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Abstract. The Loschmidt echo (or quantum fidelity) is investigated in the
context of the many-body electron dynamics in a nonparabolic quantum well,
modeled by the self-consistent Wigner–Poisson system. The quantum fidelity
drops abruptly after a quiescent period, as was observed for other self-interacting
systems. A unifying interpretation of this phenomenon is given in terms of
trajectory separation and the Ehrenfest time. The effects of Planck’s constant
and environment-induced decoherence are also studied.
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1. Introduction

Small semiconductor devices, such as quantum dots and quantum wells, have been at the
center of intense investigations, particularly for possible applications in the emerging field
of quantum computing [1]. Compared to competing approaches [2] (ion traps, neutral atoms,
superconducting circuits, etc), those based on solid-state devices have the advantage of relying
on the long experience acquired on semiconductor microelectronics. To implement basic qubit
operations, most proposed schemes make use of the electron spin states. Nevertheless, to
manipulate the electrons themselves, it is still necessary to resort to electric fields, either
static (dc) [3] or oscillating (laser pulses) [4]. For many-electron devices [5], it is therefore
of paramount importance to understand the properties of the self-consistent electron dynamics
and its stability with respect to external perturbations.

Several theoretical and computational studies have investigated the linear and nonlinear
response of an electron gas confined in a quantum well, mainly using the time-dependent
Hartree–Fock equations [6] or the density functional theory (DFT) [7]. The electron response
strongly depends on the shape of the confining potential. For perfectly parabolic confinement,
the response is dominated by the plasmon or the Kohn mode [8, 9], consisting of coherent
oscillations of the electrons’ center-of-mass at the plasma frequency. For nonparabolic
confinement, the plasmon mode couples to the many degrees of freedom of the relative
coordinate system. The latter acts as a thermal bath (i.e. an ‘environment’) on the center-of-mass
coordinate, giving rise to dissipation and decoherence. This is an interesting situation since both
the collective and the relative degrees of freedom stem from the same electron population, in
contrast to the usual studies where the system and the environment are separate entities.

An interesting measure of the coherence of a quantum system is given by the Loschmidt
echo, which describes the stability properties of the system under imperfect time reversal.
An equivalent approach to the Loschmidt echo was proposed earlier by Peres [10] in terms
of the so-called quantum fidelity. Peres noted that the stability of a quantum system against
external perturbations can be measured by the overlap of two wavefunctions evolving in slightly
different Hamiltonians. The quantum fidelity at time t is then defined as the square of the
scalar product of the wavefunctions evolving in these Hamiltonians: F(t)= |〈ψ1(t)|ψ2(t)〉|2.
Jalabert and Pastawski [11] have proven that for perturbations that are classically weak but
quantum-mechanically strong, the fidelity decay rate only depends on the classical Lyapunov
exponent of the unperturbed system. This universal behavior was later corroborated by
numerical simulations [12, 13]. For weaker perturbations, the decay rate is still exponential, but
perturbation-dependent (Fermi golden rule regime). For still weaker perturbations, the decay is
Gaussian [12].

Most existing results are restricted to single-particle systems evolving in a given
Hamiltonian. In two previous papers, we investigated the behavior of the quantum fidelity in
a system of particles interacting via their mean field. In [14], we used a toy model based
on fluid-like equations describing the self-consistent dynamics of a many-electron system. In
[15], the Loschmidt echo scenario was applied to a system of interacting cold atoms forming
a Bose–Einstein condensate. In the latter work, realistic physical parameters were used and an
experiment was proposed to test the predictions of our model. For both systems, the numerical
results showed that the quantum fidelity displays an anomalous behavior: it remains equal to
unity until a critical time, then drops suddenly to much lower values. The critical time was
found to depend logarithmically on the perturbation.
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In the present paper, we study the Loschmidt echo for a system of electrons confined in
a nonparabolic quantum well and interacting through their Coulomb mean field. The quantum
electron dynamics is described by the Wigner equation, which can account for both pure and
mixed quantum states. This is radically different from the previous results on the Loschmidt
echo, which were mostly based on the Schrödinger representation and were thus restricted to
pure states. In addition, the Wigner representation allows us to include the dissipative effects
due, for instance, to disorder or phonon scattering. Again, this was not possible in previous
simulations based on the Schrödinger equation, which were restricted to purely Hamiltonian
(unitary) evolutions. Finally, instead of perturbing the Hamiltonian—as was the case for all
previous studies—we perturb the initial condition. This is possible because of the nonlinear
nature of the problem under study. In contrast, for the linear Schrödinger equation, the overlap
of two wavefunctions evolving in the same Hamiltonian remains constant in time. Using the
above tools, we can provide a unifying explanation for the anomalous fidelity decay in terms of
trajectory separation in phase space. The critical time—at which the fidelity drops abruptly—
emerges naturally as a kind of Ehrenfest time.

2. Model

To study the self-consistent electron dynamics, we make use of the Wigner representation
of quantum mechanics. A mixed quantum state is represented by a function of the phase
space variables plus time, f (x, v, t) (we deal with one-dimensional problems), which evolves
according to the Wigner equation

∂ f

∂t
+ v
∂ f

∂x
+

im∗

2π h̄

∫∫
dλ dv′eim∗(v−v

′)λ f (x, v′, t)

×

[
V

(
x +

λh̄

2
, t

)
− V

(
x −
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2
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)]
=

(
∂ f

∂t

)
scatt

, (1)

where m∗ is the effective electron mass and V (x, t) the total potential acting on the electrons.
The latter is composed of two terms: the confining potential Vconf(x) and the Hartree potential
VH(x, t), which obeys the Poisson’s equation

∂2VH

∂ x2
=

e2

ε

∫
∞

−∞

f dv, (2)

where e is the absolute electron charge and ε the effective dielectric constant. We consider
wide quantum wells (≈100 nm) at moderate electron temperatures, for which the exchange and
correlation corrections can be neglected [16, 17]. The right-hand side of equation (1) models
disorder or phonon scattering. Its exact form will be specified in section 3.

The confining potential is harmonic with a small quartic component:

Vconf(x)=
1
2m∗ω

2
0(x

2 + K x4). (3)

As an initial condition, we take a Maxwell–Boltzmann distribution

f0(x, v)=
m∗ne

√
2πσp

exp

(
−
(x − x0)

2

2σ 2
x

−
m∗

2v2

2σ 2
p

)
, (4)

where ne is the peak electron density, and the distribution is shifted by a distance x0 to
excite the dynamics. The variances σx and σp can be expressed in terms of the thermal speed
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vth =
√

kBTe/m∗, where Te is the electron temperature (supposed to be larger than the Fermi
temperature TF). One has: σx = vth/ω0 and σp = m∗vth.

An important parameter is the so-called ‘filling fraction’, defined as η = ω2
p/ω

2
0, where

ωp = (e2ne/m∗ε)
1/2 is the electron plasma frequency. This parameter, which is proportional to

the electron density, measures the relative importance of self-consistent effects (electrostatic
repulsion) versus the strength of the confinement. Quantum effects are measured by the
dimensionless Planck constant, H = h̄ω0/kBTe = h̄/σxσp. To satisfy Heisenberg’s uncertainty
principle, one must have H 6 2.

The quantum fidelity could be defined as follows:

F(t)=
2π h̄

m∗N 2

∫∫
f1(x, v, t) f2(x, v, t) dx dv, (5)

where N =
∫∫

f1,2 dx dv is the total number of electrons (which is the same for both evolutions).
This definition reduces to the usual one for Schrödinger wavefunctions when f1 and f2

correspond to pure quantum states. However, for computational reasons, it is better to use a
slightly different definition

FW (t)=

∫∫
f1 f2 dx dv

(
∫∫

f 2
1 dx dv)1/2(

∫∫
f 2
2 dx dv)1/2

. (6)

Indeed, in a simulation of the Wigner equation, the quantity
∫∫

f 2 dx dv slightly decreases
because of numerical dissipation that entails loss of information at small scales [18]. Thus,
the standard fidelity (equation (5)) could decrease simply because each quantity

∫∫
f 2

j dx dv
( j = 1, 2) decreases as a result of numerical errors. The definition of equation (6) factors out
these spurious effects, so that the fidelity is only affected by the difference between f1 and f2.

In the previous studies [14, 15], the fidelity decay arose because of a small perturbation
of the Hamiltonian, while the initial conditions were exactly the same. This was in line with
the original suggestion by Peres [10]. Indeed, for the linear Schrödinger equation, the overlap
of two wavefunctions remains constant, if they evolve in the same Hamiltonian. However, for
intrinsically nonlinear models like the one considered here, it should suffice to perturb the initial-
quantum state (without doing anything to the Hamiltonian) to see some nontrivial decay of the
corresponding fidelity. This is the approach that we adopt here.

The initial state, equation (4), is perturbed by shifting the Maxwellian distribution by a
small amount δv0 in velocity space. Both states then evolve in the same external potential.
(It must be stressed that, since the Hartree potential depends self-consistently on the electron
density, the Hamiltonians acting on each Wigner function will diverge with time.) The advantage
of this approach is that the perturbation is characterized by a single number, i.e. the shift δv0.
As we shall see, the amplification of the initial perturbation in time is a crucial quantity to
characterize the fidelity decay.

We use typical parameters for semiconductor quantum wells [7, 19]: effective electron
mass and dielectric constant m? = 0.067 me and ε = 13ε0, respectively, oscillator energy
h̄ω0 = 9.75 meV and oscillator length Lho =

√
h̄/m?ω0 ' 11 nm. For η = 1, this yields a

maximum surface density nse = 1.5 × 1011 cm−2, volume density ne = 6 × 1016 cm−3, and
Fermi temperature TF = 96.8 K. Thus, a temperature Te ' 200 K corresponds to a normalized
Planck constant H ' 0.5, whereas Te ' 100 K corresponds to H ' 1.

The results were obtained with a numerical code based on a regular meshing of the two-
dimensional phase space. The code combines the split-operator method with the fast Fourier
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transforms in the velocity coordinate [20]. During the evolution, the Wigner function develops
small-scale structures whose size is proportional to the effective Planck constant H . Therefore,
a finer mesh is required in the semiclassical limit. Typically, we use Nx = 2000 and Nv = 2048
for H = 1, and Nx = 8000 and Nv = 8192 for H = 0.1. The time step is ω01t = 0.025 for all
cases.

3. Results

In this section, we present the numerical results issued from the solution of the Wigner–Poisson
system (1) and (2). The dynamics is influenced by a relatively small number of parameters each
of which determines the importance of a particular effect: (i) the filling fraction η (self-consistent
effects), (ii) the parameter K in equation (3) and the initial shift x0 (anharmonicity) and
(iii) the reduced Planck constant H (quantum effects). We neglect for the moment dissipative
effects.

To observe a nontrivial behavior of the quantum fidelity, the dynamics must be sufficiently
complex (this had already been noticed in previous studies [14, 15]). As the confining potential
is integrable, this means that self-consistent effects and thus the filling fraction η should be large.
We have found that values η > 5 are generally sufficient. In addition, the anharmonic effects
must also be significant. Indeed, for perfectly parabolic confinement, there is no interchange
between the center-of-mass and the internal degrees of freedom of the electron gas, so that
the center-of-mass oscillates indefinitely at the plasma frequency without any damping (Kohn
mode). In this case, it was observed in previous simulations [14, 15] that the quantum fidelity
never decays. To trigger sufficiently strong anharmonic effects, we take x0 = 3σx and K = 0.1σ 2

x
(K has the dimensions of an inverse square length). The parameters K and x0 will take these
values for all the forthcoming simulations, whereas η and H will be varied to study their impact
on the quantum fidelity.

3.1. General results on the fidelity decay

The typical behavior of the quantum fidelity (figure 1) shows the same pattern already observed
in the previous studies of interacting many-particle systems [14, 15]; after a quiescent period,
the fidelity drops abruptly to very small values. Notice that, because of numerical dissipation,
the standard fidelity F slightly decreases during the initial phase, but this artefact is removed
when using the renormalized fidelity FW.

Next, we plot the critical time (i.e. the time at which the fidelity starts dropping) versus the
initial perturbation δv0 (figure 2). The critical time is defined as the time at which the fidelity
has dropped to 98% of its maximum value, i.e. FW(τC)= 0.98. (In the previous studies, we had
used smaller values, e.g. 60% or 80%. However, as will become clear from the forthcoming
analysis, the relevant quantity is the time at which the fidelity starts dropping.) It is evident
from the figure that the logarithmic dependence observed in previous studies is recovered for
the Wigner–Poisson model used here, i.e.

τC = −τ0 ln δv0 + const. (7)

Both the slope τ0 and the additive constant depend on the value of the filling fraction η.
The above behavior was not entirely elucidated in [14, 15]. It could be established that

the sudden drop of the fidelity occurs on a timescale that is close to the oscillation period T of

New Journal of Physics 11 (2009) 013050 (http://www.njp.org/)

http://www.njp.org/


6

Figure 1. Typical behavior of the quantum fidelity for η = 6, H = 1 and δv0 =

10−8vth. The dashed line represents the standard fidelity (equation (5)), whereas
the solid line corresponds to the renormalized fidelity (equation (6)).

Figure 2. Critical time τC (in units of ω−1
0 ) versus perturbation amplitude δv0 (in

units of vth), for H = 1 and η = 6 (stars) and η = 8 (diamonds). The straight-
dashed lines are theoretical estimates based on equation (8).

a classical particle evolving in the confining potential. Here, ω0 T ' 4.2 which is compatible
with figure 1 (note that the fidelity is sampled at intervals of 10ω−1

0 ). The slope and the additive
constant appearing in equation (7) are more problematic. In the following, we present some
theoretical considerations that allow us to provide a full quantitative picture of the origin of this
anomalous behavior.

The logarithmic dependence can be interpreted in terms of trajectory separations. This
is one reason why the approach adopted here—i.e. perturbing the initial state rather than
the Hamiltonian—is particularly attractive. We are interested in the evolution of the mean
velocity: 〈vi(t)〉 =

∫∫
fi(x, v, t)v dx dv, i = 1, 2 (the same line of reasoning could be followed

for the average position 〈xi〉). The separation between evolution one and evolution two can
be quantified by the distance between the respective mean velocities: δv(t)= 〈v1(t)〉 − 〈v2(t)〉.
Obviously δv(t = 0)= δv0.
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Figure 3. Separation of the mean velocities δv(t) versus time, for H = 1 and
initial perturbation δv0 = 10−12vth. Left panel: η = 6; right panel: η = 8. The
straight lines are exponentials with growth rates λ= 0.9T −1

0 for η = 6 and
λ= 1.2T −1

0 for η = 8.

Now, let us suppose that the initial perturbation δv0 increases exponentially: δv(t)=

δv0 exp(λt), where λ is a kind of ‘Lyapunov exponent’. Inverted commas are in order, because
the Lyapunov exponents are normally defined for single classical trajectories, whereas here
we consider the evolution of averaged quantities computed from a quantum phase-space
distribution. Nevertheless, some authors have considered this problem previously [21, 22]. We
make the hypothesis that the critical time τC occurs when the separation between the two
evolutions reaches a critical value δvC, which yields τC = −λ−1(ln δv0 − ln δvC). The critical
value corresponds to a perturbation that is quantum-mechanically large. This can be estimated
as δvC ' h̄/m∗σx = Hvth. Using this value, we obtain finally

τC = −
1

λ

[
ln
(
δv0

vth

)
− ln H

]
. (8)

Within this interpretation, τC constitutes a sort of Ehrenfest time for our system.
Equation (8) makes a definite prediction on both the slope and the additive constant of

the curves in figure 2. In particular, the slope should be given by the inverse of the Lyapunov
exponent λ. To check this conjecture, in figure 3, we plot the distance δv(t) between the mean
velocities, for the two cases with η = 6 and η = 8. It is clear that δv grows exponentially
in accordance with our conjecture. The computed growth rates (Lyapunov exponents) are
λ= 0.9T −1

0 for η = 6 and λ= 1.2T −1
0 for η = 8. Here, T0 = 2π/ω0 is the classical linear period

of oscillation in the confining potential. Now, these values correspond neatly to the slopes of the
straight lines depicted in figure 2. In addition, the measured Lyapunov exponents do not depend
on the initial perturbation δv0.

The additive constant in equation (8) depends on h̄. To test the accuracy of this formula,
we have performed additional simulations with a smaller normalized Planck constant, H = 0.2.
The results are shown in figure 4. Again, we observe a logarithmic dependence of the critical
time with the initial perturbation. We have checked that the observed slope τ0 is indeed equal
to the inverse of the Lyapunov exponent λ. The two straight lines in figure 4 are the theoretical
estimates based on equation (8): the solid line corresponds to the actual value H = 0.2 and
the dashed line to H = 1. Even though the difference is small, because the dependence on H
is logarithmic, it is clear that the solid line provides a better fit to the numerical data, thus
confirming the accuracy of equation (8).
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Figure 4. Critical time τC (in units of ω−1
0 ) versus perturbation amplitude δv0 (in

units of vth), for H = 0.2 and η = 6 (triangles). The straight lines are theoretical
estimates based on equation (8): the solid line corresponds to H = 0.2 and the
dashed line to H = 1.

Thus, equation (8) provides all the elements to compute the critical time for any value
of the initial perturbation δv0, provided the normalized Planck constant H and the Lyapunov
exponent λ are known. The latter can be computed from a single simulation for an arbitrary
(though sufficiently small) value of δv0.

The above considerations also explain why no fidelity drop is observed for purely harmonic
confinement (K = 0). In this case, Kohn’s theorem [8] states that the average velocity 〈v〉 simply
oscillates at the frequency ω0, irrespective of the internal self-consistent dynamics. Thus, δv(t)
stays equal to its initial value at all times, and can never reach the critical value δvC.

It must be noted that a similar behavior was observed for the linear Schrödinger equation
(single-particle dynamics) in a given chaotic Hamiltonian [23, 24]. In that case, the fidelity
stayed equal to unity until a critical time, after which it started to decay exponentially. An
interpretation in terms of the Ehrenfest time was also provided in [24]. However, no sudden
drop was observed after the critical time, as is the case for our simulations.

In view of the above considerations, we can conclude that:

• The quiescent period during which the fidelity stays equal to unity does not arise from self-
consistent effects. It appears whenever the initial perturbation is small compared to h̄ [24],
i.e. in the present notation, δv0/vth � H .

• The rapid drop of the fidelity after τC is a self-consistent effect. It is not seen in simulations
of the linear Schrödinger equation, where, in contrast, an exponential decay is always
observed after the initial quiescent period. Physically, this is related to the fact that the
Hamiltonian depends on the electron density through the Poisson’s equation (2). When
the two evolutions start diverging, the Hamiltonian is itself modified, which in turn
affects electron density, and so on. Because of this nonlinear loop, the two evolutions can
diverge very fast (i.e. on the timescale of the plasma frequency or the frequency of the
external confinement). In contrast, for the linear single-particle dynamics, the Hamiltonian
is fixed and the solutions only diverge because of the small perturbation. Changes add
incrementally to each other, but cannot trigger the nonlinear loop observed in the self-
consistent simulations.
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Figure 5. Schematic representation of the various action quantities involved in
the problem. For the meaning of the symbols, see the main text.

One may wonder why, for the self-consistent systems studied here and in our previous
works, we were always in a situation where the initial perturbation was small compared to h̄.
To understand this let us identify the various actions that are involved in the present problem
(see figure 5). They are: (i) the typical classical action Sclass, given by the area of phase space
included in a classical orbit with initial condition x(0)= x0, v(0)= 0; (ii) the perturbation δS,
proportional to δv0; (iii) the extension of the initial state in phase space σxσp; and finally (iv) the
Planck’s constant h̄. Two conditions must always be satisfied: σxσp > h̄/2 (the uncertainty
principle) and δS � Sclass (because the perturbation must be classically small by definition).
Thus, the scaling used in the present and previous works of ours is the following:

Sclass > σxσp > h̄/2 � δS. (9)

In practice, this is a realistic scaling for electronic systems operating in a quantum regime (i.e.
σxσp ≈ h̄), such as quantum dots and quantum wells.

In contrast, when the perturbation δS is of the same order of magnitude as the Planck’s
constant, two other regimes can be envisaged. The first is a quantum regime where

Sclass > σxσp ≈ δS ≈ h̄/2. (10)

In this case δv0 ≈ δvC, so that the quiescent period shrinks to zero and the fidelity drops at the
very beginning of the simulation.

The second regime is characterized by the scaling

Sclass > σxσp � δS ≈ h̄/2. (11)

This is a semiclassical regime (H � 1) where the perturbation is classically small but quantum-
mechanically large, as in the original study by Jalabert and Pastawski [11]. Thus, one might
expect to recover an exponential decay at the classical Lyapunov or Fermi golden rule rate.
However, this regime is very hard to attain in numerical simulations of the Wigner equation,
because of the formation of small-scale structures in the phase space. In the next subsection,
we will explore the impact of the normalized Planck constant H , and hence of the electron
temperature on the fidelity decay. Nevertheless, the initial perturbation will be kept small, so
that we still operate in the regime given by equation (9).
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Figure 6. Separation of the mean velocities δv(t) versus time, for η = 6 and
initial perturbation δv0 = 10−8vth. Left panel: H = 1; right panel: H = 0.2. The
straight lines are exponentials with growth rates λ= 0.9T −1

0 for H = 1 and
λ= 0.6T −1

0 for H = 0.2.

Figure 7. Quantum fidelity FW for η = 6, δv0 = 10−8vth, and various values
of Planck’s constant: H = 2 (solid line), H = 1 (dashed line), H = 0.2 (dotted
line), and H = 0.1 (dot-dashed line).

3.2. Effect of Planck’s constant

As is apparent from equation (8), the critical time τC depends logarithmically on the normalized
Planck constant H . Physically, this is because the initial perturbation δv0 saturates at a value
δvC that is proportional to H . However, for self-consistent problems, the Hamiltonian is itself
a function of the Planck constant, and therefore we also expect the Lyapunov exponent λ to
depend on H .

Figure 6 shows the trajectory separation δv(t) for two values of H . Here, the effect of H
is very clear. On one hand, δv(t) saturates at a lower level for smaller H , because of the ln H
dependence in equation (8). This effect would tend to reduce τC with decreasing H . On the other
hand, we see that the Lyapunov exponent λ decreases with H , which tends to increase τC with
decreasing H . The latter effect is stronger, so that the critical time increases with decreasing
Planck constant, as can be seen from figure 7.
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The above results should be considered with some caution. As was mentioned earlier, the
numerical dissipation is stronger in the semiclassical limit. This can be measured by the entropy-
like quantity

∫∫
f 2 dx dv, which decreases monotonically with time. In the above runs with

0.16 H 6 2, the numerical resolution was chosen so that
∫∫

f 2 dx dv never falls below 80% of
its initial value, which should guarantee enough accuracy. Nevertheless, one cannot completely
rule out some numerical effect on the measured values of τC and λ.

3.3. Effect of decoherence

One of the toughest challenges for the construction of an actual quantum computer is the
omnipresence of decoherence. Decoherence occurs when a quantum system, initially in a pure
state, deteriorates into a quantum mixture because of its coupling to a complex environment.
Crucial quantum features such as entanglement are lost in this process, which reduces
dramatically the computing efficiency.

It is therefore interesting to study the influence of an external environment on the decay of
the quantum fidelity. In solid-state devices, decoherence is typically due to disorder or phonon
scattering. This can be modeled [25] in the form of a friction–diffusion term on the right-hand
side of the Wigner equation (1):(

∂ f

∂t

)
scatt

= 2γ
∂(v f )

∂v
+ Dv

∂2 f

∂v2
+ Dx

∂2 f

∂x2
, (12)

where γ is the relaxation rate and Dv, Dx the diffusion coefficients in velocity and real space
respectively, which are related to the decoherence time. In order for equation (1) to preserve the
positivity of the density matrix associated to the Wigner distribution function, the scattering term
must be in Lindblad form. This is automatically achieved [26] if the above coefficients respect
the inequality DvDx > γ 2h̄2/4m2

∗
. In general, we shall take the equality sign in the preceding

relation. The diffusion coefficient in velocity space is taken to be Dv = γ v2
th. Thus, only the

relaxation rate γ remains to be specified.
To study the effect of decoherence, we begin our simulations with a pure quantum state,

which corresponds to H = 2. Due to the dissipative terms, the initially pure state deteriorates
into a quantum mixture. The degree of ‘purity’ can be measured by the quantity

6(t)=
2π h̄

m∗N 2

∫∫
f 2 dx dv, (13)

(N =
∫∫

f dx dv), which satisfies 066 6 1 for a mixed-quantum state and 6 = 1 for a pure
state [18, 27].

The evolution of the purity, shown in figure 8, is identical irrespective of the initial
perturbation, i.e.

∫∫
f 2
1 dx dv =

∫∫
f 2
2 dx dv for all times. The environment-induced decoherence

time τD can be estimated by fitting the purity curves with a decaying exponential. By doing
so, we obtain ω0τD = 234, 142 and 58, for γ /ω0 = 10−4, 2 × 10−4, and 5 × 10−4, respectively.
Notice that the purity curves tend to reach asymptotically the same value, irrespective of their
decay rate. This saturation corresponds to the spreading of the Wigner function over all the
accessible phase space (i.e. the classical action Sclass).

The effect of decoherence is to smooth out small-scale oscillations in the phase space
structure of the Wigner function. These oscillations represent typically the quantum correlations.
As a standard example, let us consider a wavefunction made of the superposition of two
Gaussians centered at x = ±d/2. Its Wigner transform is given by two phase-space Gaussians
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Figure 8. Evolution of the purity for η = 6, H = 2 and δv0 = 10−8vth. The
relaxation rate (in units of ω0) is γ = 0 (solid line), γ = 10−4 (dashed line),
γ = 2 × 10−4 (dotted line) and γ = 5 × 10−4 (dot-dashed line).

centered at p = 0 and x = ±d/2, plus oscillating terms appearing half-way between the two
Gaussians and with a velocity-space wavenumber kv = dm∗/h̄.

A diffusive term such as that appearing in equation (12) destroys the velocity–space
structures with wavenumber kv in a typical time τD = (Dvk2

v)
−1. Since Dv = γ v2

th, we obtain
that γ τD = (kvvth)

−2. From the computed values of the coherence time, we notice that the
product γ τD is about the same for all values of γ , and it equals roughly 0.027. This means
that, in all cases, the oscillating structure of the Wigner function is concentrated near a single
velocity-space wavenumber kv = (γ τD)

−1/2v−1
th . This yields a typical velocity-space wavelength

λv = 2π/kv = 2π(γ τD)
1/2vth ' 1.03vth.

The above estimate can be checked directly by looking at the phase-space portrait of the
Wigner function, shown in figure 9. In this case, γ = 2 × 10−4ω0 and the decoherence time is
ω0τD = 142. For ω0t = 60 (i.e. shorter than τD) a fine interference pattern is present in the phase
space. The typical velocity wavelength can be extracted from a cross-cut of the Wigner function
at x = 0 (bottom frames of the figure), and it appears to be in good agreement with the above
estimation. The interesting point is that measuring the decoherence time from the evolution
of the purity (i.e. a global measure) allowed us to estimate the typical size of velocity-space
structures without actually looking at the Wigner function itself.

On the other hand, the interference pattern is destroyed for times much larger than
the decoherence time (see plots for ω0t = 700 in figure 9) and the resulting phase-space
distribution is smooth. In this case, the Wigner function is also everywhere positive: the quantum
correlations have leaked out into the environment and the Wigner function can now be safely
interpreted as a classical probability density.

We now turn our attention to the evolution of the quantum fidelity. In the previous sections,
the normalized fidelity FW was used to remove the artefact arising from a small numerical
dissipation, as was shown in figure 1. Here, however, the dissipation is a real effect due to the
presence of a finite relaxation rate γ . Therefore, it is better to revert to the original definition of
the quantum fidelity (equation (5)), which is shown in figure 10 for different values of γ . It is
clear that the fidelity decreases in two different manners: (i) a continuous, roughly exponential
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Figure 9. Phase space portraits of the Wigner function for γ = 2 × 10−4ω0, at
times ω0t = 60 (left panels) and ω0t = 700 (right panels). The bottom panels
show a cross-cut of the Wigner function at x = 0. Here, H = 2 and η = 6.

decay over a timescale τD due to the environmental decoherence and (ii) a sudden drop at τC,
which reflects the instability of the systems under small perturbations of the initial condition.
The first mechanism is dissipative, whereas the second is unitary. Nevertheless, both represent
a sort of effective decoherence for the system under study. It seems appropriate to term the
first mechanism ‘environment-induced decoherence’ (occurring on a timescale τD) and the
second ‘internal decoherence’ (timescale equal to τC). Depending on the value of τD and τC,
either mechanism will dominate in a specific situation. In particular, the sudden fidelity drop
is suppressed when τD becomes smaller than τC. Both mechanisms involve the formation of
subtle quantum correlations (represented by small scale structures in the phase space). In the
case of environment-induced decoherence, these correlations trickle out into the environment
and are lost forever from the point of view of the system. In the case of internal decoherence,
the correlations are transferred from the center-of-mass to the relative coordinates. They are
still present in the electron system but become increasingly difficult to track down in practice,
because a minimal error in the initial condition eventually leads to very different evolutions.
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Figure 10. Evolution of the quantum fidelity F(t) for η = 6, H = 2 and δv0 =

10−8vth. The relaxation rate (in units of ω0) is γ = 0 (solid line), γ = 10−4

(dashed line), γ = 2 × 10−4 (dotted line) and γ = 5 × 10−4 (dot-dashed line).

Figure 11. Separation of the mean velocities δv(t) versus time, for H = 2, η = 6
and initial perturbation δv0 = 10−8vth. (a) γ = 0, (b) γ = 10−4, (c) γ = 2 × 10−4

and (d) γ = 5 × 10−4 (in units of ω0). The straight lines are exponentials with
growth rate λ= 0.9T −1

0 .

For harmonically confined systems the center-of-mass and relative coordinates are decoupled
so that no internal decoherence can be observed.

Finally, figure 11 shows the evolution of δv(t) for various values of the relaxation rate, from
γ = 0 to γ = 5 × 10−4ω0. The latter value corresponds to a relaxation time γ −1

≈ 330 ps. As
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long as γ < 10−4ω0, no effect is noticed on the trajectory separation. Around γ = 2 × 10−4ω0,
the Lyapunov exponent starts decreasing, so that the echo is reached for longer times (see the
corresponding fidelity curve in figure 10, where the echo is visible as a small kink at ω0t ' 200).
For even larger values of γ , δv saturates at a much lower level, smaller than the critical value
δvC. In this case, the Loschmidt echo cannot occur in accordance with what was observed in
figure 10 for γ = 5 × 10−4ω0.

4. Conclusion

In this paper, we have investigated the self-consistent dynamics of the electron gas confined in a
nonparabolic quantum well. Compared to the previous studies on the Loschmidt echo in systems
of interacting particles, several novel aspects were analyzed here: (i) the dynamics was described
by the Wigner–Poisson system, which can deal with both pure and mixed quantum states; (ii) as
the Wigner–Poisson system is nonlinear, it was possible to perturb the initial condition rather
than the Hamiltonian; (iii) the dependence on the effective Planck constant was investigated;
and finally (iv) the effect of the decoherence induced by an external environment was analyzed.

As in the previous studies on interacting systems, it was found that the quantum fidelity
remains constant until a certain critical time, after which it drops suddenly, typically on the
timescale of the confining trap. A comprehensive argument—in terms of the system’s Ehrenfest
time—was put forward to explain this behavior. Comparison with numerical results yielded very
good agreement.

It was also found that the environment-induced decoherence can suppress the Loschmidt
echo efficiently, by smoothing the distribution function over a phase-space region ∼h̄ before
the echo has had time to occur. Indeed, the Loschmidt echo and the environmental decoherence
are competing effects that both tend to reduce the quantum fidelity. We have referred to these
two phenomena as ‘environment-induced’ and ‘internal’ decoherence, each characterized by its
own timescale. The existence of a finite internal decoherence suggests that even in the absence
of coupling to an external environment a many-body quantum system might not, in practice, be
perfectly reversible.

Our findings thus clarify the anomalous behavior of the quantum fidelity observed in
the numerical simulations of interacting systems so far studied [14, 15]. They may help in
quantifying the stability and coherence properties of solid-state devices that are envisaged for
the practical implementation of quantum computers.

Finally, it must be stressed that both the present results and those of [14, 15] were obtained
in the context of dynamical mean-field models. Indeed, the Wigner–Poisson system used here
is equivalent to the time-dependent Hartree equations. A natural further step along this line
of research would lead us to investigate the exact electron dynamics, perhaps in the simpler
case of two or three electrons [28], which would be highly relevant to current laboratory
experiments [29]. An exact study of the few-electron dynamics would nicely complement and
extend the present mean-field many-electron results.
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