
pation term on the generation of shear flow at a plasma edge in the guiding 
center approximation. The guiding center model includes the effects of 
finite Larmor radius corrections and polarization drift. The numerical code 
applies the method of fractional steps to the fluid guiding center equations. 
We attempt to discriminate between the smoothing of the microstructure 
by a small viscous dissipation term to control numerical instabilities, and 
the modilkation of the macroscopic physical results introduced by this 
small viscous dissipation term. The 6nite Larmor radius effect allows for a 
charge separation to exist, which can be further accentuated by the polar- 
ization drift. A difference in the viscous term between electrons and ions 
can add to the charge separation effect at the plasma edge, which can 
modify the physical results. The numerical calculation is effected using a 
slab model, periodic in one direction and finite in the other direction, with 
an inhomogeneous density of guiding centers to simulate a plasma edge. 
The evolution of the system shows the potential evolving to a shape char- 
acterized by the longest wavelength associated with the transverse dimen- 
sion of the system, an evolution characteristic of an inverse cascade. We 
present an analysis of the effect of different values of the viscous term on 
the time evolution of this guiding center system, and on the formation and 
existence of a charge separation and an electric field at the edge of a plasma 
and the associated shear in the E x B flow. 

1. Introduction 

An important set of equations relevant to the plasma edge 
physics in a tokamak are the two-dimensional finite Larmor 
radius guiding center equations [l]. The effect of the finite 
Larmor radius is to allow for a charge separation between 
electrons and ions to exist in the E x B flow. A theoretical 
study of the asymptotic state of the finite Larmor radius 
system of guiding-center equations has been presented in 
Ref. [l]. It has three “rugged” invariants and it was shown 
that the canonical ensemble probability distribution for this 
system can have negative temperature states, characterized 
by an inverse energy cascade with energy accumulating in 
the low k modes (the longest structures allowed consistent 
with the boundary conditions) in the asymptotic equi- 
librium. Once this stage has been reached, the energy 
remains in the lowest k modes, and high k modes fluctua- 
tions are negligible. 

The two-dimensional finite Larmor radius guiding center 
model was extended in Ref. [2] by including the polariza- 
tion drift, and a numerical code was developed to study the 
pertinent equations for the case of a plasma slab with an 
inhomogeneous density of guiding centers, to simulate a 
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plasma edge. The polarization drift has a different sign for 
ions and electrons (but is smaller for electrons), and thus has 
a tendency to produce and accentuate a charge separation 
in a time varying electric field. The remarkable result of Ref. 
[2] was that the inverse cascade still exists in this model, 
with energy evolving to large structures which scale with the 
size of the system, while the system is evolving from an 
initial unstable flow with shear to a final more stable shear 
dominated flow. These longest wavelength transition results 
were studied in the presence of a self-consistent electric field 
and charge separation for a plasma edge. It was shown in 
Ref. [2] that during this evolution, fine structures develop in 
the density which causes the simulation to be unstable when 
these structures become of the order of the grid size. This 
problem was controlled by adding a viscosity term vi, ,V2ni, 
to the ions and electrons density equations, with vi, e small 
enough to provide the necessary dissipation for the short 
wavelengths developing in the system, without affecting the 
long wavelength modes of the large scales responsible for 
the macroscopic behavior of the system. The exact form of 
the dissipation may be unimportant, provided it prevents 
the unnatural reflection of fluctuations from the cutoff wave- 
number, when the fluctuation wavelength becomes of the 
order of the grid size. This problem was discussed in Ref. 
[3] in connection with the solution of the 2-D guiding 
center equations, and in Refs. [4, 51 in connection with the 
problem of 2-D drift wave turbulence. More recently, results 
where presented in Ref. [6] with a hyper-viscosity term used 
in the simulation. However, the question arises whether in 
some cases the dissipation term can have some effect on the 
solution, or can significantly affect the solution. Some recent 
results presented in Ref. [7] show that even though the 
effect of a small viscous term have little effect on the asymp- 
totic level of the dominant Fourier mode in the periodic 
direction, it does affect the transverse profile of the charge 
separation and associated potential at the plasma edge. 
Such effects have also been studied in 2-D resistive magne- 
tohydrodynamic instabilities (see, for instance, Refs. [S, 9, 
lo]). It was stressed in Refs. [9 and 101 that any kind of 
smoothing may affect the resistive instabilities, and in Refs. 
[S and 91 results for the evolution of the stream function 
were shown where the dynamics were described as an 
impulsive bursty reconnection. We note also the recent 
works in Ref. [ll], where attention was focused on the role 
of viscosity in determining the existence and nonlinear evol- 
ution of instabilities. 

We study in this work the effect of a viscosity term of the 
form vi ,  .V’ni, e added to the guiding center equations of the 
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electrons and the ions respectively, as reported in Ref. [2]. 
In section 2, we present these equations. In section 3, we 
present the numerical code which consists in applying a 
method of fractional steps to the fluid guiding center equa- 
tions. We run the code for sufficiently long time and study 
the effect of the viscous coefficient ve, on the solution. These 
results are presented in section 4. Finally section 5 presents 
our conclusions. 

2. The pertinent equations 

The guiding center model with zero Larmor radius is given 
by [3,12]: 

aP 
a t  - i- V (VDp) = 0, VD = -V$ x eJB, AI#J =  EO. (1) 

Here p is the charge density, VD is the drift velocity and #I 
the electrostatic potential. 

If we enforce periodic boundaries or enclose the plasma 
with metal walls of infinite conductivity, the energy theorem 
may be written as 

W = ~ B ’ E ,  V i  dz = E2 dz. (2) s s 
The integral is the energy in the electrostatic field and the 

particle motion itself does not contribute to the energy. This 
is borne out by the fact that W in eq. (2) is not proportional 
to the particle mass. 

The finite Larmor radius model has been investigated in 
Ref. [l] and is given by 

ane ani  
a t  at 
- + V * (VDn,) = 0, - + V (VDni) = 0: 

AI#J = -q(- ni - &)/E,,; (3) 

The bar over V, and ni, e is an abbreviation for an integral 
where VD = -V$ x eJB. 

operation defined by 

ii(r) = g 0 a(r) = G(r - r’)a(r’) dr‘, (4) s 
which takes into account that the guiding centers and 
particle locations are not the same. G(r) is a symmetric 
kernel and a(r) is an arbitrary function of r. The operator 
g 0 commutes with differential operators. In Fourier space 
the integral operator g 0 becomes a filtering operation, 
which is numerically easy to perform on the different 
Fourier modes [l, 13, 141. Each coefficient ak of the mode 
eikar is multiplied by a factor gk = exp ( -  ik’r? ,), where k is 
the total wave vector and ri, e the Larmor radius (for ions or 
electrons respectively). This model can now represent 
guiding center density gradients, which was not possible in 
the zero Larmor radius model. The energy conservation 
becomes 

W = ~ B ’ E ,  Vk  dz, ( 5 )  s 
which is identical to the zero Larmor radius model. Again 
the motion of the particles does not contribute to the 
energy. It is therefore not surprising that the finite Larmor 
radius and the zero Larmor radius models are quite similar 
to each other. In particular, both have the possibility that, 
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given certain initial conditions, energy can cascade to lower 
wave numbers, where it manifests itself macroscopically by 
the appearance of large scale structures. This effect is known 
as an inverse cascade. 

The guiding center models with zero and finite Larmor 
radius possess two or more quadratic invariants which 
remain conserved if the system is truncated in Fourier space. 
In addition to energy, it is easy to show that the enstrophy 
E,  

E = (V x V)’dz s 
is an invariant for the zero Larmor radius model. For the 
finite Larmor radius case, we have the invariants : 

N i =  nz dz and N e  = nf dz. s s (7) 

A study of the asymptotic states of the finite Larmor radius 
system of equations has been presented in Ref. [l]. A canon- 
ical ensemble probability distribution characterized by the 
three invariants was derived, and it was shown that this 
system can have possible negative temperature states 
leading the energy to condense in the low k modes. 

Adding, as a final step, the polarization drift, we arrive at 
the model. 

ani 
a t  
- + V * [(VD + VpJni] = 0; 

4 -  A$ = - - (ni - f ie) .  
EO 

with Z(r) = g 0 a(r), as defined in eq. (4) and 

1 q d  
Q,2 m, dt V,, = - - E = .,{a, E + (V’, + V,,) VE}. 

1 4, 
Q,2 mv 

where v = i, e and a, = - -, qi = q and qe = -4. 

Usually the polarization drift of the electrons is negligible 
because it is smaller by a factor of (me/mi) than the polariza- 
tion drift of the ions. Note that the polarization drift in Eq. 
(10) is implicitly defined. We will discuss this point later. 

The derivation of the energy theorem for this set of equa- 
tions is found in Appendix I. The result is 

+ (%) 2 (F)’] dz = const. 

which can be written as 

W = - (12) 

The first term is again the electrostatic field energy and the 
second and third terms are the particle energies of the ions 
and electrons, drifting with their respective drift velocities. 
The upper index indicates whether the averaging takes place 

{.so E’ + mi ni(PDi)2 + mene(Vge)2} dz = const. 
2 ‘s 
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over an ion (i) or an electron (e) gyro-radius. Remarkably, 
the polarization drift does not appear in the energy 
theorem. All three models share the feature that the dipole 
moments formed by the rotating particles remain constant 
and therefore do not enter the energy equation. 

It has been mentioned that eq. (10) defines Vpv implicitly. 
The question arises whether this definition always has a 
unique solution for V,, . 

We rewrite eq. (10) for the ions as 

V , * ( ( I - a i V E ) = a i  -+  V,*VE . (E ) 
Due to the electrostatic nature of E the tensor V E  is sym- 

metric and can be transformed to principal axes, in which 
system the equation can immediatly be solved for V,. We 
realize that our approximation is only meaningful if: 

I EVE I" -= 1. (13) 
Only if the polarization drift is implicitly defined as in eq. 

(10) we get exact energy conservation. But then eq. (13) 
follows as a restriction of the model. In the present numeri- 
cal simulations, the V,, V E  implicit term in eq. (10) has 
been omitted all together so that the question of a unique 
polarization drift and the validity of the model never arises. 
The energy conservation is then no longer an exact invari- 
ant of the system. 

No additional quadratic invariants except the energy 
have been found for the model with polarization drift. 
However, it is perhaps the most significant result of the 
present work that, nevertheless, the numerical simulation 
shows the presence of an inverse cascade. It is to be noted 
that the polarization drift is generally small, and that the 
variation of the quantities in eq. (7) was slow during the 
simulation, and especially towards the end of the simulation. 
(Note that in the absence of polarization drift, the quantities 
in eq. (7) are exact invariants which are exactly conserved by 
the numerical code). The numerical results are discussed in 
details in the following section. 

The model we study numerically in the present work is 
the same as the one presented in eqs. (8-lo), with the addi- 
tion of a viscosity term v,, V2n,, to the electrons and ions 
density equation respectively. Results presenting the effect of 
v ~ , ~  on the asymptotic solution are presented in Section 4. 
With v, = vi = 7 x an initially neutral equilibrium is 
conserved, Vpv = 0 and the invariants in eq. (7) are exactly 
converved. The system remains in equilibrium. A small 
variation of v, with respect to vi can have important effects 
on charge neutrality at the edge and on the asymptotic elec- 
tric field and asymptotic shear associated with the system. A 
small variation between v, and vi does more than simply 
smoothing the fine structure which develops during the time 
evolution of the system: it creates a charge separation at the 
plasma edge. 

3. The Numerical Code 

In the set of eqs (6)-(8), we use the following normalization: 
- velocities are normalized to the ion thermal velocity vthi,  

- space is normalized to the ions gyro-radius ri = - , 

- time is normalized to SZ; 

vthi 

ai 

potential is normalized to T/e,  where T is the tem- 
perature (we assume electrons and ions have the same 
temperature). 
With this normalization, and with 

E =  -V+ (14) 

we have the following set of equations for the electrons 
(electrons gyro-radius correction is neglected) : 

with 

The ion equation is similar, and is derived from eq. (15) by 
substituting Be by ( -  1) and all the E field components by 
the corresponding filtered values E v, is substituted by vi.  

The numerical scheme uses a method of fractional steps 
and advances the equation as follows: 

(1) Solve for At/2: 

(with a similar equation for the ions). 
The solution of eq. (17) is calculated by the shift 

n,*n+(1/2) 

(18) 

(The shift in eq. (18) is effected using a cubinc spline inter- 
polatin [l5]). 

Then solve for At12 

a t  at  

(with a similar equation for the ions). 
The solution of eq. (19) is calculated by the shift 

, p + ( l / 2 )  = * n + ( l / 2 )  
e n e  

(20) 
(2) Solve Poisson equation to update the electric field. 

(This equation is solved using the method presented in Ref. 
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[16] with zero boundary conditions for qi), In our dimen- 
sionless units, this equation is written: 

Aqi = -wti(iii - ne) (21) 
where wpi is normalized to ai. Note how sensitive is the 
charge in eq. (21) to the parameter wfi . 

Solve for At the equation : 

+ v,V2n,/n, (22) 
(with a similar equation for the ions). 

The solution of eq. (22) is given by: 

+ v,AtV2ne-/ne- + Be A t  

a2E, d2EY a2E, a2E 
(.Y 

- E X  - ay2 + E ,  ayz - E,  $)I. (23) 

The subscripts + and - denote the values at the present 

(3) Repeat Step 1. 
The calculation of the spatial derivatives of the electric 

field is effected using cubic spline relations for the deriv- 
atives as explained in Ref. [17]. 

and previous time steps respectively. 

4. Results 

Equations (8)-( 10) have been solved numerically (by neglect- 
ing the implicit term V,, * V E  in eq. (10) and neglecting the 
electron gyro-radius correction) for an initial equilibrium 
profile representing a plasma edge (see Fig. 1). 

ni = $(l + tanh (0 .8~) ) .  (24) 
The length of the slab is L, = 20 in the periodic direction 
and extends from y = -8 to y = 8 in the transverse direc- 

DENSITY AT I d  
1 a 

0.5 

0 
-8 0 Y 8 

Fig. 1 .  Gyro-averaged ion density profile ii, calculated from eqs (4) and 
(24), as function of the transverse dimension y (dotted curve), together with 
the profile in eq. (24) (full curve). 
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tion. A grid of 128 points in y and 128 points in x is used. 
Normalization is such that velocities are normalized to the 
ion thermal velocity vthi, length is normalized to the gyro- 
radius ri = vthi/Qi, and time is normalized to Q;', The 
potential is normalized to T/e,  where T is the temperature 
(we assume electrons and ions to have the same constant 
temperature). We use a time-step At = 0.05. 

The initial ion density iii, which includes the finite gyro- 
radius correction as defined in eq. (4), is calculated from eq. 
(24) for the ions and is shown in Fig. 1 in dotted lines. Since 
the system is periodic in the x direction and finite in the y 
direction, we convolute the function in eq. (4) by first mir- 
roring the function at the right boundary and thus doubling 
the interval. We then take the Fourier transform and multi- 
ply the coefficients by exp( - k2rf/2), and then the function is 
Fourier transformed back. (Finite gyro-radius effects of the 
electrons are neglected). We take initially the electron 
density ne = iii at the plasma edge, so that the plasma is 
initially neutral. We run the code with v, = vi = 7 x 
The time evolution of the system is conserving its initial 
neutrality, and the initial equilibrium is conserved. No 
charge separation is created at the plasma edge. (The invari- 
ant in eq. (7) is conserved). However, as soon as v, is set 
different from vi, a charge separation is created at the edge 
of the plasma. We show in Figs (2)-(4) at different time the 
charge, the velocity V, (y )  N E,  and the potential spatially 
averaged over the periodic direction x, for v, = 1 x 
and vi = 7 x (full curves) and v, = 7 x vi = 1 
x (dotted curved). The charge spatially averaged over 
the periodic direction x, is constantly increasing (Fig. 2), 
together with the associated potential (Fig. 4) and the 
associated electric field E, (Fig. 3, V,(y) - E,(y)). However 
the time evolution of the Fourier modes in Fig. 5 remaining 
at the level of round-off errors shows a stable evolution in 
time. It is interesting to note the accuracy and stability of 
the numerical results. The case with v, = 2 x and vi = 
7 x lo-' shows another evolution. Figs (6)-(8) gives the 
profiles, spatially averaged over the periodic direction x, of 
the charge, velocity V,(y)  - E, and the potential, and Fig. 9 
gives the time evolution of the first three Fourier modes. 
The fundamental mode in Fig. 9 shows a rapidly growing 
instability at t - 1000, while the mode k = 2k0 show an 
instability growing rapidly at t - 4000, (Fig. 9) and the 

Charge 
0 010 

r A- T=3000 

W - T=3000 1 
-I 

-0 010, 
-10 -5 0 5 10 

Fig. 2. Profile of the charge, spatially averaged over the penodic direction 
x, at (a) t = 1000; (b) t = 2000; (c) t = 3000; for the case v ,  = 1 x 
v, = 7 x (full curve) and v,  = 7 x v,  = 1 x (dotted curve). 
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-42 

Velocity 
0020 I I ] '  

' 1 1  I , , , ,  , , I ,  

Charge 
0.150- , , I '  

0.015 1 
t 

0.010 r 

0.005 

0: 

-0.005 1 
t 

-0.010 

U U50 r 

0: 

-0 050 
....- .. ...___...._____.__ T = 2000 

-0 100 - - 

-5 0 5 10 
-0 150 

-10 

-0 015 

I ,  
-10 -3 0 > 10 

-0.020 r ' 1 

Fig. 3. Profile of the velocity V,(y) - E,(y), spatially averaged over the 
periodic direction x, at (a) t = 1000; (b) t = 2000; (c) t = 3000; for the case, 
v, = 1 x (full curve) and v ,  = 7 x lo-' and vi = 1 
x (dotted curve). 

v i  = 7 x 

Fig. 6. Profile of the charge spatially averaged over the periodic direction 
x, at (a) to = 1000; (b) t = 2000; (c) t = 3000; (d) t = 4000; (e) t = 5600;(f) 
t = 5850 for the case v ,  = 2 x 

mode k = 3k, follows at t - 4300. (Fig. 9). Although in 
this case v, has increased by a factor of 2 with respect to the 
previous case, the charge separation at t = 1000, 2000 and 
3000 in Fig. 6 are much higher than a simple factor of 2 

with respect to the corresponding ones in Fig. 3. When the 
instability is reaching a level where it is affecting the equi- 
librium, the charge is redistributing itself in Fig. 6 in such a 
way that the potential in Fig. 8 is distorting itself from a 

Potential 
0040, , 

- 
c 

0 030 

Velocity 
0 2 0 _  , I 

T=5850 ---c 
O l 5 F  

O l 0 F  1 0.020 

O O l O C  
%= looo 0.05 

0c 
t 

-0.010 1 
-0.05 

-0 10 p 
T = 3000 

-0 -" 20 
-10 -5  0 5 I0 

Fig. 4. Profile of the potential, spatially averaged over the periodic direc- 
tion x, at (a) t = 1000; (b) t = 2000; (c) t = 3000; for the case v,  = 1 

(dotted curve). 
x v i = 7  x (full curved) and v , = 7  x lo-', v i =  1 x 

Fig. 7. Profile of the velocity V,(y) - E,(y), spatially averaged over the 
periodic direction x, (a) t = 1000; (b) t = 2000; (c) t = 3000; (d) t = 4ooo; 
(e) t = 5600; (f) t = 5850 for the case v ,  = 2 x 

Potential 
0 5 0 '  ' I 

c 
T = 5850 -- 

/= 5 6 0 0 7 - ,  \ 
-34 

-36 

-38 

0.25 - -I 
i 

t 
Oi- 

-0.25 - 

-0 50 I 8  
-10 -5 0 5 10 

Fig. 8. Profile of the velocity V,(y)  - E,(y), spatially averaged over the 
periodic direction x, (a) t = 1000; (b) t = 2000; (c) t = 3000; (d) t = 4ooo; 
(e) t = 5600; (f) t = 5850 for the case. 
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c 
-10 t 

c / 

t / 

0 2000 4000 6000 

Fig. 9. Time evolution of the first three Fourier modes: (a) k = k,; (b) k = 
2k,; (c) k = 3k,  for the case v,  = 2 x 

sine like shape to the longest wavelentgh available in the 
system (a half-sine like structure), satisfying the boundary 
conditions, an evolution caracteristic of an inverse cascade 
(see the potential in Fig. 8 at t = 5600 and t = 5850). 

Another set of runs was effected in which the potential 
had initially a sine-like shape similar to what we have seen 
in the previous set of parameters. This is constructed as 
follows. The initial ion densityii, , which includes the finite 
gyro-radius correction as defined in eq. (4), is calculated 
from eq. (24) for the ions and is shown in Fig. 1 in dotted 
lines, and the initial electron density is taken to be n, as in 
eq. (14) (full curve in Fig. l), instead of iii as in the previous 
cases. The plasma is then initialy non-neutral. Due to this 
finite gyro-radius correction, there is an initial charge 
separation due to the difference (ii, - ne) at the plasma edge, 
and the potential is calculated from Poisson equation eq. 
(21). Note that this charge separation (due only to the finite 
gyro-radius effect of the ions), is more important in the 
region where the guiding-center density gradient is impor- 
tant (the edge of a plasma for instance) rather than the 
region where the density is flat. This can be verified from eq. 
(4): a flat density profile does not lead to charge separation 
due to the finite Larmor radius effect. The initial velocity 
profile for the initial equilibrium profiles shown in Fig. 1, 
written in our normalized units as: 

(25) 

where E, is the y component of the electric field, has a bell- 
shaped gaussian. The initial shear is uniform in the x direc- 
tion. (Note that up, is normalized to 0,; in the present 
calculation we take up, = 1). For this initial equilibrium, 
Vp - dE/dt = 0. We ran the code for this initial equilibrium 
(without any initial perturbation) for several thousands 
time-steps, (with At = 0.05). The equilibrium was exactly 
conserved, together with the invariants given in eq. (7) and 
the energy. The finite gyro-radius effect alone is providing 
the necessary charge separation at the plasma edge, and the 
self-consistent electric field provides the shear in the velocity 
at the plasma edge, through eq. (25). We can easily verify 
that any charge separation which is function of one space 
variable (y) is an equilibrium solution to the set of eqs. (8) 
if v, = vi  = 0. Figure 10 shows the initial potential 
(averaged over the periodic dimension x), as a function of 
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Potential 

1 
1 

I , l  l , , 1 I 1 l  
r 

-4 0 4 8 
-0.225 I 

-8 

Fig. 10. Profde of the potential, spatially averaged over the periodic direc- 
tion x, at (a) t = 0 ;  (b) t = 500; (c) t = 1ooO; (d) t = 1500; (e) t = 2000; (f) 
t = 2750 (v, = 2 x and initially n, = nJ. 

the transverse dimension y. This potential has, at t = 0 a 
sine-like shape, close to the shapes created in the previous 
set of runs. In the present simulation we impose a boundary 
value of zero on the potential at y = - 8 and y = + 8, in the 
solution of Poisson's equation (eq. (21)). 

Adding an initial small perturbation "(1 + E cos k,x) to 
the electron density changes this picture. We take E = 0.0025 
and k ,  = 2n/Lx. Figure 10 shows the shape of the spatially 
averaged potential evolving in such a way that the profile is 
taking a shape which-has only a single maximum in the 
center, and satisfy the boundary conditions. This transition 
is well underway at t = 1000, and is completed at t = 2000 
(Fig. 4). The evolution is in such a way that the Fourier 
modes spectrum of the potential is dominated by the funda- 
mental mode (even when higher harmonics are excited in 
the initial perturbation), corresponding to the longest wave- 
length allowed in the transverse y direction and by the 
periodic boundary condition in the x direction. Figure 11 
shows the time evolution, on a logarithmic scale, of the fun- 
damental Fourier mode of the potential, showing growth 
followed by saturation (higher order harmonics remained 

Potential Mode K = KO 
I I ,  

- 
- 
- 
- 

I 1  I l l  

0 700 1400 2100 2800 

Fig. 11. Time evolution of the fundamental Fourier mode of the potential 
for v,  = 2 x for the case with an initial charge separa- 
tion at t = 0. (ne = nJ 

vi = 7 x 
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two order of magnitudes lower). This calculation is effected 
for v, = 2 x Note from Fig. 10 the 
peak of the potential varies very little from t = 1000 to 
t = 2750. From the results in Fig. 9, we can assert that the 
charge separation accentuated due to the difference between 
v, = 2 x as previously discussed, is 
still small at t = 3000, and the evolution shown in Fig. 11 
reflects essentially the physics of an inverse cascade associ- 
ated with the system, with the viscosity term smoothing the 
microstructures to avoid numerical instability. 

We further increase the value of v, to 3 x , all other 
parameters remaining constant. Figure 12 gives the time 
evolution on a logarithmic scale of the fundamental Fourier 
mode. After t = 2000, there is a rapid burst in the growth of 
the fundamental Fourier mode. The charge separation 
created by the difference in the electron and ion viscosities is 
unstable, and this instability is reaching a level where it is 
completly modifying the evolution of the system. The evolu- 
tion of the potential profile, spatially averaged over the 
periodic distance x, is shown in Fig. 13. Up to t = 2000, the 
results are close to those previously reported Fig. 10: the 
potential is inverting itself to a half-sine like profile. The 
peak in Fig. 13 is close to the corresponding peak in Fig. 10, 

and vi = 7 x 

and vi = 7 x 

in agreement with the fact that, v, has been slightly 
increased. This phase however, is followed by a rapid 
growth of the potential (see the peak at t = 2000, and 
t = 2750 in Fig. 13). Then the peak seems to saturate (see 
Fig. 12 and Fig. 13). Figures 14 show the contour plots for 
the potential. After t = 1500, the shear which appears in the 
velocity profile (tangent to the potential or stream function 
contours) is more apparent, and dominates at the top and 
the bottom of the figure (which corresponds to the bottom 
and top of the density profile), as we can see from Fig. 14(b) 
at t = 2950. We show the contour plot for the electron 

Potential at T = 750 

Potential Mode K = KO 
-2.1-1 , , , I I I I i 1 I I 1 , ~  , I 

-2.8 
r 

c 

0 5 10 15 20 

Fig. 12. Time evolution of the fundamental Fourier mode of the potential 
for v, = 3 x for the case with an initial charge separa- 
tion at t = 0. (ne = nJ 

vi = 7 x 

Potential 
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Fig. 13. Pro6le of the potential, spatially averaged over the periodic direc- 
tion x, at (a) t = 1500; (b) t = 2000; (c) t = 2500; (d) t = 2750; (e) t = 2950. 
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Fig. 14. Contour plots of the potential at (a) t = 750; (b) t = 2950. The 
potential is zero at y = 8 and the streamlines are essentially tangent to the 
line y = 8 with the exception of singular lines in Fig. (a) between two vor- 
tices, which are zero potential lines (hence connecting to the zero line at 
y = 8), in a transition between negative and positive potential contours. 
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Electron Density at T = 1750 Ion Densitv at T = 1750 
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Gyro-Averaged Ion Density Charge at T = 1750 
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-8 
E 

5. Contour plots at t = 1750 for the case with v, = 3 x lo4, for (a) 
- ne. (The periodic direction x is along the horizontal axis). 

elect1 

density n e ,  the ion density n e ,  the gyro-averaged ion density 
iii, and the charge p = fii - ne in Fig. 15 (at t = 1750, just 
before the rapid growth). In Fig. 16 (at t = 2500, during the 
rapid growth) we show the contour plot of the electron 
density and ion density. The smooth contours in the lower 
half of the density plots in Figs 15(a, b), are strongly twisted 
in Figs 16(a, b). We present the profiles at t = 2950, spatially 
averaged over the periodic direction x, of the electron 
density, the ion density, the gyro-averaged ion density in 
Fig. 17, and the velocity of the flow V,(y) in Fig. 18. 

Two distinct phases of the evolution of the system 
appears in the cases we studied with an initial charge 
separation in the system: 
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:on density ne; (b) ion density n,; (c) gyro-averaged ion density i i ;  (d) charge 

(1) The first phase is the one where the initial profile 
unstable to an initial perturbation, is inverted or modified 
from a sine shape to a half-sine like shape and shear appears 
in the V, velocity profile. 

(2) The second phase is the phase showing the rapid 
growth of the potential (and accordingly the E x B velocity, 
essentially tangent to the potential contours), with shear 
present in the velocity profile. 

The shear in the flow is apparent from the contour plots 
of the potential (stream function). The velocity is tangent to 
the stream lines. The upper vortex structure in Fig 1qa) dis- 
sappears and is replaced by a sheared flow in Fig. 14(b). The 
middle structure in Fig. 14(b) is the region where the direc- 
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Electron Density at T = 2500 
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Fig. 16. Contour plots at t = 2500 for the case with v ,  = 3 x for (a) 
electron density n,; (b) ion density ni . (The periodic direction x is along the 
horizontal axis). 

tion of the flow (and the electric field since V,(y) - E,(y)) is 
changing sign. 

5. Conclusions 

A numerical code has been developed to study the gener- 
ation of sheared flow at a plasma edge in the finite gyro- 
radius guiding center approximation, which also included 
the polarization drift. The code apply a method of fractional 
steps, presented in Section 3, which has been previously 
applied with success to the Eulerian Vlasov codes. We have 
presented results which illustrates the accurate performance 

T = 2950 
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Fig. 17. Proliles, spatially averaged over the periodic direction x, for the 
case v,  = 3 x lo4 at t = 2950 for (a) electron density; (b) ion density; )c) 
gyro-averaged ion density. 

-8 -4 0 4 8 

of the code. In the physical model we are studying, the finite 
Larmor radius corrections allow for a charge separation to 
exist, and the polarization drift, which has different signs for 
ions and electrons, has tendency to accentuate a charge 
separation in a time varying electric field. We have included 
a viscosity term to study the effect of a small dissipation 
term on the solution and show how a difference in the 
viscous diffusion term, even small, can create a charge 
separation at the plasma edge of an initially neutral plasma. 
This charge separation can be unstable, and the instability 
saturates with energy evolving to the longest wavelength 
associated with the system, an evolution characteristic of an 
inverse cascade. The initial evolution of the system is essen- 
tially inviscid. We have also presented results for the case 
where the plasma is initially non-neutral. For this case, the 
evolution of the system shows, in the first phase, a behavior 
in accordance with some basic physics associated with the 
set of equations describing the behavior of guiding center 
plasma in a strong magnetic field [presented in eq. (8-lo)], 
namely the inverse cascade with energy condensing in the 
lowest modes, while the system is evolving from an initial 

Velocity at T = 2950 
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Fig. 18. Profile, spatially averaged over the periodic direction x ,  (for the 
case v,  = 3 x for the velocity V J y )  - E,(y),  at t = 2950. 
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unstable flow with shear, through a stage showing complex 
structures with vortices, to a more stable shear dominated 
flow. The polarisation drift -dE/dt, plays an important role 
in this process, and also in triggering this instability. That 
the charge separation and the flow rearrange themselves via 
inverse cascades to adjust to a preferred state, as determined 
by boundary conditions and by the conservation properties 
associated with the model equations is one of the main 
points of the present results, and is based on a powerful 
statistical analysis of the model equations presented in Ref. 
[ 11. In addition to these longest wavelength transition 
results, the sheared flow we are studying is generated at a 
plasma edge, and the formation and existence of a charge 
separation and an electric field at the plasma edge is studied 
self-consistently with the shear. (Two recent publications, 
Refs. [18-191, have attempted a theoretical study of the ions 
finite Larmor radius in this problem). The self-consistent 
results we are presenting are new, and certainly of relevance 
to edge plasma physics. Furthermore, it is generally admit- 
ted that velocity shear effects play an important role in sup- 
pressing turbulence. The present numerical results 
(supported by a strong theoretical analysis in Ref. [l]) 
suggest that inverse cascades (with energy condensing in the 
low k modes) is a physical mechanism which can also play 
an important role in suppressing turbulence. 

We have attempted to discriminate between the smooth- 
ing of the microstructure by a small viscous diffusion term 
to control numerical instabilities, and the modification of 
the macroscopic physical results introduced by this small 
viscous dissipation term. That the presence of a dissipation 
term is important to eliminate the small scale structure 
without affecting the large scales evolution of the system has 
been mentioned in several publications in connection with 
2-D drift wave turbulence (Refs. [4-61). However, it was 
pointed in connection with the 2-D guiding center equations 
in eq. (1) (see Ref. [3]), and in connection with 2-D magne- 
tohydrodynamics (see Refs. [8-113, that this viscosity term 
can play an important role in the evolution of the solution. 
(See also the comments in Ref. [20] on the results presented 
in Refs. [21-221). We have presented results for a constant 
value of vi = 7 x showing how, when v, exceeds 
2 x (for the set of parameters we have), the initial 
inviscid time evolution is followed by a stage in which the 
inverse cascade is accelerated, and then a very rapid growth 
of the potential and the associated velocity shear. The vis- 
cosity terms seem to play an important role in determining 
the asymptotic value of the electric field and the sheared 
velocity flow associated with the system. It is therefore our 
conclusions that very special attention has to be paid when 
a small viscous dissipation term is added with the objective 
of smoothing the microstructure and controling numerical 
instabilities. 

The transition from a sheared flow to another shear 
dominated flow may be of importance to the problem of low 
to high or L-H transition and suppression of turbulence in 
the plasma edge in tokamaks. Steep density profiles in the 
vicinity of a separatrix accompanied by a strong radial elec- 
tric field and poloidal rotation have been observed, with 
velocity profiles having large shear. Such a transition has 
also been observed in a Q-machine [23], indicating that 
L-H transitions (as essentially characterized by a higher 
velocity sheared flow and low turbulence) are not confined 
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to toroidal plasmas. We make no claim in the present work 
to a study of the L-H transition with all its complexity. 
Although our computation is inspired by this experimental 
phenomenon, we believe that the results we are presenting 
for the existence of a charge separation and an electric field 
at a plasma edge due to the finite ions Larmor radius effect 
and viscous effects, with the charge adjusting in such a way 
that the largest available scales dominate, are pertinent and 
can stand on their own. Extending these results to models 
and parameters relevant to tokamak edge physics is under- 
way. 
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Appendix I 
The  Energy Theorem 

Even though the finite Larmor radius for electrons is 
usually neglected, we show that the time derivative of 3 J 
V i  dt for finite ion and electron Larmor radii can be rep- 

resented as time derivatives and divergence terms, the latter 
vanishing if appropriate boundary conditions are chosen. 

The first and second integrals vanish and the third becomes 

We assume the plasma is governed by the eqs (6), (7) and (8). - J V  ($PLini) dz + j V @  * Ppini dz. 64.4) 

Using the definition of the polarization drift, we obtain 

-ai - E' + (VLi + Ppi) * at 
jv@. [ a -' 

e r .  

= - s V . ( ~ V $ ) d r - ~ s 4 ~ ' $ d z .  1 1 
B2 

(the dot denotes time derivative), 

tinuity equations give 
The time derivative of the Poisson 

= ai n,  - ()E") dz + ui (VDi + Ki) . V()E")ni dz J act J 
pz 8 

= ai ( )n ipZ)  dz - - - ni 
(A.1) 2 at 

equation and the con- 

With the surface terms vanishing again, this becomes 

a (P)Z 
2 at 2 at ai J { (ni +E'') - - - ni + - ( ni)] dz 

a r  

Note that the convolution process indicated by the tilde or 
the operator g Q  takes place twice, due to the modified 
velocities and densities. Convolution and differential oper- 
ators commute and the second convolution can be shifted to 
the other member of the product. 

Consider the first integral on the right hand side 

4gi Q V ( abi + PpJni dz = $iV ( PDi + Pbi)ni dz s 
= s  s v ' ($iP& ni) dz - v$i ' P D i  Iti dz 

s 
(A.3) - j @ V  - (Pbini) dz 

The electron integral is of the same structure so that we 
obtain 

(A.7) 

Multiplying by eo B2 and integrating in time, we obtain the 
energy theorem in the form 

= const. 
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