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Abstract

An Eulerian Vlasov code is used to model plasma-wall interactions in a weakly collisional plasma. The different nu
methods used to solve the Vlasov and Poisson equations are described in detail. The code is used to simulate measu
the ion distribution and ion temperature in a low-pressure argon plasma. In particular, it is shown that the presence o
walls can lead to significant errors in the measurements, if the effect of the sheaths is not properly taken into account.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A detailed understanding of plasma-wall intera
tions is of paramount importance in a large numbe
problems of practical interest. This is hardly surpr
ing, as any plasma created in the laboratory need
be confined by a material vessel. In tokamak plasm
for example, material structures such as limiters
divertors are eroded by the impact of energetic io
thus generating impurities (i.e., high Z neutral atom
by physical sputtering. Such impurities may be io
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ized in the scrape-off layer and transported into
core, where they degrade the plasma confinement[1].

Another application of plasma-wall interactio
concerns the interpretation of probe measurements[2].
Indeed, a large variety of diagnostics are obtained w
probes inserted into the plasma, thus exposing s
solid surface to the charged particles. It is well kno
that such probe-plasma interaction alters the pla
parameters in the vicinity of the probe, and may le
to significant errors in the measurements.

Perhaps the most important effect caused by
presence of a solid surface is the formation of plas
sheaths. Indeed, ions and electrons hit the sur
at very different rates, roughly proportional to the
thermal speeds (for equal temperatures, the electro
thermal speed is about forty times that of hydrog
ions). If the surface is an insulator, or kept electrica
isolated, a net charge develops on it and perturbs
.
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ambient electric field, the ion temperature and curren
as well as other crucial parameters. This perturba
of the plasma, characterized by the presence o
distinct space charge, is called the Debye sheath (
The DS is crucial in mediating the transition from t
unperturbed plasma to the wall, but cannot be dire
connected to the unperturbed plasma. It must
preceded by a quasineutral region, the presheath (
which is dominated by collisions and/or ionizatio
whereas the DS is essentially collisionless (in m
complex cases, the PS may also be determined
geometrical or magnetic effects[3]).

In this paper, we shall propose a kinetic mod
for plasma-wall interactions, which is capable
describing both the collisionless DS and the collisio
PS. The numerical techniques used to solve this m
will also be described. Finally, the model will b
applied to the physics of plasma-wall interactions
a low-pressure argon plasma.

2. Model

Numerical and analytical studies of plasma-wall in
teractions have frequently been performed using fl
models for the ions, and assuming thermal equi
rium for the electrons (see, for instance, Ref.[3]).
Pioneering results with a collisionless kinetic mod
and particle-in-cell (PIC) simulations were obtain
by Chodura[4] for a magnetized plasma. In the prese
paper, we include collisional effects, though we
strict ourselves to the case of an unmagnetized pla
(or a magnetic field normal to the surface, whi
amounts to the same). Therefore, we are able to m
the entire transition region (DS and PS), from the
perturbed Maxwellian plasma to the wall surface.

For a correct description of the presheath,
model will have to include collisions and ionizatio
at least in a simplified form. The ion Vlasov equ
tion is thus supplemented with a collision term of t
Bhatnagar–Gross–Krook (BGK) type, which mod
the relaxation of the ion population towards the eq
librium Maxwellianf0(v) with a typical rate equal to
ν [5]. In one dimension, the resulting kinetic equati
reads as:

(1)
∂fi

∂t
+ v

∂fi

∂x
− e

mi

∂φ

∂x

∂fi

∂v
= −ν(fi − f0),
,

l

wherex is the coordinate normal to the wall andv the
corresponding velocity;φ is the electrostatic potentia
e > 0 andmi are respectively the ion charge and m
andfi(x, v, t) is the ion distribution function in phas
space.

Eq. (1)is coupled to Poisson’s equation, where
electron density is given by the Boltzmann relation a
ni(x, t) = ∫

fi dv:

(2)
∂2φ

∂x2 = − e

ε0

[
ni − n0 exp(eφ/kBTe)

]
.

Here, ε0 is the vacuum dielectric constant,kB is
Boltzmann’s constant,Te is the electron temperatur
andn0 is the equilibrium ion and electron density
the unperturbed plasma.

Appropriate boundary conditions are chosen.
x = 0 (position of the perfectly absorbing wall) ion
are allowed to leave the system, and no incoming
exists; atx = L (plasma core) the ion distribution
kept fixed and equal to that of the equilibrium plasm
with given temperatureTi0 and densityn0.

For Poisson’s equation, we takeφ = 0 in the plasma
(x = L), whereas the wall is assumed to be at
floating potential given by the accumulation of electri
charges on the wall itself. The floating potential
computed by integrating Ampère’s equation on
wall (x = 0):

(3)
∂E

∂t
= −e(ji − je)/ε0,

whereE = −∂φ/∂x is the electric field. The ion flux is
given by:ji = ∫

vfi dv. The electron flux is estimate
by assuming that the electron velocity distribution
half-Maxwellian on the wall, which yields:

(4)je(0, t) = n0

(
kBTe

2πme

)1/2

exp

(
eφ(0)

kBTe

)
.

The BGK term on the r.h.s. ofEq. (1) acts as a
sink/source term, whose effect is to reconstruct
equilibrium Maxwellian on a time scale of orderν−1.
Physically, it is supposed to model ion-neutral co
sions and ionization,f0 representing the equilibrium
ion distribution far from the wall. Although very sim
ple, this model contains enough physics to desc
the transition between the equilibrium plasma and
wall, and has the advantage of depending on a
gle free parameter, namely the collision frequencν
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(or equivalently the mean-free-pathλ = vthi/ν, where
vthi = √

kBTi0/mi is the ion thermal speed).
In this paper, we shall only be interested in the eq

librium solutions of this model. In order to obtain su
solutions, we first initialize the distribution function
be equal to the equilibrium Maxwellianf0; then, we
let it evolve according to our model equations unti
stationary state appears. As we are not interested i
time-dependent transient, there is no need for a v
accurate timestepping technique, as long as the
state is recovered correctly. This point will affect o
choice of the numerical techniques, as detailed in
following section.

3. Numerical methods

3.1. Vlasov and Poisson’s equations

The ion Vlasov equation is integrated numerica
using an Eulerian code, which solves the kinetic eq
tion on a fixed phase space grid. The main advan
of Eulerian codes is their lack of random statisti
noise, inherent to particle-in-cell calculations, whi
renders them accurate even in regions of the ph
space where the plasma is dilute (this is the case
instance, in the DS, where the ion density decrease
significantly).

The timestepping technique is based on a split
algorithm [6], which amounts to solving, for eac
timestep, first the free-streaming part ofEq. (1): ∂tfi +
v∂xfi = 0, then the term containing the electrosta
field: ∂tfi + (eE/mi)∂vfi = 0, and finally the BGK
collision term:∂tfi = −ν(fi − f0). The solution from
time tn to timetn+1 can thus be obtained in three ste

(5)f �(x, v) = f (x − v�t, v, tn),

(6)f ��(x, v) = f �(x, v − eE�t/mi),

(7)

f (x, v, tn+1) = f ��(x, v) − ν�t
[
f ��(x, v) − f0(v)

]
,

wheref � andf �� denote intermediate solutions. W
see that the standard Vlasov terms give rise to cons
shifts in either position or velocity space (Eqs. (5) and
(6)). In their numerical implementation, these shift
require the interpolation of the distribution functio
in phase space, which is performed here usin
finite-volume technique described in Ref.[7]. The
t

collisional term has an algebraic solution that requ
no interpolation.

The resulting numerical scheme is only first ord
accurate in time, but this is not too important as
are not trying to describe the time-dependent trans
In practice, we start with a relatively large timestep
order to roughly approach the final stationary soluti
then decrease it several times to obtain a more accura
result.

Poisson’s equation is nonlinear because of the
ponential Boltzmann factor appearing in the elect
density. We integrate it by using an iterative meth
combined with centered differences to represent th
second derivative:(
φs+1

j+1 − 2φs+1
j + φs+1

j−1

) − αφs+1
j

(8)= −e�x2

ε0

[
ni,j − n0 exp(eφs

j /kBTe)
] − αφs

j ,

where the subscriptj indicates the grid point, and th
superscripts the iteration step. Notice that, witho
the term proportional toα on both sides ofEq. (8),
this iterative procedure would not be converge
Various tests have shown that the fastest converg
is obtained forα � �x2/λ2

De. The initial guess for
the iterative procedure is taken to be the potentia
the previous timestep. As the potential varies lit
from one timestep to the next, this is rather a go
guess, which allows the method to converge in ab
20 iterations.

3.2. Non-uniform mesh

The model described inSection 2is valid for a
weakly collisional plasma,where the mean-free-pa
is much larger than the Debye length. In this case,
size of the PS, which scalesas the mean-free-path,
much larger than the size of the DS, which is onl
few Debye lengths thick. Furthermore, steep spa
gradients are generally present in the DS, wherea
quantities vary much more smoothly in the PS.

We are therefore confronted with a two-scale pr
lem: a uniform mesh that resolves the DS scale wo
waste a lot of mesh points in the PS. In order to dist
ute mesh points in a more sensible way, we resort
non-uniform grid[8] by introducing the new positio
variablez through the relation

(9)x = zδ, δ > 1.



G. Manfredi, F. Valsaque / Computer Physics Communications 164 (2004) 262–268 265

es

ns,
rlier
n’s

od
for

s-

he
s-

e

he

be

t
As

we
e
al
to
to

ith

ov
w-
ag-
by
lly
help
he
ide
m
lts,
care-

so
red

ed
is

the
the
ori-
er-
of

for

n

by

d
face
e
be

ded
el
f

er
DifferentiatingEq. (9) we obtain:�x = δzδ−1�z. If
the mesh points are regularly spaced in thez variable
(i.e.,�z = const.), then the mesh size in real space�x

will be smaller near the wall (located atx = 0) and
larger further from the wall. This simple trick enabl
us to concentrate mesh points in the DS region.

However, the change of variable defined inEq. (9)
modifies both the Vlasov and Poisson’s equatio
so that the numerical techniques described ea
may need to be modified. The transformed Poisso
equation becomes:

z
d2φ

dz2 + (1− δ)
dφ

dz

(10)

= − e

ε0
δ2z2δ−1[ni(z) − n0 exp

(
eφ(z)/kBTe

)]
.

Eq. (10)can be solved by means of an iterative meth
completely analogous to the one described earlier
the standard Poisson’s equation.

Things are slightly more complex for the tran
formed Vlasov equation, which reads as:

(11)

δzδ−1∂fi

∂t
+ v

∂fi

∂z
− e

mi

∂φ

∂z

∂fi

∂v
= −δzδ−1ν(fi − f0).

Unfortunately, the splitting technique detailed in t
previous paragraph would not work well for the tran
formed Vlasov equation(11). The reason is that, in th
free-streaming term, the effective velocity becomes
v/(δzδ−1), which is position-dependent. Therefore t
shift-like solution described inEq. (5) would not be
correct, and the numerical scheme would have to
significantly modified[9].

Instead, our strategy is to replaceEq. (11)with the
following equation:

(12)
∂fi

∂t
+ v

∂fi

∂z
− e

mi

∂φ

∂z

∂fi

∂v
= −δzδ−1ν(fi − f0).

The point is that bothEqs. (11) and (12)possess
the same stationary solutions, although of course no
necessarily the same time-dependent transient.
we are only interested in the stationary states,
solve Eq. (12), for which the standard Vlasov cod
can be directly applied (indeed only the collision
term is slightly changed, but this is straightforward
implement in the code). In practice, this amounts
solving a Vlasov equation containing a BGK term w
a position-dependent effective collision rateν�(z) =
δzδ−1ν.

4. Simulations of a low-pressure argon plasma

This section illustrates an application of the Vlas
kinetic code described previously. We consider a lo
pressure argon plasma confined in a cylindrical m
netic multipolar device, as studied experimentally
Bachet et al.[10,11]. Their apparatus was especia
designed to measure the ion temperature with the
of a laser induced fluorescence (LIF) diagnostic. T
main interest of a spectroscopy diagnostic is to prov
valuable information without perturbing the mediu
that is being measured. Like all experimental resu
however, spectroscopic measurements need to be
fully assessed and interpreted, and a failure to do
may lead to an incorrect estimation of the measu
quantities.

In the experiment described here[11], LIF mea-
surements near an electrically floating wall yield
values of the ion temperature above 2 eV. This
clearly an overestimation, as the ion temperature in
plasma core is known to be only 0.05 eV, and even
electron temperature does not exceed 2 eV. The
gin of this incorrect measurement of the ion temp
ature is, however, not completely clear. The scope
our simulations is to suggest a physical explanation
such an overestimation[12].

4.1. Experimental setup and simulation model

Bachet and co-workers[11] produced an argo
plasma at 6× 10−4 Torr in a cylindrical vessel, 45 cm
in diameter and 80 cm long, bounded at each end
an electrically floating wall (Fig. 1). By restricting our
study to the region along the cylinder axis (namex
axis hereafter), we can assume that the lateral sur
of the cylinder is sufficiently distant not to influenc
the plasma behavior. In this case, the problem can
reduced to that of a one-dimensional plasma boun
by two walls[3,8]. Due to the symmetry of the vess
(Fig. 1), we can further simplify the geometry o
the problem by considering only half of the cylind
betweenx = 0 (the wall) andx = L = 40 cm (the
plasma core).
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Fig. 1. Geometry of the experimental setup used by Bachet e
[10,11].

Under the conditions of the experiment, the io
ion, the ion–electron, and the ion-neutral mean-fr
paths are respectively:λii ∼ 104 cm, λie ∼ 106 cm,
andλin ∼ 12 cm[11,13]. By comparing these typica
lengths with the size of the cylinder (L = 40 cm),
it is clear that only ion-neutral collisions need
be taken into account. Moreover, asλin = 0.3L, the
ions created in the plasma core undergo only a
collisions before reaching the wall. The plasma
therefore weakly collisional, and it is appropriate
describe the ion dynamics by means of a Vlas
equation(1), supplemented by a BGK collision ter
with the collision frequencyν given byvthi/λin.

As detailed inSection 2, the self-consistent elec
tric potential is computed from Poisson’s equation(2),
where we assume Boltzmann electrons with unifo
temperatureTe = 1.8 eV and core densityne(x =
L) = n0 = 109 cm−3 [11]. We postulate a perfectl
absorbing wall located atx = 0, so that all ions reach
ing the wall are lost. Atx = L, the ion distribution
is kept fixed and equal to that of the plasma co
fi(x = L,v) = f0(v), wheref0 is a Maxwellian with
temperatureTi0 = 0.05 eV and densityni(x = L) =
n0 = 109 cm−3 [11].

Our aim is to compute the stationary solution
Eqs. (1), (2), which is supposed to be unique. As e
plained inSection 2, our procedure is to initialize th
system with a spatially homogeneous initial condit
fi(x, v, t = 0) = f0(v), then let it evolve under the ac
tion of Eqs. (1), (2)until a self-consistent stationar
solution has emerged. The results presented in the
paragraphs refer to the sheath structure for such a
tionary state.

4.2. Sheath structure and ion temperature estimation

Fig. 2 shows the ion and electron density profi
in the left-hand half of the cylinder (seeFig. 1).
The density profiles clearly display two very differe
scales of spatial variation: the Debye lengthλDe =
0.32 mm (computed withn0 and Te) and the ion-
neutral mean-free-pathλin ∼ 12 cm. These scale
define respectively the non-neutral Debye sheath (
and the quasi-neutral presheath (PS). The boun
between the DS and the PS seems to be aroundx = 3–
4 mm. In order to describe correctly this two-sc
problem without using an excessive number point
the spatial direction, we have employed a non-unifo
mesh (as described inSection 3.2). An accurate spatia
an
orm
Fig. 2. Ion and electron density profiles (solid and dashed curves respectively) in the left-hand half of the cylinder. The inset shows
enlargement of the density profiles near the electrically floating wall, located atx = 0. The crosses indicate the mesh points of the non-unif
spatial mesh used in the Vlasov simulation.
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mesh throughout the DS and the PS was obtained
δ = 4 and 400 points.

Due to presence of a significant space charg
strong electric field exists in the DS, which accelerate
the ions towards the wall and creates a shea
their velocity distribution. This is well illustrated b
Fig. 3(a), which shows several cuts of the phase sp
distribution at different positions [in this figure, a
distributionsfi(v) are renormalized so that they ha
the same maximum]. Note that within the DS, the
velocity distribution varies rapidly over a distance o
few millimeters.

Furthermore, even though the ions are Maxwell
in the plasma core, their velocity distributions near
wall are clearly not Maxwellian. This fact points o
that a kinetic model is indeed necessary for an accura
description of the plasma-wall transition, as most fl
models do not take into account any departure from
Maxwellian distribution. For a non-Maxwellian dis
tribution, the temperature is not precisely defined
such situations, most authors[1,4,14] define it as a
quantity proportional to the standard deviation of
distribution:Ti = mi

nikB

∫
(v − 〈v〉)2fi dv (〈v〉 is the av-

erage velocity), which coincides with the thermod
namic temperature for a Maxwellian distribution.

At 10 mm from the wall, it is found that the LIF
and simulation results yield similar values for the i
temperature, respectively 0.24 eV[11] and 0.20 eV.
On the contrary, at 1 mm from the wall, the simulati
result isTi = 0.08 eV, whereas the LIF measureme
is Ti = 2.26 eV [11]. As explained earlier, suc
an exceptionally large value of the ion temperat
obtained by LIF is most probably incorrect for th
type of low-pressure plasma (it is even higher than
electron temperatureTe = 1.8 eV).

Our interpretation of this over-estimation relies
the shearing effect mentioned above.Fig. 3(a)shows
that the velocity distribution profiles vary significant
betweenx = 0 and x = 3 mm from the wall (that
is, within the DS). But the spatial resolution
the LIF diagnostic is of about 6 mm3 [10], which
roughly corresponds to a resolution of 2 mm in o
dimension. Therefore, the LIF measurement at,
example,x = 1 mm from the wall does not provid
the actual shape of the ion distribution, but rather
average (or convolution) of the distribution profil
betweenx = 0 and x = 2 mm. It is obvious from
Fig. 3(a) that such an averaged distribution sho
be considerably wider in velocity space, and th
yield a larger (and overestimated) value of the
temperature.

In order to check the reliability of this interpret
tion, we plot inFig. 3(b)the velocity distribution pro-
files (at different positions) averaged over 2 mm. T
average is performed by convolution with a step fu
tion that has a width of 2 mm. Atx = 1 mm, the av-
eraged velocity profile is much wider than the no
averaged one (Fig. 3(a)). The kinetic temperature de
duced from the averaged velocity distribution is a
proximatelyTi � 0.8 eV, which is ten times large
than the simulated ion temperature from the raw d
tribution, but still smaller than the experimental val
Ti = 2.26 eV[11]. However, the temperature given
Ref. [11] was not computed with the simple formu
me
(a) (b)

Fig. 3. Profiles of the ion velocity distributionfi(v) at different positions. All profiles have been normalized so that they have the sa
maximum. (a) Raw distributions from the Vlasovsimulation; (b) averaged distributions.
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given in the previous paragraph (standard deviatio
the velocity distribution), but rather using a more co
plex model due to Emmert et al.[8]. A direct compar-
ison of the temperatures is thus not meaningful.
comparing the experimental profile[11] with the nu-
merical profile (after convolution) shows a remarka
agreement, both in the shape and in the width of
distributions. This agreement indicates that the ov
estimated LIF temperature is indeed due to the sp
variation of the ion distribution in the DS, which o
curs on a scale shorter than the resolution of the d
nostic.

At 10 mm from the wall (which is beyond th
DS and well into the PS), the averaging proced
leaves the velocity distribution virtually unaffecte
(see Figs. 3(a) and 3(b)). This is because the io
distribution varies much more smoothly in the PS,
that the finite resolution of the diagnostic does
affect the measurement.

In summary, we have shown that ion temperat
measurements obtained from LIF diagnostics are
accurate in the DS, because the typical length of s
tial variations (the Debye length,λDe � 0.32 mm) is
in this case smaller than the resolution of the diagn
tic, which is approximately 2 mm. This problem do
not exist in the PS, where spatial variations of the
distribution function are much smoother.

5. Conclusion

We have presented a one-dimensional Vlas
Poisson model for the treatment of weakly collision
plasmas. The Vlasov equation is supplemented b
BGK collision term, so that the model is capable
describing the entire plasma-wall transition, includ
both the Debye sheath and the presheath. Altho
simple, this model has already been shown to be
propriate to describe the interaction of a probe (reta
ing field analyzer) with a strongly magnetized plas
in a tokamak edge[2]. In the present work, the BGK
term models ion-neutral collisions and ionization in
low-pressure argon plasma. The Vlasov Eulerian c
used to solve the kinetic equation allowed us to ob
fine-resolution results for the ion distribution functio
from which accurate estimations of the ion tempe
ture could be inferred. These were compared to
experimental results of Ref.[11], which displayed ab
normally large values of the ion temperature near
electrically floating wall. Our analysis of the ion distr
bution function enabled us to detect the origin of su
overestimated temperature measurements, which a
due to the rapid ion acceleration in the Debye shea
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