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Abstract We review different approaches to the modeling and numerical simulation
of the nonlinear electron dynamics in metallic and semiconductor nanostructures.
Depending on the required degree of sophistication, such models go from the full
N-body dynamics (configuration interaction), to mean-field approaches such as the
time-dependent Hartree equations, down to macroscopic models based on hydro-
dynamic equations. The time-dependent density functional theory and the local-
density approximation — which have become immensely popular during the last two
decades — can be understood as an upgrade of the Hartree approach allowing one to
include, at least approximately, some effects that go beyond the mean-field. Alter-
native methods, based on Wigner’s phase-space representation of quantum mechan-
ics, are also described. Wigner’s approach has the advantage of permitting a more
straightforward comparison between semiclassical and fully quantum results. As an
illustrative example, the many-electron dynamics in a semiconductor quantum well
is studied numerically, using both a mean-field approach (Wigner—Poisson system)
and a quantum hydrodynamical model. Finally, the above methods are extended
to include the spin degrees of freedom of the electrons. The local-spin-density

G. Manfredi ()
Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, BP 43, F-67034
Strasbourg, France, giovanni.manfredi@ipcms.u-strasbg. fr

P.-A. Hervieux
Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, BP 43, F-67034
Strasbourg, France

Y. Yin
Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, BP 43, F-67034
Strasbourg, France

N. Crouseilles
Institut de Recherche en Mathématiques Avancées UdS, Strasbourg, France,
crouseil@math.u-strasbg.fr

Manfredi, G. et al.: Collective Electron Dynamics in Metallic and Semiconductor
Nanostructures. Lect. Notes Phys. 795, 1-44 (2010)
DOI 10.1007/978-3-642-04650-6_1 (© Springer-Verlag Berlin Heidelberg 2010



2 G. Manfredi et al.

approximation is used to investigate the linear electron response in metallic nanos-
tructures. The modeling of nonlinear spin effects is sketched within the framework
of Wigner’s phase-space dynamics.

1 Introduction

Understanding the electron dynamics and transport in metallic and semiconduc-
tor nanostructures — such as metallic nanoparticles, thin films, quantum wells, and
quantum dots — represents a considerable challenge for today’s condensed matter
physics, both fundamental and applied.

Experimentally, thanks to the recent development of ultrafast spectroscopy tech-
niques, it is now possible to monitor the femtosecond dynamics of an electron gas
confined in metallic nanostructures such as thin films [1-8], nanotubes [9], metal
clusters [10, 11], and nanoparticles [6, 7, 12, 13]. Therefore, meaningful com-
parisons between experimental measurements and numerical simulations based on
microscopic theories are becoming possible.

The dynamics of an electron gas confined in a metallic nanostructure is charac-
terized by the presence of collective oscillations (surface plasmon) whose spectral
properties depend on several conditions of temperature, density, and coupling to the
environment. At lowest order, the linear response of the electron gas is simply given
by the plasma frequency w, = (e’n/mep)!/? (up to a dimensionless geometrical
factor) and does not depend on the temperature or the size of the nano-object.
The plasma frequency represents the typical oscillation frequency for electrons
immersed in a neutralizing background of positive ions, which is supposed to be
motionless because of the large ion mass. The oscillations arise from the fact that,
when some electrons are displaced (thus creating a net positive charge), the resulting
Coulomb force tends to pull back the electrons toward the excess positive charge.
Due to their inertia, the electrons will not simply replenish the positive region, but
travel further away, thus re-creating an excess positive charge. This effect gives
rise to coherent oscillations at the plasma frequency. Notice that, for a metallic
nanostructure, the inverse plasma frequency is typically of the order of the femto-
second — this coherent regime can therefore be explored with the ultrafast spec-
troscopy techniques developed in the last two decades.

The coherence of such collective motions is progressively destroyed by Lan-
dau damping (i.e., by coupling to the internal degrees of freedom of the electron
gas) and by electron—electron or electron—phonon collisions. The damping of the
plasmon was observed experimentally in gold nanoparticles [14] and was studied
theoretically in several works [15-17].

Although the linear response of the surface plasmon has been known for a
long time, fully nonlinear studies have only been performed in the last decade
and have revealed some interesting features. Our own contribution to this research
area has mainly focused on the nonlinear electron dynamics in thin metal films,
where the emergence of ballistic low-frequency oscillations has been pointed out
[18-20].
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On the other hand, the same type of collective electron motion is also observed in
semiconductor nanostructures, such as quantum wells and quantum dots. Although
the spatial and temporal scales differ by several order of magnitudes with respect to
metallic nanostructures (due to the large difference in the electron density), the rel-
evant dimensionless parameters take similar values in both cases [21]. For instance,
the effective Wigner—Seitz radius is of order unity for both metallic and semiconduc-
tor nano-objects. Therefore, the electron dynamics can be investigated using similar
models and both types of nano-objects are expected to share a number of similar
dynamical properties.

In this review article, we will describe the collective electron dynamics in
metallic and semiconductor nanostructures using different, but complementary,
approaches. For small excitations (linear regime), the spectral properties can be
investigated via quantum mean-field models of the TDLDA type (time-dependent
local-density approximation), generalized to account for a finite electron tempera-
ture. In order to explore the nonlinear regime (strong excitations), we will adopt
a phase-space approach that relies on the resolution of kinetic equations in the
classical phase-space (Vlasov and Wigner equations). The phase-space approach
provides a useful link between the classical and quantum dynamics and is well
suited to model effects beyond the mean-field approximation (electron—electron
and electron—phonon collisions). We will also develop a quantum hydrodynamic
model based on velocity moments of the corresponding Wigner distribution func-
tion: this approach should lead to considerable gains in computing time in compar-
ison with simulations based on conventional methods, such as density functional
theory (DFT).

The above studies all refer to the charge dynamics in a semiconductor or metallic
nanostructure, which has been intensively studied in the last three decades. In more
recent years, there has been a surge of interest in the spin dynamics of the carriers,
mainly for possible applications to the emerging field of quantum computing [22]. A
promising approach to the development of a quantum computer relies on small semi-
conductor devices, such as quantum dots and quantum wells [23]. To implement
basic qubit operations, most proposed schemes make use of the electron spin states,
so that a thorough understanding of the spin dynamics is a necessary prerequisite.
Nevertheless, in order to manipulate the electrons themselves, one must necessar-
ily resort to electromagnetic fields, which in turn excite the Coulomb mean-field
[24, 25]. The charge and spin dynamics are therefore closely intertwined and both
must be taken into account for a realistic modeling of semiconductor-based qubit
operations.

The ultrafast magnetization (spin) dynamics in ferromagnetic nanostructures
has also attracted considerable experimental attention in the last decade. Pioneer-
ing experiments [26-28] on ferromagnetic thin films revealed that the magneti-
zation experiences a rapid drop (on a femtosecond timescale) when the films are
irradiated with an ultrafast laser pulse, after which it slowly regains its original
value on a timescale close to that of the electron—phonon coupling. Despite many
attempts [26-30], a clear theoretical explanation for these effects is still lacking.
Here, we will illustrate how this problem can be addressed using some of the
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techniques developed for the electron dynamics, particularly quantum mean-field
and phase-space methods, which will be generalized to include the spin degrees of
freedom.

2 Models for the Electron Dynamics

Metallic and semiconductor nano-objects operate in very different regimes, as the
electron density is several orders of magnitudes larger for the former. Consequently,
the typical time, space, and energy scales can be very different, as illustrated in
Table 1. However, if one takes into account the effective electron mass and dielectric
constant, the relevant dimensionless parameters turn out to be rather similar [21]:
for instance, from Table 1 we see immediately that the ratio of the screening length
(Lscreen = Vp/wp, where v is the Fermi velocity) to the effective Bohr radius
ag = 4mweh®/me? is of order unity. The same happens for the ratio of the plasmon
energy hw, to the Fermi energy E, so that the normalized Wigner-Seitz radius r;
is also of order unity for both cases.!

It is therefore not surprising that the electron dynamics of both types of nanos-
tructures can be described by means of similar models. A bird’s-eye view of the var-
ious relevant models is provided in Fig. 1. The diagram represents the various levels
of modeling for the electron dynamics, both quantum (left column, dark gray) and
classical (right column, light gray). The highest level of description is the N-body
model, which involves the resolution of the N-particle Schrodinger equation in the
quantum regime, or the N-particle Liouville equation for classical problems (the

Table 1 Typical time, space, and energy scales for metallic and semiconductor nanostructures

Metal film Quantum well
ne 10%m~3 102?m~3
m m, my >~ 0.07m,
e £0 e >~ 12¢
L ereen 1A 100 A
), 1fs 1 ps
Er leV 1 meV
Tr 10* K 10K
ap 0.529 A 100 A
att 5 A 5 A
ry/ap 5 3

I For a quantum well, all relevant lengths far exceed the semiconductor lattice spacing ap,y =~
5 A. This makes semiconductor systems a much better approximation to jellium (i.e., a continuum
ionic density profile) than simple metals, for which the lattice spacing is comparable to the other
electronic lengths.
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Fig. 1 Bird’s-eye view of the models used to describe the electron dynamics. From top to bottom:
N-body, mean-field, and macroscopic (hydrodynamic) theory. Left column (dark gray): quan-
tum models; right column (light gray): classical models. Notation: X = exchange; xc = exchange
and correlations; Ap = Debye length (classical screening length); Ly = Thomas—Fermi screening
length; k = typical wavevector; BBGKY = Bogoliubov, Born, Green, Kirkwood, Yvon hierarchy

latter is of course equivalent to Newton’s equations of motion). This is a difficult
task even classically, although molecular dynamics simulations that solve the exact
N-body problem can nowadays attain a considerable level of sophistication. For
Newton’s equations with two-body interactions, the numerical complexity grows at
most as N2, and in some cases this can be reduced to a logarithmic dependence.
Quantum mechanically, the N-body problem is virtually unmanageable, except for
very small systems, because the size of the relevant Hilbert space grows exponen-
tially with N. Nevertheless, exact simulations of the N-body Schrodinger equation
can be performed using the so-called configuration interaction (CI) method. We have
used this approach to study the exact electron dynamics in semiconductor quantum
dots containing up to four electrons.

For larger systems, some rather drastic approximations need to be made if we
want to end up with a mathematically and numerically tractable model. Most such
reduced models are improvements on the so-called “mean-field approximation,”
which states that the motion of a single electron is determined by the positions
and velocities of all other particles in the system. Such collective behavior is pos-
sible because of the long-range nature of electromagnetic forces. The mean-field
approach can be viewed as a zeroth-order approximation to the N-body problem
in which two-body (and higher order) correlations between the particles have been
neglected. Classically, this procedure is known as the BBGKY hierarchy (from the
names of Bogoliubov, Born, Green, Kirkwood, and Yvon) [31].

For classical systems of charged particles (plasmas), the mean-field dynamics is
governed by the Vlasov equation, which describes the evolution of a one-particle
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probability density in the phase-space. The quantum analog of the Vlasov equation
is provided by the time-dependent Hartree equations, which are actually one-body
Schrodinger equations evolving in the mean-field potential. In both cases, the mean-
field is obtained by solving Maxwell’s equations, often reduced, in the electrostatic
limit, to the sole Poisson’s equation.

In this review, we concentrate on quantum-mechanical models. Several improve-
ments have been proposed to the Hartree equations (which were derived in 1927,
just 1 year after Schrodinger’s seminal paper on the wave equation), most notably
Fock’s correction (1930). Indeed, the Hartree method does not respect the principle
of antisymmetry of the wave function, although it does use the Pauli exclusion prin-
ciple in its less stringent formulation, forbidding the presence of two electrons in
the same quantum state. The Hartree—Fock equations respect the antisymmetry of
the wave functions, thus leading to an extra interaction term between the electrons,
termed the “exchange interaction.”

A particularly successful extension of the mean-field approach is the density
functional theory (DFT), which was developed by Hohenberg, Kohn, and Sham in
the mid 1960s [32, 33]. Originally developed for the ground state at zero temper-
ature, it has subsequently been extended to finite temperature and time-dependent
problems. As its name suggests, DFT states that all the properties of a many-electron
systems are determined by the electron spatial density, rather than by the wave
functions. DFT allows one to introduce in the mean-field formalism effects that go
beyond the strict mean-field approximation, particularly the exchange interaction
described above. Indeed, DFT can deal with higher order correlations between the
electrons, in principle exactly if the exact density functional were known. In prac-
tice, one has to make an educated guess for the appropriate correlation functional,
which leads to various empirical approximations. Nevertheless, DFT has proven
immensely useful for a wide range of electronic structure calculations.

The Hartree equations can be equivalently recast in a phase-space formalism
by making use of the Wigner transformation, which was introduced by E. Wigner
in 1932 [34]. The resulting Wigner function is a pseudo probability distribution,
which can be used to compute expectation values just like its classical counterpart.
Unfortunately, the Wigner function can take negative values, which precludes the
possibility of interpreting it as a true probability density.

By taking velocity moments of the Wigner equation — and using some appro-
priate closure hypotheses — one can derive a set of quantum hydrodynamical (or
fluid) equations that govern the evolution of macroscopic quantities such as the
particle density, average velocity, pressure, and heat flux. Compared to the Wigner
approach, the hydrodynamical one is obviously numerically advantageous, as it
requires the resolution of a small number of equations in real (not phase) space.
Generally speaking, hydrodynamical methods yield accurate results over distances
that are larger than the typical electrostatic screening length, which is the Debye
length Ap = (kgT,e/e’*n)!/? for classical plasmas and the Thomas—Fermi screening
length Lr = vr/w, for degenerate electron gases (see Table 1).

In the following subsections, we shall present a brief overview of most of the
quantum models introduced in Fig. 1.



Collective Electron Dynamics 7

2.1 Exact N-body Simulations: The Configuration
Interaction (CI) Method

2.1.1 Method

In the Hartree—Fock model (HF), the many-body wave function is approximated by a
single Slater determinant leading to a correlation between electrons having the same
spin. However, electrons of different spin are not correlated in this approximation.
This is why the difference between the exact value of the energy and the HF value
is called the correlation energy. There are a number of quantum chemistry methods,
which attempt to improve the description of the many-body wave function. The most
important one is the so-called configuration interaction method (CI) [35] which is
based on the minimization of the energy with respect to the expansion coefficients
of a trial many-body wave function expressed as a linear combination of Slater
determinants. With respect to the models based on density functional methods, the
drawback of the CI method is its unfavorable scaling with the system size. Indeed,
the dimension of a full CI calculation grows factorially with the number of electrons
and basis functions.

From the above considerations, it is clear that CI calculations are restricted to
confined systems with very few electrons (typically less than 10). In quantum chem-
istry, the “basis set” usually refers to the set of (nonorthogonal) one-particle func-
tions used to build molecular orbitals. Concerning the computational methodology
for confined electron systems (atoms, molecules, clusters, nanoparticles, quantum
dots...) localized basis sets are the traditional choice and the most common type
of basis functions is the Gaussian functions. It is worth noticing that, from the
knowledge of the exact many-body wave-function, one can in principle (i) compute
the temporal evolution of the system, including the dynamical correlations and (ii)
obtain the true excited states of the system.

In the following, an application of the CI method in the field of semiconductor
nanostructures and quantum dots is presented.

2.1.2 Application

Recent progress in semiconductors technology allows the realization of quantum
systems composed of a small number of electrons (even a single electron!) confined
in nanometer-scale potential wells. These systems, which provide highly tunable
structures for trapping and manipulating individual electrons, are often named arti-
ficial atoms or quantum dots and are good candidates for the emerging technol-
ogy of quantum computing. They have certain similarities with atoms in the sense
that they have a discrete electronic structure that follows the well-known Hund’s
rule of atomic physics. However, in quantum dots the electrons are generally con-
fined by harmonic or quasi-harmonic potentials, whereas atoms are characterized
by Coulomb confinement potentials. The spectral properties of quantum dots are
exotic with respect to the properties of atoms in the sense that most of the oscillator
strength is concentrated almost exclusively on one dipolar transition. This property
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is a direct consequence of Kohn’s theorem (KT) and does not depend on the number
of electrons, the strength of the confinement, or the electron—electron interaction
[36].

In a recent work [37], we have investigated quasi-two-dimensional Gaussian
quantum dots containing up to four electrons within the framework of the CI method
which allows in principle an exact treatment of the many-electron system. The
Schrodinger equation for N-electrons confined by a potential V., is given by

HY(1,...,N)=EWY(, ..., N), (1)

where (1, ..., N) represents the space [r; = (x;, y;, z;)] and spin coordinates of the
electrons and

N

N h2
zlg_ﬁv’g 12:4718”' ) +va(r) )

i=1

The confinement is modeled by an external one-particle anisotropic Gaussian
potential given by

Vext(Ti) = =D exp[ y(x + y; )] + m2w2z2 3)

It is worth noticing that for sufficiently large values of w, the electrons of the
system are strongly compressed along the z direction. Therefore, in this situation,
the system can be regarded as a quantum system confined by a two-dimensional
Gaussian-type potential, i.e., as a quasi-two-dimensional Gaussian quantum dot.
Since a Gaussian potential can be approximated close to its minimum by an har-
monic potential, the potential of Eq. (3) is suitable for the modeling of anharmonic
quantum dots. The anharmonicity of the confinement can be characterized by the
depth of the Gaussian potential D and by the quantity w = /2Dy /m. Thus, when
D is much larger than hw the Gaussian potential has many bound states and the
potential curve follows closely the harmonic oscillator potential leading to a small
anharmonicity of the system. On the other hand, when D is slightly larger than hw
the Gaussian potential has only few bound states and, therefore, deviates strongly
from the harmonic potential leading to a large anharmonicity. Also, a large (small)
value of w corresponds to a strong (weak) confinement with respect to the electron—
electron interaction.

The wave function is approximated by a linear combination of Cartesian
anisotropic Gaussian-Type Orbitals (c-aniGTO) [38, 39]. A c-aniGTO centered at
(bx, by, b;) is defined as

X*E(r b) = Xy, 2 exp(=Guxy, — &y, = e2p) s @)

where x,, = (x — b,) etc... Following the quantum chemical convention the orbitals
are classified as s-type and p-type, for | = a, +a, +a; = 0, 1, ..., respectively
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(this sum controls the value of the orbital angular momentum). The (b,, by, b;)
parameters have been chosen to coincide with the center of the confining potential.
This type of basis sets was found to be the most suitable one for expanding the
eigenfunctions of an electron in an anisotropic harmonic oscillator potential. The
calculations have been performed using the OpenMol Program.?

Energy spectra and oscillator strengths have been calculated for different strength
of confinement w and potential depth D. The effect of the electron—electron inter-
action on the distribution of oscillator strengths and the breakdown of the KT has
been examined by focusing on the results with the same value of D/hw, i.e., with
the same anharmonicity.

A substantial red-shift has been observed for the dipole transitions correspond-
ing to the excitation into the center-of-mass mode. The oscillator strengths, which
are concentrated exclusively in the center-of-mass excitation in the harmonic limit,
are distributed among the near-lying transitions as a result of the breakdown of the
Kohn’s theorem. The distribution of the oscillator strengths is limited to the transi-
tions located in the lower energy region when w is large (i.e., for strongly confined
electrons) but it extends toward the higher energy region when w becomes small
(i.e., for weakly confined electrons).

The analysis of the CI wave functions shows that all states can be classified
according to the polyad quantum number v, [37]. The distribution of the oscilla-
tor strengths for large @ occurs among transitions involving excited states with the
same value of v, as the center-of-mass excited state, v, ., While it occurs among
transitions involving the excited states with v, = v, ¢, and v, = vp o for
small w.

2.2 Time-Dependent Density Functional Theory (TDDFT)
and the Local-Density Approximation (LDA)

Time-dependent density functional theory (TDDFT) extends the basic ideas of
static density functional theory (DFT) to the more general situation of systems
under the influence of time-dependent external fields. This dynamical approach
relies on the electron density n(r, t) rather than on the many-body wave function
Y(ry, ra, ..., 7N, t) of the system. In fact, the central theorem of the TDDFT is
the Runge—Gross theorem [40—42] which tells us that all observables are uniquely
determined by the density.

From the computational point of view, with respect to the resolution of the time-
dependent Schrodinger equation (TDSE) of an N-electron system, the complexity is
strongly reduced when using TDDFT. Indeed, the wave function depends on 3N + 1
variables (rp, 73, ..., Tn, t) while the density depends only on 4 variables (7, t).
This is one of the reasons why this method has become so popular. A practical

2 see http://www.csc.fi/gopenmol
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scheme for computing n(r, ) is provided by the Kohn—Sham (KS) formulation of
the TDDFT [32, 33]. In the latter, noninteracting electrons are moving in an effective
local potential constructed in such a way that the KS density is the same as the
one of the interacting electron system. The advantage of this formulation lies in
its computational simplicity compared to other quantum chemical methods such as
time-dependent Hartree—Fock or configuration interaction. The KS equations read
as

] h?
ih—i(r, 1) = (——v2 + Vesr(r, t)) di(r, 1), (5)
t 2m

with the KS density

n(r.0) =Y fil(r, 0, 6)

k=1

where f; denotes the occupation numbers of the ground state, and
Vert(7, 1) = Vexl(r, 1) + Vg (7, 1) + Vie(r, 1) . (7

In the above expression the first term is the external potential (ionic potential,
laser field...), the second is the Hartree potential, which is a solution of the Poisson’s
equation, and the last term is the exchange—correlation potential.

The most popular choice for V. is the so-called adiabatic local-density approxi-
mation (ALDA) given by

d
VXC(r7 t) = d_l’l [nGXC(n)]nzn(r,t) ’ (8)

where €4.(n) is the exchange—correlation energy density for an homogeneous elec-
tron gas of density n. In this approach, the same functional used to calculate the
properties of the ground state is employed in the dynamical simulations.

The validity of the local approximation has been discussed in many papers and
textbooks [43]. This approximation works remarkably well for inhomogeneous elec-
tron systems. In contrast, the validity of the adiabatic approximation has been less
thoroughly analyzed. Generally speaking, this approach is expected to hold for
finite systems and for processes that evolve very slowly in time. The situation in
bulk solids is more controversial since significant deficiencies in the description
of absorption spectra have been noticed [44]. It was shown by Dobson [45] that
ALDA fulfils the Kohn theorem when applied to a system of interacting electrons
confined in an external parabolic potential. This theorem guarantees the existence of
a collective state at the same frequency as the harmonic potential. It corresponds to
arigid oscillation of the many-body wave function around the center of the external
potential.
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Only a few attempts have been made to go beyond ALDA. To date, the most
important ones are the work of Gross and Kohn [46] and that of Vignale and Kohn
[47], the latter being the most promising in particular for studying electron relax-
ation phenomena [48]. Contrarily to ALDA, the approach of Gross and Kohn, which
uses a frequency-dependent parametrization of the exchange—correlation kernel (see
below), does not fulfil the Kohn theorem [52, 45]. This problem was further investi-
gated by Vignale and Kohn [47], who proposed a new theory based on the so-called
current density functional theory (CDFT). This model is described in detail in [49].
CDFT was originally derived by Vignale and Rasolt [50] to describe, within the
framework of DFT, situations where strong magnetic fields and orbital currents can-
not be ignored.

Few works have been devoted to the study of the nonlinear electron dynamics in
finite metallic systems exposed to strong external fields. Indeed, the resolution of
the time-dependent Kohn—Sham equations (5) is a very difficult task particularly for
3D systems. Some pioneering work on free simple metal clusters was performed by
E. Suraud in Toulouse and P.-G. Reinhard in Erlangen [51]. More recently, Gervais
et al. [52] have investigated the same problem in 3D geometry using a spherical basis
expansion technique. This approach is restricted to small metal clusters. The inter-
action of strong femtosecond laser pulses with a Cgy molecule (which possesses 240
delocalized electrons and can therefore be considered as a metallic nano-object [53])
has been investigated in [54] by employing a TDDFT approach. Still concerning the
fullerene molecule, Cormier et al. [55] studied multiphoton absorption processes by
solving numerically the associated time-dependent Schrodinger equation (TDSE)
in the single active electron (SAE) approximation. This approximation consists in
solving the equations (5) by using, instead of the time-dependent effective potential
Verr(r, t) given in Eq. (7), the static effective potential of the ground state together
with the time-dependent electric potential of the laser.

Let us now examine the linear regime, which has received much wider attention
in the past.

Under the condition that the external field is weak, the simplest way to imple-
ment TDDFT is to work within the framework of the linear response theory. This
approximation was first introduced by Zangwill and Soven [56] in the context of
atomic physics for the study of photoionization in rare gases. Subsequently, this
formalism has been successfully extended to the study of more and more complex
electron systems: molecules [57], simple metal clusters [58], noble metal clusters
[59], thin metal films [60], quantum dots [61], and condensed phase systems [44].

To date, in the field of nanoparticle physics, most applications of the time-
dependent Kohn—Sham formalism have been performed at zero electron temper-
ature. In order to interpret time-resolved pump-probe experiments carried out on
noble metal nanoparticles, we have recently extended this approach to finite tem-
perature. In the following we provide a brief overview of the model with the basic
equations.
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2.2.1 Ground State

The electron gas is assumed to be at thermal equilibrium with temperature 7,. In
the Kohn—Sham formulation of the density functional theory at finite temperature
within the grand-canonical ensemble [62—65], the ground-state electron density n of
an N-electron system is written, in terms of single-particle orbitals ¢; and energies
&i, as

n(r) =" fim(r) =" fi loe(r)I, ©)
k=1

k=1

where f; = [1 +exp {(ex — )/ kp Te}]71 are the Fermi occupation numbers and u
is the chemical potential. These orbitals and energies obey the Schrodinger equation

hz
|:——V2 + Veff(?“)] ¢i(r) = ei¢i(r) , (10)
2m
where Vii(7) is an effective single-particle potential given by

Vett(1) = Vexe(7) + Va (1) + Vie(T) 1D

where V() is an external potential (e.g., due to the ionic background), Vg (r) is
the Hartree potential solution of Poisson’s equation, and Vi.(r) is the exchange—
correlation potential defined by

d
Vie(r) = E [nwxc(n)]nzn(r) > (12)

where Q,.(n) = f n(r) wx.(n(r)) dr is the exchange—correlation thermody-
namic potential [66]. The temperature appears in the self-consistent procedure
only through the occupation numbers and the exchange—correlation thermodynamic
potential.

For low temperature (i.e., T, < Tr[n(r)] where Tr[n(r)] = 2’228 (37%n(r))
is the local Fermi temperature), wy.(n) may be safely replaced by its value at 7, = 0,
i.e., by €x.(n). The chemical potential is determined self-consistently by requiring

the conservation of the total number of electrons from Eq. (9) [67, 68].

2/3

2.2.2 Excited States

In the usual first-order TDLDA at 7, = 0 in the frequency domain, the induced elec-
tron density én(r; ) is related to § Ve (7'; @), the Fourier transform (with respect
to time) of the external time-dependent potential (generated, for instance, by the
electric field of a laser beam), via the relation [56, 58, 69]
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Sn(r;w) = / x(r, ' 0) Ve (r'; ) dr’, (13)

where x (7, ’; w) is the retarded density correlation function or the dynamic response
function. It is possible to rewrite the induced density as

Sn(r; w) = / x(r, v’ ) SV (r'; w) dr, (14)
with
&? Sn(r';w)
§Veri(r; ) = 8 Vexd(r; 0) + dr
dmeg J |r— 7|
+ [ Sttt ar (1)

where the function fy.(7, 7’; ) is the Fourier transform of the time-dependent ker-
nel defined by fio(r, t;7/,t") = 8Vye(r,1)/8n(r',t') and x°(r, r’; w) is the non-
interacting retarded density correlation function. From Eqgs. (13)—(15) we see that
x° and y are related by an integral equation (Dyson-type equation)

x(r, o) = °(r, 7 0) + / f x0(r, s w)

x K@, " 0) x(r", ' 0)dr’dr”, (16)

with the residual interaction defined by

2

e
K(r,rio)= p + fe(r, 7 0). (17

In the adiabatic local-density approximation (ALDA) the exchange—correlation
kernel is frequency-independent and local and reduces to [56, 69]

/ d /
Fre(r, 1) = — Ve 8 (r—7). (18)

It should be mentioned that the functional, V. in the above equation is the same
as the one used in the calculation of the ground state [see Eq. (12)]. For spin-
saturated electronic systems, we have
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1 (M)} ()b ()

0 / 0 0
x(r,rio)=2 ;= -
jZk [f] fk] hw—(é‘k—é‘j)‘f'ln

=Y G (u(r) Go(r, v's e + how) +
k

occ

Z¢k<r>¢k<r>6 (r. ;e — ho), (19)

where ¢ (7) and g, are the one-electron Kohn—Sham wave functions and energies,
respectively. G is the one-particle retarded Green’s function and fk0 are the Fermi
occupation numbers at 7, = 0 K (0 or 1). All the above quantities are obtained
with the procedure described in the preceding subsection with f; = fk in Eq. (9).
In order to produce numerically tractable results, we have added a small imaginary
part to the probe frequency, so that w — w + i8 with n = hd.

At finite electron temperature, the grand-canonical non-interacting retarded den-
sity correlation function reads [70]

1 1
0 ooy
x(r,rwT,) = Z_G;V:CXP{_R[E"(N)_NM]}

X xon(r. T L), (20)

where Z is the grand-canonical partition function
Z = Zexp {—— [E(N) — Nu]} 1)

with E,(N) the energy of the state |n/N) having N electrons, i the chemical poten-
tial and

(nN [A(r)|mN) (mN |a(r)|nN)
hw = (En(N) — En(N)) +in
(nN |a(r)| mN) (mN |a(r)|nN)

— —. (22)
hw + (E(N) — E,(N)) +in

Xon(r i T) ="
m

In the above expression 7i(r) is the particle density operator defined from the
wave field operators by

ar) = ¥t (rv(r), (23)

with J(r) = 3, 4} ¢f(r) and Y/(r) = 3, & ¢i(r). By using standard field
theory techniques it is possible to show that



Collective Electron Dynamics 15

K o T) =Y fi gi(rge(r) Go(r, ' + hos To)
k

+ ) i te(MGi(r) GL(r, e — hey T,), (24)
k

where f; = [1 +exp {(ex — )/ kg Te}]_l. So far, we have assumed that the residual
interaction (17) is temperature independent. This assumption is consistent with the
use of wyc(1) = €x.(n) in the calculation of the ground-state properties. Therefore,
as for T, = 0, the response function is solution of the Dyson equation (16) with x°
given by Eq. (24).

The above formalism can be employed to compute the photoabsorption by a
metallic nanoparticle of size R. If the wavelength A of the incoming light is such that
A > R the dipolar approximation is valid. From the frequency-dependent dipole
polarizability

(%4 (a); Te) = / 8”("'; w; Te) 5Ve}ct(r; a)) dr, (25)
one obtains the dipolar absorption cross-section [71]
w
o(w;T,) = — Im[a (o T¢)]. (26)
&oC

As for the zero temperature case, the dipolar absorption cross-section fulfils the
well-known Thomas—Reiche—Kuhn (TRK) sum rule

2
/G(w; Tydo = =N 27)
Cc

2.2.3 Application to Femtosecond Spectroscopy

Ultrafast spectroscopy using femtosecond laser pulses is a well-suited technique
to study the electronic energy relaxation mechanisms in metallic nanoparticles (see
[6, 12] and references therein). The experiments have been carried out with nanopar-
ticles of noble metals containing several thousand atoms and embedded in a trans-
parent matrix. By using a time-resolved pump-probe configuration it is possible to
have access to the spectral and temporal dependence of the differential transmis-
sion %(r, w), defined as the normalized difference between the probe pulse with
and without the pump pulse. This quantity contains the information on the electron
dynamics, which is measured as a function of the pump-probe time delay t and of
the laser frequency w.

For pump-probe delays longer than a few hundred femtoseconds, the thermal-
ization of the electrons is achieved, thus leading to an increase of the electron
temperature of several hundred degrees. However, the electronic distribution is not
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in thermal equilibrium with the lattice, the thermal relaxation to the lattice being
achieved in a few picoseconds via electron—phonon scattering. The energy exchange
between the electrons and the lattice can be described by the two temperature model
leading to a time-dependent electron temperature 7,(t) [72, 73]

aT,

e? = _G(Te - Tt) + P(l),

i _Ga - (28)
i a1 = e i)s

where P(t) represents the laser source term, C; (C,) is the lattice (electron) heat
capacity, and G is the electron—lattice coupling factor. In this simplified model,
the two temperatures are assumed to be spatially uniform and therefore the heat
propagation is neglected.

Provided that the relative changes of the dielectric function with respect to a
non-perturbed system are weak (linear regime) and that they are only due to a
modification of the electron temperature, one may identify the spectral dependence
of the differential transmission measured for a given time delay as the difference
of the linear absorption cross-sections evaluated at different electron temperatures.
More precisely, the differential transmission is expressed as

AL (¢ ) = LD A2 TITOL 01 5, (29)
r T[T.(0), w]
= 52 [0 @ T0) — o (@ ()], (30)

where [ = 2R is the sample thickness (here, the diameter of the nanoparticle),
T[T,(t), w]and T[T,(0), w] are the probe transmissions in the presence and absence
of the pump, respectively, and A& is the pump-induced absorption change. Obvi-
ously T'[7,(0), w] corresponds to an absorption at room temperature 7,(0) = 300
K for the conditions where the pump-probe experiments have been performed. We
have computed the optical spectrum of a closed-shell nanoparticle Ag,g9g embedded
in a transparent matrix (alumina ¢,, = 1.5) for three values of the temperature. The
diameter of the nanoparticle is 4.6 nm and the photon energy ranges from 2.2 eV
to the interband threshold energy at 3.8 eV, i.e., in the spectral region associated
to the surface plasmon of Ag nanoparticles. All these values correspond to typical
experimental conditions performed in our group [6]. The results are presented in
Fig. 2. The calculated oscillator strength is 90%. Indeed, due to the presence of the
surface plasmon resonance, almost all the oscillator strength is concentrated in this
energy range. A clear red-shift and broadening of the resonance as a function of the
electron temperature is observed.

In the left panel of Fig. 3, the predictions of the normalized differential trans-
mission [Eq. (30)] are presented as a function of the photon energy of the probe.
The comparison is made for two electron temperatures 7, = 600 K and 7, = 1200
K. The asymmetric shape of AT /T around the resonance energy is related to a
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Fig. 2 TDLDA
photoabsorption cross-section 10¢
(in atomic units) of Agygog
encapsulated in a transparent
matrix (e,, = 1.5)as a
function of the photon
energy. Solid line: T, = 0 K;
dashed line: T, = 300 K;
dotted line: T, = 1200 K

cross-section (103 au)
N

2.4 2.8 32 3.6
photon energy (eV)

combination of a red-shift and a broadening of the surface plasmon resonance.
In the right panel of Fig. 3 the experimental spectrum of the normalized AT/ T
obtained for a pump-probe delay of T = 2ps is depicted. The pump pulse is set at
400 nm (second harmonic of a titanium sapphire laser amplified at 5 kHz) and the
probe comes from a continuum generated in a sapphire crystal with the fundamental
frequency of the amplified laser [6].

The asymmetric spectral shape of the differential transmission spectrum in
Fig. 3, which is related to the shift and broadening of the plasmon, may have several
origins. As pointed out in [6, 12, 74], the interband transition induces a modifica-
tion of the real part of the dielectric function in this spectral region, the resonance
being far enough from the interband threshold to induce significant changes of the
corresponding imaginary part. As stressed in [12, 74], this is a strong indication that

Th. Exp.
k]
Q
N
g 05¢ 1 r 1
15 i
= A
=
»
< 0.0 7 V\/'\“/—“ \/\ \/
-0.5} 1t -
2.4 2.8 3.2 3.6 2.4 2.8 32 3.6
photon energy (eV)

Fig. 3 Left panel: theoretical predictions of the normalized differential transmission for Agagog
embedded in a transparent matrix as a function of the photon energy of the probe. Solid line:
T, = 600 K; dotted line: T, = 1200 K. Right panel: Normalized experimental spectrum of AT /T
of silver nanoparticles encapsulated in an alumina matrix for a pump-probe delay of 2 ps [6]
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intraband processes also play an important role. Indeed, as clearly seen in Fig. 2, the
conduction electrons contribution leads both to a shift and to a broadening. We can
therefore conclude that one needs to consider both the interband and the intraband
part on the same footing. Whereas this effect was previously taken into account in a
phenomenological way via a shifted and broadened Lorentzian shape, here we have
derived it directly from a quantum many-body approach based on the TDLDA at
finite temperature.

2.3 Phase-Space Methods: From Hartree to Wigner and Vlasov

As we have seen in Sect. 2.1, the most fundamental model for the quantum
N-body problem is the Schrodinger equation for the N-particle wave function
Y(ry, ra, ..., Tn, t). Unfortunately, the full Schrodinger equation cannot be solved
exactly except for very small systems. A drastic, but useful and to some extent
plausible, simplification can be achieved by neglecting two-body (and higher order)
correlations. This amounts to assume that the N-body wave function can be factored
into the product of N one-body functions:

lI',(Tlv r2, ..., TN, t) = 1//'1(7'1, t) I//.2(’,127 t) cee l/fN("'N» t) (31)

For fermions, a weak form of the exclusion principle is satisfied if none of the
wave functions on the right-hand side of Eq. (31) are identical.?
When the above assumption is made, the N-body Schrodinger equation reduces
to a set of one-particle equations, coupled through Poisson’s equation (time-dependent
Hartree model):

I 1
ih id = —— AYy — edVy , a=1...Nop (32)
at 2m

Noro
: (Z PalVal® - m(r)) : (33)
a=I

A

where Ny, > N is the number of occupied orbitals, e and m are the absolute elec-
tron charge and mass, and ¢ is the dielectric constant; n; () is the ion density, which
is supposed to be fixed and a continuous function of the position coordinate. This is

3A stronger version of the exclusion principle requires that W(r|, r,, ..., ry, t) is antisymmetric,
i.e., that it changes sign when two of its arguments are interchanged. This can be achieved by
taking, instead of the single product of N wave functions as in Eq. (31), a linear combinations of
all products obtained by permutations of the arguments, with weights 1 (Slater determinant) [75].
This is at the basis of Fock’s generalization of the Hartree model.
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known as the “jellium” hypothesis and is valid whenever the relevant length scales
are significantly larger that the ionic lattice spacing @ ~ SA. As mentioned in
Sect. 2, this is the case for semiconductor nanostructures, but not so for metals (see
Table 1); nevertheless, the jellium models still yields reasonably accurate results for
all but the smallest nano-objects.

The occupation probabilities p,, (Z;VZ"I Po = 1) are defined to describe a Fermi—
Dirac distribution at finite electron temperature, p, = [1 + exp(B(e, — u))]~",
where B = 1/kpT,, u is the chemical potential, and g, is the single-particle energy
level. In practice, one first needs to obtain the ground-state equilibrium solution of
Egs. (32)—(33), which amounts to determining the Ny, occupation probabilities and
the corresponding energy levels and wave functions. Subsequently, the equilibrium
can be perturbed to study the electron dynamics. The numerical methods for the
dynamics are quite standard, as the Eq. (32) are basically one-particle Schrodinger
equations. We will not enter into the details of the numerical methods in this chapter:
a list of relevant works on the Schrodinger equation can be found in [66].

‘We now show that the Hartree equations can be written in a completely equivalent
form by making use of the Wigner transformation. The Wigner representation [34] is
a useful tool to express quantum mechanics in a phase-space formalism (for reviews
see [77-80]). The Wigner function is a function of the phase-space variables (x, v)
and time, which, in terms of the single-particle wave functions, reads as

Norb

m oo * A A imvi/h
f(x,v,t)zzﬁpa/ v, x+§,t Yy X_E’t e dr. (34)

a=1

(we restrict our discussion to one-dimensional cases, but all results can easily be
generalized to three dimensions). It must be stressed that the Wigner function,
although it possesses many useful properties, is not a true probability density, as
it can take negative values. However, it can be used to compute averages just like
in classical statistical mechanics. For example, the expectation value of a generic
quantity A(x, v) is defined as

Ly = LS 0 wAG vdxdy
= J [ fx, v)dxdv

(35)

and yields the correct quantum-mechanical value.* In addition, the Wigner func-
tion reproduces the correct quantum-mechanical marginal distributions, such as the
spatial density:

4 For variables whose corresponding quantum operators do not commute (such as x?9), Eq. (35)
must be supplemented by an ordering rule, known as Weyl’s rule [80].
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+o00 Norb

nGe,n= [  fev,0dv=2 p.lval. (36)
a=1

We also point out that, of course, not all functions of the phase-space variables
are genuine Wigner functions, as they cannot necessarily be written in the form
of Eq. (34). In general, although it is trivial to find the Wigner function given
the wave functions that define the quantum mixture, the inverse operation is not
generally feasible. Indeed, there are no simple rules to establish whether a given
function of x and v is a genuine Wigner function. For a more detailed discussion
on this issue, and some practical recipes to construct genuine Wigner functions,
see [81].

The Wigner function obeys the following evolution equation:

o SE R e
(37

where ¢(x, t) is the self-consistent electrostatic potential obtained self-consistently
from Poisson’s equation (33).
Developing the integral term in Eq. (37) up to order O(h?) we obtain

%JrvgjL e dpof el a¢a3f

o’ 38
ot dx | max dv  24m3 9x3 9v3 + 0@ (38)

In the limit 2 — 0 one recovers the classical Vlasov equation, well known from
plasma physics (see Fig. 1). The Vlasov—Poisson system has been used to study the
dynamics of electrons in metal clusters and thin metal films [51, 18-20]. It is appro-
priate for large excitation energies, for which the electrons’ de Broglie wavelength
is relatively small, thus reducing the importance of quantum effects in the electron
dynamics. Nevertheless, for metallic nanostructures at room temperature, the equi-
librium must be given by a Fermi—Dirac distribution, because the Fermi temperature
is very high (see Table 1). For semiconductor nanostructures, 7p ~ 10 — 50K,
so that a Maxwell-Boltzmann equilibrium is sometimes appropriate for moderate
temperatures.

The Wigner equation must be coupled to the Poisson’s equation for the electric
potential:

¢

e
Pl [1;(x) — n(x, 1)]. (39)

The resulting Wigner—Poisson (WP) system has been extensively used in the
study of quantum transport [82—-84]. Exact analytical results can be obtained by
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linearizing Eqgs. (37) and (39) around a spatially homogeneous equilibrium given
by ng fo(v) (Maxwell-Boltzmann or Fermi—Dirac distribution), where ny = n; =
const. is the uniform equilibrium density. By expressing the fluctuating quantities
as a sum of plane waves exp(ikx — iwt) with frequency @ and wave number k&, the
dispersion relation can be written in the form ¢(k, ) = 0, where the “dielectric
constant” ¢ reads, for the WP system,

2
ewp(@, k) = 1 + 2 Jo + hk/2m) — folv — hk/2m) |

, 40
ok hik(w — kv) v, G0
or equivalently
@} o)
— P 0
ewp(w, k) =1 — n_o/ (@ K0 — Pk A dv . 1)

This is just the Lindhard [85] dispersion relation, well known from solid-state
physics. From Eq. (40), one can recover the Vlasov—Poisson dispersion relation by
taking the classical limit 2 — 0

> [ afy)d
eve(w, k) = 1 4 22 [ 2o/ov
nok J w—kv

dv. (42)

The equivalence of the Hartree and Wigner—Poisson methods can be easily
proven by comparing the linear results. For the Hartree equations (32), we linearize
around a homogeneous equilibrium given by plane waves:

Ve = /N0 EXP (iml;ioa x) , (43)

each with occupation number p, and energy €, = mu%a /2. The Hartree dielectric
constant is found to be

Norb w2

— )4
@, k) =1->"p, Py (44)
a=1 o

which is a discrete form of the Wigner—Poisson dispersion relation (41).

2.3.1 Example — Ultrafast Electron Dynamics in Thin Metal Films

Several experiments have shown [2, 3] that electron transport in thin metal films
occurs on a femtosecond timescale and involves ballistic electrons traveling at the
Fermi velocity of the metal vr. More recently, a regime of low-frequency nonlinear
oscillations (corresponding to ballistic electrons bouncing back and forth on the film
surfaces) was measured in transient reflection experiments on thin gold films [86].
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These findings were corroborated by accurate numerical simulations based on
the one-dimensional Vlasov—Poisson equations [18-20]. The electrons are initially
prepared in a Fermi—Dirac equilibrium at finite (but small) temperature. They are
subsequently excited by imposing a constant velocity shift v = 0.08vy to the
initial distribution, which is a rather strong excitation. This scenario is appropri-
ate when no linear momentum is transferred parallel to the plane of the surface
(i.e., gy = 0) and is relevant to the excitation of the film with optical pulses [87].
For q; = 0, only longitudinal modes (volume plasmon with w = w,) can be
excited.

As a reference case, we studied a sodium film with initial temperature 7, =
0.0087F ~ 300 K and thickness L ~ 120 A. The time evolution of the thermal Ej,
and center-of-mass E.p, energies was analyzed (Fig. 4). During an initial rapidly
oscillating phase, E., is almost entirely converted into thermal energy (Landau
damping). After saturation, a slowly oscillating regime appears, with period equal
to SOa);1 A 5.3fs, where v, = (e’n/mey)'/? is the plasmon frequency. This period
is close to the time of flight of electrons traveling at the Fermi velocity and bouncing
back and forth on the film surfaces (further details are provided in our previous work
[18-20]).

The phase-space portrait of the electron distribution, shown in Fig. 5, clearly
reveals that the perturbation starts at the film surfaces and then proceeds inward at
the Fermi velocity of the metal. The structure formation at the Fermi surface, which
has spread over the entire film for w,t > 150, is responsible for the increase of the
thermal energy (and thus the electron temperature) observed in Fig. 4. As no cou-
pling to an external environment (e.g., phonons) is present, this excess temperature
cannot be dissipated.

Quantum simulations of the electron dynamics using the Wigner—Poisson system
were performed more recently: as expected, the Vlasov results were recovered in
the large excitation regime dv > 0.08v . For smaller excitations, a different regime
appears, in which the ballistic oscillations described above are no longer observed.
Further work is in progress on this issue [88].

Fig. 4 Time evolution of the
thermal, potential, and
center-of-mass energies of

the electron population in a 0 500 1000 1500 2000
thin sodium film Wpet

Ecm
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Fig. 5 Phase-space portrait of the electron distribution. Velocity is normalized to the Fermi veloc-
ity, and space to the Thomas—Fermi screening length Lr = vr/w),

2.3.2 Beyond the Mean-Field

The mean-field approach described above is appropriate to describe the electron
dynamics on very short timescales (< 100fs). On a longer timescale (0.1-1ps), the
injected energy is redistributed among the electrons via electron—electron (e—e) col-
lisions. Electron—phonon (e—ph) thermalization (i.e., coupling to the ionic lattice)
is generally supposed to occur on even longer timescales. However, the results of
[5, 89] on thin gold films have shown that nonequilibrium electrons start interacting
with the lattice earlier than expected, so that a clear-cut separation between e—e and
e—ph relaxation is not entirely pertinent.

The phase-space approach is particularly well suited to include corrections that
go beyond the mean-field picture. This can be done with relative ease for semiclas-
sical models (Vlasov), by using a Boltzmann-like e—e collision integral that respects
Pauli’s exclusion principle (Uhling—Uhlenbeck model) [90]:

af d3p2d __
<§>U iy o Dnl(fifafsfa— Ffaf1f2) (45)

where v, is the relative velocity of the colliding particles 1 and 2, o(2) is the
differential cross-section depending on the scattering angle €2, and indices 3 and 4
label the outgoing momenta, f; = f(r,p;,t) and f; = 1 — f;/2. This collision
term is similar to the well-known classical Boltzmann collision term but for Pauli
blocking factors f; f ;- As known from solid-state physics, this blocking factor plays
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a dramatic role for electronic systems [75]. At 7, = OK, all collisions are Pauli
blocked and the collisional mean-free path of the electrons becomes infinite. But if
the system becomes excited, phase-space opens up and activates the collision term.
The effect of the above e—e collision term on the semiclassical Vlasov dynamics in
metal clusters was investigated numerically in [91].

It is conceptually harder to include collisions in fully quantum models. A sig-
nificant constraint is that nonunitary corrections to the Wigner equation should be
written in “Lindblad form™ [92], which guarantees that the evolved Wigner function
corresponds to a positive-definite density matrix.

The Uhling—Uhlenbeck collision term (45) is a complicated nonlinear integral,
which is difficult to implement in a numerical code. It is therefore useful to con-
struct some simplified collision terms that are more easily amenable to numerical
treatment. In the following, we briefly illustrate two simple models of e—e and e—ph
collisions that we have employed in our previous works.

2.3.2.1 Electron-Electron Collisions

To model e—e collisions, a relaxation term is added to the right-hand side of the
Vlasov or Wigner equation:

a
(%) = 0TS — foo, (46)

where v, is the average e—e collision rate and f(x, v) is a Fermi—Dirac distri-
bution. The idea behind this model is that the electron distribution will eventually
relax, on a timescale of the order v;el, toward a Fermi—Dirac equilibrium fo, with
total energy equal to that of the initial electron distribution f(x, v, = 07), includ-
ing of course the initial excitation energy. For electrons near the Fermi surface, the

e—e collision rate can be written as [93]
vee(Te) = a(ksT,)’, (47)

where a is a (dimensional) proportionality constant. The latter has been esti-
mated from numerical simulations of the electron dynamics in sodium clusters
[91], yielding @ ~ 0.4 fs~'eV~2, which is also compatible with the analyti-
cal prediction given by the random phase approximation [93]. The electron tem-
perature is computed instantaneously during the simulation and plugged into the
expression for the collision rate (47). It is important to underline that the above
model for e—e collisions, though simple, is completely self-contained and requires
no additional ad hoc parameters. The model has been applied to the electron
dynamics in thin metal films. The slow ballistic oscillations of Fig. 4 are still
observed, although they are damped on a timescale of the order of SOOa);e1 =~ 50fs
(see Fig. 6).
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Fig. 6 Evolution of the 0.87 ‘ ‘ ‘ 7
thermal energy for a case
with e—e collisions and
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2.3.2.2 Electron—Phonon Collisions

By coupling to the ionic lattice, the electrons progressively relax to a thermal dis-
tribution with a temperature equal to that of the lattice 7;. This relaxation time is
generally termed 7, in the semiconductor literature. In addition, the lattice acts as an
external environment for the electrons, leading to a loss of quantum coherence over a
timescale 7, (decoherence time). The relaxation and decoherence times correspond,
respectively, to the decay of diagonal and nondiagonal terms in the density matrix
describing the electron population.

Such environment-induced decoherence can be modeled, in the Wigner represen-
tation, by an appropriate friction-diffusion term [94]:

+D,— + D
ot

af _ 5 0f) ’f *f
(_)eph =2 v av? Yox?’ %)

where y is the relaxation rate (inverse of the relaxation time t;), and D,, D, are
diffusion coefficients in velocity and real space, respectively, which are related to
the decoherence time 7, and depend on the lattice temperature 7;. The effect of the
diffusive terms is to smooth out the fine structure of the Wigner function, thus sup-
pressing interference phenomena, which are a typically quantum effect. Finally, we
recall that, in order to preserve the positivity of the density matrix associated to the
Wigner distribution function, the e—ph collision term (48) must be in Lindblad form
[92]. This is automatically achieved [95] if the coefficients respect the inequality
D,D, > y*h?/4m>.

2.4 Hydrodynamical Models: From Micro to Macro

Despite its considerable interest, the Wigner—Poisson (WP) formulation presents
some intrinsic drawbacks : (i) it is a nonlocal, integro-differential system and
(i) its numerical treatment requires the meshing of the whole phase-space. More-
over, as is often the case with kinetic models, the Wigner—Poisson system gives more
information than one is really interested in. For these reasons, it would be useful to
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obtain an accurate reduced model which, though not providing the same detailed
information, is still able to reproduce the main features of the physical system under
consideration.

In this section, we will derive an effective Schrodinger—Poisson (SP) system,
which, in an appropriate limit, reproduces the results of the kinetic WP formulation
[96]. In order to obtain the effective SP system, we will first derive a system of
reduced hydrodynamic (or fluid) equations by taking moments of the WP system. It
will be shown that the pressure term appearing in the fluid equations can be decom-
posed into a classical and a quantum part. With some reasonable hypotheses on
the pressure term, the fluid system can be closed. For simplicity of notation, only
one-dimensional problems will be considered, but the results can be easily extended
to higher dimensions.

In order to derive a fluid model, we take moments of Eq. (37) by integrating over
velocity space. Introducing the standard definitions of density, mean velocity, and
pressure

n:/fdv, u:%/fvdv, P=m</fv2dv—nu2), (49)

it is obtained

on n d (nu) —0 (50)
at ax

ou du e d¢ 1 0P
— dty—=—— - ——. (1))
Jat dx mox mnox

We immediately notice that, surprisingly, Egs. (50)—(51) do not differ from the
ordinary evolution equations for a classical fluid. It can be shown, however, that
quantum effects are actually hidden in the pressure term, which may be decomposed
into a classical and a quantum part.

By using the definition of the Wigner function (34) and representing each state
in terms of its amplitude /7, and phase S,

Valx, 1) = /ng(x, 1) exp (iSu(x, 1)/ D), (52)
we obtain that P = P¢ 4+ P?. The classical part of the pressure can be

written as
2
n n
P¢ = mn oy — > — g, =m 2y — (uy)?), 53
m Za:p nu“ (g:p n”) n((ua) (ug)?) (53)

where mu, = 0S,/0x [the u,’s should not be mistaken with the global mean veloc-
ity u defined in Eq. (49)]. This is the standard expression for the pressure as velocity
dispersion, thus justifying the term “classical” pressure.
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The quantum part of the pressure is written as

Pe = L Pa (<3%>2 - m%) . (54)

2m dx dx?2
o

It can be shown that, for distances larger that the Thomas—Fermi screening length
Ly, one can replace n, with n, the total density as defined in Eq. (49). In order to
close the fluid system (50)—(51) one still has to express the classical pressure in
terms of the density n. This is the standard procedure adopted in classical hydro-
dynamics: the relation P€(n) is the equation of state and depends on the particular
conditions of the system, notably its temperature.

With these hypotheses, the Eq. (51) reduces to

du du ed¢p 10W R 3 [0%(/n)/d x? (55)
_— H— - = — — _— _— .
ot dx mdx mdx 2m?0x Jn
where we have defined the effective potential
"dn' dPC(n’
Wy = [ drdl o) (56)

n dn

Equations (50) and (55) constitute the quantum hydrodynamical approximation
to the full Wigner (or Hartree) equation.

It is now possible to combine Egs. (50) and (55) into an effective nonlinear
Schrodinger equation. To this purpose, let us define the effective wave function

U =./n(x,t)exp(iS(x,t)/h), 67

with S(x, t) defined according to mu(x, t) = 9 S(x, t)/d x. We obtain that W(x, ¢)
satisfies the equation

R0V ot OV + WY (58)
ol T Toamoaxr € :

By linearizing Eqs. (50) and (55) around a homogeneous equilibrium, we obtain
the following dispersion relation

2 2 20, PR
w:wp+vok +m, (59)
where mv} = (dP€/dn),—y,. It can be proven that, by an appropriate choice of
the equation of state PC(n), Eq. (59) reproduces correctly the leading terms of the
Hartree or Wigner dispersion relation.
To summarize, we have shown that, under appropriate conditions, the Hartree
or Wigner models can be reduced to a set of two hydrodynamical equations (50)
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and (55), or, equivalently, to a single nonlinear Schrodinger equation (58). The two
hypotheses used for this reduction were that (i) all quantities vary on a length scale
larger than L ¢ and (ii) the equation of state for the classical pressure is P€ = P (n)
(standard fluid closure).

2.4.1 Example — Thin Metal Films

We have studied the electron dynamics in a thin metal film using the above quantum
hydrodynamical model [97]. A preliminary result is shown in Fig. 7, where we plot
the evolution of the thermal and potential energies against time. In order to compare
to the Vlasov simulations described in Sect. 2.3, the hydrodynamic equations are
solved in the semiclassical limit, i.e., using a small value of the Planck constant
normalized to Er/w, (note, however, that here the initial excitation §v = 0.22vp
is larger compared to the case of Fig. 4, where §v = 0.08vr). The hydrodynamic
results display some coherent oscillations at high frequency, which are a typical sig-
nature of quantum effects. Nevertheless, the initial increase of the thermal energy is
clearly captured and the subsequent ballistic oscillations are still visible, particularly
on the potential energy.
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Fig. 7 Time evolution of the thermal and potential energies (normalized to Ef) of the electron
population, obtained using a quantum hydrodynamics model

3 Spin Dynamics

The dynamics of magneto-optical processes in metallic nanostructures depends on
the temporal and spatial characteristics that are being investigated. Short timescale
(t < 107! s) has only been explored recently. In 1996, the group of Jean-Yves
Bigot in Strasbourg highlighted the existence of ultrafast demagnetization processes
(within less than a hundred femtoseconds) induced by femtosecond laser pulses in
ferromagnetic thin films [26-28]. These demagnetization processes are not yet fully
understood.
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From a theoretical point of view, very little is known on the time-dependent
magneto-optical response of metallic nanostructures to an ultrafast optical pulse.
The main difficulty is to provide an adequate description of the interplay between
electronic and spin degrees of freedom in the metal. So far, only two theoretical
models have been proposed to explain this effect [29, 30]. These works are based on
two different mechanisms: in [29], the spin—orbit coupling is invoked, whereas in
[30] phonon or impurity mediated spin-flip scattering is privileged. Unfortunately,
the parameters employed in [29] are not realistic and the model developed in [30]
is a phenomenological approach that does not allow quantitative predictions. From
the above considerations it follows that there is a need for the development of effi-
cient theoretical models able to explain in a quantitative manner the experimental
findings.

A proper treatment of spin dynamics requires an extension of our model (TDLDA)
to include spin degrees of freedom. In the following, the formalism of the time-
dependent local-spin-density approximation (TDLSDA) in the linear regime
(including also its extension to finite temperature) is presented. A second part will
be devoted to the nonlinear dynamics.

3.1 Linear Response: Local-Spin-Density Approximation

The generalization of the linear TDLDA to spin-polarized electron systems has been
performed by Rajagopal [98]. In the following we provide the basic equations of this
approach including its extension to finite temperature.

Within the framework of DFT one can calculate the spin-density matrix n,,(7)
defined as

Noor(r) = (01, (r) P, (r)]0), (60)

where 12[: (r) and 1/70(7’) are the wave field operators corresponding to the creation
and annihilation of an electron with spin o at position r and |0) is the ground state of
the system. When the system is subjected to a small local spin-dependent external
potential § Ve‘;‘,’/(r; w) (this quantity describes the coupling of the charge and spin
of the electrons to external electric and magnetic fields) the spin-density response

function is defined through the equation:

571(,(,/(7’;60) = Z / X(r(f/,(fl(fz(r5 r/;a)) Bvez]tﬂz(r/;w) d'l’/ . (61)

0102

For the sake of simplicity, we restrict ourself to the case of collinear magnetism,
i.e., to the case of a uniform direction of magnetization. This restriction leads to
a diagonal spin-density matrix (n,, = n,8,,/) and simplified expressions. The
spin-density response function defined in Eq. (61) reduces to
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Sng(r;w) = Z/xwf(n ;) SV (r' w) dr, (62)

which can be rewritten as
Sng(r;w) = Zf X2 (r, s w) SV (s w) dr (63)

with

SVi(r;w) = 8V,

ext

+Z/{e /47T80 o-a (,’, r' (L))}(Sna (’r‘ w) dr' . (64)

(r; )

In the above expression the function f o (r, r';w) is the Fourier transform of
the time- dependent kernel defined by f”” (r.t;7r', 1) =8V2(r,1)/8ns(r', 1), and
XM (r, ¥’; w) is the non-interacting retarded spin-density correlation function. For
spin-polarized electron systems the exchange—correlation potential is defined as

)
Vie(r) = [T {noy(ng, no)} . (65)

ang i|n+n+(r):nn(r)

where Qyc[ny,n_] = f n(r)wye (ny(r), n_(r))dr is the exchange-correlation
thermodynamic potential and wy. the exchange—correlation thermodynamic poten-
tial per particle of the homogeneous electron gas calculated at the local density n
and magnetization m = n; — n_. By noting that

(neoe(ts, 1)) = — {nae(n, m)} + 0 —— (naxe(n, m)}
ongy on om

the expression (65) can be rewritten as [99]

0
V(r) = [5 {nowxe(n, m)}} + o upBxe(r) , (66)

n=n(r);m=m(r)

where By (1) = ,ugl [% {(nwy.(n, m)}]nzn(r);m:m r) is the exchange—correlation
magnetic field acting on spin, and g = eh/(2m) is the Bohr magneton. This is an
internal magnetic field. The response functions x° and y are related by an integral
equation (to be more precise, due to the spin degree of freedom, it is a matrix integral
equation):
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Xoo! (T, T3 0) = x 7o (T, ?“’;w)+Z//Xgol(7'v )

0102

X K{Tldz(’f'//, ,r///;w) ngg’(’r”/, ,r_/;a)) d'r'//d'r'///, (67)

with the residual interaction defined by

2

K7%(r, r"i0) = W ooy + f(r, s w). (68)
ol —

As for TDLDA, in the adiabatic local-density approximation (ALDA) the exchange—
correlation kernel is frequency-independent and local and reduces to

3*[nwg(n, m)]

Sr—r). (69
8”0‘ 8”0’ ]n_n(T);M—ln(T)

120 (e, vy = [

It should be mentioned that the functional wy. in the above expression should be
the same as the one used in the calculation of the ground state [see Eq. (65)]. By
using the same field-theory techniques employed previously for TDLDA (see Sect.
2.2), one can show that the free response function reads

Xy (50, T) = 850 Y f7 G707 (7)) G(r, 7' 6] + heo; T,)
k

+ Y G G el — hei T, (T0)
k

where ¢ (r) and ] are the one-electron Kohn—Sham wave functions and energies,
respectively. G is the one-particle retarded Green’s function for the spins o and

7= [1 + exp {(8;: —w)/kg Tg}]il. Similarly to TDLDA, we have assumed that

the residual interaction (68) is temperature independent. Thus, it is consistent with

the use of wy.(n, m) = €x.(n, m) in the calculation of the ground-state properties.
From the above formalism one can compute the dipolar absorption cross-section

0@ T) = ——Imla@; T, (71)
N
where « is the frequency-dependent dipole electric polarizability defined as
a(w;T,) = f [Sny(riw; To) 4+ dn_(r;0; T,)] §Veu(riw) dr . (72)

By analogy, one defines a quantity which is constructed from the local magneti-
zation (instead of the local density)

O (@ T,) = 80% Im [y, (3 T,)]. (73)
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where o, is the frequency-dependent dipole magnetic polarizability defined as
ay (0 T,) = / [Sni(r;o;T,) —dn_(r;w; T.)] $Vex(rsw)dr . (74)

On can show that o, fulfils the following sum rule

2
27 AC/I(Te) ’ (75)

fani (w; Te)dw =

where M = NT — N~ is the total magnetization of the system (N being the
number of spins up and N~ the number of spins down). It is worth mentioning that
M 1is generally temperature dependent [100].

3.2 Nonlinear Response: Phase-Space Methods

In order to investigate the nonlinear regime of the charge and spin dynamics, a
phase-space approach is particularly interesting. In this paragraph, we will construct
a Wigner equation that includes spin effects in the local-density approximation and
show that its classical limit takes the form of a Vlasov equation.

The starting point for the derivation is the time-dependent Kohn-Sham (KS)
equations described in Sect. 3.1. In terms of the Pauli 2-spinors

wl(r, t) )

‘-pi(r, t) == (\IJ;L(I" t)

the KS equations can be written as

ow;

2
ih— = [(—h—vz + V(r, t)) I+ ugo - B(r, t):| W (r, 1) (76)
Jat 2m

where V(r,1) = Vou(r, 1) + Vy(r,t) + V)?C(r, t), up is Bohr’s magneton, ¢ =
(oy,0y,0;) are the 2 x 2 Pauli matrices, and I is the identity matrix. Here, Ve
is an external potential (e.g., ionic jellium, external electric field, ...), Vg is the
Hartree potential that obeys Poisson’s equation, and V is the scalar part of the
exchange—correlation potential. The magnetic field B = By + By is composed of
an external part and an “internal” part that stems from the exchange and correlation
energy [see Eq. (66)]. In the so-called collinear approximation, the latter reduces to
Byx. = Bx 2.
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Equation of Motion for the Density Matrix
By defining the density matrix

P ) =Y W), a7

where n =7, |, the KS equations (76) can be written in the following compact form
(Von Neumann equation):

ap
ih— = [H, p], 78
ih=——=1H, p] (78)
where
1ot pit pid
_ (Pt
P—<pw pu> ; H-(;lwhu)- (79)

The only nondiagonal terms in the Hamiltonian come from the external or inter-
nal magnetic field B.
We now introduce the following basis transformation for the Hamiltonian:

H=hl+h-o, (80)
where h = (hx, hy, h) and

_ At 4+ ptd b At 4+ pit

= L hy = 81
0 5 5 (81)
Wt —ph Wt —pt
= hy=— 82
Z 2 ’ y 2l ( )
For the Hamiltonian of Eq. (76), we have

hZ
ho(r) = ——V* + V(r, 1) (83)

2m
ho(r) = pupBo(r, 1), o =x,y,z. (84)

The same transformation (with identical notation) is also applied to the density
matrix. With these definitions, the equations of motion for py and p, read as

ihd,po = [ho, pol + Y _ [ha- pal (85)

U=X,y,2

ihatpa = [hO’ 1001] + [hou /00] (86)
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3.2.1 “Spin” Wigner and Vlasov Equations

By making use of the Wigner transformation

A A imvi/h
Sfo(r, v, t)_ﬁ dApg I'—E,r—i-a e s 87)

A A\
Sfa(r, v, 1) = znlh / d)\py <r 5 + 5) e, (88)

one can easily obtain the equations of motion for the Wigner functions:

0 d
§f0+va—rf0 -
m r im(v—=v)A/h & _ _ = —
T /d)\/dve |:V (r—i— 2) Vv (l' >i| fo(r, v, 1)
mMB /im(v— v)/\/h ~) _ & / =
217‘[ﬁ2 /d)»fdve |: (I' ) B (l' 2 Jalr v D=0

af +v8f
ar’* " or’”

m ) im(v—v)A/h & . A .
—Zinhz/dA/dve [V(r—}-z) V(r >:|fa( . 1)
M d,\fdv’e""W*V’Wﬁ B, (r+2) -8, (r— 5 Foe, V., 1) = 0.
2imh? * 2

The corresponding Vlasov equations are obtained in the classical limit 2 — 0:

9 19V 3fy 1 < 0By 3,

2 O 2200 KB e, 89

fo Var®® T or v m — 9r av (89)
9 9 1OV ofu s 984 fo

RPN —o, 90

ol TVl T e oy m ar ov ©0)

withae = x, y, z.
Within the collinear approximation, the equations for « = x, y vanish. In this
case, it is more convenient revert to the original representation and use

fT =f0+fz,
f¢ =f0_fz~
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The corresponding Vlasov equations then become

9 9 1 (aV  9B.\ of;
2 Zh-— (% 1, 91
RARREL m<ar+“3 8r) v O
9 9 1 (aV  9B.\ of,
2 Lo (o i 92
YRARr L m<8r 1 3r> ov ©2)

The above Wigner and Vlasov equations can be used to study the nonlinear spin
dynamics in a ferromagnetic nanoparticle or thin film, using numerical techniques
similar to those employed for the electron dynamics. In their present form, these
equations preserve the total spin and thus cannot be used to describe the loss of
magnetization observed in experiments [26-28]. A proper generalization, along the
lines of the e—e and e—ph collision operators detailed in Sect. 2.3, would be necessary
to account for these effects.

4 Numerical Example: The Nonlinear Many-Electron Dynamics
in an Anharmonic Quantum Well

In order to illustrate qualitatively the practical implementation of the models
described in the previous sections, we concentrate on a specific — and relatively sim-
ple — example. We consider an electron population confined in a one-dimensional
anharmonic well defined by the potential

1 1
Veont(x) = 5wgm*xz + EKx“, (93)
where my is the effective electron mass. The frequency wy can be related to a ficti-
tious homogeneous positive charge of density n via the relation j = e*ng/mxe.
The total potential seen by the electrons is the sum of the confining potential Von¢
and the Hartree potential, which obeys Poisson’s equation

82‘/ 2 o0
a—f - e—/ fdv, (94)
X & J oo

where e is the absolute electron charge and ¢ is the effective dielectric constant. As
initial condition, we take a Maxwell-Boltzmann distribution with Gaussian density
profile

Jolx,v) = (95)

msv? + m*w§x2>
b itonst e

S E——— -
«/2nkBTe/m* 2k3Te

with temperature 7, and peak density 72,.
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The electron dynamics is mainly determined by two dimensionless parameters:
(1) the “filling fraction” n = n./ng = wf, / a)(z), which is a measure of self-consistent
effects (in the limit case n = 0, corresponding to very dilute electron densities,
the Hartree potential is negligible); and (ii) the normalized Planck constant H =
hwy/ kpT,, which determines the importance of quantum effects. Notice that a small
value of H corresponds to a large electron temperature.

We use typical parameters for semiconductor quantum wells [101, 102]: effec-
tive electron mass and dielectric constant my = 0.067m, and ¢ = 13¢; volume
density ny = 10'©cm™3, oscillator energy hwy = 3.98 meV, and oscillator length
Ly = /RA/mxwy ~ 17nm. For n = 1, this yields a maximum surface den-
sity for the electrons n; = 4.64 x 10'°cm~2 and a maximum Fermi temperature
Tr = 29.3K. A low electron temperature 7, ~ 46 K then yields H =~ 1, whereas at
room temperature 7, >~ 300K one has H ~ 0.15.

The electron dynamics is excited by shifting the electron density of a
finite distance x = Lp,. We will primarily be interested in the relaxation of the
electric dipole, defined as the center of mass of the electron population:
d(t)= [ [ fxdxdv/ [ [ fdxdv and of the average kinetic energy Exin = 1 [ [ f
myvidxdv/ [ [ fdxdv.
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Fig. 8 Evolution of the electric dipole (in units of Ly, = 17 nm) obtained from the Wigner—Poisson
model, for several values of 1 and the electron temperature. Time is normalized to the oscillator
frequency
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First, we present results obtained from the numerical resolution of the Wigner
equation (37), coupled to Poisson’s equation (94). The results were obtained with a
numerical code that combines the split-operator method with fast Fourier transforms
in the velocity coordinate [103]. We explore the electron dynamics for different
values of the two relevant dimensionless parameters, H and 1. The anharmonicity
parameter appearing in the confining potential (93) is fixed to K = 0.1 (in units
where h = my = wp = 1). If the confinement were purely harmonic (i.e., K = 0),
the dipole would simply oscillate at the frequency wy irrespective of the value of
the filling fraction. This result goes under the name of Kohn’s theorem [36], and we
have checked that it holds for our numerical simulations. When the confinement is
not harmonic, the dipole should decay because of phase mixing effects.

The numerical results are shown in Fig. 8 (dipole) and Fig. 9 (kinetic energy).
The fast oscillations correspond to the center of mass of the electron gas oscillating
in the anharmonic well. For low electron densities and large temperatures (n =
0.1, 7, = 300 K), the dipole relaxes to the bottom of the well, d >~ 0, whereas the
kinetic energy relaxes to a constant asymptotic value. This is a semiclassical regime
where the energy spectrum is almost continuous: the observed relaxation is due to
phase mixing effects.
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Fig. 9 Evolution of the kinetic energy (normalized to iwy = 3.98 meV) obtained from the Wigner—
Poisson model, for several values of 1 and the electron temperature. Time is normalized to the
oscillator frequency
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Decreasing the temperature (7, = 46 K) while keeping the density low (n =
0.1) produces a revival that occurs after the kinetic energy has initially relaxed.
This is a typically quantum effect resulting from the discrete nature of the energy
spectrum. The revival is clearly visible on the kinetic energy, but not so much on
the dipole. When the electron density is large (n = 1), self-consistent electron—
electron interactions (Hartree potential) prevent the dipole and the kinetic energy
from relaxing completely, even at large temperatures.

Next, we have added a dissipative term to the Wigner equation, in order to model
electron—phonon (e—ph) collisions. This model has been discussed in Sect. 2.3.
The relaxation rate is chosen to be y = 0.001w,, yielding a realistic relaxation
time 7; = y~! ~ 165ps. The velocity—space diffusion coefficient is D, = y v,
where the thermal velocity is v, = +/kz7T,/mx. The relaxation time 7, depends
on the velocity scale: for instance, a velocity scale Av is damped on a timescale
T, = 11Av/vyy,. Therefore, for velocity scales smaller than the thermal velocity,
the decoherence time is always smaller than the relaxation time, in accordance with
experimental findings.

We simulated the low-temperature scenario (7, = 46 K) in the presence of e—ph
collisions and observed that the revival occurring in the kinetic energy for n = 0.1
is now suppressed (see Fig. 10). For large densities, however, the coherence of the
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Fig. 10 Evolution of the kinetic energy (top panels) and electric dipole (bottom panels), from the
Wigner—Poisson model including e—ph collisions. Same normalizations as in Figs. 8 and 9
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electron motion is not lost, and the relaxation of the dipole and the kinetic energy is
only marginally faster compared to the collisionless regime.

Finally, we want to consider the zero temperature case. For doing this, we resort
to the hydrodynamical model described in Sect. 2.4. The relevant dimensionless
parameters now are 1 and ry, the normalized Wigner—Seitz radius computed with
the background density ng. For ny = 10'° cm—3, one has r,o = 2.8. In Fig. 11 we
plot the evolution of the electric dipole for different values of the filling fraction.
Now, even for low electron densities, the dipole oscillates indefinitely without any
appreciable decay. For larger electron densities, the motion is even more regular.
It appears, therefore, that the dynamics becomes more and more regular as the
electron temperature decreases, i.e., when quantum effect become more important.
As mentioned above, this is essentially due to phase mixing effect, which become
increasingly important in the semiclassical regime, where the energy levels are
almost continuous.
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Fig. 11 Evolution of the electric dipole for n = 1 (left frame) and n = 0.1 (right frame), obtained
from the quantum hydrodynamic model at 7, = 0

5 Conclusions and Perspectives

In this review chapter, we have presented some of the most common theoretical
models used to describe the charge and spin dynamics in metallic and semiconductor
nanostructures. Three levels of description have been identified (see Fig. 1): (i) the
full quantum N-body problem, which can only be addressed for small systems by
using, for instance, the Configuration Interaction (CI) method; (ii) mean-field mod-
els (Hartree and Wigner) and their generalizations to include exchange and correla-
tions (Hartree—Fock, density functional theory); and (iii) quantum hydrodynamical
models, which describe the electron dynamics via a small number of macroscopic
variables, such as the density and the average velocity.

Each of these quantum-mechanical approaches has its classical counterpart: clas-
sical N-body models have been developed for molecular dynamics computations, as
well as for gravitational N-body problems; classical mean-field models are ubiq-
uitous in plasma physics (Vlasov—-Maxwell equations) and in the study of self-
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gravitating objects such as star clusters, galaxies, or even the entire universe; classi-
cal hydrodynamics hardly needs mentioning, as it is in itself an extremely wide field
of research.

For each approach, we have stressed the difference between the linear and the
nonlinear response. The former is valid for weak excitations and presupposes that
the response is directly proportional to the excitation. Linear response theory is
generally represented in the frequency domain. In contrast, nonlinear effects kick in
for large excitations and are best described in the time domain (this is because the
time—frequency Fourier transform is a linear operation, thus not adapted to describe
nonlinear relations). Although a vast literature on the linear electronic response is
available and dates back from the works of Drude in the early twentieth century,
nonlinear effects have only been investigated in the last two decades, mainly with
computer simulations.

The mean-field level of description is perhaps the most widely used, as it incor-
porates, at least to lowest order, some of the features of the N-body dynamics,
but still avoids the formidable complexity of the full problem. A particularly chal-
lenging open problem is the inclusion of dynamical correlations within mean-
field models. Dynamical correlations differ from the correlations that are included
in time-dependent density functional theory (TDDFT), inasmuch as they cannot
be described by a slowly varying density functional, as is done in ALDA (adi-
abatic local-density approximation). Whereas adiabatic correlations are described
within an essentially Hamiltonian formulation and thus cannot model irreversible
effects, dynamical correlations are responsible for the relaxation of the electron
gas toward thermodynamical equilibrium. Some recent results have been obtained
using a generalization of TDDFT that relies on the electron current as well as the
electron density [48]. The phase-space approach, via the Wigner formulation, also
appears promising to model effects beyond the mean-field, as we have illustrated in
Sect. 2.3.

Another important issue, which was not mentioned earlier in this review, is the
inclusion of relativistic corrections in the above models for the electron dynam-
ics. Spin—orbit coupling (which is an effect appearing at second order in v/c) is
sometimes taken into account in a semi-phenomenological way within the Pauli
equation. However, other terms occurring at the same order are often neglected
without further justification. A consistent derivation of relativistic effects to a certain
order in v/c can of course be carried out, starting from the Dirac equation, for the
case of a single particle in an external electromagnetic field [104, 105]. For a many-
body system, this issue is much trickier and is the object of current investigations.

Nanostructures are by definition finite-size objects. Due to the presence of bound-
aries and interfaces, the electron dynamics can thus display novel and unexpected
features compared to bulk matter. For example, as the elastic and inelastic scattering
length (~ 10-50 nm for bulk metals) are much longer than the size of the system, an
electron — or a group of electrons — can travel coherently through the length of the
system, thus leading to ballistic transport between the surfaces. The theoretical tools
to study finite-size nano-objects are also relatively recent and have been developed
alongside the experimental breakthroughs that made these objects widely available.
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If the electron dynamics in nanosized objects has received considerable attention
for the last 30 years, the spin dynamics is a much younger field of research, both
experimentally and theoretically. Nevertheless, the already existing applications to
memory storage and processing, and the still speculative, but highly enthralling,
developments in quantum computing, have stimulated a large number of works in
this direction. In Sect. 3 we have illustrated how the models for the electron dynam-
ics can be extended to include the spin degrees of freedom, both in the linear and
in the nonlinear regimes. An outstanding question concerns the demagnetization
processes observed in ferromagnetic thin films irradiated with femtosecond laser
pulses, for which a clear theoretical explanation is still lacking.

The field of optical control of spins in semiconductor nanostructures is also a
very active research area. It is nowadays possible to fabricate and optically probe
individual semiconductor quantum dots doped with one or more magnetic impurities
[106, 107]. One of the major interest of this type of structure is the possibility to con-
trol magnetism via optical processes acting on the charge carriers. Thus, ferromag-
netism becomes optically manipulable on an ultrafast timescale. This is particularly
interesting for the elaboration of future fast-access magnetic storage devices. We are
currently working on quasi one- and two-dimensional nonparabolic quantum dots
containing up to four electrons and doped with a finite number of localized magnetic
impurities. Within the framework of the CI method and the Anderson model, we aim
at investigating the influence of the impurities on the energy spectra and oscillator
strengths with special emphasis on the breakdown of the Kohn theorem.

Finally, another procedure that has attracted particular attention over the last
decade is the low-density doping of semiconductor nanostructures with magnetic
impurities such as manganese ions. The resulting materials (named DMS, for diluted
magnetic semiconductors) can display Curie temperatures as high as 80 K [108] and
possibly larger [109]. The spin of the Mn ions is coupled to the spin degrees of
freedom of the electrons and holes, whose dynamics can be optically excited. DMS
thus offer the possibility of using laser pulses to control the magnetization dynamics
of semiconductor nanostructures.

Given the wealth of fundamental issues and practical applications, the interplay
of charge and spin effects in nanosized objects is bound to remain a major area of
research in the coming years.
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