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ABSTRACT

Quantum effects play a significant role in nanometric plasmonic devices, such as small metal clusters and
metallic nanoshells. For structures containing a large number of electrons, ab-initio methods such as the
time-dependent density functional theory (TD-DFT) are often impractical because of severe computational
constraints. Quantum hydrodynamics (QHD) offers a valuable alternative by representing the electron
population as a continuous fluid medium evolving under the action of the self-consistent and external fields.
Although relatively simple, QHD can incorporate quantum and nonlinear effects, nonlocal effects such as the
electron spillout, as well as exchange and correlations. Here, we show an application of the QHD methods
to the plasmonic breathing oscillations in metallic nanoshells. We illustrate the main advantages of this
approach by comparing systematically the QHD results with those obtained with a TD-DFT code.
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1. INTRODUCTION

Small nanometric metallic or metal-like objects display a number of collective resonances, most notably
the localized surface plasmon (LSP), which have attracted considerable interest over the last few decades.
These resonances are the result of the collective motion of the electrons under the influence of an external
electromagnetic field (laser). They can only be understood by taking into account the self-consistent internal
fields created by the electrons themselves in response to the external excitation.

Theoretically, the electron response in metal nano-objects can be investigated at different levels of ap-
proximations. For small systems (say, less than a hundred electrons), ab-initio methods such as the time-
dependent density functional theory (TD-DFT) are usually the preferred choice, but they become too costly,
in terms of run time and memory storage, for larger nano-objects. Thus, for large systems, many recent inves-
tigations have relied on simpler methods, based on improvements of the classical Mie theory with quantum
and nonlocal effects added ad-hoc.1

In between these two approaches, quantum hydrodynamics (QHD)2–4 describes the electron response
using a small number of macroscopic fluid-like equations. QHD goes beyond the classical Mie theory by
incorporating (at least to some lower order) such crucial features as nonlocal, nonlinear, quantum, and
exchange-correlation effects. It is an appealing level of description for nanoplasmonics applications because
it is light enough to allow the study of large nano-objects, but detailed enough to capture most of the key
physical effects. Recent studies have shown the potential of QHD for quantum nanoplasmonics,5,6 but they
are often restricted to the linear electron response and use commercial software packages.7 The strongly-
excited nonlinear regime was investigated in several studies performed in our group.8–11

Most investigations of plasmonic modes have focussed on the LSP, which is a dipolar mode, because
it is the easiest to excite in experiments where the laser wavelength is much larger than the size of the
nano-object. Here we will present some preliminary results on a different family of modes, namely plasmonic
“breathing” oscillations, which are spherically symmetric monopolar modes. Although difficult to excite by
optical means because of their symmetry,12 breathing modes can be driven and detected through electron
energy loss spectroscopy (EELS).13,14
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2. QHD MODEL

As a minimal QHD model to study plasmonic breathing modes, we consider a spherically-symmetric nano-
object where all quantities depend only on the radial coordinate r and the time t. The ion lattice is
represented by a uniform continuous positive charge density (jellium), whereas the electrons are described
by the following set of fluid equations (atomic units are used hereafter):

∂n

∂t
+

1

r2
∂

∂r

(
nur2

)
= 0 , (1)

∂u

∂t
+ u

∂u

∂r
=

∂VH

∂r
+

1

2

∂

∂r

(
∆r

√
n√

n

)
− 1

n

∂P

∂r
− ∂VX,C

∂r
, (2)

where n is the electron number density, u is the mean radial velocity, P is the (isotropic) pressure, VX,C is
the exchange and correlation potential, and VH is the Hartree potential obtained from Poisson’s equation:
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where ni is the density of the spatially-uniform ion jellium. The second term on the right-hand side of Eq.
(2) is the so-called Bohm potential, which contains quantum effects to lowest order, and can be shown to
correspond to the first gradient correction to the electron kinetic energy.

For the exchange potential, we use the standard local density approximation (LDA):

VX [n] = − (3π2)1/3

π
n1/3, (4)

and for the correlations we employ the functional proposed by Brey et al.,15 which yields the following
correlation potential:

VC [n] = −γ ln
(
1 + δn1/3

)
, (5)

with γ = 0.03349 and δ = 18.376. We further assume the electron temperature to be much lower than the
Fermi temperature of the metal, so that the pressure can be approximated by that of a fully degenerate
electron gas:

P =
1

5
(3π2)2/3n5/3. (6)

With the aim of modelling metallic nanoshells, the ion jellium density ni is chosen to be constant and
equal to n0 inside a spherical shell of internal radius Ri and external radius Re, and zero outside. We further
define the nanoshell mean radius R = (Ri +Re)/2 and the thickness ∆ = Re −Ri. Assuming global charge
neutrality, the total number of electrons inside the shell is:

N = n0 V =
R3

e −R3
i

r3s
, (7)

where V is the volume of the nanoshell and rs is the Wigner-Seitz radius of the metal. Finally, the plasmon
frequency can be written as: ωp =

√
3/r3s . In the forthcoming sections, we will consider sodium clusters

with rs = 4.

3. NUMERICAL RESULTS – GROUND STATE

Before considering the dynamical response of the system, we need to compute its ground state. This can
be obtained as a stationary solution of Eqs. (1)-(2) where we take ∂/∂t = 0 and u = 0, and is calculated
numerically using an iterative relaxation procedure.8

The electron density and effective potential profiles for two typical Na clusters containing respectively
N = 1919 and N = 753 electrons are presented in Fig. 1. Both clusters have a central radius R = 40, but
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Figure 1. Ground state of two typical Na nanoshells containing N = 1919 and N = 753 electrons. Left panel:
Electron densities computed using a DFT code (solid lines) and the QHD approach (dashed lines). Right panel:
Effective potentials for the same cases.
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Figure 2. Various potentials for the N = 1919 case obtained with the QHD model: Effective total potential (solid
line), Hartree potential (dotted line), exchange (dashed line) and correlation (dash-dot line) potentials.

different thicknesses (∆ = 25 and ∆ = 10). On the same figure, we also show the density profiles computed
using a standard DFT code. The agreement is very good, and even more so considering that the QHD results
require no more than a few minutes runtime on a standard desktop computer. In particular, the nonlocal
spillout effect is well described by the QHD method, even for the smaller structure (N = 753), where the
spillout is very prominent and the electron density is nowhere flat. For the larger nanoshell (N = 1919),
the two overdensity “ears” appearing at the internal and external radii in the QHD density profile are a
lower-order quantum effect, a remnant of the well-known Friedel oscillations visible in the corresponding
DFT profile. It appears that (right panel of Fig. 1) the QHD method slightly overestimates the depth of
the effective potential well.

Figure 2 shows the various contributions to the effective potential for the larger nanoshell. The exchange
potential constitutes the dominant contribution, with the Hartree and correlations parts being less than half
as small.
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4. NUMERICAL RESULTS – DYNAMICS

Having computed the ground state of the electron system, we need to perturb it slightly in order to induce
some dynamical behavior. As we are interested in plasmonic breathing modes, the perturbation will also be
spherically symmetric. For the excitation, we use an instantaneous Coulomb potential applied at the initial
time:

Vext(r, t) =
z

r
τ δ(t), (8)

where δ is the Dirac delta function, z is a fictitious charge quantifying the magnitude of the perturbation,
and τ is the duration of the pulse.

In order to analyze the linear response of the system, we study the evolution of the mean radius of the
electron cloud, defined as:

⟨r⟩(t) = 1

N

∫ ∞

0

r n(r, t) 4πr2dr. (9)

The Fourier transform of ⟨r⟩ in the frequency domain is shown in Fig. 3, left frame. For the larger nanoshell
(N = 1919), the frequency spectrum shows a sharp peak near the plasmon frequency ωp =

√
3/r3s = 5.89 eV.

This behavior is compatible with the computed ground-state density profile (Fig. 1), which displays a region
of almost constant density in between the inner and outer radii. In contrast, the spectrum of the smaller
nanoshell (N = 753) is much more fragmented and actually displays two principal peaks around the plasmon
frequency, at about 5.6 eV and 6.2 eV, plus a number of smaller peaks at lower energies.

Still on Fig. 3 (right panel), we show the monopolar polarizability α computed with a linear-response TD-
DFT code,16 using the same parameters and exchange-correlation functionals as for the QHD simulations.
The results compare rather favorably with the QHD ones. For N = 1919, one dominant peak is observed
at 5.6 eV, i.e. slightly redshifted compared to the pure plasmon frequency. This redshift can be understood
in terms of dissipative phenomena (such as Landau damping, i.e. the coupling of the plasmon mode to
single-particle modes) that are not included in the QHD description. More interestingly, the spectrum of
the smaller nanoshell (N = 753) reveals the same two-peak structure also observed in the QHD simulations,
now with frequencies ≈ 5.16 eV and 5.45 eV, again slightly redshifted compared to corresponding peaks in
the QHD spectrum.

The more complex spectrum observed for N = 753 is probably due to the shape of the ground state
electron density, which looks more like a bell curve with no flat region inside the lattice jellium (see Fig. 1).
In the case of such smooth density profile, the standard Mie theory of the localized surface plasmon is not
applicable, as surface and volume plasmons are no longer well distinguished.
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Figure 3. Linear-response frequency spectrum for two typical Na nanoshells containing N = 1919 (red solid lines)
and N = 753 (blue dotted lines) electrons. Left frame: quantum hydrodynamics results; Right frame: TD-DFT
results.
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5. CONCLUSIONS

In this work, we have illustrated the main features of quantum hydrodynamics and described how this
approach can be used to address some typical problems arising in nanoplasmonics. The main advantage of
QHD is that it can be used to treat large systems (hundreds or thousands of electrons) with a relatively
modest computational cost. Importantly, the most relevant effects for nanoplasmonics applications – such
as nonlinear and nonlocal effects – can be included, at least to some degree of approximation. Its main
limitation is that, unlike DFT, quantum effects arising from the discrete nature of the electronic energy
levels cannot be taken into account, although some quantum features are retained to lowest order through
the Bohm potential.

As a typical example, the QHD approach was used here to investigate the ground state and linear response
of metallic nanoshells. Detailed comparison with a fully quantum TD-DFT code revealed a satisfactory
accordance between the two approaches. These results are encouraging for future, more realistic studies of
large nanoplasmonic structures using QHD.
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