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The problem of a two-component, collisionless plasma expansion into vacuum is investigated
from the viewpoint of the Vlasov—Poisson model. The set of equations is treated both
analytically (through the rescaling transformations) and numerically, using a one-dimensional
Eulerian code. In planar geometry, the rescaling allows to conjecture the existence of a
self-similar expansion over long times. Numerical results subsequently confirm the conjecture
and show that the plasma becomes neutral over a smaller and smaller scale. A few
thermodynamical properties are studied: the temperature is shown to decrease as t~%; the
polytropic relation (d/dt) (pn~")=0 (with y=3) is verified asymptotically via a
semianalytical argument. Finally, the same problem is studied in a spherical one-dimensional
geometry. The time-asymptotic solution is again self-similar, Numerical simulations

show that a non-neutral, multiple-layer structure appears, which is proved to be stable over

long times.

i. INTRODUCTION

The expansion of a plasma into vacuum plays an im-
portant role in many areas of plasma physics, and it has
received a great deal of attention since the early days of this
discipline. The main phenomenon associated with plasma
expansion is the acceleration of positive ions to supersonic
velocities, a process that has been observed in laboratories
since the 1930s by investigators working with vacuum arc
experiments.”? In 1961, Plyutto® first recognized that the
process of ion acceleration was a direct consequence of the
plasma expansion into vacuum. According to Plyutto, the
lighter and more mobile electrons tend to run ahead the
bulk of the plasma, creating a self-consistent electric field
that accelerates the ions to high velocities. The explanation
given by Plyuito is important, because it interprets the
process of ion acceleration in terms of exclusively electro-
static phenomena. Since then, plasma expansions have
been investigated theoretically and numerically using
purely electrostatic models (Poisson’s law) associated to a
set of hydrodynamic or kinetic equations.

Plasma expansion has been proposed as an important
phenomenon taking place in a great deal of areas, ranging
from astrophysics to nuclear fusion. In 1969, plasma ex-
pansion was suggested to be related to the problem of the
interaction of terrestrial plasma with rapidly moving ob-
jects such as satellites.* In the works of Singh and Schunk,’
an explanation of polar wind phenomena was given in
terms of plasma expansion.

In fusion technology, plasma expansion occurs in in-
ertial confinement experiments. A laser beam heats and
ionizes a solid pellet, generating a high-density plasma that
rapidly expands outward.%’

During the last few years, a great deal of laboratory
experiments have been devoted to the investigation of
plasma expansion into a vacuum.?” Usually, in such exper-
iments, the plasma expands along the magnetic field lines
of an external uniform magnetic field directed along the z
axis. The magnetic field prevents particles from expanding
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along the x and y directions; the experimental setup can be
arranged in order to realize a realistic one-dimensional ex-
pansion.

More recent experiments deal with particular non-
Maxwellian velocity distribution for the electrons (Haira-
petian and Stenzel!®),

The great majority of theoretical and numerical works
on plasma expansion has been done in the framework of
the hydrodynamic model.!'"""® An excellent review on this
subject has been published in 1987 by Sack and Schamel, 4
and, since, few new results have been achieved. In the fol-
lowing, we shall briefly summarize the state of the art in
the theoretical and numerical investigation of plasma ex-
pansion. We shall postulate a one-dimensional, planar ge-
ometry, with no magnetic field (either external or self-
consistent). The plasma consists of single charged ions of
mass m; and charge +e and electrons of mass m, and
charge —e. Two assumptions on the dynamics of ions and
electrons are made: (a) The ion temperature is negligible
compared to the electron temperature (T /T ,—0). Conse-
quently, the ion pressure can be neglected. (b) The elec-
tron mass is negligible compared to the ion mass
(m/m;—0). Consequently, the elecirons can be consid-
ered in thermal equilibrinm.

The set of fluid equations reads as

6?1,‘ d 0 1

3 T (nvd) =0, (1a)

dv; v, e d¢ b

E‘*’Viax—“mi'a_x) ( )

n.=ngexp(e¢/kT,). (ic)
The potential ¢ is given by the Poisson equation:

¢ e
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Here, n; and n, are the densities of the two species, v;is the
ion velocity, k is the Boltzmann constant, and € is the
dielectric constant in vacuum. .

Equation (lc) postulates a constant temperature for
the electron population, which is a reasonable assumption
when the’plasma is continuously genérated at the source
and its thermal conductivity is hlgh

In more general circumstarices this may not be true,
and some authors assume a polytropic equation of state,

pe=cnl, | ®

where p, is the electron pressure, ¢ is a constant, and y is
the polytropic exponent (y=1 in the isothermal case).
When (3) holds, the electron density dependence on the
potential is given by the following equation:'*

y—1 e ¢ /(y-1)

¥ EF)
Equations (1) and (2) form a closed set of evolution equa-
tions that can be solved with suitable initial and boundary
conditions. Unfortunately, analytic solutions are not avail-
able for the most general case. Yet, if one makes the addi-
tional assumption of charge neutrality (n,=n;=n), the
Poisson equation (2) is no more useful and the system (1)
and (2) reduces to the followmg

—no( 1+ Doyl (1)

6n 6 0

at (nv) -
Cav ig L on (4)

ETRI Vit L v

where we have used normalized units. -

The system (4) possesses a self-similar solutlon, in
which all the quantities are funétions of the self-s1m11ar
variable:

r=x/t. | RO

The set of self-similar solutions reads, for 'y;él (Sack and
Schamells) as

2/(7—1) -
”(”')‘( Tm—( T+ Y))

(®
v(T)— (T+ ),
and for y=1 (Gurevich et al.!' and Allen et al.'?): '
n(r)=exp—(7+1),
'¢))

v(T)= 7'+1

The range of 7 is restncted by the followmg mequahty

—I<¢<2 W/ r=1).

For 7< — \[7—/ n is constant and equal to unity, whlle v is
zero. For 732 \/— /(y—1) both n and v are zero.

The solutions (6) and (7) represent a rarefaction wave
that propagates at sound speed from the interface plasma-
vacuum toward the bulk of the unperturbed plasma. : " -
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When we abandon the assumption of quasineutrality
and take into account charge separation effects, the Pois-
son equation can no more be neglected and we have to
solve the entire system (1) and (2). In this case, self-
similar solutions are not possible and one has to resort to
numerical calculations. i

Extensive numeriéal results are reported in Sack and
Schamel,!*!3 both for the charge separation case [system
(1) and (2)] and for the quasineutrality case [system (4)].
Each case was studied for different values of the polytropic
exponent y. Their simulations show that the ion density
soon develops a spikelike structure at its front. Such struc-
ture - quickly grows up, getting sharper and sharper, and
eventually. the numerical solution collapses. The authors
exclude that such a collapse is due to numerical 1nstab1h-
ties.

Since the breakmg down of the solutlon is observed for
every value of y(1<y<2), both in the quasineutrality and
charge separation cases, its occurrence should not be due
to either the assumption of isothermality or charge neu-
trality, but rather, in our opinion, to the more profound

question of the validity of the hydrodynamic approxima-

tion. - v
From the previous results, it is quite clear that the
hydrodynamic- model is not adequate to describe the
plasma expansion into vacuum. In fact, strictly speaking, a

‘hydrodynamic treatment of a collisionless plasma is, in

principle, impossible. This is due to the fact that the rela-
tion pn~¥=const does not derive from the Vlasov equa-
tion, but is imposed ad hoc in order to close the set of
equations. For a general phase space distribution f(x,v,t),
such a relation is by no means satisfied, except in a few
very special cases. Our Vlasov treatment will tell us when

"and how the hydrodynamic approximation is a correct one.

We shall see that the polytropic relation must be written in
the more general form:.

d (3. 3\ o
with, imperatively, y=3 (see Sec. V).

- The point of view adopted in this paper is to keep a
collisionless regime, using a kinetic model to. describe the
dynamics of the plasma. In particular, we shall treat both

‘the ions and the electrons dynamics through two Vlasov

equations, coupled by the Poisson equation. Works con-
cerned with the numerical solution of Vlasov models of the
plasma-vacuum system are still very limited in number
(see Denavit!® and Galvez and Borowski!”), and not com-
pletely satisfactory. In particular, to our knowledge, no
solutions over long times have ever been produced. This is
due principally to two intrinsic difficulties of the numerical
treatment, namely the following.

(1) Previous simulations have been performed using
particle codes, which, as it is well known, exhibit consid-

-erable numerical noise at low densities. Since the interest-

ing phénomena- (such as the steepening of the ion density)
occur precisely in a region of low density, such codes are
not quite suited for this kind of problem.
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(2) A true expansion-into-vacuum problem requires
free boundary conditions. However, this is not trivial, since
the region occupied by the plasma becomes larger and
larger with time. In previous works, the authors have used

g 3o G S, N4 wfaa 2 a saebisa

either periodic or absorbing boundaries, in which a particle
reaching the boundaries is simply removed from the sys-
tem. Obviously, such a treatment alters the particle distri-
bution at the plasma front and, eventually, corrupts the
entire solution over long times.

The aim of this work is to remove both the above-
mentioned restrictions.

As to point (1), we resort to codes solving the Vlasov
equation by direct discretization of the phase space (Eul-
erian codes). Such codes are certainly more time and mem-
ory consuming than the ordinary particle codes, but ex-

hibit much less numerical noise, and allow a fine resolution

of phase space structures, even in regions of low density. In
particular, for one-dimensional problems, the numerical ef-
fort is not prohibitive (most of the calculations have been
performed on Sun workstations), and the use of Eulerian
codes is highly recommended.

The second point is treated via the so-called rescaling
transformations, ®22 which will be analyzed in detail in the
next sections, The philosophy of the rescaling technique
consists of introducing new space and time variables, so
that the expansion term in the solution is automatically
taken into account by the transformation. As a result, in
the new variables, the plasma experiences no more expan-
sion, and the free boundary conditions can be easily im-
posed.

It is important to point out that the rescaling is not
simply a numerical technique. In fact, it very often allows
to conjecture the structure of the asymptotic solution. The
numerical work subsequently checks whether the conjec-
ture is right, and provides the details of the conjectured
structure. This double aspect, analytical and numerical,
seems to us important in developing new computational
tools. To our knowledge, this paper is the first to introduce
the numerical aspect of rescaling in plasma physics.

These methods allow us to obtain the solution over
long times. In the one-dimensional planar case, we show
that the neutral self-similar solution is approached asymp-
totically. The plasma expands then freely as a neutral gas
(ballistic motion). The phase portrait shows that the space
and velocity variables are highly correlated by the relation
v=ux/t. We also show that the temperature of the plasma
decreases, in the asymptotic regime, as t~2 Such a result
invalidates a priori the hypothesis of isothermality, which
is often assumed in the hydrodynamic models. Via a simple
calculation in the rescaled space, it will be shown that the
latter are of some validity under very special conditions,
including the existence of self-similar solutions.

Subsequently, we shall study the plasma expansion in
the case of a one-dimensional spherical geometry, which,
to our knowledge, no author has so far investigated. It will
turn out that, although the time-asymptotic solution is
again self-similar, the plasma does not approach neutrality.
Contrarily, a stable double-layers structure appears, indi-
cating that the ions and the electrons are totally decoupled.
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This result contributes to confirm that double layers can be
generated and persist, even in collisionless systems.

il. MATHEMATICAL MODEL

We consider a one-dimensional, collisionless, two-
species plasma in planar geometry, which is freely expand-
ing into vacuum, experiencing no external field. The two
species have identical electric charge (+¢ and —g) but
different masses. The evolution of the plasma can be de-
scribed by the Viasov-Poisson system:

af. af. _af.
2t ax Ea =0

af; af; E 3f;

h i B, 8
ot ax M oV

oE
5= | vroa

where f.(x,v,t), fi(x,v,¢) are the phase space distribution
functions for electrons and ions, respectively, To simplify
the notations we have taken,

gi=—g,=m,= 0=1; M=m,'/me-

Initially the plasma is described by f;.(x,v,z=0), having
finite support in the phase space. Our purpose is to deter-
mine the time-asymptotic solution of the system (8). In
particular, we want to answer the following questions: (a)
Does the plasma become progressively neutral over smaller
and smaller distances? (b) Or contrarily, does it form com-
pact sheets of alternatively negative and positive net
charge? (c) Is the expansion law of the “Hubble form™:
v~x/t7

The system (8) is usually solved numerically, taking
periodic or absorbing boundary conditions in the x coor-
dinate. On the contrary, as it was pointed out before, one
should use free boundary conditions, and then integrate
(8) on an interval 0<x< L large enough to contain the
plasma until it reaches the asymptotic solution. If we want
to follow the evolution for relatively long times, we have to
discretize large intervals with a great number of mesh
points, and the numerical effort soon becomes prohibitive.
In order to avoid this difficulty—and also to obtain some
information on the structure of the asymptotic
solution—we do some preliminary analytical work on the
system (8).

Iil. RESCALING METHODS

In previous works, the rescaling methods have been
mostly used as an analytical tool in the study of nonlinear
ordinary and partial differential equations. Although the
method is somewhat of an extension of the self-similarity
analysis,” it does not introduce any limitation in the
choice of the initial conditions, the transformed equations
being strictly equivalent to the original ones. Some analyt-
ical applications of rescaling can be found in the study of
nonlinear diffusion,'® the Vlasov—Poisson system,19 the
Schrédinger equation,”® and other evolution problems.2*2

Maniredi, Mola, and Feix 390



In the following paragraphs, we shall illustrate the advan-

tages of the rescaline technigue as an analvticocomnputa-

B VL LUL AUOLVAAILE ACVILILLH WL &5 QI QliQly VOVl pula

tlonal tool.
Let us introduce a “new rescaled space tlme” ( £,0),
defined by :

x=C(DE, S ®
dt=A%(2)do. ' -

We want to introduce a “new rescaled phase space” (£,7).
In order to do so, the “new velocity” # must be defined, as
usual, as the derivative of £ with respect to 0, with the
following relation between the old and new velocity:

ax

o .
‘V=E=7] ‘?z-i-gcr (10

(the overdot indicates derivation with respect to't). -
Finally, we rescale also the dependent variables f, £,
and E:

fe‘,:’(x)vit)=G(t)Fe,i(§ﬂ7;9); -
E(x,r)=H(t)e(£,0).

Taking into account (8)-(11) we obtain a “new
Vlasov-Poisson system” for the rescaled quantities,

€ HA*dF; A*C aF,

aF;  OF; A &\ OF,

T (A c) "ot C o C tan
G4 N
g £=0

oF, OF, A €\ OF, HA*GF, 4*¢ OF,

FTRr (A c) "y "€TC 3 C 5o
g Fe=0

d GC

5§=E4§ Jr;(Fi_Fe)d'rl'

Though the system (12) is rather complicated, we still
dispose of four arbitrary functions A4(2), C(¢), G(¢), and
H(t), subjected to the sole constraint to be regular and
norzero over [0, c0{.

A first requirement is that the first and second equa-
tions of (12) have the form of the Liouville equatlon for a
system with friction, which reads as

"9F  OF -
5+ a§+a [P()F1=0, | (13)

where T is a force depending on the velocity 7. Equatlon
(13) imposes that

G (4 ¢y

5=2(Z‘Z’)’
which is immediately integrated to give

GC*/ 42 =const=1. o (14)
The relation (14) can be written, taking into acc“ount (9)-

(11),
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(11)

Siedxdv=F;, dEdy

indicating the conservation of the number. of electrons and
ions in the two spaces. Moreover, if we choose H=C/A4%
the electric-field is left invariant:

e(ED=E(x), ...~ . e - (15)
while the Poisson é({uati@ becomes

de 1 (F—F.)d

3 H(1) i—Hean.

We note that, in the rescaled space, the factor H(#) plays
the role of a “time-dependent dielectric constant.”

*~"When (14) and (15) are satisfied, the force term I" in
the rescaled Vlasov equation (!3) “has the form

I'=e rescaled field
A ‘ -
- I3 “transformation field” (16)
;4 € -
+24 Z__-é friction.

We note that some “unusual” terms appear in the rescaled
force; namely a linear “transformation field” (confining for
both species if C>0,ie.,if C(2) goes to infinity faster than
t) and a friction term. Let us underline that for A(z)

.=C(t) the friction disappears and we have.

dx dv=dE dny, (17)
ie., the phase space volume element is conserved.
The _philosophy of the rescahng methods con51sts in
1nterpret1ng the transformed Vlasov equatlons (13) and
(16) as descnbmg a “new’ > physical system, in which the
particles expenence an electrostatic interaction via the
Poisson law, an external force (the transformatlon field),
and a dissipative term_ (frlcnon)
- It should be stressed that the law of asymptotlc evolu-

tion is entlrely described by the factor C(z). If we could

guess the “right” law of expansion, then, owing to (9), we
would have £=const: in other words, in.the space (§,7)
the plasma would experience no expansion. From a numer-
ical point of view, this is an important result, since, with a
suitable adjustment of the transformation parameters, we
can “freeze” the support of F(&,7,0) in £ on a finite inter-
val [0,L). It is easy to understand that a regular mesh A&
discretizing the fixed interval [0, L] is equivalent to a “mov-
ing mesh” Ax=C(#)Af on the interval with moving
boundary [0,C(¢)L]. "~ '

Here, we formulate the conjecture that the asymptotic
law of expansion is of the form x~¢ in other words, we
suppose that the plasma behaves asymptotically as a neu-
tral gas. Numerical results will confirm our conjecture and
precisely how the plasma approaches neutrality.

Our conjecture imposes the following ch01ce

C(t)_1+Qt ‘ 7 ;  ?~ (18)
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where Q is an arbitrary frequency, characterizing the
transformation.

The friction terms are numerically difficult to deal
with, since they usually lead to Dirac’s delta functions in
the solution. (This is because friction eventually brings all
velocities to zero. Note that a friction term can sometimes
be useful to infer intuitively an asymptotic solution,!? just
as one can easily predict the final state of a damped pen-
dulum.) In order to avoid friction, we take

A()=C(1)=1+Qs (19)
Then the condition (14) requires G(¢)=1.

The relation between the old and the new velocity be-
comes, from Eq. (10),

v=n/(1+Q1) 4+ QE.
Finally, the rescaled Vlasov—Poisson system reads as

oF; dF; ¢ JF;

207 8_§+A—l %=0,

aF, JF, OF,

g

36_ 1 F—F.)d
% (1—08) f( i—Fe)dn.

(20)

=0, (21)

Integrating the second equation of (9), we obtain
1-Q0=(14+Q1)", (22)

which indicates that the time 8 is “renormalized” on a
finite interval. In fact,

0<Qo«1.

The time = 1/41 is then a singular point on the right-hand
side of the Poisson equation. This may cause numerical
difficulties, requiring taking smaller and smaller time steps
A6 as 0 approaches 1/Q. Anyway, the use of a slightly
different rescaling scheme, which will be shown in the next
paragraph, allows us to overcome this problem.

First, let us give a physical interpretation of (21). It
represents a system in which the “dielectric constant”
tends to zero as 20— 1. Consequently, also, the Debye
length tends to zero in the rescaled space, indicating that
non-neutral regions can exist asymptotically on a smaller
and smaller scale. Moreover, the time 8 being limited to
the value 1/4), the system cannot experience an infinite
displacement, and is then “frozen” on a finite interval.

Numerical resuits (Sec. V) will subsequently confirm
these conjectures.

IV. RESCALING WITH “VARIABLE MASS”
Let us introduce the new independent variable,
(23)

We shall call m; s1(t) the (time-dependent) “mass” and 7
the “momentum” for obvious reasons of analogy with the
relation p=mu.

From Eq. (10), one easily finds the relation between
the old and the new momentum:

= () n=m, (C*/A*)7.
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p=m,-,ev=7r/C+§C’m,-,e. (24}

Note that (24) does not depend anymore on 4. The rela-
tion (24) between p and 7 is the same (apart from the
constant factor m,,) as the relation (10) between v and 7,
when A=C.

In fact, the phase space element is now conserved for
every choice of 4 and C:

dm df=dp dx.

This is due to the fact that Eqs. (9)—(24) constitute a
canonical transformation, which conserves the Hamil-
tonian formalism. The old and the new Hamiltonians are
given by (for electrons with m,=1):

7 v
Hyy(xpt)=Z+V(x1); E= —=

L 2
Hnew(é"ﬂ"e) =m+l4 C(E C§ +¢(§;0));

ao
~%

€=

The conservation of the number of particles now imposes

F(gyﬂ')e) =f(-’C,P,f)-

Moreover, we now want to keep the form of the Poisson
equation. In order to do so, we have to choose

€(£,0) =E(x,1).

Finally, the Vlasov equation in the space (&,7) reads
as

OF A* oF . . OF
+A°C(e—CE) 5-=0, (25)

0t %
while the Poisson equation is left invariant. The system
being Hamiltonian, the friction term has disappeared.

Dividing Eq. (25) by 42 and taking into account the
second of (9), we may come back to the “old” time vari-
able . The factor 4(¢) then disappears from Eq. (25). This
operation shows that the roles of 4(¢) and C(t) are totally
decoupled, and therefore they can be chosen indepen-
dently. From a numerical point of view, we have gained
one more degree of freedom in the choice of the functions
characterizing the transformation. In particular, the factor
C(#) determines the structure of the phase space (&,7),
while 4(¢) determines the time scale. We shall therefore
take C(z) so as to absorb the asymptotic term of the ex-
pansion. As it was done before, we choose for the case of a
planar expansion: C(#) =14 Qr.

With this choice, Eq. (24) takes the following form:

p=m/(1+Q1)+m, QE (26)

On the other hand, 4(¢) must be selected according to
the characteristic time scale of the problem, which is given
by the plasma frequency .

If we take Az(z‘)=m;'(t), we have
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t= 0.0 t= 8.1

16 16

~18 PR -18 L
0.0 3.5 7.0 0.0 3.5 7.0

FIG. 1. Electron distribution function in the rescaled phase space (planar
geometry). Dark regions represent regions of high density.

26 dr dt
=:;17=Er.

With this choice, and taking constant time steps A8 in the
numerical integration, the real time 7 is automatically sam-

pled in units of cop—l. Since @, o JZ «C~ 12 n(x) being the

spatial density, we have
At=C=1401.

Integration of the second of (9) gives, for this choice of

A(D), .
1+Qt=(14-06/2)%,

and for t— o also #— .

Finally, the Vlasov-Poisson system for a two-
component plasma becomes

dF; T OF; 0 aF,; 0

36 T azue) o€ TH(O)€ o

dF, 1w JF, oF

’33+m3§““”(9)6 7%7_‘=0, 27

de
6_§‘= f (F;—F.)dm,
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t= 0.0

0.0 3.5 7.0

t= 27.2

-4 L N -4 PR
0.0 368.5 73.0 0 78 155
X x
t=108.4 t=164.5
4 ¥ 4 ¥ 1
o o
> 0 (,,m ’ > 0
-4 . -4 S
0 134 2687 0 205 410

X X

FIG. 2. Electron distribution function in the real phase space (planar
geometry).

where

p(0)=(1+06/2)>

V. NUMERICAL RESULTS (PLANAR GEOMETRY)

_ Numerical results have been obtained both through
system (21) and system (27). The numerical integration
has been performed with the help of a standard Eulerian
code, slightly modified in order to take into account the
time-dependent coefficients appearing in the Vlasov equa-
tions. The system (27) has turned out to be more advan-
tageous, since it provides automatically (as we have seen)
the most suitable value of the time step. With this method,
a save of about 50% in computing time has been achieved.

After solving numerically the system (27) in the vari-
ables £ and 1, we come back to the usual coordinates (x,v)
through (9) and (24).

There are still two parameters left to our disposal; the
mass ratio M and the transformation frequency Q. Indeed,
their roles are quite different: M is a physical quantity and
determines the structure of the solution in the real phase
space (x,v); on the contrary, £ is a parameter of the trans-
formation and can only affect the structure of the (£,7)
space.
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The choice of {2 is important from a numerical point of
view. In fact, for (}=0 there is no transformation at all,
and the plasma expands to infinity; on the contrary, for
£1» 1 the plasma may even experience a contraction in the
(&,m) space. The optimum choice for I keeps the dimen-
sions of the asymptotic state as close as possible to the
dimensions of the initial staie. All the points of the mesh
are then exploited throughout the evolution. Empirically,
it was found that Q) must be of the order of magnitude of
the ions plasma frequency at the initial time. This is not
surprising, since the rapidity with which the asymptotic
solution is reached depends on the mobility of the ions.

Besides, the mobility of the ions is determined by the
mass ratio M. For realistic values of 3 (equal, for exam-
ple, to the ratio between the mass of the proton and that of
the electron) the movement of the ions is extremely slow.
Since we are chiefly interested in the asymptotic solution,
we have taken much smaller values for M, typically going
from M=2 to M=10.

In the following paragraphs, we present the results of a
typical simulation for which we have chosen

0=0.35, M=4

(Note that we show only the part of the phase space with
§x>0. For £,x <0, the figures are symmetric.) Space is
measured in units of the electron Debye length, time in
units of the electron plasma period (the inverse of the
plasma frequency), and velocity in units of the electron
thermal velocity vy, . = Ap.w,,.. The initial condition is uni-
form in x, over 124y, from x= —6 to x=6, both for ions
and electrons (the plasma is then locally neutral at +=0).
In the velocity space the distribution function is Maxwell-
ian:

exp( —m;)eVZ/ZT,-,e),

where T'; and T, are, respectively, the ions and electrons
temperatures. In our simulation, we have taken

T,=0.7, T,=0.3.

In Fig. 1 we show the electron distribution function in
the transformed phase space (£,7). The support of F(&,7)
experiences a slight contraction in £, and then freezes when
the asymptotic state is reached. We can see that F develops
a finer and finer structure in £, which ultimately leads to a
loss of information on a local scale. This is a fundamental
point: The rescaling transformations, confining the plasma
on a finite interval, allow us to preserve the global infor-
mation; nevertheless, and this is the price to pay, local
information is progressively lost. In other words, the dis-
tribution function is smoothed over intervals of growing
size Ax(1) =C(r)AE.

Despite these considerations, we have to stress that (a)
we are interested in the global properties of the plasma. (b)
We can reasonably assume that the information that has
reached the scale Ax(#y) at a certain time £, (and is there-
fore lost in our scheme), will not influence the phenomena
at a scale larger than Ax(#,) for times greater than #, (c)
Our results are supported by comparison with a simulation
performed with an exact N body code. Point
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FIG. 3. Ion distribution function in the real phase space (planar geom-
etry).

(b) has been numerically verified in Ref. 24 for an ordi-
nary (nonrescaled) Viasov-Poisson system.

Figures 2 and 3 show the electrons and ions distribu-
tion functions in the (x,v) phase space (note that an in-
creasing scale is used in the x coordinate). For short times
(t=6.1), a layer of electrons runs ahead the bulk of the
plasma, destroying the initial neutrality, The unbalance of
electric charge (see Fig. 4 at the same time) generates an
ambipolar electric field that accelerates the ions to high
velocities. Eventually, the fast electrons are reabsorbed by
the net positive charge left behind them. For large values of
7, both distributions tend to assume the form

Sflxwt)=n(x,t)8{v—x/t), (28)

represented in the phase space by a straight line passing
through the origin.

The phase portrait of Figs. 2 and 3 clearly shows that
the asymptotic solution is self-similar. The space and ve-
locity variables are strongly correlated by the relation
v=x/t, indicating ballistic motion, in accordance with our
conjecture,

In Fig, 4 we have shown the evolution of the net
charge density in the rescaled space:

Maniredi, Mola, and Feix 394




t= 0.0 t= 2.2
0.02 T 0.02 —
¥ o.00 ¥ oo0
~0.02 I -0.02 A
0.0 3.5 7.0 0.0 3.5 7.0
¢ ¢
t= 27.2 t= 60.6
0.02 B 0.02 Y
Z o0 “\V/\V/\\f\vf\ 2 oo
-~0.02 —_— -0.02 —
0.0 3.5 7.0 0.0 3.5 7.0
¢ ¢
t= 106.4 t= 164.5
0.02 T 0,02 T 1
= =
z 0.00 1 0.00
~0.02 . - -0.02 .
0.0 3.5 7.0 0.0 3.5 7.0
¢ 4

FIG. 4. Net charge density n=n~n,= [ (F,—F,)dn in the rescaled
space (planar geometry).

n®= [ [Fem—Fu(em Jdr=nl€)—n(&).

We observe that charge neutrality is approached through
the formation of alternatively positive and negative layers,
the dimensions of which tend to zero with time. As a mat-
ter of fact, one still has to verify that the dimensions of the
layers tend to zero faster than ¢ in the rescaled space. Oth-
erwise, their size would grow in the real space. This point
will be checked via a semianalytical argument at the end of
this section.

Figure 5 shows the ion denSIty ni{§) (sohd line) and
electron density n,(£) (broken line) in the rescaled space.
For large values of the time, they tend to assume the same
profile; the decay is approximately exponential.

The time evolution of the kinetic and potential energies
is plotted in Fig. 6. The kinetic energies of the two species
are asymptotically constant, and proportional to the re-
spective masses. Consequently, the electrons and the ions
move asymptotically with the same velocity. The potential
energy is zero at t=0 (we have prepared a neutral initial
condition), then reaches a maximum and vanishes again
for t— w.
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FIG. 5. Number density for the ions (solid line) and the electrons (bro-
ken line) in the rescaled space (planar geometry)

It might be interesting to investigate some of the ther-
modynamical properties and equations of state of the
plasma expansion. This is an important point in order to
understand the possibility of using the hydrodynamical
model in collisionless plasmas. Let us define the local tem-
perature T (x,t), pressure P(x,t), and density n(x,t) by the
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FIG. 6. Evolution of the kinetic and potential energy with time (planar
geometry).

Manfredi, Mola, and Feix 395



following relations:

S (v—= ()2 f(xvt)dv

kT(x,t)=m TFemDdv ,

P(x)=m f (v— (W) F (vt d, (29)

nix,t) = ff(x,v,t)dv,

where & is the Boltzmann constant.
Referring to the rescaling of Sec. III [see Eq. (20)], it
is a matter of straightforward algebra to show that

T(x0) =[1/(1+02]T(£,6),
P(x,t)=[1/(1+0)%1B(£,6), (30)
n(xt)=[1/(1+Q1)]14(£,0),

where the variables with an overcaret are calculated in the
rescaled space, namely

[ (n— () F(&m,0)dn
IF(gﬁ"?’o)d"? ’

kT (£0)=m

P =m f (n— ()2 F (&m,0)dn, (31)

A0 = fF(g,n,e)dn.

In Fig. 7 we have plotted the graph of the ion pressure
P(§,6) for large values of the time, when the asymptotic
solution has approximately been reached. It appears that
eventually P does not depend on 8 anymore, neither do 7
(see Fig. 5) and 7, which is the ratio between the pressure
and the density.

A first result arising from Eq. ( 31) is that the local
temperature decreases in time as ¢7°. This is a crucial
point, since it invalidates those hydrodynamic models that
are based on the assumption of isothermality. During the
expansion, the initial thermal energy of the plasma is pro-
gressively transformed into drift energy. Asymptotically
the plasma is cold and all its energy derives from the drift,
ballistic velocity, while the potential energy goes to zero.

As a matter of fact, the relation (31) is even more
profound, and can be used to check the thermodynamics of
the system. Let us suppose that the plasma obeys a poly-
tropic equation of state:

4 =21y 2 enm =0 32
= (n ’—(aﬁ‘”ax)( 27y =0, (32)

where vy is the polytropic coefficient.
If one chooses y=3, the ratio P/n® becomes

(Pn=3)(x,0) = (BA~3) (£),

which is not dependent on 6.

Since, asymptotically, £=x/(Q¢), the ratio P/n® be-
comes a function of x/t only, and its total derivative is
therefore equal to zero. We have, in fact,
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d x d a
— W

X
W=7 F= R

(33)

and therefore

a3 ay . s
('a_é+<"> a‘x)“’” (£)]=0.

This result strongly claims that the only reasonable value
of the polytropic coefficient (at least for this omne-
dimensional problem) is y=23. On the other hand, it shows
that the polytropic relation must be imperatively written in
its most general form (32), rather than in the (more
usual) form,!*'®

Pn~3=const, (34)

which implies that the ratio is constant both with respect
to x and to &

Moreover, we must use two pressures: one connected
to the electron density and the other connected to the ion
density (partial pressures of each specie). We shall there-
fore have two polytropic equations, and in each momen-
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tum (Euler) equation we must use only the partial pres-
sure of each single specie. This expresses the fact that all
exchanges of momentum between the two species take
place only through the electric field. ..

The previous results have confirmed that the assump-
tion of the hydrodynamic model are verified only in very
special cases. It turns out that, when the evolution of the
plasma is self-similar (as it is our case), such an assump-
tion holds, and the hydrodynamic model is quite accurate,
provided that ¥ is chosen equal to 3 (for one-dimensional
systems). From this point of view, the -existence of self-
similar solutions is not a consequence of the hydrodynam-
ics equations, but rather a condmon for the vahd1ty of the
model.

We are now in a position to check whether the size of
the charged layers observed in Fig. 4 goes to zero with time
also in the real space. Let us calculate the Debye length:

Ap=(ekT/ne?)%.

Since we have shown that the temperature varies as-
ymptotically as +~% and the density as =, it turns out that
Ap~t~'2 The Debye length then goes to zero, even in the
real space, indicating that, asymptotically, no region of
non-neutrality can subsist on a finite scale.

VI. EXPANSION IN SPHERICAL GEOMETRY

In spherical coordinates, the Vlasov equatidn reads
(details can be found in Ref. 25) as

3f _of ®af ¢ af (@4 \of
atRarty ae+rsine'a}z+( P .Ex)a—R
¢’ 1 RO af
(r 10 7t 9)%
R$ ©f 1 af ,
_( T e E'/')aqs:o’ R

where 7, 6, ¥ are the spatial coordinates, and R, o, ‘¢ the
respective components of the velomty :
If we assume radial symmetry,

af af
36 3y

then f dependsonlyon¢, 7, R, and T ®2+¢2 and we can
write

== Eg=E,=0,

f(tr,R®¢)=(1/1r)f(tr;RrTj_égi Lot

(the factor # is introduced for. notation convenience). A
little algebra shows. that, in the case of rad1a1 symmetry,
Eq (35) becomes
af _8f (T  _\Adf 2RT3f
T (1) T BT,

ar WBR .r aT ‘:(36)

A further simplification consists in taking the tangen-

tial velocities T equal to zero- ThlS is done by 1mposmg the
following conditiori: s e crrw
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F&rRTY=g(trR) - 8(T), (37)
where § is the Dirac delta function.

Integratmg (36) with respect to T, we obtain

dg dg | dg 2R

:3;+R 5+Er(?_R+7g=0' (38)

Finally, we perform the transformation

@(t,r,R)=rg(t,rR).

Note that gr* dr dR= =@ dr dR represents the normalized
number of particles contained in a shell of thickness dr,
with radial velocity ranging from R to R+dR: it is, in fact,
this quantity that is conserved, and not simply g dr dR.
The resulting Vlasov-Poisson system for a two-component
plasma then reads as

O, o9 Er g

s TRt ar="

) a¢’e a¢7e a‘?’e
o TR 5y —Er =0

(39)

3
- E(rzE,)= f (pi—@.)dR.

The first and second equations of (39) are identical to the
one-dimensional planar Vlasov equation, with the usual
normalization:

f Pie drdR=1.

The approximation (37) allows us to work in a bidimen-
sional phase space (r,R) by neglecting all tangential veloc-
ities. The price we have to pay for this simplification is that
the point »=0 becomes singular: in fact, nothing prevents
particles with negative radial velocities (inward bound) to
arrive at the origin, and consequently generating an infinite
electric field. This will restrict the number of initial condi-
tions that can be treated by our model.

Rescaling. We use the “variable mass” rescaling tech-
nique, as we have done in the plane geometry problem. The
transformation relations are, m the sphencal case,

- -“E: B

"r_C(t)g
dt=A4(t)d6,

mR=1/C+mCE, (40)

¢f,8( rR,t) =Fi,e(§51r’6) P 7

E(rt)=€(§,0).

In the choice of the expansion factor C(¢), we are guided
by the results obtained in the planar problem. The only
difference lies in the form of the Poisson equation, which
expresses the fact that the electric field now vanishes as 72
for r— . Consequently, we can again expect a ballistic
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FIG. 8. Electron distribution function in the real phase space (spherical
geometry).

asymptotic expansion, although not necessarily local neu-
tralization. Let us make therefore the following choice:

Cit)=14Q¢
Moreover, we want to choose 4(¢), so that
A =aw,(1).

Now the density #(r) = [@dR decreases as 1/7; thus we
have

oy ‘/;‘I r=¥2 o C-32,
and finally
A =C*(1)=(14+Q5)¥4,
Integrating the second of (40), we obtain
14+ Q:=(1-06/2)"2,

the new time 6 being now renormalized between
0<8<2/0.

With these choices, the system (39) is transformed
into the following one:
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E)F,- m 8F, 6 BF, O
30 Mu(e) o TH(DeZ-=0,

3F, & OF aF

‘%—Fma—g—ﬁ(@)t’ =0 (41)

a2
5 ()= f (Fi—F,)dn,
where

#(8)y=(1—-08/2)"\.

VIl. NUMERICAL RESULTS (SPHERICAL GEOMETRY)

We have solved numerically the system (41 ). The
same considerations on the roles of the parameters M and
Q) can be done, as in the planar geometry problem. In the
following, we shall present a simulation for which we have
chosen M =4 and 01=0.5.

In order to prevent particles from arriving at the ori-
gin, we have prepared an initial condition where all the
particles are situated outside a sphere of radius 7, and have
positive {outward bound) velocities. In particular, the ini-
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tial distribution function is uniform in r between r=3 and
r=17, and zero elsewhere. In the velocity space, it has the
following profile: -

(R RO)ZCXP[ mte(R R0)2/2Tze]: R}O,

0, . R <0,
where Ro—04 T;=0.2, and T,=0.6. )

The phase portrait for electrons and ions is represented
in Figs. 8 and 9, respectively. As in the planar ‘case, a
strong correlation is found between the space and velocity
variable (R=r/t). The solution is asymptotically self-
similar and again corresponds to ballistic motion.

Figure 10 shows the evolution of the net charge density
in the rescaled space, and Fig. 11 shows the number den-
sities of electrons and ions. A multiple layer, non-neutral
structure is soon created, which seems to be very stable
over long times. The phenomenon of local neutralization
found in planar geometry no longer takes place. The evo-
lution of the root mean square of the radius shows that the
motion of the ions and the electrons is completely decou-
pled (Fig. 12). The two species move asymptotically with
constant but different velocities. ‘

From the previous results, it is clear that the asymp-
totic behavior of the plasma expansion into vacuum
strongly depends on the dimensionality of the system. The
essential point, differentiating the planar problem from the
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FIG. 11. Number density for the ions (solid line) and the electrons
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spherical one, lies in the form of the Poisson equation. In a
planar one-dimensional geometry, the electric field gener-
ated by one “particle” (in fact, a charged sheet) is uni-
form, and does not vanish for x— =& «. Such a field does
not admit an “escape velocity,” and therefore even the
fastest electrons are eventually reabsorbed by the plasma.

4007 : o

b

electronz

‘200

rms radius

0 119 239
time

FI1G. 12. Evolution of the root mean square of the radius for the ions
(broken line) and the electrons (solid line) (spherical geometry).
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On the other hand, in the one-dimensional spherical
geometry, the field created by a charged sphere falls down
as r~% consequently, an escape velocity exists, just as in a
gravitational system, and a cloud of fast electrons is able to
escape from the bulk of the plasma.

The stability of the non-neutral structure seen in Fig.
10 can be justified by means of an easy calculation in the
transformed space.

From a Lagrangian point of view, the equations of
motion corresponding to system (41) are the following
(again for electrons of unitary mass):

dt¢  w
o u@-"
dm (42)

where u(0)=(1—0)~!. We have taken Q=2 for conve-
nience of notation; 0 is then normalized on [0,1].

Let us suppose that, at the time 6=6,, the multiple
layer structure has already formed, giving rise to a field
€(£,6y), which is finite for every §. From the last of Eqgs.
(40), we know that €(&,8,) =E(x,t,), ty being the time
corresponding to 6;. There is no physical reason for the
real field E to diverge for ¢> ¢, thus € will also remain
finite for 6> 6,. On this basis, we can assume that the
variations if € with 6 are small compared to the variations
of u(0).

Integrating the second of (42), we obtain

1-6
1-6,

6
v(@):efe ©(8)do=—elog (43)
0

Hence, 7 diverges for 6— 1.
The displacement A£ between 6, and 1 is

1 1—-6
Ag-_-_ef (1-6)log —- de. (44)
0% —6

Evaluating the integral in Eq. (44) gives
Ab=€e[(1—6,)/4]. (45)

Equation (45) shows that the displacement tends to zero
for 6,— 1. In other words, even if between 6=60,~1 and
@=1 an infinite time has elapsed, the particles have been
moving on a negligible distance A£. The non-neutral struc-
ture seen in Figs. (10) and (11) is then completely stable
over arbitrarily long times. Moreover, this result confirms
a posteriori our previous assumption that €(@) varies
slowly with respect to u(8): the proof is then self-coherent.

One could be tempted to interpret such a structure as
an indication of a Debye length growing as ¢ in the real
space. In fact, this is not the case, as it can be shown by a
calculation similar to the one performed at the end of Sec.
V.

Now the density decreases as t“3, whereas the temper-
ature varies as ¢t~ 2. Consequently, the Debye length should
vary as #/? in the real space, and as t~'/? in the rescaled
space. This result is apparently not in agreement with what
we observe in Fig. 10, where the region of non-neutrality is
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clearly fixed in the rescaled space, and therefore grows as ¢
in the real space. In fact, there is no paradox, for the sep-
aration distance observed in Fig. 10 is not a Debye length.
The separation of the two species is due to the fact that,
because of the radial symmetry, particles situated far away
from the origin virtually behave as free particles, their
Coulomb interaction being negligible. Had the two species
been two neutral gases, we would have observed a similar
decoupling, which is essentially due to the different initial
conditions, and by no means to electrostatic phenomena.
In this sense, we cannot speak of a Debye length.

On the other hand, electrostatic effects could be im-
portant in the central region of the plasma, which we have
ignored in order to keep a bidimensional phase space. A
further investigation, using a 3-D phase space code, should

varifu if in tha ecantral recinn tha Nahva lanoth astnally
V\f‘l.‘.y IJ., A1) BilW Liliuial 1\151\)11, vii U\-/Uy\t l‘tllslll a\lluall,]

behaves as predicted by the above calculations.

Vili, CONCLUSIONS AND OPEN PROBLEMS

The results obtained in this paper present a double
interest.

From a mathematical and computational point of
view, we have given an example of how the rescaling meth-
ods can be applied to an expansion problem. The interest of
these methods lies in the combination of analytical and
numerical tools. In a few special cases semianalytical solu-
tions can be easily obtained (see, for example, Ref. 19).
More generally, the rescaling suggests reasonable conjec-
tures on the structure of the time asymptotic solution and
provides an intelligent, easily implementable numerical
scheme. In our case, the time asympiotic solution is the
ballistic expansion, and it is automatically (i.e., analyti-
cally) taken into account by the rescaling transformation.

From a physical point of view, we have investigated
the long-standing problem of plasma expansion into vac-
uum. Most previous works on this subject, which have
been summarized in the Introduction, are based on the
hydrodynamic model, and lead, in some special cases, to a
set of self-similar solutions. However, their numerical so-
lution shows an anomalous behavior (collapse of the ion
front) after a relatively brief time, indicating that the
model is not accurate to treat this problem.

In this work, the plasma expansion was treated
through a kinetic, collisionless model (the Vlasov-Poisson
system). In the case of a one-dimensional planar expan-
sion, we found numerically that, for large values of the
time, the solution is indeed self-similar and characterized
by the relation v=x/¢. The plasma becomes locally neutral
and consequently exhibits ballistic motion.

One of the aims of this paper was to check the domain
in which the hydrodynamic model is suited to treat a
plasma expansion into vacuum. In particular, one has to
verify whether the polytropic relation (d/dr)(pn~7)=0
holds, and which value of ¥ has to be used. The numerical
results suggest that such relation is not satisfied during the
first instants of the expansion, when the asymptotic solu-
tion has not yet been reached. In this case, the kinetic
treatment is necessary to take into account all the details of
the phase space distribution function. Nevertheless, we
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showed that, over long times, when the self-similar solu-
tion is well established, the poytropic relation holds within
a good approximation. Our analytical and numerical cal-
culations clearly showed that the polytropic coefficient
must assume the value y=3 for a one-dimensional planar
expansion. The previous result is, in fact, quite general and
proves that the polytropic relation is verified for every self-
similar expansion.

Another important result arose from the study of the
expansion in a sphérical, one-dimensional geometry. Once

Qﬂ')lﬂ
again, the solution over long times is self-similar (ballistic

motion). Yet, the process of local neutralization found in

the planar geometry case does not take place; contrarily,

we observed the formation of charged layers of finite di-
mension with respect to the total length of the system. The
different behavior in the planar and spherical cases was
interpreted in terms of the different form of the Poisson
equation in the two geometries. Finally, we proved that
such multiple layer structure is stable over long times.

A further insight into the spherical expansion could be
achieved by taking into account tangential velocities 7,
and then working in a three-dimensional phase space
(r,R,T). More general initial conditions could thus be
treated, but the requested numerical effort would be con-
siderably stronger.

The analog quantum-mechanical .. problem
(Schrodmger—Pmsson system) is also of 1nterest an open
question is whether quantum effects can corrupt the clas-
sical solution. Both problems are, at present, under study.
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